1
|
Lopez A, Anthony M, Catalan-Dibene J, Ferrenberg S, Jordan SE, Osborne B, Reed S, Romero-Olivares AL. Dryland fungi are spatially heterogeneous and resistant to global change drivers. Ecosphere 2024; 15:e70031. [PMID: 40247861 PMCID: PMC12002595 DOI: 10.1002/ecs2.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/03/2024] [Indexed: 04/19/2025] Open
Abstract
Fungi are considered particularly important in regulating the structure and function of dryland ecosystems, yet the response of dryland fungal communities to global change remains notably understudied. Without a clear understanding of how fungi respond to global change drivers, mitigation plans-required for biodiversity and ecosystem service conservation and restoration-are impossible to develop. In this study we asked the following: (1) how does the fungal community respond to the individual and interactive effects of physical disturbance and drought in a heterogeneous dryland landscape comprised of drought-adapted shrubs separated by adjacent open areas of soil, and (2) what are the larger scale impacts of this response? We assessed fungal communities (using fungal-specific DNA metabarcoding analyses) of surface soil samples in an in situ global change experiment that included disturbance and drought in a full factorial design in the northern extent of the Chihuahuan Desert. We found that the fungal community was spatially heterogenous and remarkably resistant to disturbance and drought. We also show that dryland soils harbor high shares of facultative pathogenic and obligately pathogenic fungal taxa, with several concerning taxa reaching high relative abundances under drought. Our results suggest that the fungal community is highly influenced by microclimatic conditions associated with the presence or absence of vegetation. Moreover, our results imply that the fungal community in our experiment was already adapted to the magnitude of stress imposed by two years of experimental disturbance and drought treatments. Overall, our study shows that the fungal community is spatially heterogeneous, resistant to global change drivers, and houses many fungal species known for being stress tolerant and pathogenic.
Collapse
Affiliation(s)
- Andrea Lopez
- New Mexico State University, Department of Biology, Las Cruces, New Mexico, USA
| | - Mark Anthony
- University of Vienna, Division of Terrestrial Ecosystem Research, Snow, and the Landscape, Vienna, Austria
| | | | - Scott Ferrenberg
- Department of Ecosystem and Conservation Sciences, University of Montana, Missoula, Montana, USA
| | - Samuel E. Jordan
- Arizona State University, School of Life Sciences, Tempe, Arizona, USA
| | - Brooke Osborne
- Department of Environment and Society, Utah State University, Moab, Utah, USA
| | - Sasha Reed
- U.S. Geological Survey, Southwest Biological Science Center, Moab, Utah, USA
| | | |
Collapse
|
2
|
Masigol H, Retter A, Pourmoghaddam MJ, Amini H, Taheri SR, Mostowfizadeh-Ghalamfarsa R, Kimiaei M, Grossart HP. Opening Pandora's Box: Neglected Biochemical Potential of Permafrost-Associated Fungal Communities in a Warming Climate. J Fungi (Basel) 2023; 10:20. [PMID: 38248928 PMCID: PMC10817676 DOI: 10.3390/jof10010020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
Permafrost, a vast storage reservoir of frozen organic matter, is rapidly thawing due to climate change, releasing previously preserved carbon into the environment. This phenomenon has significant consequences for microbial communities, including fungi, inhabiting permafrost-associated regions. In this review, we delve into the intricate interplay between permafrost thawing and fungal diversity and functionality with an emphasis on thermokarst lakes. We explore how the release of organic carbon from thawing permafrost alters the composition and activities of fungal communities, emphasizing the potential for shifts in taxonomic diversity and functional gene expression. We discuss the formation of thermokarst lakes, as an example of permafrost thaw-induced ecological disruptions and their impact on fungal communities. Furthermore, we analyze the repercussions of these changes, including effects on nutrient cycling, plant productivity, and greenhouse gas (GHG) emissions. By elucidating the multifaceted relationship between permafrost thaw and aquatic fungi, this review provides valuable insights into the ecological consequences of ongoing climate change in permafrost-affected regions.
Collapse
Affiliation(s)
- Hossein Masigol
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | - Alice Retter
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | | | - Hossein Amini
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | - Seyedeh Roksana Taheri
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
| | | | - Mahyar Kimiaei
- Department of Plant Protection, Isfahan (Khorsgan) Branch, Islamic Azad University, Isfahan 3999881551, Iran;
| | - Hans-Peter Grossart
- Plankton and Microbial Ecology, Leibniz Institute for Freshwater Ecology and Inland Fisheries (IGB), 16775 Neuglobsow, Germany; (A.R.); (H.A.); (S.R.T.)
- Institute for Biochemistry and Biology, Potsdam University, 14469 Potsdam, Germany
| |
Collapse
|
3
|
Jiang M, Tian Y, Guo R, Li S, Guo J, Zhang T. Effects of warming and nitrogen addition on soil fungal and bacterial community structures in a temperate meadow. Front Microbiol 2023; 14:1231442. [PMID: 37502394 PMCID: PMC10369075 DOI: 10.3389/fmicb.2023.1231442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Soil microbial communities have been influenced by global changes, which might negatively regulate aboveground communities and affect nutrient resource cycling. However, the influence of warming and nitrogen (N) addition and their combined effects on soil microbial community composition and structure are still not well understood. To explore the effect of warming and N addition on the composition and structure of soil microbial communities, a five-year field experiment was conducted in a temperate meadow. We examined the responses of soil fungal and bacterial community compositions and structures to warming and N addition using ITS gene and 16S rRNA gene MiSeq sequencing methods, respectively. Warming and N addition not only increased the diversity of soil fungal species but also affected the soil fungal community structure. Warming and N addition caused significant declines in soil bacterial richness but had few impacts on bacterial community structure. The changes in plant species richness affected the soil fungal community structure, while the changes in plant cover also affected the bacterial community structure. The response of the soil bacterial community structure to warming and N addition was lower than that of the fungal community structure. Our results highlight that the influence of global changes on soil fungal and bacterial community structures might be different, and which also might be determined, to some extent, by plant community, soil physicochemical properties, and climate characteristics at the regional scale.
Collapse
Affiliation(s)
- Ming Jiang
- College of Life Science and Technology, Mudanjiang Normal University, Mudanjiang, China
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Yibo Tian
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Rui Guo
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Key Laboratory of Dryland Agriculture, Ministry of Agriculture, Beijing, China
| | - Shuying Li
- Forestry and Grassland Bureau of Aohan Banner, Chifeng, China
| | - Jixun Guo
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| | - Tao Zhang
- Key Laboratory of Vegetation Ecology, Ministry of Education, Jilin Songnen Grassland Ecosystem National Observation and Research Station, Changchun, China
| |
Collapse
|
4
|
Jiang Y, Yang L, Wu S, Zhou T. Warming changes the composition and diversity of fungal communities in permafrost. ANN MICROBIOL 2023. [DOI: 10.1186/s13213-022-01707-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Abstract
Purpose
It is the data support and theoretical basis for the response mechanism of soil fungi to climate warming in permafrost areas in the Greater Xing’an Mountains.
Methods
We collected permafrost from the Greater Xing’an Mountains for indoor simulation experiments and took the natural permafrost as the control (CK) and the test groups of 0 °C (T1), 2 °C (T2), and 4 °C (T3) were set. Illumina MiSeq high-throughput sequencing technology was used to understand the changes in characteristics of fungal communities, and the correlations were analyzed combined with the soil physicochemical properties.
Results
Compared with CK, the value of pH and the content of available potassium (AK) in the three warming treatment groups were significantly lower (P < 0.05), and the microbial biomass carbon (MBC) content was significantly higher (P < 0.05). The content of total nitrogen (TN) and available nitrogen (AN) in the T1 and T3 groups was significantly lower than that in the CK group (P < 0.05). A total of 11 phyla, 39 classes, 89 orders, 187 families, 361 genera, and 522 species were obtained through fungal sequencing and divided into 1463 amplicon sequence variants (ASVs). Ascomycota and Dimorphospora were the dominant phylum and genus, respectively, and there were differences in the response of relative abundance of various groups at the phylum and genus levels to warming. Warming significantly decreased the Sobs and ACE indexes of the treatment groups (P < 0.05), and the Shannon and Shannoneven indexes also showed a downward trend. Moreover, warming significantly changed the fungal beta diversity (P < 0.01), while the value of pH and the content of TN, MBC, and AK could significantly affect the community structure (P < 0.05), and the correlation between fungi at different phyla levels and soil physicochemical properties was different.
Conclusions
These results can provide a reference for further study on the changes in composition and structure of fungal communities and the influence factor in permafrost in the Greater Xing’an Mountains under the background of warming.
Collapse
|
5
|
Cazabonne J, Bartrop L, Dierickx G, Gafforov Y, Hofmann TA, Martin TE, Piepenbring M, Rivas-Ferreiro M, Haelewaters D. Molecular-Based Diversity Studies and Field Surveys Are Not Mutually Exclusive: On the Importance of Integrated Methodologies in Mycological Research. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:860777. [PMID: 37746218 PMCID: PMC10512293 DOI: 10.3389/ffunb.2022.860777] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/21/2022] [Indexed: 09/26/2023]
Abstract
Understanding and describing the diversity of living organisms is a great challenge. Fungi have for a long time been, and unfortunately still are, underestimated when it comes to taxonomic research. The foundations were laid by the first mycologists through field observations. These important fundamental works have been and remain vital reference works. Nevertheless, a non-negligible part of the studied funga escaped their attention. Thanks to modern developments in molecular techniques, the study of fungal diversity has been revolutionized in terms of tools and knowledge. Despite a number of disadvantages inherent to these techniques, traditional field-based inventory work has been increasingly superseded and neglected. This perspective aims to demonstrate the central importance of field-based research in fungal diversity studies, and encourages researchers not to be blinded by the sole use of molecular methods.
Collapse
Affiliation(s)
- Jonathan Cazabonne
- Groupe de Recherche en Écologie de la MRC Abitibi (GREMA), Institut de Recherche sur les Forêts (IRF), Université du Québec en Abitibi-Témiscamingue, Amos, QC, Canada
| | | | - Glen Dierickx
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Research Institute for Nature and Forest (INBO), Brussels, Belgium
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of Uzbekistan, Tashkent, Uzbekistan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- Senckenberg Biodiversity and Climate Research Institute (SBiK-F), Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Tina A. Hofmann
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
| | - Thomas E. Martin
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
| | - Meike Piepenbring
- Mycology Working Group, Goethe-Universität Frankfurt am Main, Frankfurt am Main, Germany
| | - Mauro Rivas-Ferreiro
- Population Genetics and Cytogenetics Group, Facultade de Bioloxía, Universidade de Vigo, Vigo, Spain
| | - Danny Haelewaters
- Research Group Mycology, Department of Biology, Ghent University, Ghent, Belgium
- Centro de Investigaciones Micológicas (CIMi), Herbario UCH, Universidad Autónoma de Chiriquí, David, Panama
- Operation Wallacea Ltd, Wallace House, Old Bolingbroke, United Kingdom
- Faculty of Science, University of South Bohemia, Ceské Budějovice, Czechia
| |
Collapse
|
6
|
Maza-Márquez P, Aranda E, González-López J, Rodelas B. Evaluation of the Abundance of Fungi in Wastewater Treatment Plants Using Quantitative PCR (qPCR). Methods Mol Biol 2020; 2065:79-94. [PMID: 31578689 DOI: 10.1007/978-1-4939-9833-3_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Assessment of the abundance of fungi in environmental samples by quantitative PCR (qPCR) of community DNA is often a difficult task due to biases introduced during PCR amplification, resulting from the differences associated with length polymorphism and the varying number of copies of the rRNA operon among fungal species, the lack of specificity of the primers targeting the different regions of the rRNA operon, or their insufficient coverage of the fungal lineages. To overcome those limitations, it is crucial to test and select the specific primers sets which provide the more accurate approximation to the quantification of the targeted fungal populations in a given set of samples. Fungi are a significant fraction of the microbiota in wastewater treatment plants (WWTPs), but the activated sludge microbial communities comprise many other eukaryotic microorganisms whose molecular markers are often coamplified by primers initially designed as fungal-specific. Here, the use of the FungiQuant primer set is recommended for the quantification of fungal molecular markers (18S rRNA genes) by qPCR in activated sludge samples and the full protocol is described.
Collapse
Affiliation(s)
- Paula Maza-Márquez
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain. .,Environmental Microbiology Group, Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain.
| | - Elisabet Aranda
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| | - Jesús González-López
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| | - Belén Rodelas
- Department of Microbiology, Institute of Water Research, University of Granada, Granada, Spain
| |
Collapse
|
7
|
Hewitt RE, DeVan MR, Lagutina IV, Genet H, McGuire AD, Taylor DL, Mack MC. Mycobiont contribution to tundra plant acquisition of permafrost-derived nitrogen. THE NEW PHYTOLOGIST 2020; 226:126-141. [PMID: 31580482 DOI: 10.1111/nph.16235] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/26/2019] [Indexed: 05/27/2023]
Abstract
As Arctic soils warm, thawed permafrost releases nitrogen (N) that could stimulate plant productivity and thus offset soil carbon losses from tundra ecosystems. Although mycorrhizal fungi could facilitate plant access to permafrost-derived N, their exploration capacity beyond host plant root systems into deep, cold active layer soils adjacent to the permafrost table is unknown. We characterized root-associated fungi (RAF) that colonized ericoid (ERM) and ectomycorrhizal (ECM) shrub roots and occurred below the maximum rooting depth in permafrost thaw-front soil in tussock and shrub tundra communities. We explored the relationships between root and thaw front fungal composition and plant uptake of a 15 N tracer applied at the permafrost boundary. We show that ERM and ECM shrubs associate with RAF at the thaw front providing evidence for potential mycelial connectivity between roots and the permafrost boundary. Among shrubs and tundra communities, RAF connectivity to the thaw boundary was ubiquitous. The occurrence of particular RAF in both roots and thaw front soil was positively correlated with 15 N recovered in shrub biomass Taxon-specific RAF associations could be a mechanism for the vertical redistribution of deep, permafrost-derived nutrients, which may alleviate N limitation and stimulate productivity in warming tundra.
Collapse
Affiliation(s)
- Rebecca E Hewitt
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ, 86011, USA
| | - M Rae DeVan
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Irina V Lagutina
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Helene Genet
- Institute of Arctic Biology, University of Alaska Fairbanks, PO Box 757000, Fairbanks, AK, 99775, USA
| | - A David McGuire
- Institute of Arctic Biology, University of Alaska Fairbanks, PO Box 757000, Fairbanks, AK, 99775, USA
| | - D Lee Taylor
- Department of Biology, MSC03 2020, University of New Mexico, Albuquerque, NM, 87131, USA
| | - Michelle C Mack
- Center for Ecosystem Science and Society, Northern Arizona University, PO Box 5620, Flagstaff, AZ, 86011, USA
| |
Collapse
|
8
|
Naranjo‐Ortiz MA, Gabaldón T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc 2019; 94:2101-2137. [PMID: 31659870 PMCID: PMC6899921 DOI: 10.1111/brv.12550] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 07/25/2019] [Accepted: 07/31/2019] [Indexed: 12/11/2022]
Abstract
The fungal kingdom comprises a hyperdiverse clade of heterotrophic eukaryotes characterized by the presence of a chitinous cell wall, the loss of phagotrophic capabilities and cell organizations that range from completely unicellular monopolar organisms to highly complex syncitial filaments that may form macroscopic structures. Fungi emerged as a 'Third Kingdom', embracing organisms that were outside the classical dichotomy of animals versus vegetals. The taxonomy of this group has a turbulent history that is only now starting to be settled with the advent of genomics and phylogenomics. We here review the current status of the phylogeny and taxonomy of fungi, providing an overview of the main defined groups. Based on current knowledge, nine phylum-level clades can be defined: Opisthosporidia, Chytridiomycota, Neocallimastigomycota, Blastocladiomycota, Zoopagomycota, Mucoromycota, Glomeromycota, Basidiomycota and Ascomycota. For each group, we discuss their main traits and their diversity, focusing on the evolutionary relationships among the main fungal clades. We also explore the diversity and phylogeny of several groups of uncertain affinities and the main phylogenetic and taxonomical controversies and hypotheses in the field.
Collapse
Affiliation(s)
- Miguel A. Naranjo‐Ortiz
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
| | - Toni Gabaldón
- Bioinformatics and Genomics Programme, Centre for Genomic Regulation (CRG)The Barcelona Institute of Science and TechnologyDr. Aiguader 88Barcelona08003Spain
- Health and Experimental Sciences DepartmentUniversitat Pompeu Fabra (UPF)08003BarcelonaSpain
- ICREAPg. Lluís Companys 2308010BarcelonaSpain
| |
Collapse
|
9
|
|
10
|
Voříšková J, Elberling B, Priemé A. Fast response of fungal and prokaryotic communities to climate change manipulation in two contrasting tundra soils. ENVIRONMENTAL MICROBIOME 2019; 14:6. [PMID: 33902718 PMCID: PMC7989089 DOI: 10.1186/s40793-019-0344-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/24/2019] [Indexed: 05/31/2023]
Abstract
BACKGROUND Climate models predict substantial changes in temperature and precipitation patterns across Arctic regions, including increased winter precipitation as snow in the near future. Soil microorganisms are considered key players in organic matter decomposition and regulation of biogeochemical cycles. However, current knowledge regarding their response to future climate changes is limited. Here, we explore the short-term effect of increased snow cover on soil fungal, bacterial and archaeal communities in two tundra sites with contrasting water regimes in Greenland. In order to assess seasonal variation of microbial communities, we collected soil samples four times during the plant-growing season. RESULTS The analysis revealed that soil microbial communities from two tundra sites differed from each other due to contrasting soil chemical properties. Fungal communities showed higher richness at the dry site whereas richness of prokaryotes was higher at the wet tundra site. We demonstrated that fungal and bacterial communities at both sites were significantly affected by short-term increased snow cover manipulation. Our results showed that fungal community composition was more affected by deeper snow cover compared to prokaryotes. The fungal communities showed changes in both taxonomic and ecological groups in response to climate manipulation. However, the changes were not pronounced at all sampling times which points to the need of multiple sampling in ecosystems where environmental factors show seasonal variation. Further, we showed that effects of increased snow cover were manifested after snow had melted. CONCLUSIONS We demonstrated rapid response of soil fungal and bacterial communities to short-term climate manipulation simulating increased winter precipitation at two tundra sites. In particular, we provide evidence that fungal community composition was more affected by increased snow cover compared to prokaryotes indicating fast adaptability to changing environmental conditions. Since fungi are considered the main decomposers of complex organic matter in terrestrial ecosystems, the stronger response of fungal communities may have implications for organic matter turnover in tundra soils under future climate.
Collapse
Affiliation(s)
- Jana Voříšková
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Geochemistry, Geological Survey of Denmark and Greenland (GEUS), Copenhagen, Denmark
- Ecology Department, Climate and Ecosystem Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA USA
| | - Bo Elberling
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
| | - Anders Priemé
- Center for Permafrost (CENPERM), Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Tundra microbial community taxa and traits predict decomposition parameters of stable, old soil organic carbon. ISME JOURNAL 2019; 13:2901-2915. [PMID: 31384013 DOI: 10.1038/s41396-019-0485-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 04/17/2019] [Accepted: 05/09/2019] [Indexed: 01/08/2023]
Abstract
The susceptibility of soil organic carbon (SOC) in tundra to microbial decomposition under warmer climate scenarios potentially threatens a massive positive feedback to climate change, but the underlying mechanisms of stable SOC decomposition remain elusive. Herein, Alaskan tundra soils from three depths (a fibric O horizon with litter and course roots, an O horizon with decomposing litter and roots, and a mineral-organic mix, laying just above the permafrost) were incubated. Resulting respiration data were assimilated into a 3-pool model to derive decomposition kinetic parameters for fast, slow, and passive SOC pools. Bacterial, archaeal, and fungal taxa and microbial functional genes were profiled throughout the 3-year incubation. Correlation analyses and a Random Forest approach revealed associations between model parameters and microbial community profiles, taxa, and traits. There were more associations between the microbial community data and the SOC decomposition parameters of slow and passive SOC pools than those of the fast SOC pool. Also, microbial community profiles were better predictors of model parameters in deeper soils, which had higher mineral contents and relatively greater quantities of old SOC than in surface soils. Overall, our analyses revealed the functional potential of microbial communities to decompose tundra SOC through a suite of specialized genes and taxa. These results portray divergent strategies by which microbial communities access SOC pools across varying depths, lending mechanistic insights into the vulnerability of what is considered stable SOC in tundra regions.
Collapse
|
12
|
Sheng Y, Cong J, Lu H, Yang L, Liu Q, Li D, Zhang Y. Broad-leaved forest types affect soil fungal community structure and soil organic carbon contents. Microbiologyopen 2019; 8:e874. [PMID: 31215766 PMCID: PMC6813455 DOI: 10.1002/mbo3.874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 11/06/2022] Open
Abstract
Evergreen broad-leaved (EBF) and deciduous broad-leaved (DBF) forests are two important vegetation types in terrestrial ecosystems that play key roles in sustainable biodiversity and global carbon (C) cycling. However, little is known about their associated soil fungal community and the potential metabolic activities involved in biogeochemical processes. In this study, soil samples were collected from EBF and DBF in Shennongjia Mountain, China, and soil fungal community structure and functional gene diversity analyzed based on combined Illumina MiSeq sequencing with GeoChip technologies. The results showed that soil fungal species richness (p = 0.079) and fungal functional gene diversity (p < 0.01) were higher in DBF than EBF. Zygomycota was the most dominant phylum in both broad-leaved forests, and the most dominant genera found in each forest varied (Umbelopsis dominated in DBF, whereas Mortierella dominated in EBF). A total of 4, 439 soil fungi associated functional gene probes involved in C and nitrogen (N) cycling were detected. Interestingly, the relative abundance of functional genes related to labile C degradation (e.g., starch, pectin, hemicellulose, and cellulose) was significantly higher (p < 0.05) in DBF than EBF, and the functional gene relative abundance involved in C cycling was significantly negatively correlated with soil labile organic C (r = -0.720, p = 0.002). In conclusion, the soil fungal community structure and potential metabolic activity showed marked divergence in different broad-leaved forest types, and the higher relative abundance of functional genes involved in C cycling in DBF may be caused by release of loss of organic C in the soil.
Collapse
Affiliation(s)
- Yuyu Sheng
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Jing Cong
- Department of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Hui Lu
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Linsen Yang
- Shennongjia National Park, Shennongjia, Hubei Province, China
| | - Qiang Liu
- Shennongjia National Park, Shennongjia, Hubei Province, China
| | - Diqiang Li
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| | - Yuguang Zhang
- Key Laboratory of Biological Conservation of National Forestry and Grassland Administration, Research Institute of Forest Ecology, Environment and Protection, Chinese Academy of Forestry, Beijing, China
| |
Collapse
|
13
|
Reynolds NK, Benny GL, Ho HM, Hou YH, Crous PW, Smith ME. Phylogenetic and morphological analyses of the mycoparasitic genus Piptocephalis. Mycologia 2019; 111:54-68. [PMID: 30714887 DOI: 10.1080/00275514.2018.1538439] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The Piptocephalidaceae (Zoopagales, Zoopagomycota) contains three genera of mycoparasitic, haustoria-forming fungi: Kuzuhaea, Piptocephalis, and Syncephalis. Although the species in this family are diverse and ubiquitous in soil and dung, they are among the least studied fungi. Co-cultures of Piptocephalis and their hosts are relatively easy to isolate from soil and dung samples across the globe, making them a good model taxon for the order Zoopagales. This study focuses on the systematics of the genus Piptocephalis. Despite the fact that there are approximately 40 described Piptocephalis species, there are no modern taxonomic or molecular phylogenetic treatments of this group. Minimal sequence data are available, and relatively little is known about the true diversity or biogeography of the genus. Our study addresses two aspects: Piptocephalis systematics and analyses of the length and inter- and infraspecific variation of the nuc rDNA internal transcribed spacer (ITS1-5.8S-ITS2 = ITS) region. First, we generated a large subunit (28S) nuc rDNA phylogeny and evaluated several morphological characters by testing their correlation with the phylogeny using Bayesian Tip-association Significance testing (BaTS). We found monophyly of Piptocephalis species identified based on morphological traits, but morphological character states were not conserved across clades, suggesting that there have been multiple gains and losses of morphological characters. We also found that Kuzhuaea is nested within Piptocephalis. Second, we amplified the ITS from many Piptocephalis isolates, created a sequence alignment, and measured the lengths using the software ITSx. Piptocephalis species had ITS regions that were longer than the average for most Dikarya but were similar in length to those of the related genus Syncephalis.
Collapse
Affiliation(s)
- Nicole K Reynolds
- a Department of Plant Pathology, University of Florida , Gainesville , Florida 32611
| | - Gerald L Benny
- a Department of Plant Pathology, University of Florida , Gainesville , Florida 32611
| | - Hsiao-Man Ho
- b Department of Science Education, National Taipei University of Education, 134, Section 2, Heping E. Road , Taipei 106 , Taiwan
| | | | - Pedro W Crous
- d Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT , Utrecht , The Netherlands
| | - Matthew E Smith
- a Department of Plant Pathology, University of Florida , Gainesville , Florida 32611
| |
Collapse
|
14
|
Liang J, Xia J, Shi Z, Jiang L, Ma S, Lu X, Mauritz M, Natali SM, Pegoraro E, Penton CR, Plaza C, Salmon VG, Celis G, Cole JR, Konstantinidis KT, Tiedje JM, Zhou J, Schuur EAG, Luo Y. Biotic responses buffer warming-induced soil organic carbon loss in Arctic tundra. GLOBAL CHANGE BIOLOGY 2018; 24:4946-4959. [PMID: 29802797 DOI: 10.1111/gcb.14325] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Accepted: 05/10/2018] [Indexed: 05/06/2023]
Abstract
Climate warming can result in both abiotic (e.g., permafrost thaw) and biotic (e.g., microbial functional genes) changes in Arctic tundra. Recent research has incorporated dynamic permafrost thaw in Earth system models (ESMs) and indicates that Arctic tundra could be a significant future carbon (C) source due to the enhanced decomposition of thawed deep soil C. However, warming-induced biotic changes may influence biologically related parameters and the consequent projections in ESMs. How model parameters associated with biotic responses will change under warming and to what extent these changes affect projected C budgets have not been carefully examined. In this study, we synthesized six data sets over 5 years from a soil warming experiment at the Eight Mile Lake, Alaska, into the Terrestrial ECOsystem (TECO) model with a probabilistic inversion approach. The TECO model used multiple soil layers to track dynamics of thawed soil under different treatments. Our results show that warming increased light use efficiency of vegetation photosynthesis but decreased baseline (i.e., environment-corrected) turnover rates of SOC in both the fast and slow pools in comparison with those under control. Moreover, the parameter changes generally amplified over time, suggesting processes of gradual physiological acclimation and functional gene shifts of both plants and microbes. The TECO model predicted that field warming from 2009 to 2013 resulted in cumulative C losses of 224 or 87 g/m2 , respectively, without or with changes in those parameters. Thus, warming-induced parameter changes reduced predicted soil C loss by 61%. Our study suggests that it is critical to incorporate biotic changes in ESMs to improve the model performance in predicting C dynamics in permafrost regions.
Collapse
Affiliation(s)
- Junyi Liang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Jiangyang Xia
- Tiantong National Station of Forest Ecosystem, Research Center for Global Change and Ecological Forecasting, School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
- Institute of Eco-Chongming (IEC), Shanghai, China
| | - Zheng Shi
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
| | - Lifen Jiang
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Shuang Ma
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Xingjie Lu
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Marguerite Mauritz
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | | | - Elaine Pegoraro
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Christopher Ryan Penton
- College of Integrative Sciences and Arts, Arizona State University, Mesa, Arizona
- Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, Arizona
| | - César Plaza
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Departamento de Biología y Geología, Física y Química Inorgánica, Escuela Superior de Ciencias Experimentales y Tecnología, Universidad Rey Juan Carlos, Móstoles, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Verity G Salmon
- Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Gerardo Celis
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - James R Cole
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering and School of Biology, Georgia Institute of Technology, Atlanta, Georgia
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University, East Lansing, Michigan
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
- Institute for Environmental Genomics, University of Oklahoma, Norman, Oklahoma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- Earth and Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, California
| | - Edward A G Schuur
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, Oklahoma
- Center for Ecosystem Science and Society and Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona
- Department of Earth System Science, Tsinghua University, Beijing, China
| |
Collapse
|
15
|
Wijayawardene NN, Pawłowska J, Letcher PM, Kirk PM, Humber RA, Schüßler A, Wrzosek M, Muszewska A, Okrasińska A, Istel Ł, Gęsiorska A, Mungai P, Lateef AA, Rajeshkumar KC, Singh RV, Radek R, Walther G, Wagner L, Walker C, Wijesundara DSA, Papizadeh M, Dolatabadi S, Shenoy BD, Tokarev YS, Lumyong S, Hyde KD. Notes for genera: basal clades of Fungi (including Aphelidiomycota, Basidiobolomycota, Blastocladiomycota, Calcarisporiellomycota, Caulochytriomycota, Chytridiomycota, Entomophthoromycota, Glomeromycota, Kickxellomycota, Monoblepharomycota, Mortierellomycota, Mucoromycota, Neocallimastigomycota, Olpidiomycota, Rozellomycota and Zoopagomycota). FUNGAL DIVERS 2018. [DOI: 10.1007/s13225-018-0409-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
16
|
Patterns in Ectomycorrhizal Diversity, Community Composition, and Exploration Types in European Beech, Pine, and Spruce Forests. FORESTS 2018. [DOI: 10.3390/f9080445] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Ectomycorrhizal (EM) fungi are pivotal drivers of ecosystem functioning in temperate and boreal forests. They constitute an important pathway for plant-derived carbon into the soil and facilitate nitrogen and phosphorus acquisition. However, the mechanisms that drive ectomycorrhizal diversity and community composition are still subject to discussion. We investigated patterns in ectomycorrhizal diversity, community composition, and exploration types on root tips in Fagus sylvatica,Picea abies, and Pinus sylvestris stands across Europe. Host tree species is the most important factor shaping the ectomycorrhizal community as well as the distribution of exploration types. Moreover, abiotic factors such as soil properties, N deposition, temperature, and precipitation, were found to significantly influence EM diversity and community composition. A clear differentiation into functional traits by means of exploration types was shown for all ectomycorrhizal communities across the three analyzed tree species. Contact and short-distance exploration types were clearly significantly more abundant than cord- or rhizomorph-forming long-distance exploration types of EM fungi. Medium-distance exploration types were significantly lower in abundance than contact and short-distance types, however they were the most frequent EM taxa and constituted nearly half of the EM community. Furthermore, EM taxa exhibit distinct ecological ranges, and the type of soil exploration seemed to determine whether EM taxa have small or rather big environmental ranges.
Collapse
|
17
|
Guo X, Zhou X, Hale L, Yuan M, Feng J, Ning D, Shi Z, Qin Y, Liu F, Wu L, He Z, Van Nostrand JD, Liu X, Luo Y, Tiedje JM, Zhou J. Taxonomic and Functional Responses of Soil Microbial Communities to Annual Removal of Aboveground Plant Biomass. Front Microbiol 2018; 9:954. [PMID: 29904372 PMCID: PMC5990867 DOI: 10.3389/fmicb.2018.00954] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 04/24/2018] [Indexed: 11/13/2022] Open
Abstract
Clipping, removal of aboveground plant biomass, is an important issue in grassland ecology. However, few studies have focused on the effect of clipping on belowground microbial communities. Using integrated metagenomic technologies, we examined the taxonomic and functional responses of soil microbial communities to annual clipping (2010-2014) in a grassland ecosystem of the Great Plains of North America. Our results indicated that clipping significantly (P < 0.05) increased root and microbial respiration rates. Annual temporal variation within the microbial communities was much greater than the significant changes introduced by clipping, but cumulative effects of clipping were still observed in the long-term scale. The abundances of some bacterial and fungal lineages including Actinobacteria and Bacteroidetes were significantly (P < 0.05) changed by clipping. Clipping significantly (P < 0.05) increased the abundances of labile carbon (C) degrading genes. More importantly, the abundances of recalcitrant C degrading genes were consistently and significantly (P < 0.05) increased by clipping in the last 2 years, which could accelerate recalcitrant C degradation and weaken long-term soil carbon stability. Furthermore, genes involved in nutrient-cycling processes including nitrogen cycling and phosphorus utilization were also significantly increased by clipping. The shifts of microbial communities were significantly correlated with soil respiration and plant productivity. Intriguingly, clipping effects on microbial function may be highly regulated by precipitation at the interannual scale. Altogether, our results illustrated the potential of soil microbial communities for increased soil organic matter decomposition under clipping land-use practices.
Collapse
Affiliation(s)
- Xue Guo
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Xishu Zhou
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Lauren Hale
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Mengting Yuan
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Jiajie Feng
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Daliang Ning
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Zhou Shi
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Yujia Qin
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Feifei Liu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Liyou Wu
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Zhili He
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Joy D. Van Nostrand
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - Xueduan Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, China
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, MI, United States
| | - Jizhong Zhou
- Institute for Environmental Genomics, University of Oklahoma, Norman, OK, United States
- Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, United States
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China
- School of Civil Engineering and Environmental Sciences, University of Oklahoma, Norman, OK, United States
- Earth and Environmental Science, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| |
Collapse
|
18
|
Radujkovic D, Verbruggen E, Sigurdsson BD, Leblans NIW, Janssens IA, Vicca S, Weedon JT. Prolonged exposure does not increase soil microbial community compositional response to warming along geothermal gradients. FEMS Microbiol Ecol 2018; 94:4712010. [PMID: 29228354 DOI: 10.1101/102459] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/01/2017] [Indexed: 05/26/2023] Open
Abstract
Global change is expected to affect soil microbial communities through their responsiveness to temperature. It has been proposed that prolonged exposure to elevated temperatures may lead to progressively larger effects on soil microbial community composition. However, due to the relatively short-term nature of most warming experiments, this idea has been challenging to evaluate. The present study took the advantage of natural geothermal gradients (from +1°C to +19°C above ambient) in two subarctic grasslands to test the hypothesis that long-term exposure (>50 years) intensifies the effect of warming on microbial community composition compared to short-term exposure (5-7 years). Community profiles from amplicon sequencing of bacterial and fungal rRNA genes did not support this hypothesis: significant changes relative to ambient were observed only starting from the warming intensity of +9°C in the long term and +7°C/+3°C in the short term, for bacteria and fungi, respectively. Our results suggest that microbial communities in high-latitude grasslands will not undergo lasting shifts in community composition under the warming predicted for the coming 100 years (+2.2°C to +8.3°C).
Collapse
Affiliation(s)
- Dajana Radujkovic
- Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Erik Verbruggen
- Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Bjarni D Sigurdsson
- Faculty of Environmental Sciences, Agricultural University of Iceland, Hvanneyr IS - 311 Borgarnes, Iceland
| | - Niki I W Leblans
- Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
- Faculty of Environmental Sciences, Agricultural University of Iceland, Hvanneyr IS - 311 Borgarnes, Iceland
| | - Ivan A Janssens
- Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - Sara Vicca
- Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
| | - James T Weedon
- Plants and Ecosystems, Department of Biology, University of Antwerp, Universiteitsplein 1, Wilrijk 2610, Belgium
- Department of Ecological Science, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| |
Collapse
|
19
|
Papizadeh M, Wijayawardene NN, Amoozegar MA, Saba F, Fazeli SAS, Hyde KD. Neocamarosporium jorjanensis, N. persepolisi, and N. solicola spp. nov. (Neocamarosporiaceae, Pleosporales) isolated from saline lakes of Iran indicate the possible halotolerant nature for the genus. Mycol Prog 2017. [DOI: 10.1007/s11557-017-1341-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Weedon JT, Kowalchuk GA, Aerts R, Freriks S, Röling WFM, van Bodegom PM. Compositional Stability of the Bacterial Community in a Climate-Sensitive Sub-Arctic Peatland. Front Microbiol 2017; 8:317. [PMID: 28326062 PMCID: PMC5339224 DOI: 10.3389/fmicb.2017.00317] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 02/15/2017] [Indexed: 12/21/2022] Open
Abstract
The climate sensitivity of microbe-mediated soil processes such as carbon and nitrogen cycling offers an interesting case for evaluating the corresponding sensitivity of microbial community composition to environmental change. Better understanding of the degree of linkage between functional and compositional stability would contribute to ongoing efforts to build mechanistic models aiming at predicting rates of microbe-mediated processes. We used an amplicon sequencing approach to test if previously observed large effects of experimental soil warming on C and N cycle fluxes (50–100% increases) in a sub-arctic Sphagnum peatland were reflected in changes in the composition of the soil bacterial community. We found that treatments that previously induced changes to fluxes did not associate with changes in the phylogenetic composition of the soil bacterial community. For both DNA- and RNA-based analyses, variation in bacterial communities could be explained by the hierarchy: spatial variation (12–15% of variance explained) > temporal variation (7–11%) > climate treatment (4–9%). We conclude that the bacterial community in this environment is stable under changing conditions, despite the previously observed sensitivity of process rates—evidence that microbe-mediated soil processes can alter without concomitant changes in bacterial communities. We propose that progress in linking soil microbial communities to ecosystem processes can be advanced by further investigating the relative importance of community composition effects versus physico-chemical factors in controlling biogeochemical process rates in different contexts.
Collapse
Affiliation(s)
- James T Weedon
- Department of Ecological Science, Vrije Universiteit AmsterdamAmsterdam, Netherlands; Research Group of Plant and Vegetation Ecology, Department of Biology, University of AntwerpAntwerp, Belgium
| | - George A Kowalchuk
- Ecology and Biodiversity, Department of Biology, Utrecht University Utrecht, Netherlands
| | - Rien Aerts
- Department of Ecological Science, Vrije Universiteit Amsterdam Amsterdam, Netherlands
| | - Stef Freriks
- Department of Ecological Science, Vrije Universiteit Amsterdam Amsterdam, Netherlands
| | - Wilfred F M Röling
- Department of Molecular Cell Physiology, Vrije Universiteit Amsterdam Amsterdam, Netherlands
| | - Peter M van Bodegom
- Department of Ecological Science, Vrije Universiteit AmsterdamAmsterdam, Netherlands; Institute of Environmental Sciences, Leiden UniversityLeiden, Netherlands
| |
Collapse
|
21
|
Potential microbial contamination during sampling of permafrost soil assessed by tracers. Sci Rep 2017; 7:43338. [PMID: 28230151 PMCID: PMC5322388 DOI: 10.1038/srep43338] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 01/25/2017] [Indexed: 11/08/2022] Open
Abstract
Drilling and handling of permanently frozen soil cores without microbial contamination is of concern because contamination e.g. from the active layer above may lead to incorrect interpretation of results in experiments investigating potential and actual microbial activity in these low microbial biomass environments. Here, we present an example of how microbial contamination from active layer soil affected analysis of the potentially active microbial community in permafrost soil. We also present the development and use of two tracers: (1) fluorescent plastic microspheres and (2) Pseudomonas putida genetically tagged with Green Fluorescent Protein production to mimic potential microbial contamination of two permafrost cores. A protocol with special emphasis on avoiding microbial contamination was developed and employed to examine how far microbial contamination can penetrate into permafrost cores. The quantity of tracer elements decreased with depth into the permafrost cores, but the tracers were detected as far as 17 mm from the surface of the cores. The results emphasize that caution should be taken to avoid microbial contamination of permafrost cores and that the application of tracers represents a useful tool to assess penetration of potential microbial contamination into permafrost cores.
Collapse
|
22
|
|
23
|
Freedman ZB, Upchurch RA, Zak DR. Microbial Potential for Ecosystem N Loss Is Increased by Experimental N Deposition. PLoS One 2016; 11:e0164531. [PMID: 27737013 PMCID: PMC5063468 DOI: 10.1371/journal.pone.0164531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 09/27/2016] [Indexed: 01/05/2023] Open
Abstract
Fossil fuel combustion and fertilizer use has increased the amount of biologically available N entering terrestrial ecosystems. Nonetheless, our understanding of how anthropogenic N may alter the physiological mechanisms by which soil microorganisms cycle N in soil is still developing. Here, we applied shotgun metagenomics to a replicated long-term field experiment to determine how two decades of experimental N deposition, at a rate expected by mid-century, has affected the genetic potential of the soil microbial community to cycle N in soils. Experimental N deposition lead to a significant and persistent increase in functional assemblages mediating N cycle transformations associated with ecosystem N loss (i.e., denitrification and nitrification), whereas functional assemblages associated with N input and retention (i.e., N fixation and microbial N assimilation) were less positively affected. Furthermore, the abundance and composition of microbial taxa, as well as functional assemblages involved in housekeeping functions (i.e., DNA replication) were unaffected by experimental N deposition. Taken together, our results suggest that functional genes and gene pathways associated with ecosystem N loss have been favored by experimental N deposition, which may represent a genetic mechanism fostering increased N loss as anthropogenic N deposition increases in the future.
Collapse
Affiliation(s)
- Zachary B. Freedman
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| | - Rima A. Upchurch
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Donald R. Zak
- School of Natural Resources & Environment, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Ecology and Evolution, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
24
|
Treseder KK, Marusenko Y, Romero-Olivares AL, Maltz MR. Experimental warming alters potential function of the fungal community in boreal forest. GLOBAL CHANGE BIOLOGY 2016; 22:3395-3404. [PMID: 26836961 DOI: 10.1111/gcb.13238] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/18/2016] [Indexed: 06/05/2023]
Abstract
Fungal community composition often shifts in response to warmer temperatures, which might influence decomposition of recalcitrant carbon (C). We hypothesized that evolutionary trade-offs would enable recalcitrant C-using taxa to respond more positively to warming than would labile C-using taxa. Accordingly, we performed a warming experiment in an Alaskan boreal forest and examined changes in the prevalence of fungal taxa. In a complementary field trial, we characterized the ability of fungal taxa to use labile C (glucose), intermediate C (hemicellulose or cellulose), or recalcitrant C (lignin). We also assigned taxa to functional groups (e.g., free-living filamentous fungi, ectomycorrhizal fungi, and yeasts) based on taxonomic identity. We found that response to warming varied most among taxa at the order level, compared to other taxonomic ranks. Among orders, ability to use lignin was significantly related to increases in prevalence in response to warming. However, the relationship was weak, given that lignin use explained only 9% of the variability in warming responses. Functional groups also differed in warming responses. Specifically, free-living filamentous fungi and ectomycorrhizal fungi responded positively to warming, on average, but yeasts responded negatively. Overall, warming-induced shifts in fungal communities might be accompanied by an increased ability to break down recalcitrant C. This change in potential function may reduce soil C storage under global warming.
Collapse
Affiliation(s)
- Kathleen K Treseder
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Yevgeniy Marusenko
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Adriana L Romero-Olivares
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| | - Mia R Maltz
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
25
|
Penton CR, Gupta VVSR, Yu J, Tiedje JM. Size Matters: Assessing Optimum Soil Sample Size for Fungal and Bacterial Community Structure Analyses Using High Throughput Sequencing of rRNA Gene Amplicons. Front Microbiol 2016; 7:824. [PMID: 27313569 PMCID: PMC4889595 DOI: 10.3389/fmicb.2016.00824] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 01/05/2023] Open
Abstract
We examined the effect of different soil sample sizes obtained from an agricultural field, under a single cropping system uniform in soil properties and aboveground crop responses, on bacterial and fungal community structure and microbial diversity indices. DNA extracted from soil sample sizes of 0.25, 1, 5, and 10 g using MoBIO kits and from 10 and 100 g sizes using a bead-beating method (SARDI) were used as templates for high-throughput sequencing of 16S and 28S rRNA gene amplicons for bacteria and fungi, respectively, on the Illumina MiSeq and Roche 454 platforms. Sample size significantly affected overall bacterial and fungal community structure, replicate dispersion and the number of operational taxonomic units (OTUs) retrieved. Richness, evenness and diversity were also significantly affected. The largest diversity estimates were always associated with the 10 g MoBIO extractions with a corresponding reduction in replicate dispersion. For the fungal data, smaller MoBIO extractions identified more unclassified Eukaryota incertae sedis and unclassified glomeromycota while the SARDI method retrieved more abundant OTUs containing unclassified Pleosporales and the fungal genera Alternaria and Cercophora. Overall, these findings indicate that a 10 g soil DNA extraction is most suitable for both soil bacterial and fungal communities for retrieving optimal diversity while still capturing rarer taxa in concert with decreasing replicate variation.
Collapse
Affiliation(s)
- C Ryan Penton
- Faculty of Science and Mathematics, College of Integrative Sciences and Arts, Arizona State UniversityMesa, AZ, USA; Arizona State University Applied and Functional Microbiomics Institute, Arizona State UniversityMesa, AZ, USA
| | | | - Julian Yu
- Faculty of Science and Mathematics, College of Integrative Sciences and Arts, Arizona State University Mesa, AZ, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
26
|
Johnston ER, Rodriguez-R LM, Luo C, Yuan MM, Wu L, He Z, Schuur EAG, Luo Y, Tiedje JM, Zhou J, Konstantinidis KT. Metagenomics Reveals Pervasive Bacterial Populations and Reduced Community Diversity across the Alaska Tundra Ecosystem. Front Microbiol 2016; 7:579. [PMID: 27199914 PMCID: PMC4842900 DOI: 10.3389/fmicb.2016.00579] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 04/08/2016] [Indexed: 01/19/2023] Open
Abstract
How soil microbial communities contrast with respect to taxonomic and functional composition within and between ecosystems remains an unresolved question that is central to predicting how global anthropogenic change will affect soil functioning and services. In particular, it remains unclear how small-scale observations of soil communities based on the typical volume sampled (1-2 g) are generalizable to ecosystem-scale responses and processes. This is especially relevant for remote, northern latitude soils, which are challenging to sample and are also thought to be more vulnerable to climate change compared to temperate soils. Here, we employed well-replicated shotgun metagenome and 16S rRNA gene amplicon sequencing to characterize community composition and metabolic potential in Alaskan tundra soils, combining our own datasets with those publically available from distant tundra and temperate grassland and agriculture habitats. We found that the abundance of many taxa and metabolic functions differed substantially between tundra soil metagenomes relative to those from temperate soils, and that a high degree of OTU-sharing exists between tundra locations. Tundra soils were an order of magnitude less complex than their temperate counterparts, allowing for near-complete coverage of microbial community richness (~92% breadth) by sequencing, and the recovery of 27 high-quality, almost complete (>80% completeness) population bins. These population bins, collectively, made up to ~10% of the metagenomic datasets, and represented diverse taxonomic groups and metabolic lifestyles tuned toward sulfur cycling, hydrogen metabolism, methanotrophy, and organic matter oxidation. Several population bins, including members of Acidobacteria, Actinobacteria, and Proteobacteria, were also present in geographically distant (~100-530 km apart) tundra habitats (full genome representation and up to 99.6% genome-derived average nucleotide identity). Collectively, our results revealed that Alaska tundra microbial communities are less diverse and more homogenous across spatial scales than previously anticipated, and provided DNA sequences of abundant populations and genes that would be relevant for future studies of the effects of environmental change on tundra ecosystems.
Collapse
Affiliation(s)
- Eric R Johnston
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta GA, USA
| | - Luis M Rodriguez-R
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, AtlantaGA, USA; School of Biology, Georgia Institute of Technology, AtlantaGA, USA
| | - Chengwei Luo
- Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, Atlanta GA, USA
| | - Mengting M Yuan
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Liyou Wu
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Zhili He
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - Edward A G Schuur
- Department of Biological Sciences, Northern Arizona University, Flagstaff AZ, USA
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, Norman OK, USA
| | - James M Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing MI, USA
| | - Jizhong Zhou
- Department of Microbiology and Plant Biology, Institute for Environmental Genomics, University of Oklahoma, NormanOK, USA; Earth Science Division, Lawrence Berkeley National Laboratory, BerkeleyCA, USA; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua UniversityBeijing, China
| | - Konstantinos T Konstantinidis
- School of Civil and Environmental Engineering, Georgia Institute of Technology, AtlantaGA, USA; Center for Bioinformatics and Computational Genomics, Georgia Institute of Technology, AtlantaGA, USA; School of Biology, Georgia Institute of Technology, AtlantaGA, USA
| |
Collapse
|
27
|
Benny GL, Smith ME, Kirk PM, Tretter ED, White MM. Challenges and Future Perspectives in the Systematics of Kickxellomycotina, Mortierellomycotina, Mucoromycotina, and Zoopagomycotina. BIOLOGY OF MICROFUNGI 2016. [DOI: 10.1007/978-3-319-29137-6_5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
28
|
Penton CR, St Louis D, Pham A, Cole JR, Wu L, Luo Y, Schuur EAG, Zhou J, Tiedje JM. Denitrifying and diazotrophic community responses to artificial warming in permafrost and tallgrass prairie soils. Front Microbiol 2015; 6:746. [PMID: 26284038 PMCID: PMC4523034 DOI: 10.3389/fmicb.2015.00746] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 07/06/2015] [Indexed: 01/06/2023] Open
Abstract
Increasing temperatures have been shown to impact soil biogeochemical processes, although the corresponding changes to the underlying microbial functional communities are not well understood. Alterations in the nitrogen (N) cycling functional component are particularly important as N availability can affect microbial decomposition rates of soil organic matter and influence plant productivity. To assess changes in the microbial component responsible for these changes, the composition of the N-fixing (nifH), and denitrifying (nirS, nirK, nosZ) soil microbial communities was assessed by targeted pyrosequencing of functional genes involved in N cycling in two major biomes where the experimental effect of climate warming is under investigation, a tallgrass prairie in Oklahoma (OK) and the active layer above permafrost in Alaska (AK). Raw reads were processed for quality, translated with frameshift correction, and a total of 313,842 amino acid sequences were clustered and linked to a nearest neighbor using reference datasets. The number of OTUs recovered ranged from 231 (NifH) to 862 (NirK). The N functional microbial communities of the prairie, which had experienced a decade of experimental warming were the most affected with changes in the richness and/or overall structure of NifH, NirS, NirK and NosZ. In contrast, the AK permafrost communities, which had experienced only 1 year of warming, showed decreased richness and a structural change only with the nirK-harboring bacterial community. A highly divergent nirK-harboring bacterial community was identified in the permafrost soils, suggesting much novelty, while other N functional communities exhibited similar relatedness to the reference databases, regardless of site. Prairie and permafrost soils also harbored highly divergent communities due mostly to differing major populations.
Collapse
Affiliation(s)
- Christopher R Penton
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University East Lansing, MI, USA ; College of Letters and Sciences, Arizona State University, Polytechnic Campus Mesa, AZ, USA
| | - Derek St Louis
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| | - Amanda Pham
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| | - James R Cole
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| | - Liyou Wu
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - Yiqi Luo
- Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA
| | - E A G Schuur
- Department of Biological Sciences, Center for Ecosystem Science and Society, Northern Arizona University Flagstaff, AZ, USA
| | - Jizhong Zhou
- Institute for Environmental Genomics and Department of Microbiology and Plant Biology, University of Oklahoma Norman, OK, USA ; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University Beijing, China ; Earth Science Division, Lawrence Berkeley National Laboratory Berkeley, CA, USA
| | - James M Tiedje
- Department of Plant, Soil and Microbial Sciences, Center for Microbial Ecology, Michigan State University East Lansing, MI, USA
| |
Collapse
|
29
|
Coolen MJL, Orsi WD. The transcriptional response of microbial communities in thawing Alaskan permafrost soils. Front Microbiol 2015; 6:197. [PMID: 25852660 PMCID: PMC4360760 DOI: 10.3389/fmicb.2015.00197] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 02/24/2015] [Indexed: 11/13/2022] Open
Abstract
Thawing of permafrost soils is expected to stimulate microbial decomposition and respiration of sequestered carbon. This could, in turn, increase atmospheric concentrations of greenhouse gasses, such as carbon dioxide and methane, and create a positive feedback to climate warming. Recent metagenomic studies suggest that permafrost has a large metabolic potential for carbon processing, including pathways for fermentation and methanogenesis. Here, we performed a pilot study using ultrahigh throughput Illumina HiSeq sequencing of reverse transcribed messenger RNA to obtain a detailed overview of active metabolic pathways and responsible organisms in up to 70 cm deep permafrost soils at a moist acidic tundra location in Arctic Alaska. The transcriptional response of the permafrost microbial community was compared before and after 11 days of thaw. In general, the transcriptional profile under frozen conditions suggests a dominance of stress responses, survival strategies, and maintenance processes, whereas upon thaw a rapid enzymatic response to decomposing soil organic matter (SOM) was observed. Bacteroidetes, Firmicutes, ascomycete fungi, and methanogens were responsible for largest transcriptional response upon thaw. Transcripts indicative of heterotrophic methanogenic pathways utilizing acetate, methanol, and methylamine were found predominantly in the permafrost table after thaw. Furthermore, transcripts involved in acetogenesis were expressed exclusively after thaw suggesting that acetogenic bacteria are a potential source of acetate for acetoclastic methanogenesis in freshly thawed permafrost. Metatranscriptomics is shown here to be a useful approach for inferring the activity of permafrost microbes that has potential to improve our understanding of permafrost SOM bioavailability and biogeochemical mechanisms contributing to greenhouse gas emissions as a result of permafrost thaw.
Collapse
Affiliation(s)
- Marco J. L. Coolen
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
- Western Australia Organic and Isotope Geochemistry Centre, Department of Chemistry, Curtin UniversityPerth, WA, Australia
| | - William D. Orsi
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic InstitutionWoods Hole, MA, USA
| |
Collapse
|
30
|
Fungal communities respond to long-term CO2 elevation by community reassembly. Appl Environ Microbiol 2015; 81:2445-54. [PMID: 25616796 DOI: 10.1128/aem.04040-14] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Fungal communities play a major role as decomposers in the Earth's ecosystems. Their community-level responses to elevated CO2 (eCO2), one of the major global change factors impacting ecosystems, are not well understood. Using 28S rRNA gene amplicon sequencing and co-occurrence ecological network approaches, we analyzed the response of soil fungal communities in the BioCON (biodiversity, CO2, and N deposition) experimental site in Minnesota, USA, in which a grassland ecosystem has been exposed to eCO2 for 12 years. Long-term eCO2 did not significantly change the overall fungal community structure and species richness, but significantly increased community evenness and diversity. The relative abundances of 119 operational taxonomic units (OTU; ∼27% of the total captured sequences) were changed significantly. Significantly changed OTU under eCO2 were associated with decreased overall relative abundance of Ascomycota, but increased relative abundance of Basidiomycota. Co-occurrence ecological network analysis indicated that eCO2 increased fungal community network complexity, as evidenced by higher intermodular and intramodular connectivity and shorter geodesic distance. In contrast, decreased connections for dominant fungal species were observed in the eCO2 network. Community reassembly of unrelated fungal species into highly connected dense modules was observed. Such changes in the co-occurrence network topology were significantly associated with altered soil and plant properties under eCO2, especially with increased plant biomass and NH4 (+) availability. This study provided novel insights into how eCO2 shapes soil fungal communities in grassland ecosystems.
Collapse
|
31
|
Siles JA, Rachid CTCC, Sampedro I, García-Romera I, Tiedje JM. Microbial diversity of a Mediterranean soil and its changes after biotransformed dry olive residue amendment. PLoS One 2014; 9:e103035. [PMID: 25058610 PMCID: PMC4109964 DOI: 10.1371/journal.pone.0103035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 06/27/2014] [Indexed: 01/18/2023] Open
Abstract
The Mediterranean basin has been identified as a biodiversity hotspot, about whose soil microbial diversity little is known. Intensive land use and aggressive management practices are degrading the soil, with a consequent loss of fertility. The use of organic amendments such as dry olive residue (DOR), a waste produced by a two-phase olive-oil extraction system, has been proposed as an effective way to improve soil properties. However, before its application to soil, DOR needs a pre-treatment, such as by a ligninolytic fungal transformation, e.g. Coriolopsis floccosa. The present study aimed to describe the bacterial and fungal diversity in a Mediterranean soil and to assess the impact of raw DOR (DOR) and C. floccosa-transformed DOR (CORDOR) on function and phylogeny of soil microbial communities after 0, 30 and 60 days. Pyrosequencing of the 16S rRNA gene demonstrated that bacterial diversity was dominated by the phyla Proteobacteria, Acidobacteria, and Actinobacteria, while 28S-rRNA gene data revealed that Ascomycota and Basidiomycota accounted for the majority of phyla in the fungal community. A Biolog EcoPlate experiment showed that DOR and CORDOR amendments decreased functional diversity and altered microbial functional structures. These changes in soil functionality occurred in parallel with those in phylogenetic bacterial and fungal community structures. Some bacterial and fungal groups increased while others decreased depending on the relative abundance of beneficial and toxic substances incorporated with each amendment. In general, DOR was observed to be more disruptive than CORDOR.
Collapse
Affiliation(s)
- José A. Siles
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- * E-mail:
| | - Caio T. C. C. Rachid
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Inmaculada Sampedro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas (CSIC), Granada, Spain
| | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| |
Collapse
|
32
|
Penton CR, Gupta VVSR, Tiedje JM, Neate SM, Ophel-Keller K, Gillings M, Harvey P, Pham A, Roget DK. Fungal community structure in disease suppressive soils assessed by 28S LSU gene sequencing. PLoS One 2014; 9:e93893. [PMID: 24699870 PMCID: PMC3974846 DOI: 10.1371/journal.pone.0093893] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Accepted: 03/11/2014] [Indexed: 01/09/2023] Open
Abstract
Natural biological suppression of soil-borne diseases is a function of the activity and composition of soil microbial communities. Soil microbe and phytopathogen interactions can occur prior to crop sowing and/or in the rhizosphere, subsequently influencing both plant growth and productivity. Research on suppressive microbial communities has concentrated on bacteria although fungi can also influence soil-borne disease. Fungi were analyzed in co-located soils 'suppressive' or 'non-suppressive' for disease caused by Rhizoctonia solani AG 8 at two sites in South Australia using 454 pyrosequencing targeting the fungal 28S LSU rRNA gene. DNA was extracted from a minimum of 125 g of soil per replicate to reduce the micro-scale community variability, and from soil samples taken at sowing and from the rhizosphere at 7 weeks to cover the peak Rhizoctonia infection period. A total of ∼ 994,000 reads were classified into 917 genera covering 54% of the RDP Fungal Classifier database, a high diversity for an alkaline, low organic matter soil. Statistical analyses and community ordinations revealed significant differences in fungal community composition between suppressive and non-suppressive soil and between soil type/location. The majority of differences associated with suppressive soils were attributed to less than 40 genera including a number of endophytic species with plant pathogen suppression potentials and mycoparasites such as Xylaria spp. Non-suppressive soils were dominated by Alternaria, Gibberella and Penicillum. Pyrosequencing generated a detailed description of fungal community structure and identified candidate taxa that may influence pathogen-plant interactions in stable disease suppression.
Collapse
Affiliation(s)
- C. Ryan Penton
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | | | - James M. Tiedje
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - Stephen M. Neate
- Department of Agriculture, Fisheries and Forestry, Queensland, Leslie Research Centre, Towoomba, Queensland, Australia
| | | | - Michael Gillings
- Department of Biological Sciences, Macquarie University, North Ryde, New South Wales, Australia
| | - Paul Harvey
- CSIRO Ecosystem Sciences, Glen Osmond, South Australia, Australia
| | - Amanda Pham
- Center for Microbial Ecology, Michigan State University, East Lansing, Michigan, United States of America
| | - David K. Roget
- CSIRO Ecosystem Sciences, Glen Osmond, South Australia, Australia
| |
Collapse
|