1
|
Das S, Chandukishore T, Ulaganathan N, Dhodduraj K, Gorantla SS, Chandna T, Gupta LK, Sahoo A, Atheena PV, Raval R, Anjana PA, DasuVeeranki V, Prabhu AA. Sustainable biorefinery approach by utilizing xylose fraction of lignocellulosic biomass. Int J Biol Macromol 2024; 266:131290. [PMID: 38569993 DOI: 10.1016/j.ijbiomac.2024.131290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Lignocellulosic biomass (LCB) has been a lucrative feedstock for developing biochemical products due to its rich organic content, low carbon footprint and abundant accessibility. The recalcitrant nature of this feedstock is a foremost bottleneck. It needs suitable pretreatment techniques to achieve a high yield of sugar fractions such as glucose and xylose with low inhibitory components. Cellulosic sugars are commonly used for the bio-manufacturing process, and the xylose sugar, which is predominant in the hemicellulosic fraction, is rejected as most cell factories lack the five‑carbon metabolic pathways. In the present review, more emphasis was placed on the efficient pretreatment techniques developed for disintegrating LCB and enhancing xylose sugars. Further, the transformation of the xylose to value-added products through chemo-catalytic routes was highlighted. In addition, the review also recapitulates the sustainable production of biochemicals by native xylose assimilating microbes and engineering the metabolic pathway to ameliorate biomanufacturing using xylose as the sole carbon source. Overall, this review will give an edge on the bioprocessing of microbial metabolism for the efficient utilization of xylose in the LCB.
Collapse
Affiliation(s)
- Satwika Das
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - T Chandukishore
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Nivedhitha Ulaganathan
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Kawinharsun Dhodduraj
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Sai Susmita Gorantla
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Teena Chandna
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Laxmi Kumari Gupta
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Ansuman Sahoo
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - P V Atheena
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Institute of Technology, Manipal 576104, Karnataka, India
| | - P A Anjana
- Department of Chemical Engineering, National Institute of Technology Warangal, Warangal 506004, Telangana, India
| | - Venkata DasuVeeranki
- Biochemical Engineering Laboratory, Department of Bioscience and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Ashish A Prabhu
- Bioprocess Development Research Laboratory, Department of Biotechnology, National Institute of Technology Warangal, Warangal 506004, Telangana, India.
| |
Collapse
|
2
|
Mahroof M, Dar RA, Nazir R, Ali MN, Ganai BA. Valorization of rice straw and vascular aquatic weeds for sustainable prebiotic hemicellulosic autohydrolysate production: Extraction, characterization and fermentability. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:35744-35759. [PMID: 38744764 DOI: 10.1007/s11356-024-33611-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 05/04/2024] [Indexed: 05/16/2024]
Abstract
This study describes the extraction and characterization of the hemicellulosic autohydrolysates (HAHs) derived from rice straw (RS) and vascular aquatic weeds like Typha angustifolia (TA) and Ceretophyllum demersum (CD). It further explores their capacity to sustain the proliferation of selected lactic acid bacteria (i.e., prebiotic activity) isolated from milk samples. To fractionate HAH from RS, TA and CD hot water extraction (HWE) method was used and RS, TA, and CD biomasses yielded 6.8, 4.99 and 2.98% of HAH corresponding to the hemicellulose extraction efficiencies of 26.15 ± 0.8%, 23.76 ± 0.6%, and 18.62 ± 0.4% respectively. The chemical characterization of HAH concentrates through HPLC showed that they comprised galactose, arabinose, xylose and glucose. The total phenol content of the RS, TA and CD-derived HAH concentrates were 37.53, 56.78 and 48.08 mg GAE/g. The five lactic acid bacteria (LAB) isolates Q1B, Q2A, Q3B, G1C and G2B selected for prebiotic activity assays generated mixed responses with the highest growth in RS-HAH for Q2A and the least in TA-HAH for Q3B. Further, the isolates Q2A, Q3B, G1C, and G2B, which showed the highest growth performance, were identified through MALDI-TOF and 16S rRNA sequencing as Lactobacillus brevis. All the tested LAB isolates showed diauxic growth in crude HAH preparations to maximize the utilization of carbon resources for their proliferation. This suggests that the selected LAB isolates are efficient degraders of hemicellulosic sugars. This paves the way for the valorization of lignocellulosic biomass to produce prebiotic hemicellulosic autohydrolysate and consequently enhances environmental sustainability by improving resource efficiency.
Collapse
Affiliation(s)
- Mawish Mahroof
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Rouf Ahmad Dar
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India.
| | - Ruqeya Nazir
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Md Niamat Ali
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| | - Bashir Ahmad Ganai
- Centre of Research for Development (CORD), University of Kashmir, Hazratbal, Srinagar, Jammu and Kashmir, 190006, India
| |
Collapse
|
3
|
Qiu Z, Wang G, Shao W, Cao L, Tan H, Shao S, Jin C, Xia J, He J, Liu X, He A, Han X, Xu J. Third-generation D-lactic acid production using red macroalgae Gelidium amansii by co-fermentation of galactose, glucose and xylose. BIORESOURCE TECHNOLOGY 2024; 399:130631. [PMID: 38554760 DOI: 10.1016/j.biortech.2024.130631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/16/2024] [Accepted: 03/24/2024] [Indexed: 04/02/2024]
Abstract
Macroalgae biomass has been considered as a promising renewable feedstock for lactic acid production owing to its lignin-free, high carbohydrate content and high productivity. Herein, the D-lactic acid production from red macroalgae Gelidium amansii by Pediococcus acidilactici was investigated. The fermentable sugars in G. amansii acid-prehydrolysate were mainly galactose and glucose with a small amounts of xylose. P. acidilactici could simultaneously ferment the mixed sugars of galactose, glucose and xylose into D-lactic acid at high yield (0.90 g/g), without carbon catabolite repression (CCR). The assimilating pathways of these sugars in P. acidilactici were proposed based on the whole genome sequences. Simultaneous saccharification and co-fermentation (SSCF) of the pretreated and biodetoxified G. amansii was also conducted, a record high of D-lactic acid (41.4 g/L) from macroalgae biomass with the yield of 0.34 g/g dry feedstock was achieved. This study provided an important biorefinery strain for D-lactic acid production from macroalgae biomass.
Collapse
Affiliation(s)
- Zhongyang Qiu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Guangli Wang
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Wenjun Shao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Longyu Cao
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Hufangguo Tan
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Shuai Shao
- School of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu, China
| | - Ci Jin
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jun Xia
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Jianlong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xiaoyan Liu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Aiyong He
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China
| | - Xushen Han
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, China
| | - Jiaxing Xu
- Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu, China.
| |
Collapse
|
4
|
Yue S, Zhang M. Global trends and future prospects of lactic acid production from lignocellulosic biomass. RSC Adv 2023; 13:32699-32712. [PMID: 37942446 PMCID: PMC10628742 DOI: 10.1039/d3ra06577d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 10/24/2023] [Indexed: 11/10/2023] Open
Abstract
Lignocellulosic biomass (LCB) stands as a substantial and sustainable resource capable of addressing energy and environmental challenges. This study employs bibliometric analysis to investigate research trends in lactic acid (LA) production from LCB spanning the years 1991 to 2022. The analysis reveals a consistent growth trajectory with minor fluctuations in LA production from LCB. Notably, there's a significant upswing in publications since 2009. Bioresource Technology and Applied Microbiology and Biotechnology emerge as the top two journals with extensive contributions in the realm of LA production from LCB. China takes a prominent position in this research domain, boasting the highest total publication count (736), betweenness centrality value (0.30), and the number of collaborating countries (42), surpassing the USA and Japan by a considerable margin. The author keywords analysis provides valuable insights into the core themes in LA production from LCB. Furthermore, co-citation reference analysis delineates four principal domains related to LA production from LCB, with three associated with microbial conversion and one focused on chemical catalytic conversion. Additionally, this study examines commonly used LCB, microbial LA producers, and compares microbial fermentation to chemical catalytic conversion for LCB-based LA production, providing comprehensive insights into the current state of this field and suggesting future research directions.
Collapse
Affiliation(s)
- Siyuan Yue
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University Fukuoka 819-0395 Japan
- Institute of Microbiology, Jiangxi Academy of Sciences Nanchang Jiangxi Province 330096 China
| | - Min Zhang
- Laboratory of Soil and Environmental Microbiology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Bioresources and Bioenvironmental Sciences, Kyushu University Fukuoka 819-0395 Japan
- Jiangxi Copper Technology Research Institute, Jiangxi Copper Corporation Nanchang Jiangxi Province 330096 China
| |
Collapse
|
5
|
Gosalawit C, Khunnonkwao P, Jantama K. Genome engineering of Kluyveromyces marxianus for high D-( -)-lactic acid production under low pH conditions. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12658-2. [PMID: 37405435 DOI: 10.1007/s00253-023-12658-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 07/06/2023]
Abstract
Saccharomyces cerevisiae is the workhorse of fermentation industry. Upon engineering for D-lactate production by a series of gene deletions, this yeast had deficiencies in cell growth and D-lactate production at high substrate concentrations. Complex nutrients or high cell density were thus required to support growth and D-lactate production with a potential to increase medium and process cost of industrial-scale D-lactate production. As an alternative microbial biocatalyst, a Crabtree-negative and thermotolerant yeast Kluyveromyces marxianus was engineered in this study to produce high titer and yield of D-lactate at a lower pH without growth defects. Only pyruvate decarboxylase 1 (PDC1) gene was replaced by a codon-optimized bacterial D-lactate dehydrogenase (ldhA). Ethanol, glycerol, or acetic acid was not produced by the resulting strain, KMΔpdc1::ldhA. Aeration rate at 1.5 vvm and culture pH 5.0 at 30 °C provided the highest D-lactate titer of 42.97 ± 0.48 g/L from glucose. Yield and productivity of D-lactate, and glucose-consumption rate were 0.85 ± 0.01 g/g, 0.90 ± 0.01 g/(L·h), and 1.06 ± 0.00 g/(L·h), respectively. Surprisingly, D-lactate titer, productivity, and glucose-consumption rate of 52.29 ± 0.68 g/L, 1.38 ± 0.05 g/(L·h), and 1.22 ± 0.00 g/(L·h), respectively, were higher at 42 °C compared to 30 °C. Sugarcane molasses, a low-value carbon, led to the highest D-lactate titer and yield of 66.26 ± 0.81 g/L and 0.91 ± 0.01 g/g, respectively, in a medium without additional nutrients. This study is a pioneer work of engineering K. marxianus to produce D-lactate at the yield approaching theoretical maximum using simple batch process. Our results support the potential of an engineered K. marxianus for D-lactate production on an industrial scale. KEY POINTS: • K. marxianus was engineered by deleting PDC1 and expressing codon-optimized D-ldhA. • The strain allowed high D-lactate titer and yield under pH ranging from 3.5 to 5.0. • The strain produced 66 g/L D-lactate at 30 °C from molasses without any additional nutrients.
Collapse
Affiliation(s)
- Chotika Gosalawit
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Panwana Khunnonkwao
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, 111 University Avenue, Suranaree Sub-District, Muang District, Nakhon Ratchasima, 30000, Thailand.
| |
Collapse
|
6
|
Mendonça AA, Pinto-Neto WDP, da Paixão GA, Santos DDS, De Morais MA, De Souza RB. Journey of the Probiotic Bacteria: Survival of the Fittest. Microorganisms 2022; 11:95. [PMID: 36677387 PMCID: PMC9861974 DOI: 10.3390/microorganisms11010095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 12/26/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
This review aims to bring a more general view of the technological and biological challenges regarding production and use of probiotic bacteria in promoting human health. After a brief description of the current concepts, the challenges for the production at an industrial level are presented from the physiology of the central metabolism to the ability to face the main forms of stress in the industrial process. Once produced, these cells are processed to be commercialized in suspension or dried forms or added to food matrices. At this stage, the maintenance of cell viability and vitality is of paramount for the quality of the product. Powder products requires the development of strategies that ensure the integrity of components and cellular functions that allow complete recovery of cells at the time of consumption. Finally, once consumed, probiotic cells must face a very powerful set of physicochemical mechanisms within the body, which include enzymes, antibacterial molecules and sudden changes in pH. Understanding the action of these agents and the induction of cellular tolerance mechanisms is fundamental for the selection of increasingly efficient strains in order to survive from production to colonization of the intestinal tract and to promote the desired health benefits.
Collapse
Affiliation(s)
- Allyson Andrade Mendonça
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Walter de Paula Pinto-Neto
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Giselle Alves da Paixão
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| | - Dayane da Silva Santos
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Marcos Antonio De Morais
- Laboratory of Microbial Genetics, Department of Genetics, Federal University of Pernambuco, Recife 50670-901, Brazil
| | - Rafael Barros De Souza
- Laboratory of Microbial Metabolism, Institute of Biological Sciences, University of Pernambuco, Recife 50100-130, Brazil
| |
Collapse
|
7
|
Okano K, Sato Y, Hama S, Tanaka T, Noda H, Kondo A. L-Lactate oxidase-mediated removal of L-lactic acid derived from fermentation medium for the production of optically pure D-lactic acid. Biotechnol J 2022; 17:e2100331. [PMID: 35076998 DOI: 10.1002/biot.202100331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND There has been an increasing demand for optically pure D-lactic and L-lactic acid for the production of stereocomplex-type polylactic acid. The D-lactic acid production from lignocellulosic biomass is important owing to its great abundance in nature. Corn steep liquor (CSL) is a cheap nitrogen source used for industrial fermentation, though it contains a significant amount of L-lactic acid, which decreases the optical purity of D-lactic acid produced. METHOD AND RESULTS To remove L-lactic acid derived from the CSL-based medium, L-lactate oxidase (LoxL) from Enterococcus sp. NBRC 3427 was expressed in an engineered Lactiplantibacillus plantarum (formally called Lactobacillus plantarum) strain KOLP7, which exclusively produces D-lactic acid from both hexose and pentose sugars. When the resulting strain was applied for D-lactic acid fermentation from the mixed sugars consisting of the major constituent sugars of lignocellulose (35 g/L glucose, 10 g/L xylose, and 5 g/L arabinose) using the medium containing 10 g/L CSL, it completely removed L-lactic acid derived from CSL (0.52 g/L) and produced 41.7 g/L of D-lactic acid. The L-lactic acid concentration was below the detection limit, and improvement in the optical purity of D-lactic acid was observed (from 98.2% to > 99.99%) by the overexpression of LoxL. CONCLUSION AND IMPLICATIONS The LoxL-mediated consumption of L-lactic acid would enable the production of optically pure D-lactic acid in any medium contaminated by L-lactic acid. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kenji Okano
- International Center for Biotechnology, Osaka University, Osaka, Japan.,Industrial Biotechnology Initiative Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka, Japan
| | - Yu Sato
- International Center for Biotechnology, Osaka University, Osaka, Japan
| | - Shnji Hama
- Bio-energy Corporation, Research & Development Laboratory, Amagasaki, Hyogo, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, Japan
| | - Hideo Noda
- Bio-energy Corporation, Research & Development Laboratory, Amagasaki, Hyogo, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology, and Innovation, Kobe University, Kobe, Hyogo, Japan
| |
Collapse
|
8
|
Canaviri-Paz P, Oscarsson E, Håkansson Å. Autochthonous microorganisms of white quinoa grains with special attention to novel functional properties of lactobacilli strains. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
9
|
Camesasca L, de Mattos JA, Vila E, Cebreiros F, Lareo C. Lactic acid production by Carnobacterium sp. isolated from a maritime Antarctic lake using eucalyptus enzymatic hydrolysate. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00643. [PMID: 34168965 PMCID: PMC8209079 DOI: 10.1016/j.btre.2021.e00643] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 06/02/2021] [Accepted: 06/06/2021] [Indexed: 11/25/2022]
Abstract
Carnobacterium sp., a lactic acid bacterium isolated from a maritime Antarctic lake, was evaluated for lactic acid production from a lignocellulosic hydrolysate. Eucalyptus sawdust, a residue from pulp and paper industries, was subjected to alkaline pretreatment to enhance its enzymatic hydrolysis. Fermentations were performed without and with pH control using eucalyptus enzymatic hydrolysate containing a mixture of glucose and xylose sugars. The sugars were successfully converted into lactic acid in 24 h, resulting in 7.6 g/L of lactic acid and a product yield of 0.50 g/g for pH controlled at 6.5. Fed-batch fermentation performed at a controlled pH of 6.5 improved both the lactic acid production (30 g/L) and the biomass growth (4.2 g/L). l-lactic acid optical purity higher than 95 % was obtained. These results demonstrated the potential usage of Carnobacterium sp in l-lactic acid production from eucalyptus.
Collapse
Affiliation(s)
- Laura Camesasca
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Juan Andrés de Mattos
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Florencia Cebreiros
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| | - Claudia Lareo
- Departamento de Bioingeniería, Facultad de Ingeniería, Universidad de la República, Julio Herrera y Reissig 565, CP 11300, Montevideo, Uruguay
| |
Collapse
|
10
|
Dorau R, Liu J, Solem C, Jensen PR. Metabolic Engineering of Lactic Acid Bacteria. Metab Eng 2021. [DOI: 10.1002/9783527823468.ch15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
11
|
Kupryś-Caruk M, Choińska R, Dekowska A, Piasecka-Jóźwiak K. Silage quality and biogas production from Spartina pectinata L. fermented with a novel xylan-degrading strain of Lactobacillus buchneri M B/00077. Sci Rep 2021; 11:13175. [PMID: 34162969 PMCID: PMC8222392 DOI: 10.1038/s41598-021-92686-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/14/2021] [Indexed: 11/29/2022] Open
Abstract
The aim of the current study was to determine the ability of the Lactobacillus buchneri M B/00077 strain to degrade xylan, its impact on the quality of silage made from the lignocellulosic biomass of Spartina pectinata L., as well as the efficiency of biogas production. In the model in vitro conditions the L. buchneri M B/00077 strain was able to grow in a medium using xylan as the sole source of carbon, and xylanolytic activity was detected in the post-culture medium. In the L. buchneri M B/00077 genome, genes encoding endo-1,4-xylanase and β-xylosidase were identified. The silages prepared using L. buchneri M B/00077 were characterized by a higher concentration of acetic and propionic acids compared to the controls or the silages prepared with the addition of commercial xylanase. The addition of bacteria increased the efficiency of biogas production. From the silages treated with L. buchneri M B/00077, 10% and 20% more biogas was obtained than from the controls and the silages treated with commercial xylanase, respectively. The results of the current study indicated the strain L. buchneri M B/00077 as being a promising candidate for further application in the field of pretreatment of lignocellulosic biomass.
Collapse
Affiliation(s)
- Marta Kupryś-Caruk
- Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland
| | - Renata Choińska
- Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland.
| | - Agnieszka Dekowska
- Department of Microbiology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland
| | - Katarzyna Piasecka-Jóźwiak
- Department of Fermentation Technology, Prof. W. Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, 36 Rakowiecka, 02-532, Warsaw, Poland
| |
Collapse
|
12
|
Lactic acid bacteria: little helpers for many human tasks. Essays Biochem 2021; 65:163-171. [PMID: 33739395 DOI: 10.1042/ebc20200133] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 12/26/2022]
Abstract
Lactic acid bacteria (LAB) are a group of highly specialised bacteria specifically adapted to a diverse range of habitats. They are found in the gut of humans and other animals, in many food fermentations, and on plants. Their natural specialisation in close relation to human activities make them particularly interesting from an industrial point of view. They are relevant not only for traditional food fermentations, but also as probiotics, potential therapeutics and cell factories for the production of many different products. Many new tools and methods are being developed to analyse and modify these microorganisms. This review shall give an overview highlighting some of the most striking characteristics of lactic acid bacteria and our approaches to harness their potential in many respects - from home made food to industrial chemical production, from probiotic activities to the most modern cancer treatments and vaccines.
Collapse
|
13
|
Ucar RA, Pérez-Díaz IM, Dean LL. Content of xylose, trehalose and l-citrulline in cucumber fermentations and utilization of such compounds by certain lactic acid bacteria. Food Microbiol 2020; 91:103454. [DOI: 10.1016/j.fm.2020.103454] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 02/03/2020] [Accepted: 02/04/2020] [Indexed: 02/08/2023]
|
14
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
15
|
Gubelt A, Blaschke L, Hahn T, Rupp S, Hirth T, Zibek S. Comparison of Different Lactobacilli Regarding Substrate Utilization and Their Tolerance Towards Lignocellulose Degradation Products. Curr Microbiol 2020; 77:3136-3146. [PMID: 32728792 PMCID: PMC7452873 DOI: 10.1007/s00284-020-02131-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/14/2020] [Indexed: 11/29/2022]
Abstract
Fermentative lactic acid production is currently impeded by low pH tolerance of the production organisms, the successive substrate consumption of the strains and/or the requirement to apply purified substrate streams. We identified Lactobacillus brevis IGB 1.29 in compost, which is capable of producing lactic acid at low pH values from lignocellulose hydrolysates, simultaneously consuming glucose and xylose. In this study, we compared Lactobacillus brevis IGB 1.29 with the reference strains Lactobacillus brevis ATCC 367, Lactobacillus plantarum NCIMB 8826 and Lactococcus lactis JCM 7638 with regard to the consumption of C5- and C6-sugars. Simultaneous conversion of C5- and C6-monosaccharides was confirmed for L. brevis IGB 1.29 with consumption rates of 1.6 g/(L h) for glucose and 1.0 g/(L h) for xylose. Consumption rates were lower for L. brevis ATCC 367 with 0.6 g/(L h) for glucose and 0.2 g/(L h) for xylose. Further trials were carried out to determine the sensitivity towards common toxic degradation products in lignocellulose hydrolysates: acetate, hydroxymethylfurfural, furfural, formate, levulinic acid and phenolic compounds from hemicellulose fraction. L. lactis was the least tolerant strain towards the inhibitors, whereas L. brevis IGB 1.29 showed the highest tolerance. L. brevis IGB 1.29 exhibited only 10% growth reduction at concentrations of 26.0 g/L acetate, 1.2 g/L furfural, 5.0 g/L formate, 6.6 g/L hydroxymethylfurfural, 9.2 g/L levulinic acid or 2.2 g/L phenolic compounds. This study describes a new strain L. brevis IGB 1.29, that enables efficient lactic acid production with a lignocellulose-derived C5- and C6-sugar fraction.
Collapse
Affiliation(s)
- Angela Gubelt
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Institute for Bio- and Geosciences: Plant Sciences, Forschungszentrum Jülich, Jülich, Germany
| | - Lisa Blaschke
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Sartorius Stedim Cellca GmbH, Ulm, Germany
| | - Thomas Hahn
- Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany
| | - Steffen Rupp
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany
| | - Thomas Hirth
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany.,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany.,Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Susanne Zibek
- Institute of Interfacial Process Engineering and Plasma Technology, University Stuttgart, Nobelstraße 12, 70569, Stuttgart, Germany. .,Industrial Biotechnology, Fraunhofer Institute of Interfacial and Bioprocess Engineering, Stuttgart, Germany.
| |
Collapse
|
16
|
Mazzoli R. Metabolic engineering strategies for consolidated production of lactic acid from lignocellulosic biomass. Biotechnol Appl Biochem 2020; 67:61-72. [DOI: 10.1002/bab.1869] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/05/2019] [Indexed: 01/04/2023]
Affiliation(s)
- Roberto Mazzoli
- Structural and Functional BiochemistryLaboratory of Proteomics and Metabolic Engineering of ProkaryotesDepartment of Life Sciences and Systems BiologyUniversity of Torino Torino Italy
| |
Collapse
|
17
|
Tarraran L, Mazzoli R. Alternative strategies for lignocellulose fermentation through lactic acid bacteria: the state of the art and perspectives. FEMS Microbiol Lett 2019; 365:4995910. [PMID: 30007320 DOI: 10.1093/femsle/fny126] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/11/2018] [Indexed: 12/22/2022] Open
Abstract
Lactic acid bacteria (LAB) have a long history in industrial processes as food starters and biocontrol agents, and also as producers of high-value compounds. Lactic acid, their main product, is among the most requested chemicals because of its multiple applications, including the synthesis of biodegradable plastic polymers. Moreover, LAB are attractive candidates for the production of ethanol, polyhydroalkanoates, sweeteners and exopolysaccharides. LAB generally have complex nutritional requirements. Furthermore, they cannot directly ferment inexpensive feedstocks such as lignocellulose. This significantly increases the cost of LAB fermentation and hinders its application in the production of high volumes of low-cost chemicals. Different strategies have been explored to extend LAB fermentation to lignocellulosic biomass. Fermentation of lignocellulose hydrolysates by LAB has been frequently reported and is the most mature technology. However, current economic constraints of this strategy have driven research for alternative approaches. Co-cultivation of LAB with native cellulolytic microorganisms may reduce the high cost of exogenous cellulase supplementation. Special attention is given in this review to the construction of recombinant cellulolytic LAB by metabolic engineering, which may generate strains able to directly ferment plant biomass. The state of the art of these strategies is illustrated along with perspectives of their applications to industrial second generation biorefinery processes.
Collapse
Affiliation(s)
- Loredana Tarraran
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| | - Roberto Mazzoli
- Structural and Functional Biochemistry, Laboratory of Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Torino, Italy
| |
Collapse
|
18
|
Kim CC, Healey GR, Kelly WJ, Patchett ML, Jordens Z, Tannock GW, Sims IM, Bell TJ, Hedderley D, Henrissat B, Rosendale DI. Genomic insights from Monoglobus pectinilyticus: a pectin-degrading specialist bacterium in the human colon. ISME JOURNAL 2019; 13:1437-1456. [PMID: 30728469 PMCID: PMC6776006 DOI: 10.1038/s41396-019-0363-6] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 01/07/2019] [Accepted: 01/19/2019] [Indexed: 12/16/2022]
Abstract
Pectin is abundant in modern day diets, as it comprises the middle lamellae and one-third of the dry carbohydrate weight of fruit and vegetable cell walls. Currently there is no specialized model organism for studying pectin fermentation in the human colon, as our collective understanding is informed by versatile glycan-degrading bacteria rather than by specialist pectin degraders. Here we show that the genome of Monoglobus pectinilyticus possesses a highly specialized glycobiome for pectin degradation, unique amongst Firmicutes known to be in the human gut. Its genome encodes a simple set of metabolic pathways relevant to pectin sugar utilization, and its predicted glycobiome comprises an unusual distribution of carbohydrate-active enzymes (CAZymes) with numerous extracellular methyl/acetyl esterases and pectate lyases. We predict the M. pectinilyticus degradative process is facilitated by cell-surface S-layer homology (SLH) domain-containing proteins, which proteomics analysis shows are differentially expressed in response to pectin. Some of these abundant cell surface proteins of M. pectinilyticus share unique modular organizations rarely observed in human gut bacteria, featuring pectin-specific CAZyme domains and the cell wall-anchoring SLH motifs. We observed M. pectinilyticus degrades various pectins, RG-I, and galactan to produce polysaccharide degradation products (PDPs) which are presumably shared with other inhabitants of the human gut microbiome (HGM). This strain occupies a new ecological niche for a primary degrader specialized in foraging a habitually consumed plant glycan, thereby enriching our understanding of the diverse community profile of the HGM.
Collapse
Affiliation(s)
- Caroline C Kim
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand. .,Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand.
| | - Genelle R Healey
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.,Massey Institute of Food Science and Technology, School of Food and Nutrition, Massey University, Palmerston North, New Zealand
| | | | - Mark L Patchett
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Zoe Jordens
- Institute of Fundamental Sciences, Massey University, Palmerston North, 4442, New Zealand
| | - Gerald W Tannock
- Department of Microbiology and Immunology, Microbiome Otago, University of Otago, Dunedin, 9016, New Zealand
| | - Ian M Sims
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Tracey J Bell
- Ferrier Research Institute, Victoria University of Wellington, Gracefield Research Centre, Lower Hutt, 5040, New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, CNRS, Aix-Marseille University, Marseille, F-13288, France.,Institut National de la Recherche Agronomique, USC1408 Architecture et Fonction des Macromolécules Biologiques, Marseille, F-13288, France.,Department of Biological Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Douglas I Rosendale
- The New Zealand Institute for Plant and Food Research, Palmerston North, 4474, New Zealand.
| |
Collapse
|
19
|
Kim D, Woo HM. Deciphering bacterial xylose metabolism and metabolic engineering of industrial microorganisms for use as efficient microbial cell factories. Appl Microbiol Biotechnol 2018; 102:9471-9480. [PMID: 30238140 DOI: 10.1007/s00253-018-9353-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 11/29/2022]
Abstract
The goal of sustainable production of biochemicals and biofuels has driven the engineering of microbial cell as factories that convert low-value substrates to high-value products. Xylose is the second most abundant sugar substrate in lignocellulosic hydrolysates. We analyzed the mechanisms of xylose metabolism using genome sequencing data of 492 industrially relevant bacterial species in the mini-review. The analysis revealed the xylose isomerase and Weimberg pathways as the major routes across diverse routes of bacterial xylose metabolism. In addition, we discuss recent developments in metabolic engineering of xylose metabolism in industrial microorganisms. Genome-scale analyses have revealed xylose pathway-specific flux landscapes. Overall, a comprehensive understanding of bacterial xylose metabolism could be useful for the feasible development of microbial cell factories.
Collapse
Affiliation(s)
- Donghyuk Kim
- School of Energy and Chemical Engineering and School of Biological Sciences, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulsan, 44919, Republic of Korea
| | - Han Min Woo
- Department of Food Science and Biotechnology, Sungkyunkwan University (SKKU), 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
20
|
Hatti-Kaul R, Chen L, Dishisha T, Enshasy HE. Lactic acid bacteria: from starter cultures to producers of chemicals. FEMS Microbiol Lett 2018; 365:5087731. [DOI: 10.1093/femsle/fny213] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/29/2018] [Indexed: 12/26/2022] Open
Affiliation(s)
- Rajni Hatti-Kaul
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Lu Chen
- Biotechnology, Center for Chemistry and Chemical Engineering, Lund University, Box 124, SE-221 00 Lund, Sweden
| | - Tarek Dishisha
- Department of Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University, 62511 Beni-Suef, Egypt
| | - Hesham El Enshasy
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia (UTM), 81 310 Skudai, Johor, Malaysia
- City of Scientific Research and Technology Applications, New Burg Al Arab, Alexandria, Egypt
| |
Collapse
|
21
|
Wang Y, Cao W, Luo J, Wan Y. Exploring the potential of lactic acid production from lignocellulosic hydrolysates with various ratios of hexose versus pentose by Bacillus coagulans IPE22. BIORESOURCE TECHNOLOGY 2018; 261:342-349. [PMID: 29677662 DOI: 10.1016/j.biortech.2018.03.135] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
The aim of this study was to investigate the feasibility of utilizing different lignocellulosic hydrolysates with various hexose versus pentose (H:P) ratios to produce lactic acid (LA) from Bacillus coagulans IPE22 by fermentations with single and mixed sugar. In single sugar utilization, glucose tended to promote LA production, and xylose preferred to enhance cell growth. In mixed sugar utilization, glucose and pentose were consumed simultaneously when glucose concentration was lower than 20 g/L, and almost the same concentration of LA (50 g/L) was obtained regardless of the differences of H:P values. Finally, LA production from corn cob hydrolysates (CCH) contained 60 g/L mixed sugar verified the mechanisms found in the fermentations with simulated sugar mixture. Comparing with single glucose utilization, CCH utilization was faster and the yield of LA was not significantly affected. Therefore, the great potential of producing LA with lignocellulosic materials by B. coagulans was proved.
Collapse
Affiliation(s)
- Yujue Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Weifeng Cao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China
| | - Jianquan Luo
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yinhua Wan
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China; University of the Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, People's Republic of China.
| |
Collapse
|
22
|
Biosynthesis of d-lactic acid from lignocellulosic biomass. Biotechnol Lett 2018; 40:1167-1179. [DOI: 10.1007/s10529-018-2588-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 06/25/2018] [Indexed: 11/25/2022]
|
23
|
Stern J, Moraïs S, Ben-David Y, Salama R, Shamshoum M, Lamed R, Shoham Y, Bayer EA, Mizrahi I. Assembly of Synthetic Functional Cellulosomal Structures onto the Cell Surface of Lactobacillus plantarum, a Potent Member of the Gut Microbiome. Appl Environ Microbiol 2018; 84:e00282-18. [PMID: 29453253 PMCID: PMC5881048 DOI: 10.1128/aem.00282-18] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 02/08/2018] [Indexed: 12/27/2022] Open
Abstract
Heterologous display of enzymes on microbial cell surfaces is an extremely desirable approach, since it enables the engineered microbe to interact directly with the plant wall extracellular polysaccharide matrix. In recent years, attempts have been made to endow noncellulolytic microbes with genetically engineered cellulolytic capabilities for improved hydrolysis of lignocellulosic biomass and for advanced probiotics. Thus far, however, owing to the hurdles encountered in secreting and assembling large, intricate complexes on the bacterial cell wall, only free cellulases or relatively simple cellulosome assemblies have been introduced into live bacteria. Here, we employed the "adaptor scaffoldin" strategy to compensate for the low levels of protein displayed on the bacterial cell surface. That strategy mimics natural elaborated cellulosome architectures, thus exploiting the exponential features of their Lego-like combinatorics. Using this approach, we produced several bacterial consortia of Lactobacillus plantarum, a potent gut microbe which provides a very robust genetic framework for lignocellulosic degradation. We successfully engineered surface display of large, fully active self-assembling cellulosomal complexes containing an unprecedented number of catalytic subunits all produced in vivo by the cell consortia. Our results demonstrate that the enzyme stability and performance of the cellulosomal machinery, which are superior to those seen with the equivalent secreted free enzyme system, and the high cellulase-to-xylanase ratios proved beneficial for efficient degradation of wheat straw.IMPORTANCE The multiple benefits of lactic acid bacteria are well established in health and industry. Here we present an approach designed to extensively increase the cell surface display of proteins via successive assembly of interactive components. Our findings present a stepping stone toward proficient engineering of Lactobacillus plantarum, a widespread, environmentally important bacterium and potent microbiome member, for improved degradation of lignocellulosic biomass and advanced probiotics.
Collapse
Affiliation(s)
- Johanna Stern
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Moraïs
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yonit Ben-David
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Rachel Salama
- Department of Biotechnology and Food Engineering, The Technion Israel Institute of Technology, Haifa, Israel
| | - Melina Shamshoum
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Raphael Lamed
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Ramat Aviv, Israel
| | - Yuval Shoham
- Department of Biotechnology and Food Engineering, The Technion Israel Institute of Technology, Haifa, Israel
| | - Edward A Bayer
- Department of Biomolecular Sciences, The Weizmann Institute of Science, Rehovot, Israel
| | - Itzhak Mizrahi
- Faculty of Natural Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
24
|
Qiu Z, Gao Q, Bao J. Engineering Pediococcus acidilactici with xylose assimilation pathway for high titer cellulosic l-lactic acid fermentation. BIORESOURCE TECHNOLOGY 2018; 249:9-15. [PMID: 29035728 DOI: 10.1016/j.biortech.2017.09.117] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/14/2017] [Accepted: 09/15/2017] [Indexed: 05/26/2023]
Abstract
Xylose-assimilating pathways were constructed in the parental Pediococcus acidilactici strain and evolutionarily adapted to yield a highly stable co-fermentation strain for l-lactic acid production. The phosphoketolase pathway (PK) was blocked for reduction of acetic acid generation by disrupting phosphoketolase (pkt) gene. The pentose phosphate pathway (PPP) was reconstructed for xylose assimilation by integrating four heterologous genes encoding transketolase (tkt), transaldolase (tal), xylose isomerase (xylA) and xylulokinase (xylB) into the P. acidilactici chromosome. The xylose-assimilating ability of the constructed strain was significantly improved by long term adaptive evolution. The engineered strain was applied to the simultaneous saccharification and co-fermentation (SSCF) under high solids loading of wheat straw. The l-lactic acid titer, productivity and xylose conversion reached the record high at 130.8±1.6g/L, 1.82±0.0g/L/h, and 94.9±0.0%, respectively. This study provided an important strain and process prototype for production of high titer cellulosic l-lactic acid.
Collapse
Affiliation(s)
- Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
25
|
Qiu Z, Gao Q, Bao J. Constructing xylose-assimilating pathways in Pediococcus acidilactici for high titer d-lactic acid fermentation from corn stover feedstock. BIORESOURCE TECHNOLOGY 2017; 245:1369-1376. [PMID: 28601396 DOI: 10.1016/j.biortech.2017.05.128] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 06/07/2023]
Abstract
Xylose-assimilating pathway was constructed in a d-lactic acid producing Pediococcus acidilactici strain and evolutionary adapted to yield a co-fermentation strain P. acidilactici ZY15 with 97.3g/L of d-lactic acid and xylose conversion of 92.6% obtained in the high solids content simultaneous saccharification and co-fermentation (SSCF) of dry dilute acid pretreated and biodetoxified corn stover feedstock. The heterologous genes encoding xylose isomerase (xylA) and xylulokinase (xylB) were screened and integrated into the P. acidilactici chromosome. The metabolic flux to acetic acid in phosphoketolase pathway was re-directed to pentose phosphate pathway by substituting the endogenous phosphoketolase gene (pkt) with the heterologous transketolase (tkt) and transaldolase (tal) genes. The xylose-assimilating ability of the newly constructed P. acidilactici strain was significantly improved by adaptive evolution. This study provided an important strain and process prototype for high titer d-lactic acid production from lignocellulose feedstock with efficient xylose assimilation.
Collapse
Affiliation(s)
- Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiuqiang Gao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
26
|
Petersen KV, Liu J, Chen J, Martinussen J, Jensen PR, Solem C. Metabolic characterization and transformation of the non-dairyLactococcus lactisstrain KF147, for production of ethanol from xylose. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700171] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/12/2017] [Accepted: 04/13/2017] [Indexed: 01/17/2023]
Affiliation(s)
- Kia Vest Petersen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jianming Liu
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jun Chen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Jan Martinussen
- Department of Bioengineering; Technical University of Denmark; Kongens Lyngby Denmark
| | - Peter Ruhdal Jensen
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| | - Christian Solem
- National Food Institute; Technical University of Denmark; Kongens Lyngby Denmark
| |
Collapse
|
27
|
Bosma EF, Forster J, Nielsen AT. Lactobacilli and pediococci as versatile cell factories - Evaluation of strain properties and genetic tools. Biotechnol Adv 2017; 35:419-442. [PMID: 28396124 DOI: 10.1016/j.biotechadv.2017.04.002] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 03/29/2017] [Accepted: 04/03/2017] [Indexed: 12/14/2022]
Abstract
This review discusses opportunities and bottlenecks for cell factory development of Lactic Acid Bacteria (LAB), with an emphasis on lactobacilli and pediococci, their metabolism and genetic tools. In order to enable economically feasible bio-based production of chemicals and fuels in a biorefinery, the choice of product, substrate and production organism is important. Currently, the most frequently used production hosts include Escherichia coli and Saccharomyces cerevisiae, but promising examples are available of alternative hosts such as LAB. Particularly lactobacilli and pediococci can offer benefits such as thermotolerance, an extended substrate range and increased tolerance to stresses such as low pH or high alcohol concentrations. This review will evaluate the properties and metabolism of these organisms, and provide an overview of their current biotechnological applications and metabolic engineering. We substantiate the review by including experimental results from screening various lactobacilli and pediococci for transformability, growth temperature range and ability to grow under biotechnologically relevant stress conditions. Since availability of efficient genetic engineering tools is a crucial prerequisite for industrial strain development, genetic tool development is extensively discussed. A range of genetic tools exist for Lactococcus lactis, but for other species of LAB like lactobacilli and pediococci such tools are less well developed. Whereas lactobacilli and pediococci have a long history of use in food and beverage fermentation, their use as platform organisms for production purposes is rather new. By harnessing their properties such as thermotolerance and stress resistance, and by using emerging high-throughput genetic tools, these organisms are very promising as versatile cell factories for biorefinery applications.
Collapse
Affiliation(s)
- Elleke F Bosma
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Jochen Forster
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark
| | - Alex Toftgaard Nielsen
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet B220, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
28
|
Ruiz-Rodríguez L, Bleckwedel J, Eugenia Ortiz M, Pescuma M, Mozzi F. Lactic Acid Bacteria. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Luciana Ruiz-Rodríguez
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Juliana Bleckwedel
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Maria Eugenia Ortiz
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Micaela Pescuma
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| | - Fernanda Mozzi
- Centro de Referencia para Lactobacilos (CERELA)-CONICET; Chacabuco 145. San Miguel de Tucumán 4000 Argentina
| |
Collapse
|
29
|
Ma K, Hu G, Pan L, Wang Z, Zhou Y, Wang Y, Ruan Z, He M. Highly efficient production of optically pure l-lactic acid from corn stover hydrolysate by thermophilic Bacillus coagulans. BIORESOURCE TECHNOLOGY 2016; 219:114-122. [PMID: 27479802 DOI: 10.1016/j.biortech.2016.07.100] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 07/21/2016] [Accepted: 07/24/2016] [Indexed: 05/13/2023]
Abstract
A thermophilic strain Bacillus coagulans (NBRC 12714) was employed to produce l-lactic acid from corn stover hydrolysate in membrane integrated continuous fermentation. The strain NBRC 12714 metabolized glucose and xylose by the Embden-Meyerhof-Parnas pathway (EMP) and the pentose phosphate pathway (PPP), producing l-lactic acid with optical purity >99.5%. The overall l-lactic acid titer of 92g/l with a yield of 0.91g/g and a productivity of 13.8g/l/h were achieved at a dilution rate of 0.15h(-1). The productivity obtained was 1.6-fold than that of conventional continuous fermentation without cell recycling, and also was the highest among the relevant studies ever reported. These results indicated that the process developed had great potential for economical industrial production of l-lactic acid from lignocellulosic biomass.
Collapse
Affiliation(s)
- Kedong Ma
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Liwei Pan
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Zichao Wang
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yi Zhou
- College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, PR China
| | - Yanwei Wang
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China
| | - Zhiyong Ruan
- Key Laboratory of Microbial Resources (Ministry of Agriculture, China), Institute of Agricultural Resources and Regional Planning, CAAS, Beijing 100081, PR China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu 610041, PR China.
| |
Collapse
|
30
|
Abdel-Rahman MA, Sonomoto K. Opportunities to overcome the current limitations and challenges for efficient microbial production of optically pure lactic acid. J Biotechnol 2016; 236:176-92. [DOI: 10.1016/j.jbiotec.2016.08.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
|
31
|
Biotechnological production of enantiomerically pure d-lactic acid. Appl Microbiol Biotechnol 2016; 100:9423-9437. [DOI: 10.1007/s00253-016-7843-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 09/04/2016] [Accepted: 09/07/2016] [Indexed: 12/13/2022]
|
32
|
Zhang Y, Zeng F, Hohn K, Vadlani PV. Metabolic flux analysis of carbon balance inLactobacillusstrains. Biotechnol Prog 2016; 32:1397-1403. [DOI: 10.1002/btpr.2361] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/23/2016] [Indexed: 11/07/2022]
Affiliation(s)
- Yixing Zhang
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry; Kansas State University; Manhattan Kansas
| | - Fan Zeng
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Keith Hohn
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
| | - Praveen V. Vadlani
- Dept. of Chemical Engineering; Kansas State University; Manhattan Kansas
- Dept. of Grain Science and Industry, Bioprocessing and Renewable Energy Laboratory; Kansas State University; Manhattan Kansas
| |
Collapse
|
33
|
Zhang Y, Kumar A, Hardwidge PR, Tanaka T, Kondo A, Vadlani PV. d-lactic acid production from renewable lignocellulosic biomass via genetically modifiedLactobacillus plantarum. Biotechnol Prog 2016; 32:271-8. [DOI: 10.1002/btpr.2212] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 12/03/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Yixing Zhang
- Dept. of Grain Science and Industry, Bioprocessing and Renewable Energy Laboratory; Kansas State University; Manhattan KS 66506
| | - Amit Kumar
- Dept. of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine; Kansas State University; Manhattan KS 66506
| | - Philip R. Hardwidge
- Dept. of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine; Kansas State University; Manhattan KS 66506
| | - Tsutomu Tanaka
- Dept. of Chemical Science and Engineering, Graduate School of Engineering; Kobe University, 1-1 Rokkodaicho; Nada Kobe 657-8501 Japan
| | - Akihiko Kondo
- Dept. of Chemical Science and Engineering, Graduate School of Engineering; Kobe University, 1-1 Rokkodaicho; Nada Kobe 657-8501 Japan
| | - Praveen V. Vadlani
- Dept. of Grain Science and Industry, Bioprocessing and Renewable Energy Laboratory; Kansas State University; Manhattan KS 66506A
- Dept. of Chemical Engineering; Kansas State University; Manhattan KS 66506
| |
Collapse
|
34
|
Zhang Y, Vadlani PV, Kumar A, Hardwidge PR, Govind R, Tanaka T, Kondo A. Enhanced D-lactic acid production from renewable resources using engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 2016; 100:279-88. [PMID: 26433970 DOI: 10.1007/s00253-015-7016-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/24/2015] [Accepted: 09/16/2015] [Indexed: 10/23/2022]
Abstract
D-lactic acid is used as a monomer in the production of poly-D-lactic acid (PDLA), which is used to form heat-resistant stereocomplex poly-lactic acid. To produce cost-effective D-lactic acid by using all sugars derived from biomass efficiently, xylose-assimilating genes encoding xylose isomerase and xylulokinase were cloned into an L-lactate-deficient strain, Lactobacillus plantarum. The resulting recombinant strain, namely L. plantarum NCIMB 8826 ∆ldhL1-pLEM-xylAB, was able to produce D-lactic acid (at optical purity >99 %) from xylose at a yield of 0.53 g g(-1). Simultaneous utilization of glucose and xylose to produce D-lactic acid was also achieved by this strain, and 47.2 g L(-1) of D-lactic acid was produced from 37.5 g L(-1) glucose and 19.7 g L(-1) xylose. Corn stover and soybean meal extract (SBME) were evaluated as cost-effective medium components for D-lactic acid production. Optimization of medium composition using response surface methodology resulted in 30 % reduction in enzyme loading and 70 % reduction in peptone concentration. In addition, we successfully demonstrated D-lactic acid fermentation from corn stover and SBME in a fed-batch fermentation, which yielded 61.4 g L(-1) D-lactic acid with an overall yield of 0.77 g g(-1). All these approaches are geared to attaining high D-lactic acid production from biomass sugars to produce low-cost, highly thermostable biodegradable plastics.
Collapse
Affiliation(s)
- Yixing Zhang
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA.
| | - Praveen V Vadlani
- Bioprocessing and Renewable Energy Laboratory, Department of Grain Science and Industry, Kansas State University, Manhattan, KS, USA
- Department of Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Amit Kumar
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Philip R Hardwidge
- Department of Diagnostic Medicine and Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Revathi Govind
- Division of Biology, Kansas State University, Manhattan, KS, USA
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada, Kobe, 657-8501, Japan
| |
Collapse
|
35
|
Hama S, Mizuno S, Kihara M, Tanaka T, Ogino C, Noda H, Kondo A. Production of d-lactic acid from hardwood pulp by mechanical milling followed by simultaneous saccharification and fermentation using metabolically engineered Lactobacillus plantarum. BIORESOURCE TECHNOLOGY 2015; 187:167-172. [PMID: 25846187 DOI: 10.1016/j.biortech.2015.03.106] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/22/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
This study focused on the process development for the d-lactic acid production from cellulosic feedstocks using the Lactobacillus plantarum mutant, genetically modified to produce optically pure d-lactic acid from both glucose and xylose. The simultaneous saccharification and fermentation (SSF) using delignified hardwood pulp (5-15% loads) resulted in the lactic acid titers of 55.2-84.6g/L after 72h and increased productivities of 1.77-2.61g/L/h. To facilitate the enzymatic saccharification of high-load pulp at a fermentation temperature, short-term (⩽10min) pulverization of pulp was conducted, leading to a significantly improved saccharification with the suppressed formation of formic acid by-product. The short-term milling followed by SSF resulted in a lactic acid titer of 102.3g/L, an optical purity of 99.2%, and a yield of 0.879g/g-sugars without fed-batch process control. Therefore, the process presented here shows promise for the production of high-titer d-lactic acid using the L. plantarum mutant.
Collapse
Affiliation(s)
- Shinji Hama
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Shino Mizuno
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Maki Kihara
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan
| | - Hideo Noda
- Bio-energy Corporation, Research and Development Laboratory, 2-9-7 Minaminanamatsu, Amagasaki 660-0053, Japan
| | - Akihiko Kondo
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|
36
|
Eiteman MA, Ramalingam S. Microbial production of lactic acid. Biotechnol Lett 2015; 37:955-72. [PMID: 25604523 DOI: 10.1007/s10529-015-1769-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 01/07/2015] [Indexed: 10/24/2022]
Abstract
Lactic acid is an important commodity chemical having a wide range of applications. Microbial production effectively competes with chemical synthesis methods because biochemical synthesis permits the generation of either one of the two enantiomers with high optical purity at high yield and titer, a result which is particularly beneficial for the production of poly(lactic acid) polymers having specific properties. The commercial viability of microbial lactic acid production relies on utilization of inexpensive carbon substrates derived from agricultural or waste resources. Therefore, optimal lactic acid formation requires an understanding and engineering of both the competing pathways involved in carbohydrate metabolism, as well as pathways leading to potential by-products which both affect product yield. Recent research leverages those biochemical pathways, while researchers also continue to seek strains with improved tolerance and ability to perform under desirable industrial conditions, for example, of pH and temperature.
Collapse
Affiliation(s)
- Mark A Eiteman
- BioChemical Engineering Program, College of Engineering, University of Georgia, Athens, GA, 30602, USA,
| | | |
Collapse
|
37
|
Microorganisms for the Production of Lactic Acid and Organic Lactates. MICROORGANISMS IN BIOREFINERIES 2015. [DOI: 10.1007/978-3-662-45209-7_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Mazzoli R, Bosco F, Mizrahi I, Bayer EA, Pessione E. Towards lactic acid bacteria-based biorefineries. Biotechnol Adv 2014; 32:1216-1236. [PMID: 25087936 DOI: 10.1016/j.biotechadv.2014.07.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 07/14/2014] [Accepted: 07/16/2014] [Indexed: 10/25/2022]
Abstract
Lactic acid bacteria (LAB) have long been used in industrial applications mainly as starters for food fermentation or as biocontrol agents or as probiotics. However, LAB possess several characteristics that render them among the most promising candidates for use in future biorefineries in converting plant-derived biomass-either from dedicated crops or from municipal/industrial solid wastes-into biofuels and high value-added products. Lactic acid, their main fermentation product, is an attractive building block extensively used by the chemical industry, owing to the potential for production of polylactides as biodegradable and biocompatible plastic alternative to polymers derived from petrochemicals. LA is but one of many high-value compounds which can be produced by LAB fermentation, which also include biofuels such as ethanol and butanol, biodegradable plastic polymers, exopolysaccharides, antimicrobial agents, health-promoting substances and nutraceuticals. Furthermore, several LAB strains have ascertained probiotic properties, and their biomass can be considered a high-value product. The present contribution aims to provide an extensive overview of the main industrial applications of LAB and future perspectives concerning their utilization in biorefineries. Strategies will be described in detail for developing LAB strains with broader substrate metabolic capacity for fermentation of cheaper biomass.
Collapse
Affiliation(s)
- Roberto Mazzoli
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| | - Francesca Bosco
- Department of Applied Science and Technology (DISAT), Politecnico of Torino, Corso Duca degli Abruzzi, 24, 10129 Torino, Italy.
| | - Itzhak Mizrahi
- Institute of Animal Science, ARO, Volcani Research Center, P.O. Box 6Â, Bet Dagan 50-250, Israel.
| | - Edward A Bayer
- Department of Biological Chemistry, the Weizmann Institute of Science, Rehovot 76100 Israel.
| | - Enrica Pessione
- Laboratory of Biochemistry: Proteomics and Metabolic Engineering of Prokaryotes, Department of Life Sciences and Systems Biology, University of Torino, Via Accademia Albertina 13, 10123 Torino, Italy.
| |
Collapse
|
39
|
Wang Y, Tashiro Y, Sonomoto K. Fermentative production of lactic acid from renewable materials: recent achievements, prospects, and limits. J Biosci Bioeng 2014; 119:10-8. [PMID: 25077706 DOI: 10.1016/j.jbiosc.2014.06.003] [Citation(s) in RCA: 132] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 06/02/2014] [Accepted: 06/03/2014] [Indexed: 01/26/2023]
Abstract
The development and implementation of renewable materials for the production of versatile chemical resources have gained considerable attention recently, as this offers an alternative to the environmental problems caused by the petroleum industry and the limited supply of fossil resources. Therefore, the concept of utilizing biomass or wastes from agricultural and industrial residues to produce useful chemical products has been widely accepted. Lactic acid plays an important role due to its versatile application in the food, medical, and cosmetics industries and as a potential raw material for the manufacture of biodegradable plastics. Currently, the fermentative production of optically pure lactic acid has increased because of the prospects of environmental friendliness and cost-effectiveness. In order to produce lactic acid with high yield and optical purity, many studies focus on wild microorganisms and metabolically engineered strains. This article reviews the most recent advances in the biotechnological production of lactic acid mainly by lactic acid bacteria, and discusses the feasibility and potential of various processes.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Yukihiro Tashiro
- Institute of Advanced Study, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Soil Microbiology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | - Kenji Sonomoto
- Laboratory of Microbial Technology, Division of Applied Molecular Microbiology and Biomass Chemistry, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan; Laboratory of Functional Food Design, Department of Functional Metabolic Design, Bio-Architecture Centre, Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan.
| |
Collapse
|
40
|
Enhanced L-lactic acid production from biomass-derived xylose by a mutant Bacillus coagulans. Appl Biochem Biotechnol 2014; 173:1896-906. [PMID: 24879598 DOI: 10.1007/s12010-014-0975-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 05/16/2014] [Indexed: 10/25/2022]
Abstract
Xylose effective utilization is crucial for production of bulk chemicals from low-cost lignocellulosic substrates. In this study, an efficient L-lactate production process from xylose by a mutant Bacillus coagulans NL-CC-17 was demonstrated. The nutritional requirements for L-lactate production by B. coagulans NL-CC-17 were optimized statistically in shake flask fermentations. Corn steep liquor powder and yeast exact were identified as the most significant factors by the two-level Plackett-Burman design. Steepest ascent experiments were applied to approach the optimal region of the two factors, and a central composite design was employed to determine their optimal levels. The optimal medium was used to perform batch fermentation in a 3-l bioreactor. A maximum of 90.29 g l(-1) L-lactic acid was obtained from 100 g l(-1) xylose in 120 h. When using corn stove prehydrolysates as substrates, 23.49 g l(-1) L-lactic acid was obtained in 36 h and the yield was 83.09 %.
Collapse
|
41
|
Guo W, He R, Ma L, Jia W, Li D, Chen S. Construction of a constitutively expressed homo-fermentative pathway in Lactobacillus brevis. Appl Microbiol Biotechnol 2014; 98:6641-50. [DOI: 10.1007/s00253-014-5703-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2013] [Revised: 03/10/2014] [Accepted: 03/17/2014] [Indexed: 10/25/2022]
|
42
|
Tsuge Y, Kawaguchi H, Sasaki K, Tanaka T, Kondo A. Two-step production of d-lactate from mixed sugars by growing and resting cells of metabolically engineered Lactobacillus plantarum. Appl Microbiol Biotechnol 2014; 98:4911-8. [DOI: 10.1007/s00253-014-5594-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/03/2014] [Accepted: 02/04/2014] [Indexed: 12/20/2022]
|
43
|
Ye L, Hudari MSB, Li Z, Wu JC. Simultaneous detoxification, saccharification and co-fermentation of oil palm empty fruit bunch hydrolysate for l-lactic acid production by Bacillus coagulans JI12. Biochem Eng J 2014. [DOI: 10.1016/j.bej.2013.12.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
44
|
Wang Y, Abdel-Rahman MA, Tashiro Y, Xiao Y, Zendo T, Sakai K, Sonomoto K. l-(+)-Lactic acid production by co-fermentation of cellobiose and xylose without carbon catabolite repression using Enterococcus mundtii QU 25. RSC Adv 2014. [DOI: 10.1039/c4ra02764g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We established an effective highl-lactic acid production system based on fed-batch bacterial cultures utilising lignocellulosic biomass-derived mixed sugars without carbon catabolite repression.
Collapse
Affiliation(s)
- Ying Wang
- Laboratory of Microbial Technology
- Division of Applied Molecular Microbiology and Biomass Chemistry
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Mohamed Ali Abdel-Rahman
- Laboratory of Microbial Technology
- Division of Applied Molecular Microbiology and Biomass Chemistry
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Yukihiro Tashiro
- Laboratory of Soil Microbiology
- Division of Applied Molecular Microbiology and Biomass Chemistry
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Yaotian Xiao
- Laboratory of Microbial Technology
- Division of Applied Molecular Microbiology and Biomass Chemistry
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Takeshi Zendo
- Laboratory of Microbial Technology
- Division of Applied Molecular Microbiology and Biomass Chemistry
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Kenji Sakai
- Laboratory of Soil Microbiology
- Division of Applied Molecular Microbiology and Biomass Chemistry
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| | - Kenji Sonomoto
- Laboratory of Microbial Technology
- Division of Applied Molecular Microbiology and Biomass Chemistry
- Department of Bioscience and Biotechnology
- Faculty of Agriculture
- Graduate School
| |
Collapse
|
45
|
Recent advances in lactic acid production by microbial fermentation processes. Biotechnol Adv 2013; 31:877-902. [DOI: 10.1016/j.biotechadv.2013.04.002] [Citation(s) in RCA: 607] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/14/2013] [Accepted: 04/15/2013] [Indexed: 11/18/2022]
|
46
|
Yang X, Lai Z, Lai C, Zhu M, Li S, Wang J, Wang X. Efficient production of l-lactic acid by an engineered Thermoanaerobacterium aotearoense with broad substrate specificity. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:124. [PMID: 23985133 PMCID: PMC3766646 DOI: 10.1186/1754-6834-6-124] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 08/22/2013] [Indexed: 05/25/2023]
Abstract
BACKGROUND Efficient conversion of lignocellulosic biomass to optically pure lactic acid is a key challenge for the economical production of biodegradable poly-lactic acid. A recently isolated strain, Thermoanaerobacterium aotearoense SCUT27, is promising as an efficient lactic acid production bacterium from biomass due to its broad substrate specificity. Additionally, its strictly anaerobic and thermophilic characteristics suppress contamination from other microoragnisms. Herein, we report the significant improvements of concentration and yield in lactic acid production from various lignocellulosic derived sugars, achieved by the carbon flux redirection through homologous recombination in T. aotearoense SCUT27. RESULTS T. aotearoense SCUT27 was engineered to block the acetic acid formation pathway to improve the lactic acid production. The genetic manipulation resulted in 1.8 and 2.1 fold increase of the lactic acid yield using 10 g/L of glucose or 10 g/L of xylose as substrate, respectively. The maximum l-lactic acid yield of 0.93 g/g glucose with an optical purity of 99.3% was obtained by the engineered strain, designated as LA1002, from 50 g/L of substrate, which is very close to the theoretical value (1.0 g/g of glucose). In particular, LA1002 produced lactic acid at an unprecedented concentration up to 3.20 g/L using 10 g/L xylan as the single substrate without any pretreatment after 48 h fermentation. The non-sterilized fermentative production of l-lactic acid was also carried out, achieving values of 44.89 g/L and 0.89 g/g mixed sugar for lactic acid concentration and yield, respectively. CONCLUSIONS Blocking acetic acid formation pathway in T. aotearoense SCUT27 increased l-lactic acid production and yield dramatically. To our best knowledge, this is the best performance of fermentation on lactic acid production using xylan as the sole carbon source, considering the final concentration, yield and fermentation time. In addition, it should be mentioned that the performance of non-sterilized simultaneous fermentation from glucose and xylose was very close to that of normal sterilized cultivation. All these results used the mutant strain, LA1002, indicated that it is a new promising candidate for the effective production of optically pure l-lactic acid from lignocellulosic biomass.
Collapse
Affiliation(s)
- Xiaofeng Yang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Zhicheng Lai
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Chaofeng Lai
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Muzi Zhu
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Shuang Li
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jufang Wang
- Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Bioscience and Bioengineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoning Wang
- State Key Laboratory of Kidney, the Institute of Life Sciences, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
47
|
Core fluxome and metafluxome of lactic acid bacteria under simulated cocoa pulp fermentation conditions. Appl Environ Microbiol 2013; 79:5670-81. [PMID: 23851099 DOI: 10.1128/aem.01483-13] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the present work, simulated cocoa fermentation was investigated at the level of metabolic pathway fluxes (fluxome) of lactic acid bacteria (LAB), which are typically found in the microbial consortium known to convert nutrients from the cocoa pulp into organic acids. A comprehensive (13)C labeling approach allowed to quantify carbon fluxes during simulated cocoa fermentation by (i) parallel (13)C studies with [(13)C6]glucose, [1,2-(13)C2]glucose, and [(13)C6]fructose, respectively, (ii) gas chromatography-mass spectrometry (GC/MS) analysis of secreted acetate and lactate, (iii) stoichiometric profiling, and (iv) isotopomer modeling for flux calculation. The study of several strains of L. fermentum and L. plantarum revealed major differences in their fluxes. The L. fermentum strains channeled only a small amount (4 to 6%) of fructose into central metabolism, i.e., the phosphoketolase pathway, whereas only L. fermentum NCC 575 used fructose to form mannitol. In contrast, L. plantarum strains exhibited a high glycolytic flux. All strains differed in acetate flux, which originated from fractions of citrate (25 to 80%) and corresponding amounts of glucose and fructose. Subsequent, metafluxome studies with consortia of different L. fermentum and L. plantarum strains indicated a dominant (96%) contribution of L. fermentum NCC 575 to the overall flux in the microbial community, a scenario that was not observed for the other strains. This highlights the idea that individual LAB strains vary in their metabolic contribution to the overall fermentation process and opens up new routes toward streamlined starter cultures. L. fermentum NCC 575 might be one candidate due to its superior performance in flux activity.
Collapse
|
48
|
Establishment of a simple Lactobacillus plantarum cell consortium for cellulase-xylanase synergistic interactions. Appl Environ Microbiol 2013; 79:5242-9. [PMID: 23811500 DOI: 10.1128/aem.01211-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus plantarum is an attractive candidate for bioprocessing of lignocellulosic biomass due to its high metabolic variability, including its ability to ferment both pentoses and hexoses, as well as its high acid tolerance, a quality often utilized in industrial processes. This bacterium grows naturally on biomass; however, it lacks the inherent ability to deconstruct lignocellulosic substrates. As a first step toward engineering lignocellulose-converting lactobacilli, we have introduced genes coding for a GH6 cellulase and a GH11 xylanase from a highly active cellulolytic bacterium into L. plantarum. For this purpose, we employed the recently developed pSIP vectors for efficient secretion of heterologous proteins. Both enzymes were secreted by L. plantarum at levels estimated at 0.33 nM and 3.3 nM, for the cellulase and xylanase, respectively, in culture at an optical density at 600 nm (OD600) of 1. Transformed cells demonstrated the ability to degrade individually either cellulose or xylan and wheat straw. When mixed together to form a two-strain cell-based consortium secreting both cellulase and xylanase, they exhibited synergistic activity in the overall release of soluble sugar from wheat straw. This result paves the way toward metabolic harnessing of L. plantarum for novel biorefining applications, such as production of ethanol and polylactic acid directly from plant biomass.
Collapse
|
49
|
Tsuge Y, Yamamoto S, Suda M, Inui M, Yukawa H. Reactions upstream of glycerate-1,3-bisphosphate drive Corynebacterium glutamicum (D)-lactate productivity under oxygen deprivation. Appl Microbiol Biotechnol 2013; 97:6693-703. [PMID: 23712891 DOI: 10.1007/s00253-013-4986-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 05/06/2013] [Accepted: 05/07/2013] [Indexed: 11/25/2022]
Abstract
We previously demonstrated the simplicity of oxygen-deprived Corynebacterium glutamicum to produce D-lactate, a primary building block of next-generation biodegradable plastics, at very high optical purity by introducing heterologous D-ldhA gene from Lactobacillus delbrueckii. Here, we independently evaluated the effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production in C. glutamicum. We consequently show that while the reactions catalyzed by glucokinase (GLK), glyceraldehyde 3-phosphate dehydrogenase (GAPDH), phosphofructokinase (PFK), triosephosphate isomerase (TPI), and bisphosphate aldolase had positive effects on D-lactate productivity by increasing 98, 39, 15, 13, and 10 %, respectively, in 10 h reactions in minimal salts medium, the reaction catalyzed by pyruvate kinase had large negative effect by decreasing 70 %. The other glycolytic enzymes did not affect D-lactate productivity when each of encoding genes was overexpressed. It is noteworthy that all reactions associated with positive effects are located upstream of glycerate-1,3-bisphosphate in the glycolytic pathway. The D-lactate yield also increased by especially overexpressing TPI encoding gene up to 94.5 %. Interestingly, overexpression of PFK encoding gene reduced the yield of succinate, one of the main by-products of D-lactate production, by 52 %, whereas overexpression of GAPDH encoding gene increased succinate yield by 26 %. Overexpression of GLK encoding gene markedly increased the yield of dihydroxyacetone and glycerol by 10- and 5.8-fold in exchange with decreasing the D-lactate yield. The effect of overexpressing glycolytic genes was also evaluated in 80 h long-term reactions. The variety of effects of overexpressing each of genes encoding the ten glycolytic enzymes on D-lactate production is discussed.
Collapse
Affiliation(s)
- Yota Tsuge
- Research Institute of Innovative Technology for the Earth (RITE), 9-2, Kizugawadai, Kizugawa-shi, Kyoto, 619-0292, Japan
| | | | | | | | | |
Collapse
|
50
|
d-Lactic acid biosynthesis from biomass-derived sugars via Lactobacillus delbrueckii fermentation. Bioprocess Biosyst Eng 2013; 36:1897-904. [DOI: 10.1007/s00449-013-0965-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 05/01/2013] [Indexed: 11/25/2022]
|