1
|
McLaughlin M, Fiebig A, Crosson S. XRE transcription factors conserved in Caulobacter and φCbK modulate adhesin development and phage production. PLoS Genet 2023; 19:e1011048. [PMID: 37972151 PMCID: PMC10688885 DOI: 10.1371/journal.pgen.1011048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/30/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023] Open
Abstract
The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and bacteriophage, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs throughout the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this cluster impact host-phage interactions. Here we show that a closely related group of XRE transcription factors encoded by both C. crescentus and φCbK can physically interact and function to control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK-encoded XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly inhibit transcription of host genes including hfiA, a potent holdfast inhibitor, and gafYZ, an activator of prophage-like gene transfer agents (GTAs). XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting the C. crescentus XRE transcription factors reduced φCbK burst size, while overexpressing these host genes or φCbK tgrL rescued this burst defect. We conclude that this XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
2
|
McLaughlin M, Fiebig A, Crosson S. XRE Transcription Factors Conserved in Caulobacter and φCbK Modulate Adhesin Development and Phage Production. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.20.554034. [PMID: 37645952 PMCID: PMC10462132 DOI: 10.1101/2023.08.20.554034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Upon infection, transcriptional shifts in both a host bacterium and its invading phage determine host and viral fitness. The xenobiotic response element (XRE) family of transcription factors (TFs), which are commonly encoded by bacteria and phages, regulate diverse features of bacterial cell physiology and impact phage infection dynamics. Through a pangenome analysis of Caulobacter species isolated from soil and aquatic ecosystems, we uncovered an apparent radiation of a paralogous XRE TF gene cluster, several of which have established functions in the regulation of holdfast adhesin development and biofilm formation in C. crescentus. We further discovered related XRE TFs across the class Alphaproteobacteria and its phages, including the φCbK Caulophage, suggesting that members of this gene cluster impact host-phage interactions. Here we show that that a closely related group of XRE proteins, encoded by both C. crescentus and φCbK, can form heteromeric associations and control the transcription of a common gene set, influencing processes including holdfast development and the production of φCbK virions. The φCbK XRE paralog, tgrL, is highly expressed at the earliest stages of infection and can directly repress transcription of hfiA, a potent holdfast inhibitor, and gafYZ, a transcriptional activator of prophage-like gene transfer agents (GTAs) encoded on the C. crescentus chromosome. XRE proteins encoded from the C. crescentus chromosome also directly repress gafYZ transcription, revealing a functionally redundant set of host regulators that may protect against spurious production of GTA particles and inadvertent cell lysis. Deleting host XRE transcription factors reduced φCbK burst size, while overexpressing these genes or φCbK tgrL rescued this burst defect. We conclude that an XRE TF gene cluster, shared by C. crescentus and φCbK, plays an important role in adhesion regulation under phage-free conditions, and influences host-phage dynamics during infection.
Collapse
Affiliation(s)
- Maeve McLaughlin
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| |
Collapse
|
3
|
Mandon K, Nazaret F, Farajzadeh D, Alloing G, Frendo P. Redox Regulation in Diazotrophic Bacteria in Interaction with Plants. Antioxidants (Basel) 2021; 10:antiox10060880. [PMID: 34070926 PMCID: PMC8226930 DOI: 10.3390/antiox10060880] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/23/2022] Open
Abstract
Plants interact with a large number of microorganisms that greatly influence their growth and health. Among the beneficial microorganisms, rhizosphere bacteria known as Plant Growth Promoting Bacteria increase plant fitness by producing compounds such as phytohormones or by carrying out symbioses that enhance nutrient acquisition. Nitrogen-fixing bacteria, either as endophytes or as endosymbionts, specifically improve the growth and development of plants by supplying them with nitrogen, a key macro-element. Survival and proliferation of these bacteria require their adaptation to the rhizosphere and host plant, which are particular ecological environments. This adaptation highly depends on bacteria response to the Reactive Oxygen Species (ROS), associated to abiotic stresses or produced by host plants, which determine the outcome of the plant-bacteria interaction. This paper reviews the different antioxidant defense mechanisms identified in diazotrophic bacteria, focusing on their involvement in coping with the changing conditions encountered during interaction with plant partners.
Collapse
Affiliation(s)
- Karine Mandon
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Fanny Nazaret
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Davoud Farajzadeh
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Shahid Madani University, Tabriz 5375171379, Iran;
- Center for International Scientific Studies and Collaboration (CISSC), Ministry of Science, Research and Technology, Tehran 158757788, Iran
| | - Geneviève Alloing
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
| | - Pierre Frendo
- Université Côte d’Azur, INRAE, CNRS, ISA, 06903 Sophia Antipolis, France; (K.M.); (F.N.); (G.A.)
- Correspondence:
| |
Collapse
|
4
|
Abstract
By analyzing successive lifestyle stages of a model Rhizobium-legume symbiosis using mariner-based transposon insertion sequencing (INSeq), we have defined the genes required for rhizosphere growth, root colonization, bacterial infection, N2-fixing bacteroids, and release from legume (pea) nodules. While only 27 genes are annotated as nif and fix in Rhizobium leguminosarum, we show 603 genetic regions (593 genes, 5 transfer RNAs, and 5 RNA features) are required for the competitive ability to nodulate pea and fix N2 Of these, 146 are common to rhizosphere growth through to bacteroids. This large number of genes, defined as rhizosphere-progressive, highlights how critical successful competition in the rhizosphere is to subsequent infection and nodulation. As expected, there is also a large group (211) specific for nodule bacteria and bacteroid function. Nodule infection and bacteroid formation require genes for motility, cell envelope restructuring, nodulation signaling, N2 fixation, and metabolic adaptation. Metabolic adaptation includes urea, erythritol and aldehyde metabolism, glycogen synthesis, dicarboxylate metabolism, and glutamine synthesis (GlnII). There are 17 separate lifestyle adaptations specific to rhizosphere growth and 23 to root colonization, distinct from infection and nodule formation. These results dramatically highlight the importance of competition at multiple stages of a Rhizobium-legume symbiosis.
Collapse
|
5
|
Ohr and OhrR Are Critical for Organic Peroxide Resistance and Symbiosis in Azorhizobium caulinodans ORS571. Genes (Basel) 2020; 11:genes11030335. [PMID: 32245101 PMCID: PMC7141136 DOI: 10.3390/genes11030335] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 12/12/2022] Open
Abstract
Azorhizobium caulinodans is a symbiotic nitrogen-fixing bacterium that forms both root and stem nodules on Sesbania rostrata. During nodule formation, bacteria have to withstand organic peroxides that are produced by plant. Previous studies have elaborated on resistance to these oxygen radicals in several bacteria; however, to the best of our knowledge, none have investigated this process in A. caulinodans. In this study, we identified and characterised the organic hydroperoxide resistance gene ohr (AZC_2977) and its regulator ohrR (AZC_3555) in A. caulinodans ORS571. Hypersensitivity to organic hydroperoxide was observed in an ohr mutant. While using a lacZ-based reporter system, we revealed that OhrR repressed the expression of ohr. Moreover, electrophoretic mobility shift assays demonstrated that OhrR regulated ohr by direct binding to its promoter region. We showed that this binding was prevented by OhrR oxidation under aerobic conditions, which promoted OhrR dimerization and the activation of ohr. Furthermore, we showed that one of the two conserved cysteine residues in OhrR, Cys11, was critical for the sensitivity to organic hydroperoxides. Plant assays revealed that the inactivation of Ohr decreased the number of stem nodules and nitrogenase activity. Our data demonstrated that Ohr and OhrR are required for protecting A. caulinodans from organic hydroperoxide stress and play an important role in the interaction of the bacterium with plants. The results that were obtained in our study suggested that a thiol-based switch in A. caulinodans might sense host organic peroxide signals and enhance symbiosis.
Collapse
|
6
|
Speck JJ, James EK, Sugawara M, Sadowsky MJ, Gyaneshwar P. An Alkane Sulfonate Monooxygenase Is Required for Symbiotic Nitrogen Fixation by Bradyrhizobium diazoefficiens (syn. Bradyrhizobium japonicum) USDA110 T. Appl Environ Microbiol 2019; 85:e01552-19. [PMID: 31562172 PMCID: PMC6881790 DOI: 10.1128/aem.01552-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/25/2019] [Indexed: 01/18/2023] Open
Abstract
Sulfur (S)-containing molecules play an important role in symbiotic nitrogen fixation and are critical components of nitrogenase and other iron-S proteins. S deficiency inhibits symbiotic nitrogen fixation by rhizobia. However, despite its importance, little is known about the sources of S that rhizobia utilize during symbiosis. We previously showed that Bradyrhizobium diazoefficiens USDA110T can assimilate both inorganic and organic S and that genes involved in organic S utilization are expressed during symbiosis. Here, we show that a B. diazoefficiens USDA110T mutant with a sulfonate monooxygenase (ssuD) insertion is defective in nitrogen fixation. Microscopy analyses revealed that the ΔssuD mutant was defective in root hair infection and that ΔssuD mutant bacteroids showed degradation compared to the wild-type strain. Moreover, the ΔssuD mutant was significantly more sensitive to hydrogen peroxide-mediated oxidative stress than the wild-type strain. Taken together, these results show that the ability of rhizobia to utilize organic S plays an important role in symbiotic nitrogen fixation. Since nodules have been reported to be an important source of reduced S used during symbiosis and nitrogen fixation, further research will be needed to determine the mechanisms involved in the regulation of S assimilation by rhizobia.IMPORTANCE Rhizobia form symbiotic associations with legumes that lead to the formation of nitrogen-fixing nodules. Sulfur-containing molecules play a crucial role in nitrogen fixation; thus, the rhizobia inside nodules require large amounts of sulfur. Rhizobia can assimilate both inorganic (sulfate) and organic (sulfonates) sources of sulfur. However, very little is known about rhizobial sulfur metabolism during symbiosis. In this report, we show that sulfonate utilization by Bradyrhizobium diazoefficiens is important for symbiotic nitrogen fixation in both soybean and cowpea. The symbiotic defect is probably due to increased sensitivity to oxidative stress from sulfur deficiency in the mutant strain defective for sulfonate utilization. The results of this study can be extended to other rhizobium-legume symbioses, as sulfonate utilization genes are widespread in these bacteria.
Collapse
Affiliation(s)
- Justin J Speck
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| | | | - Masayuki Sugawara
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Michael J Sadowsky
- Biotechnology Institute, Department of Soil, Water & Climate, University of Minnesota, Saint Paul, Minnesota, USA
- Biotechnology Institute, Department of Plant & Microbial Biology, University of Minnesota, Saint Paul, Minnesota, USA
| | - Prasad Gyaneshwar
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin, USA
| |
Collapse
|
7
|
Wang R, Lin CY, Chen SH, Lo KJ, Liu CT, Chou TH, Shih YH. Using high-throughput transcriptome sequencing to investigate the biotransformation mechanism of hexabromocyclododecane with Rhodopseudomonas palustris in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:249-258. [PMID: 31349166 DOI: 10.1016/j.scitotenv.2019.07.140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 07/04/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
We discovered one purple photosynthetic bacterium, Rhodopseudomonas palustris YSC3, which has a specific ability to degrade 1, 2, 5, 6, 9, 10-hexabromocyclododecane (HBCD). The whole transcriptome of R. palustris YSC3 was analyzed using the RNA-based sequencing technology in illumina and was compared as well as discussed through Multi-Omics onLine Analysis System (MOLAS, http://molas.iis.sinica.edu.tw/NTUIOBYSC3/) platform we built. By using genome based mapping approach, we can align the trimmed reads on the genome of R. palustris and estimate the expression profiling for each transcript. A total of 341 differentially expressed genes (DEGs) in HBCD-treated R. palustris (RPH) versus control R. palustris (RPC) was identified by 2-fold changes, among which 305 genes were up-regulated and 36 genes were down-regulated. The regulated genes were mapped to the database of Gene Ontology (GO) and Genes and Genomes Encyclopedia of Kyoto (KEGG), resulting in 78 pathways being identified. Among those DEGs which annotated to important functions in several metabolic pathways, including those involved in two-component system (13.6%), ribosome assembly (10.7%), glyoxylate and dicarboxylate metabolism (5.3%), fatty acid degradation (4.7%), drug metabolism-cytochrome P450 (2.3%), and chlorocyclohexane and chlorobenzene degradation (3.0%) were differentially expressed in RPH and RPC samples. We also identified one transcript annotated as dehalogenase and other genes involved in the HBCD biotransformation in R. palustris. Furthermore, the putative HBCD biotransformation mechanism in R. palustris was proposed.
Collapse
Affiliation(s)
- Reuben Wang
- Department of Food Science, Tunghai University, Taiwan, No.1727, Sec.4, Taiwan Boulevard, Xitun District, Taichung 40704, Taiwan
| | - Chung-Yen Lin
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Taipei 11529, Taiwan
| | - Shu-Hwa Chen
- Institute of Information Science, Academia Sinica, No. 128, Sec. 2, Taipei 11529, Taiwan
| | - Kai-Jiun Lo
- Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Tzu-Ho Chou
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan
| | - Yang-Hsin Shih
- Department of Agricultural Chemistry, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
| |
Collapse
|
8
|
Chien HL, Huang WZ, Tsai MY, Cheng CH, Liu CT. Overexpression of the Chromosome Partitioning Gene parA in Azorhizobium caulinodans ORS571 Alters the Bacteroid Morphotype in Sesbania rostrata Stem Nodules. Front Microbiol 2019; 10:2422. [PMID: 31749773 PMCID: PMC6842974 DOI: 10.3389/fmicb.2019.02422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 10/07/2019] [Indexed: 11/13/2022] Open
Abstract
Azorhizobium caulinodans ORS571 is a diazotroph that forms N2-fixing nodules on the roots and stems of the tropical legume Sesbania rostrata. Deletion of the parA gene of this bacterium results in cell cycle defects, pleiomorphic cell shape, and formation of immature stem nodules on its host plant. In this study, we constructed a parA overexpression mutant (PnptII-parA) to complement a previous study and provide new insights into bacteroid formation. We found that overproduction of ParA did not affect growth, cell morphology, chromosome partitioning, or vegetative nitrogen fixation in the free-living state. Under symbiosis, however, distinctive features, such as a single swollen bacteroid in one symbiosome, relatively narrow symbiosome space, and polyploid cells were observed. The morphotype of the PnptII-parA bacteroid is reminiscent of terminal differentiation in some IRLC indeterminate nodules, but S. rostrata is not thought to produce the NCR peptides that induce terminal differentiation in rhizobia. In addition, the transcript patterns of many symbiosis-related genes elicited by PnptII-parA were different from those elicited by the wild type. Accordingly, we propose that the particular symbiosome formation in PnptII-parA stem-nodules is due to cell cycle disruption caused by excess ParA protein in the symbiotic cells during nodulation.
Collapse
Affiliation(s)
- Hsiao-Lin Chien
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Wan-Zhen Huang
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Ming-Yen Tsai
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
| | - Chiung-Hsiang Cheng
- Institute of Molecular and Comparative Pathobiology, School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan
| | - Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, Taipei, Taiwan
- Agricultural Biotechnology Research Center, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Lin HH, Huang HM, Yu M, Lai EM, Chien HL, Liu CT. Functional Exploration of the Bacterial Type VI Secretion System in Mutualism: Azorhizobium caulinodans ORS571-Sesbania rostrata as a Research Model. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018. [PMID: 29516754 DOI: 10.1094/mpmi-01-18-0026-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The bacterial type VI secretion system (T6SS) has been considered the armed force of bacteria because it can deliver toxin effectors to prokaryotic or eukaryotic cells for survival and fitness. Although many legume symbiotic rhizobacteria encode T6SS in their genome, the biological function of T6SS in these bacteria is still unclear. To elucidate this issue, we used Azorhizobium caulinodans ORS571 and its symbiotic host Sesbania rostrata as our research model. By using T6SS gene deletion mutants, we found that T6SS provides A. caulinodans with better symbiotic competitiveness when coinfected with a T6SS-lacking strain, as demonstrated by two independent T6SS-deficient mutants. Meanwhile, the symbiotic effectiveness was not affected by T6SS because the nodule phenotype, nodule size, and nodule nitrogen-fixation ability did not differ between the T6SS mutants and the wild type when infected alone. Our data also suggest that under several lab culture conditions tested, A. caulinodans showed no T6SS-dependent interbacterial competition activity. Therefore, instead of being an antihost or antibacterial weapon of the bacterium, the T6SS in A. caulinodans ORS571 seems to participate specifically in symbiosis by increasing its symbiotic competitiveness.
Collapse
Affiliation(s)
- Hsiao-Han Lin
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Hsin-Mei Huang
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Manda Yu
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Erh-Min Lai
- 2 Institute of Plant and Microbial Biology, Academia Sinica, No. 128 Section 2, Academia Rd., Nankang, Taipei 11529, Taiwan; and
| | - Hsiao-Lin Chien
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
| | - Chi-Te Liu
- 1 Institute of Biotechnology, National Taiwan University, No. 81, Chang-Xing St., Taipei 10617, Taiwan
- 3 Agricultural Biotechnology Research Center, Academia Sinica
| |
Collapse
|
10
|
A Novel Regulatory Pathway for K + Uptake in the Legume Symbiont Azorhizobium caulinodans in Which TrkJ Represses the kdpFABC Operon at High Extracellular K + Concentrations. Appl Environ Microbiol 2017; 83:AEM.01197-17. [PMID: 28778893 DOI: 10.1128/aem.01197-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 07/28/2017] [Indexed: 11/20/2022] Open
Abstract
Bacteria have multiple K+ uptake systems. Escherichia coli, for example, has three types of K+ uptake systems, which include the low-K+-inducible KdpFABC system and two constitutive systems, Trk (TrkAG and TrkAH) and Kup. Azorhizobium caulinodans ORS571, a rhizobium that forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, also has three types of K+ uptake systems. Through phylogenetic analysis, we found that A. caulinodans has two genes homologous to trkG and trkH, designated trkI and trkJ We also found that trkI is adjacent to trkA in the genome and these two genes are transcribed as an operon; however, trkJ is present at a distinct locus. Our results demonstrated that trkAI, trkJ, and kup were expressed in the wild-type stem nodules, whereas kdpFABC was not. Interestingly, Δkup and Δkup ΔkdpA mutants formed Fix- nodules, while the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant formed Fix+ nodules, suggesting that with the additional deletion of Trk system genes in the Δkup mutant, Fix+ nodule phenotypes were recovered. kdpFABC of the Δkup ΔtrkJ mutant was expressed in stem nodules, but not in the free-living state, under high-K+ conditions. However, kdpFABC of the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant was highly expressed even under high-K+ conditions. The cytoplasmic K+ levels in the Δkup ΔtrkA ΔtrkI mutant, which did not express kdpFABC under high-K+ conditions, were markedly lower than those in the Δkup ΔtrkA ΔtrkI ΔtrkJ mutant. Taking all these results into consideration, we propose that TrkJ is involved in the repression of kdpFABC in response to high external K+ concentrations and that the TrkAI system is unable to function in stem nodules.IMPORTANCE K+ is a major cytoplasmic cation in prokaryotic and eukaryotic cells. Bacteria have multiple K+ uptake systems to control the cytoplasmic K+ levels. In many bacteria, the K+ uptake system KdpFABC is expressed under low-K+ conditions. For years, many researchers have argued over how bacteria sense K+ concentrations. Although KdpD of Escherichia coli is known to sense both cytoplasmic and extracellular K+ concentrations, the detailed mechanism of K+ sensing is still unclear. In this study, we propose that the transmembrane TrkJ protein of Azorhizobium caulinodans acts as a sensor for the extracellular K+ concentration and that high extracellular K+ concentrations repress the expression of KdpFABC via TrkJ.
Collapse
|
11
|
Liu W, Yang J, Sun Y, Liu X, Li Y, Zhang Z, Xie Z. Azorhizobium caulinodans Transmembrane Chemoreceptor TlpA1 Involved in Host Colonization and Nodulation on Roots and Stems. Front Microbiol 2017; 8:1327. [PMID: 28751887 PMCID: PMC5508009 DOI: 10.3389/fmicb.2017.01327] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Accepted: 06/30/2017] [Indexed: 02/02/2023] Open
Abstract
Azorhizobium caulinodans ORS571 is a motile soil bacterium that interacts symbiotically with legume host Sesbania rostrata, forming nitrogen-fixing root and stem nodules. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship. To determine the contribution of chemotaxis to symbiosis in A. caulinodans ORS571-S. rostrata, we characterized the function of TlpA1 (transducer-like protein in A. caulinodans), a chemoreceptor predicted by SMART (Simple Modular Architecture Research Tool), containing two N-terminal transmembrane regions. The tlpA1 gene is located immediately upstream of the unique che gene cluster and is transcriptionally co-oriented. We found that a ΔtlpA1 mutant is severely impaired for chemotaxis to various organic acids, glycerol and proline. Furthermore, biofilm forming ability of the strain carrying the mutation is reduced under certain growth conditions. Interestingly, competitive colonization ability on S. rostrata root surfaces is impaired in the ΔtlpA1 mutant, suggesting that chemotaxis of the A. caulinodans ORS571 contributes to root colonization. We also found that TlpA1 promotes competitive nodulation not only on roots but also on stems of S. rostrata. Taken together, our data strongly suggest that TlpA1 is a transmembrane chemoreceptor involved in A. caulinodans-S. rostrata symbiosis.
Collapse
Affiliation(s)
- Wei Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Jinbao Yang
- College of Life Sciences, Shanxi Agricultural UniversityTaigu, China
| | - Yu Sun
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- School of Resource and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Xiaolin Liu
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- School of Resource and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Yan Li
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| | - Zhenpeng Zhang
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
- School of Resource and Environment, University of Chinese Academy of SciencesBeijing, China
| | - Zhihong Xie
- Key Laboratory of Coastal Biology and Bioresource Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of SciencesYantai, China
| |
Collapse
|
12
|
Zhao Y, Nickels LM, Wang H, Ling J, Zhong Z, Zhu J. OxyR-regulated catalase activity is critical for oxidative stress resistance, nodulation and nitrogen fixation in Azorhizobium caulinodans. FEMS Microbiol Lett 2016; 363:fnw130. [PMID: 27190162 DOI: 10.1093/femsle/fnw130] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/12/2016] [Indexed: 11/13/2022] Open
Abstract
The legume-rhizobial interaction results in the formation of symbiotic nodules in which rhizobia fix nitrogen. During the process of symbiosis, reactive oxygen species (ROS) are generated. Thus, the response of rhizobia to ROS is important for successful nodulation and nitrogen fixation. In this study, we investigated how Azorhizobium caulinodans, a rhizobium that forms both root and stem nodules on its host plant, regulates ROS resistance. We found that in-frame deletions of a gene encoding the putative catalase-peroxidase katG or a gene encoding a LysR-family regulatory protein, oxyR, exhibited increased sensitivity to H2O2 We then showed that OxyR positively regulated katG expression in an H2O2-independent fashion. Furthermore, we found that deletion of katG or oxyR led to significant reduction in the number of stem nodules and decrease of nitrogen fixation capacities in symbiosis. Our results revealed that KatG and OxyR are not only critical for antioxidant defense in vitro, but also important for nodule formation and nitrogen fixation during interaction with plant hosts.
Collapse
Affiliation(s)
- Yue Zhao
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Logan M Nickels
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hui Wang
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Ling
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Zengtao Zhong
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095
| | - Jun Zhu
- Department of Microbiology, College of Biological Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, China 210095 Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
13
|
Evaluation of the effects of different liquid inoculant formulations on the survival and plant-growth-promoting efficiency of Rhodopseudomonas palustris strain PS3. Appl Microbiol Biotechnol 2016; 100:7977-87. [PMID: 27150383 DOI: 10.1007/s00253-016-7582-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/12/2016] [Accepted: 04/24/2016] [Indexed: 10/21/2022]
Abstract
Biofertilizers can help improve soil quality, promote crop growth, and sustain soil health. The photosynthetic bacterium Rhodopseudomonas palustris strain PS3 (hereafter, PS3), which was isolated from Taiwanese paddy soil, can not only exert beneficial effects on plant growth but also enhance the efficiency of nutrient uptake from applied fertilizer. To produce this elite microbial isolate for practical use, product development and formulation are needed to permit the maintenance of the high quality of the inoculant during storage. The aim of this study was to select a suitable formulation that improves the survival and maintains the beneficial effects of the PS3 inoculant. Six additives (alginate, polyethylene glycol [PEG], polyvinylpyrrolidone-40 [PVP], glycerol, glucose, and horticultural oil) were used in liquid-based formulations, and their capacities for maintaining PS3 cell viability during storage in low, medium, and high temperature ranges were evaluated. Horticultural oil (0.5 %) was chosen as a potential additive because it could maintain a relatively high population and conferred greater microbial vitality under various storage conditions. Furthermore, the growth-promoting effects exerted on Chinese cabbage by the formulated inoculants were significantly greater than those of the unformulated treatments. The fresh and dry weights of the shoots were significantly increased, by 10-27 and 22-40 %, respectively. Horticultural oil is considered a safe, low-cost, and easy-to-process material, and this formulation would facilitate the practical use of strain PS3 in agriculture.
Collapse
|
14
|
Wakao S, Siarot L, Aono T, Oyaizu H. Effects of alteration in LPS structure in Azorhizobium caulinodans on nodule development. J GEN APPL MICROBIOL 2016; 61:248-54. [PMID: 26782655 DOI: 10.2323/jgam.61.248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The lipopolysaccharide (LPS) of Azorhizobium caulinodans ORS571, which forms N2-fixing nodules on the stems and roots of Sesbania rostrata, is known to be a positive signal required for the progression of nodule formation. In this study, four A. caulinodans mutants producing a variety of defective LPSs were compared. The LPSs of the mutants having Tn5 insertion in the rfaF, rfaD, and rfaE genes were more truncated than the modified LPSs of the oac2 mutants. However, the nodule formation by the rfaF, rfaD, and rfaE mutants was more advanced than that of the oac2 mutant, suggesting that invasion ability depends on the LPS structure. Our hypothesis is that not only the wild-type LPSs but also the altered LPSs of the oac2 mutant may be recognized as signal molecules by plants. The altered LPSs may act as negative signals that halt the symbiotic process, whereas the wild-type LPSs may prevent the halt of the symbiotic process. The more truncated LPSs of the rfaF, rfaD, and rfaE mutants perhaps no longer function as negative signals inducing discontinuation of the symbiotic process, and thus these strains form more advanced nodules than ORS571-oac2.
Collapse
Affiliation(s)
- Seiji Wakao
- Biotechnology Research Center, The University of Tokyo
| | | | | | | |
Collapse
|
15
|
Tkacz A, Poole P. Role of root microbiota in plant productivity. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2167-75. [PMID: 25908654 PMCID: PMC4986727 DOI: 10.1093/jxb/erv157] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 03/09/2015] [Accepted: 03/12/2015] [Indexed: 05/19/2023]
Abstract
The growing human population requires increasing amounts of food, but modern agriculture has limited possibilities for increasing yields. New crop varieties may be bred to have increased yields and be more resistant to environmental stress and pests. However, they still require fertilization to supplement essential nutrients that are normally limited in the soil. Soil microorganisms present an opportunity to reduce the requirement for inorganic fertilization in agriculture. Microorganisms, due to their enormous genetic pool, are also a potential source of biochemical reactions that recycle essential nutrients for plant growth. Microbes that associate with plants can be considered to be part of the plant's pan-genome. Therefore, it is essential for us to understand microbial community structure and their 'metagenome' and how it is influenced by different soil types and crop varieties. In the future we may be able to modify and better utilize the soil microbiota potential for promoting plant growth.
Collapse
Affiliation(s)
- Andrzej Tkacz
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| | - Philip Poole
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK
| |
Collapse
|
16
|
Wong WT, Tseng CH, Hsu SH, Lur HS, Mo CW, Huang CN, Hsu SC, Lee KT, Liu CT. Promoting effects of a single Rhodopseudomonas palustris inoculant on plant growth by Brassica rapa chinensis under low fertilizer input. Microbes Environ 2014; 29:303-13. [PMID: 25130882 PMCID: PMC4159042 DOI: 10.1264/jsme2.me14056] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Several Rhodopseudomonas palustris strains have been isolated from rice paddy fields in Taiwan by combining the Winogradsky column method and molecular marker detection. These isolates were initially screened by employing seed germination and seedling vigor assays to evaluate their potential as inoculants. To fulfill the demand in the present farming system for reducing the application of chemical fertilizers, we assessed the plant growth-promoting effects of the R. palustris YSC3, YSC4, and PS3 inoculants on Brassica rapa chinensis (Chinese cabbage) cultivated under a half quantity of fertilizer. The results obtained showed that supplementation with approximately 4.0×10(6) CFU g(-1) soil of the PS3 inoculant at half the amount of fertilizer consistently produced the same plant growth potential as 100% fertility, and also increased the nitrogen use efficiency of the applied fertilizer nutrients. Furthermore, we noted that the plant growth-promotion rate elicited by PS3 was markedly higher with old seeds than with new seeds, suggesting it has the potential to boost the development of seedlings that were germinated from carry-over seeds of poor quality. These beneficial traits suggest that the PS3 isolate may serve as a potential PGPR inoculant for integrated nutrient management in agriculture.
Collapse
Affiliation(s)
- Wai-Tak Wong
- Department of Agronomy, National Taiwan University
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Delmotte N, Mondy S, Alunni B, Fardoux J, Chaintreuil C, Vorholt JA, Giraud E, Gourion B. A proteomic approach of bradyrhizobium/aeschynomene root and stem symbioses reveals the importance of the fixA locus for symbiosis. Int J Mol Sci 2014; 15:3660-70. [PMID: 24590127 PMCID: PMC3975360 DOI: 10.3390/ijms15033660] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Revised: 02/14/2014] [Accepted: 02/14/2014] [Indexed: 11/28/2022] Open
Abstract
Rhizobia are soil bacteria that are able to form symbiosis with plant hosts of the legume family. These associations result in the formation of organs, called nodules in which bacteria fix atmospheric nitrogen to the benefit of the plant. Most of our knowledge on the metabolism and the physiology of the bacteria during symbiosis derives from studying roots nodules of terrestrial plants. Here we used a proteomics approach to investigate the bacterial physiology of photosynthetic Bradyrhizobium sp. ORS278 during the symbiotic process with the semi aquatical plant Aeschynomene indica that forms root and stem nodules. We analyzed the proteomes of bacteria extracted from each type of nodule. First, we analyzed the bacteroid proteome at two different time points and found only minor variation between the bacterial proteomes of 2-week- and 3-week-old nodules. High conservation of the bacteroid proteome was also found when comparing stem nodules and root nodules. Among the stem nodule specific proteins were those related to the phototrophic ability of Bradyrhizobium sp. ORS278. Furthermore, we compared our data with those obtained during an extensive genetic screen previously published. The symbiotic role of four candidate genes which corresponding proteins were found massively produced in the nodules but not identified during this screening was examined. Mutant analysis suggested that in addition to the EtfAB system, the fixA locus is required for symbiotic efficiency.
Collapse
Affiliation(s)
- Nathanael Delmotte
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Samuel Mondy
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France.
| | - Benoit Alunni
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France.
| | - Joel Fardoux
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France.
| | - Clémence Chaintreuil
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France.
| | - Julia A Vorholt
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland.
| | - Eric Giraud
- Laboratoire des Symbioses Tropicales et Méditerranéennes, IRD, UMR IRD/SupAgro/INRA/UM2/CIRAD, F-34398 Montpellier, France.
| | - Benjamin Gourion
- Institut des Sciences du Végétal, CNRS, 91198 Gif sur Yvette, France.
| |
Collapse
|
18
|
Roset MS, Almirón MA. FixL-like sensor FlbS ofBrucella abortusbinds haem and is necessary for survival within eukaryotic cells. FEBS Lett 2013; 587:3102-7. [DOI: 10.1016/j.febslet.2013.07.047] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Revised: 07/23/2013] [Accepted: 07/29/2013] [Indexed: 11/27/2022]
|
19
|
Li Y, Tian CF, Chen WF, Wang L, Sui XH, Chen WX. High-resolution transcriptomic analyses of Sinorhizobium sp. NGR234 bacteroids in determinate nodules of Vigna unguiculata and indeterminate nodules of Leucaena leucocephala. PLoS One 2013; 8:e70531. [PMID: 23936444 PMCID: PMC3732241 DOI: 10.1371/journal.pone.0070531] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2013] [Accepted: 06/20/2013] [Indexed: 11/18/2022] Open
Abstract
The rhizobium-legume symbiosis is a model system for studying mutualistic interactions between bacteria and eukaryotes. Sinorhizobium sp. NGR234 is distinguished by its ability to form either indeterminate nodules or determinate nodules with diverse legumes. Here, we presented a high-resolution RNA-seq transcriptomic analysis of NGR234 bacteroids in indeterminate nodules of Leucaena leucocephala and determinate nodules of Vigna unguiculata. In contrast to exponentially growing free-living bacteria, non-growing bacteroids from both legumes recruited several common cellular functions such as cbb3 oxidase, thiamine biosynthesis, nitrate reduction pathway (NO-producing), succinate metabolism, PHB (poly-3-hydroxybutyrate) biosynthesis and phosphate/phosphonate transporters. However, different transcription profiles between bacteroids from two legumes were also uncovered for genes involved in the biosynthesis of exopolysaccharides, lipopolysaccharides, T3SS (type three secretion system) and effector proteins, cytochrome bd ubiquinol oxidase, PQQ (pyrroloquinoline quinone), cytochrome c550, pseudoazurin, biotin, phasins and glycolate oxidase, and in the metabolism of glutamate and phenylalanine. Noteworthy were the distinct expression patterns of genes encoding phasins, which are thought to be involved in regulating the surface/volume ratio of PHB granules. These patterns are in good agreement with the observed granule size difference between bacteroids from L. leucocephala and V. unguiculata.
Collapse
Affiliation(s)
- Yan Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Chang Fu Tian
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
- * E-mail:
| | - Wen Feng Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Lei Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
| | - Xin Hua Sui
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| | - Wen Xin Chen
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- Key Laboratory of Soil Microbiology, Ministry of Agriculture, China Agricultural University, Beijing, China
- Rhizobium Research Center, China Agricultural University, Beijing, China
| |
Collapse
|
20
|
Lon protease of Azorhizobium caulinodans ORS571 is required for suppression of reb gene expression. Appl Environ Microbiol 2012; 78:6251-61. [PMID: 22752172 DOI: 10.1128/aem.01039-12] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial Lon proteases play important roles in a variety of biological processes in addition to housekeeping functions. In this study, we focused on the Lon protease of Azorhizobium caulinodans, which can fix nitrogen both during free-living growth and in stem nodules of the legume Sesbania rostrata. The nitrogen fixation activity of an A. caulinodans lon mutant in the free-living state was not significantly different from that of the wild-type strain. However, the stem nodules formed by the lon mutant showed little or no nitrogen fixation activity. By microscopic analyses, two kinds of host cells were observed in the stem nodules formed by the lon mutant. One type has shrunken host cells containing a high density of bacteria, and the other type has oval or elongated host cells containing a low density or no bacteria. This phenotype is similar to a praR mutant highly expressing the reb genes. Quantitative reverse transcription-PCR analyses revealed that reb genes were also highly expressed in the lon mutant. Furthermore, a lon reb double mutant formed stem nodules showing higher nitrogen fixation activity than the lon mutant, and shrunken host cells were not observed in these stem nodules. These results suggest that Lon protease is required to suppress the expression of the reb genes and that high expression of reb genes in part causes aberrance in the A. caulinodans-S. rostrata symbiosis. In addition to the suppression of reb genes, it was found that Lon protease was involved in the regulation of exopolysaccharide production and autoagglutination of bacterial cells.
Collapse
|
21
|
Zhang Y, Aono T, Poole P, Finan TM. NAD(P)+-malic enzyme mutants of Sinorhizobium sp. strain NGR234, but not Azorhizobium caulinodans ORS571, maintain symbiotic N2 fixation capabilities. Appl Environ Microbiol 2012; 78:2803-12. [PMID: 22307295 PMCID: PMC3318798 DOI: 10.1128/aem.06412-11] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Accepted: 01/23/2012] [Indexed: 11/20/2022] Open
Abstract
C(4)-dicarboxylic acids appear to be metabolized via the tricarboxylic acid (TCA) cycle in N(2)-fixing bacteria (bacteroids) within legume nodules. In Sinorhizobium meliloti bacteroids from alfalfa, NAD(+)-malic enzyme (DME) is required for N(2) fixation, and this activity is thought to be required for the anaplerotic synthesis of pyruvate. In contrast, in the pea symbiont Rhizobium leguminosarum, pyruvate synthesis occurs via either DME or a pathway catalyzed by phosphoenolpyruvate carboxykinase (PCK) and pyruvate kinase (PYK). Here we report that dme mutants of the broad-host-range Sinorhizobium sp. strain NGR234 formed nodules whose level of N(2) fixation varied from 27 to 83% (plant dry weight) of the wild-type level, depending on the host plant inoculated. NGR234 bacteroids had significant PCK activity, and while single pckA and single dme mutants fixed N(2) at reduced rates, a pckA dme double mutant had no N(2)-fixing activity (Fix(-)). Thus, NGR234 bacteroids appear to synthesize pyruvate from TCA cycle intermediates via DME or PCK pathways. These NGR234 data, together with other reports, suggested that the completely Fix(-) phenotype of S. meliloti dme mutants may be specific to the alfalfa-S. meliloti symbiosis. We therefore examined the ME-like genes azc3656 and azc0119 from Azorhizobium caulinodans, as azc3656 mutants were previously shown to form Fix(-) nodules on the tropical legume Sesbania rostrata. We found that purified AZC3656 protein is an NAD(P)(+)-malic enzyme whose activity is inhibited by acetyl-coenzyme A (acetyl-CoA) and stimulated by succinate and fumarate. Thus, whereas DME is required for symbiotic N(2) fixation in A. caulinodans and S. meliloti, in other rhizobia this activity can be bypassed via another pathway(s).
Collapse
Affiliation(s)
- Ye Zhang
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| | - Toshihiro Aono
- Biotechnology Research Center, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Phillip Poole
- Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, Norwich, United Kingdom
| | - Turlough M. Finan
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
22
|
First genomic analysis of the broad-host-range Rhizobium sp. LPU83 strain, a member of the low-genetic diversity Oregon-like Rhizobium sp. group. J Biotechnol 2011; 155:3-10. [DOI: 10.1016/j.jbiotec.2011.01.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 12/22/2010] [Accepted: 01/13/2011] [Indexed: 11/20/2022]
|
23
|
Liu CT, Lee KB, Wang YS, Peng MH, Lee KT, Suzuki S, Suzuki T, Oyaizu H. Involvement of the azorhizobial chromosome partition gene (parA) in the onset of bacteroid differentiation during Sesbania rostrata stem nodule development. Appl Environ Microbiol 2011; 77:4371-82. [PMID: 21571889 PMCID: PMC3127717 DOI: 10.1128/aem.02327-10] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2010] [Accepted: 05/03/2011] [Indexed: 12/17/2022] Open
Abstract
A parA gene in-frame deletion mutant of Azorhizobium caulinodans ORS571 (ORS571-ΔparA) was constructed to evaluate the roles of the chromosome-partitioning gene on various bacterial traits and on the development of stem-positioned nodules. The ΔparA mutant showed a pleiomorphic cell shape phenotype and was polyploid, with differences in nucleoid sizes due to dramatic defects in chromosome partitioning. Upon inoculation of the ΔparA mutant onto the stem of Sesbania rostrata, three types of immature nodule-like structures with impaired nitrogen-fixing activity were generated. Most showed signs of bacteroid early senescence. Moreover, the ΔparA cells within the nodule-like structures exhibited multiple developmental-stage phenotypes. Since the bacA gene has been considered an indicator for bacteroid formation, we applied the expression pattern of bacA as a nodule maturity index in this study. Our data indicate that the bacA gene expression is parA dependent in symbiosis. The presence of the parA gene transcript was inversely correlated with the maturity of nodule; the transcript was switched off in fully mature bacteroids. In summary, our experimental evidence demonstrates that the parA gene not only plays crucial roles in cellular development when the microbe is free-living but also negatively regulates bacteroid formation in S. rostrata stem nodules.
Collapse
Affiliation(s)
- Chi-Te Liu
- Institute of Biotechnology, National Taiwan University, R412, No. 81, Chang-Xing St., Taipei 106, Taiwan.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sugawara M, Shah GR, Sadowsky MJ, Paliy O, Speck J, Vail AW, Gyaneshwar P. Expression and functional roles of Bradyrhizobium japonicum genes involved in the utilization of inorganic and organic sulfur compounds in free-living and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:451-7. [PMID: 21190435 DOI: 10.1094/mpmi-08-10-0184] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Strains of Bradyrhizobium spp. form nitrogen-fixing symbioses with many legumes, including soybean. Although inorganic sulfur is preferred by bacteria in laboratory conditions, sulfur in agricultural soil is mainly present as sulfonates and sulfur esters. Here, we show that Bradyrhizobium japonicum and B. elkanii strains were able to utilize sulfate, cysteine, sulfonates, and sulfur-ester compounds as sole sulfur sources for growth. Expression and functional analysis revealed that two sets of gene clusters (bll6449 to bll6455 or bll7007 to bll7011) are important for utilization of sulfonates sulfur source. The bll6451 or bll7010 genes are also expressed in the symbiotic nodules. However, B. japonicum mutants defective in either of the sulfonate utilization operons were not affected for symbiosis with soybean, indicating the functional redundancy or availability of other sulfur sources in planta. In accordance, B. japonicum bacteroids possessed significant sulfatase activity. These results indicate that strains of Bradyrhizobium spp. likely use organosulfur compounds for growth and survival in soils, as well as for legume nodulation and nitrogen fixation.
Collapse
Affiliation(s)
- Masayuki Sugawara
- Department of Soil Water and Climate, University of Minnesota, St. Paul, USA
| | | | | | | | | | | | | |
Collapse
|
25
|
Alloisio N, Queiroux C, Fournier P, Pujic P, Normand P, Vallenet D, Médigue C, Yamaura M, Kakoi K, Kucho KI. The Frankia alni symbiotic transcriptome. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:593-607. [PMID: 20367468 DOI: 10.1094/mpmi-23-5-0593] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The actinobacteria Frankia spp. are able to induce the formation of nodules on the roots of a large spectrum of actinorhizal plants, where they convert dinitrogen to ammonia in exchange for plant photosynthates. In the present study, transcriptional analyses were performed on nitrogen-replete free-living Frankia alni cells and on Alnus glutinosa nodule bacteria, using whole-genome microarrays. Distribution of nodule-induced genes on the genome was found to be mostly over regions with high synteny between three Frankia spp. genomes, while nodule-repressed genes, which were mostly hypothetical and not conserved, were spread around the genome. Genes known to be related to nitrogen fixation were highly induced, nif (nitrogenase), hup2 (hydrogenase uptake), suf (sulfur-iron cluster), and shc (hopanoids synthesis). The expression of genes involved in ammonium assimilation and transport was strongly modified, suggesting that bacteria ammonium assimilation was limited. Genes involved in particular in transcriptional regulation, signaling processes, protein drug export, protein secretion, lipopolysaccharide, and peptidoglycan biosynthesis that may play a role in symbiosis were also identified. We also showed that this Frankia symbiotic transcriptome was highly similar among phylogenetically distant plant families Betulaceae and Myricaceae. Finally, comparison with rhizobia transcriptome suggested that F. alni is metabolically more active in symbiosis than rhizobia.
Collapse
|
26
|
phrR-like gene praR of Azorhizobium caulinodans ORS571 is essential for symbiosis with Sesbania rostrata and is involved in expression of reb genes. Appl Environ Microbiol 2010; 76:3475-85. [PMID: 20382809 DOI: 10.1128/aem.00238-10] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
This study focuses on the function of the gene praR that encodes a putative transcription factor in Azorhizobium caulinodans ORS571, a microsymbiont of Sesbania rostrata. The praR gene is a homolog of the phrR gene of Sinorhizobium medicae WSM419, and the praR and phrR homologs are distributed throughout the class Alphaproteobacteria. The growth and nitrogen fixation activity of an A. caulinodans praR deletion mutant in the free-living state were not significantly different from those of the wild-type strain. However, the stem nodules formed by the praR mutant showed lower nitrogen fixation activity than the wild-type stem nodules. Microscopy revealed that infected host cells with an oval or elongated shape were observed at early stages in the nodules formed by the praR mutant, but these infected cells gradually fell into two types. One maintained an oval or elongated shape, but the vacuoles in these cells gradually enlarged and the bacteria gradually disappeared. The other cells were shrunken with bacteria remaining inside. Microarrays revealed that genes homologous to the reb genes of Caedibacter taeniospiralis were highly expressed in the praR mutant. Furthermore, the stem nodules formed by an A. caulinodans mutant with a deletion of praR and reb-homologous genes showed high nitrogen fixation activity, comparable to that of the wild-type stem nodules, and were filled with oval or elongated host cells. These results suggest that PraR controls the expression of the reb-homologous genes and that high expression of reb-homologous genes causes aberrance in A. caulinodans-S. rostrata symbiosis.
Collapse
|
27
|
López-López A, Rosenblueth M, Martínez J, Martínez-Romero E. Rhizobial Symbioses in Tropical Legumes and Non-Legumes. SOIL BIOLOGY 2010. [DOI: 10.1007/978-3-642-05076-3_8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Biswas S, Agrawal P, Saroha A, Das HR. Purification and mass spectrometric characterization of Sesbania aculeata (Dhaincha) stem lectin. Protein J 2009; 28:391-9. [PMID: 19847633 DOI: 10.1007/s10930-009-9206-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A glucose specific lectin (STA) was isolated from Sesbania aculeata stem by using Sephadex G-50 affinity column chromatography. The lectin is a glycoprotein having 29 kDa subunit molecular weight. Two dimensional gel electrophoresis analysis revealed that the lectin existed in two isomeric forms with varied carbohydrate content as analyzed by high performance anion exchange chromatography-pulsed amperometric detector (HPAEC-PAD). Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) and N-terminal sequence (LDSLSFTYNNFE) analysis of this lectin showed 95% homology with stem lectin SL-I (accession no. AJ585523) from peanut plant. The nucleotide sequence of the lectin (STA) was submitted to the gene bank (accession no. EU263636).
Collapse
Affiliation(s)
- Sagarika Biswas
- Division of Proteomics and Structural Biology, Institute of Genomics & Integrative Biology, Delhi University Campus, Mall Road, Delhi 110007, India
| | | | | | | |
Collapse
|
29
|
Comparative genome-wide transcriptional profiling of Azorhizobium caulinodans ORS571 grown under free-living and symbiotic conditions. Appl Environ Microbiol 2009; 75:5037-46. [PMID: 19542345 DOI: 10.1128/aem.00398-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The whole-genome sequence of the endosymbiotic bacterium Azorhizobium caulinodans ORS571, which forms nitrogen-fixing nodules on the stems and roots of Sesbania rostrata, was recently determined. The sizes of the genome and symbiosis island are 5.4 Mb and 86.7 kb, respectively, and these sizes are the smallest among the sequenced rhizobia. In the present study, a whole-genome microarray of A. caulinodans was constructed, and transcriptomic analyses were performed on free-living cells grown in rich and minimal media and in bacteroids isolated from stem nodules. Transcriptional profiling showed that the genes involved in sulfur uptake and metabolism, acetone metabolism, and the biosynthesis of exopolysaccharide were highly expressed in bacteroids compared to the expression levels in free-living cells. Some mutants having Tn5 transposons within these genes with increased expression were obtained as nodule-deficient mutants in our previous study. A transcriptomic analysis was also performed on free-living cells grown in minimal medium supplemented with a flavonoid, naringenin, which is one of the most efficient inducers of A. caulinodans nod genes. Only 18 genes exhibited increased expression by the addition of naringenin, suggesting that the regulatory mechanism responding to the flavonoid could be simple in A. caulinodans. The combination of our genome-wide transcriptional profiling and our previous genome-wide mutagenesis study has revealed new aspects of nodule formation and maintenance.
Collapse
|
30
|
Jian S, Shen W, Yang Z. Enhanced adaptability of Sesbania rostrata to Pb/Zn tailings via stem nodulation. J Environ Sci (China) 2009; 21:1135-1141. [PMID: 19862929 DOI: 10.1016/s1001-0742(08)62393-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Sesbania rostrata is wellknown for its stem nodulation, but the roles of stem nodulation in root nodulation and adaptation of S. rostrata to Pb/Zn-enriched tailings environment has been poorly understood. We investigated the effects of inoculating (with stem nodule treatment) and non-inoculating (without stem nodule treatment) Azorhizobium caulinodans on the growth, root nodulation, and N fixation of S. rostrata grown on three different types of soil substrata: Pb/Zn tailings, garden soil amended tailings, and garden soil. The results showed that plant height, stem basal diameter, biomass, chlorophyll content, nitrogen content and N-accumulation per plant were 2.3%-4.9%, 2.2%-7.7%, 27.8%-72.2%, 17.1%-23.5%, 12.3%-34.2%, and 43.1%-131.2%, respectively, higher in treatments with stem nodule than those without stem nodule for the same soil substrate. With respect to soil substrata, all measurements had consistently higher values in tailings than in amended tailings and garden soil, indicating that the poorer the soil condition, the greater the contribution of stem nodule. In contrast, the number and fresh weight of root nodules on plants without stem nodule were 6.9-11.6 times and 5.8-29.0 times higher than those with stem nodule, respectively, especially with respect to the plants grew on Pb/Zn tailings. In general, stem nodulation favored plant growth and nitrogen fixation of S. rostrata, but suppressed root nodulation. With the ability of stem and root nodulation, S. rostrata can be used as a pioneer plant species for remediation of Pb/Zn tailings.
Collapse
Affiliation(s)
- Shuguang Jian
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China.
| | | | | |
Collapse
|
31
|
Lee KB, De Backer P, Aono T, Liu CT, Suzuki S, Suzuki T, Kaneko T, Yamada M, Tabata S, Kupfer DM, Najar FZ, Wiley GB, Roe B, Binnewies TT, Ussery DW, D'Haeze W, Herder JD, Gevers D, Vereecke D, Holsters M, Oyaizu H. The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571. BMC Genomics 2008; 9:271. [PMID: 18522759 PMCID: PMC2443382 DOI: 10.1186/1471-2164-9-271] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 06/04/2008] [Indexed: 11/17/2022] Open
Abstract
Background Biological nitrogen fixation is a prokaryotic process that plays an essential role in the global nitrogen cycle. Azorhizobium caulinodans ORS571 has the dual capacity to fix nitrogen both as free-living organism and in a symbiotic interaction with Sesbania rostrata. The host is a fast-growing, submergence-tolerant tropical legume on which A. caulinodans can efficiently induce nodule formation on the root system and on adventitious rootlets located on the stem. Results The 5.37-Mb genome consists of a single circular chromosome with an overall average GC of 67% and numerous islands with varying GC contents. Most nodulation functions as well as a putative type-IV secretion system are found in a distinct symbiosis region. The genome contains a plethora of regulatory and transporter genes and many functions possibly involved in contacting a host. It potentially encodes 4717 proteins of which 96.3% have homologs and 3.7% are unique for A. caulinodans. Phylogenetic analyses show that the diazotroph Xanthobacter autotrophicus is the closest relative among the sequenced genomes, but the synteny between both genomes is very poor. Conclusion The genome analysis reveals that A. caulinodans is a diazotroph that acquired the capacity to nodulate most probably through horizontal gene transfer of a complex symbiosis island. The genome contains numerous genes that reflect a strong adaptive and metabolic potential. These combined features and the availability of the annotated genome make A. caulinodans an attractive organism to explore symbiotic biological nitrogen fixation beyond leguminous plants.
Collapse
Affiliation(s)
- Kyung-Bum Lee
- Laboratory of Plant Biotechnology, Biotechnology Research Center, University of Tokyo, Tokyo 113-8657, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|