1
|
Osman JR, Castillo J, Sanhueza V, Miller AZ, Novoselov A, Cotoras D, Morales D. Key energy metabolisms in modern living microbialites from hypersaline Andean lagoons of the Salar de Atacama, Chile. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 937:173469. [PMID: 38788953 DOI: 10.1016/j.scitotenv.2024.173469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/28/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Microbialites are organosedimentary structures formed mainly due to the precipitation of carbonate minerals, although they can also incorporate siliceous, phosphate, ferric, and sulfate minerals. The minerals' precipitation occurs because of local chemical changes triggered by changes in pH and redox transformations catalyzed by the microbial energy metabolisms. Here, geochemistry, metagenomics, and bioinformatics tools reveal the key energy metabolisms of microbial mats, stromatolites and an endoevaporite distributed across four hypersaline lagoons from the Salar de Atacama. Chemoautotrophic and chemoheterotrophic microorganisms seem to coexist and influence microbialite formation. The microbialite types of each lagoon host unique microbial communities and metabolisms that influence their geochemistry. Among them, photosynthetic, carbon- and nitrogen- fixing and sulfate-reducing microorganisms appear to control the main biogeochemical cycles. Genes associated with non-conventional energy pathways identified in MAGs, such as hydrogen production/consumption, arsenic oxidation/reduction, manganese oxidation and selenium reduction, also contribute to support life in microbialites. The presence of genes encoding for enzymes associated with ureolytic processes in the Cyanobacteria phylum and Gammaproteobacteria class might induce carbonate precipitation in hypersaline environments, contributing to the microbialites formation. To the best of our knowledge, this is the first study characterizing metagenomically microbialites enriched in manganese and identifying metabolic pathways associated with manganese oxidation, selenium reduction, and ureolysis in this ecosystem, which suggests that the geochemistry and bioavailability of energy sources (As, Mn and Se) shapes the microbial metabolisms in the microbialites.
Collapse
Affiliation(s)
- Jorge R Osman
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile.
| | - Julio Castillo
- University of the Free State, Department of Microbiology and Biochemistry, Bloemfontein, South Africa
| | - Vilma Sanhueza
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
| | - Ana Z Miller
- Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS-CSIC), Av. Reina Mercedes 10, 41012 Sevilla, Spain
| | - Alexey Novoselov
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
| | - Davor Cotoras
- Laboratorio de Microbiología y Biotecnología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont #964, Independencia, Santiago, Chile
| | - Daniela Morales
- Instituto de Geología Económica Aplicada (GEA), Universidad de Concepción, Concepción, Chile
| |
Collapse
|
2
|
Reid RP, Suosaari EP, Oehlert AM, Pollier CGL, Dupraz C. Microbialite Accretion and Growth: Lessons from Shark Bay and the Bahamas. ANNUAL REVIEW OF MARINE SCIENCE 2024; 16:487-511. [PMID: 38231736 DOI: 10.1146/annurev-marine-021423-124637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Microbialites provide geological evidence of one of Earth's oldest ecosystems, potentially recording long-standing interactions between coevolving life and the environment. Here, we focus on microbialite accretion and growth and consider how environmental and microbial forces that characterize living ecosystems in Shark Bay and the Bahamas interact to form an initial microbialite architecture, which in turn establishes distinct evolutionary pathways. A conceptual three-dimensional model is developed for microbialite accretion that emphasizes the importance of a dynamic balance between extrinsic and intrinsic factors in determining the initial architecture. We then explore how early taphonomic and diagenetic processes modify the initial architecture, culminating in various styles of preservation in the rock record. The timing of lithification of microbial products is critical in determining growth patterns and preservation potential. Study results have shown that all microbialites are not created equal; the unique evolutionary history of an individual microbialite matters.
Collapse
Affiliation(s)
- R Pamela Reid
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
- Bahamas Marine EcoCentre, Miami, Florida, USA;
| | - Erica P Suosaari
- Bahamas Marine EcoCentre, Miami, Florida, USA;
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA
- Bush Heritage Australia, Melbourne, Victoria, Australia
| | - Amanda M Oehlert
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Clément G L Pollier
- Department of Marine Geosciences, Rosenstiel School of Marine, Atmospheric, and Earth Science, University of Miami, Miami, Florida, USA; , ,
| | - Christophe Dupraz
- Department of Geological Sciences, Stockholm University, Stockholm, Sweden;
| |
Collapse
|
3
|
Cryptic Diversity of Black Band Disease Cyanobacteria in Siderastrea siderea Corals Revealed by Chemical Ecology and Comparative Genome-Resolved Metagenomics. Mar Drugs 2023; 21:md21020076. [PMID: 36827117 PMCID: PMC9967302 DOI: 10.3390/md21020076] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/24/2023] Open
Abstract
Black band disease is a globally distributed and easily recognizable coral disease. Despite years of study, the etiology of this coral disease, which impacts dozens of stony coral species, is not completely understood. Although black band disease mats are predominantly composed of the cyanobacterial species Roseofilum reptotaenium, other filamentous cyanobacterial strains and bacterial heterotrophs are readily detected. Through chemical ecology and metagenomic sequencing, we uncovered cryptic strains of Roseofilum species from Siderastrea siderea corals that differ from those on other corals in the Caribbean and Pacific. Isolation of metabolites from Siderastrea-derived Roseofilum revealed the prevalence of unique forms of looekeyolides, distinct from previously characterized Roseofilum reptotaenium strains. In addition, comparative genomics of Roseofilum strains showed that only Siderastrea-based Roseofilum strains have the genetic capacity to produce lasso peptides, a family of compounds with diverse biological activity. All nine Roseofilum strains examined here shared the genetic capacity to produce looekeyolides and malyngamides, suggesting these compounds support the ecology of this genus. Similar biosynthetic gene clusters are not found in other cyanobacterial genera associated with black band disease, which may suggest that looekeyolides and malyngamides contribute to disease etiology through yet unknown mechanisms.
Collapse
|
4
|
Wyness AJ, Roush D, McQuaid CD. Global distribution and diversity of marine euendolithic cyanobacteria. JOURNAL OF PHYCOLOGY 2022; 58:746-759. [PMID: 36199189 PMCID: PMC10092097 DOI: 10.1111/jpy.13288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Euendolithic, or true-boring, cyanobacteria actively erode carbonate-containing substrata in a wide range of environments and pose significant risks to calcareous marine fauna. Their boring activities cause structural damage and increase susceptibility to disease and are projected to only intensify with global climate change. Most research has, however, focused on tropical coral systems, and limited information exists on the global distribution, diversity, and substratum specificity of euendoliths. This metastudy aimed to collate existing 16S rRNA gene surveys along with novel data from the south coast of South Africa to investigate the global distribution and genetic diversity of endoliths to identify a "core endolithic cyanobacterial microbiome" and assess global diversification of euendolithic cyanobacteria. The cyanobacterial families Phormidesmiaceae, Nodosilineaceae, Nostocaceae, and Xenococcaceae were the most prevalent, found in >92% of categories surveyed. All four known euendolith clusters were detected in both intertidal and subtidal habitats, in the North Atlantic, Mediterranean, and South Pacific oceans, across temperate latitudes, and within rock, travertine tiles, coral, shell, and coralline algae substrata. Analysis of the genetic variation within clusters revealed many organisms to be unique to substratum type and location, suggesting high diversity and niche specificity. Euendoliths are known to have important effects on their hosts. This is particularly important when hosts are globally significant ecological engineers or habitat-forming species. The findings of this study indicate high ubiquity and diversity of euendolithic cyanobacteria, suggesting high adaptability, which may lead to increased community and ecosystem-level effects with changing climatic conditions favoring the biochemical mechanisms of cyanobacterial bioerosion.
Collapse
Affiliation(s)
- Adam J. Wyness
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
- School of Biology and Environmental SciencesUniversity of MpumalangaMbombelaSouth Africa1200
| | - Daniel Roush
- Center for Fundamental and Applied MicrobiomicsBiodesign InstituteArizona State UniversityTempeArizona85287USA
| | - Christopher D. McQuaid
- Coastal Research GroupDepartment of Zoology and EntomologyRhodes UniversityMakhanda (Grahamstown)South Africa6139
| |
Collapse
|
5
|
Nguyen STT, Vardeh DP, Nelson TM, Pearson LA, Kinsela AS, Neilan BA. Bacterial community structure and metabolic potential in microbialite-forming mats from South Australian saline lakes. GEOBIOLOGY 2022; 20:546-559. [PMID: 35312212 PMCID: PMC9311741 DOI: 10.1111/gbi.12489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 12/28/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
Microbialites are sedimentary rocks created in association with benthic microorganisms. While they harbour complex microbial communities, Cyanobacteria perform critical roles in sediment stabilisation and accretion. Microbialites have been described from permanent and ephemeral saline lakes in South Australia; however, the microbial communities that generate and inhabit these biogeological structures have not been studied in detail. To address this knowledge gap, we investigated the composition, diversity and metabolic potential of bacterial communities from different microbialite-forming mats and surrounding sediments in five South Australian saline coastal lakes using 16S rRNA gene sequencing and predictive metagenome analyses. While Proteobacteria and Bacteroidetes were the dominant phyla recovered from the mats and sediments, Cyanobacteria were significantly more abundant in the mat samples. Interestingly, at lower taxonomic levels, the mat communities were vastly different across the five lakes. Comparative analysis of putative mat and sediment metagenomes via PICRUSt2 revealed important metabolic pathways driving the process of carbonate precipitation, including cyanobacterial oxygenic photosynthesis, ureolysis and nitrogen fixation. These pathways were highly conserved across the five examined lakes, although they appeared to be performed by distinct groups of bacterial taxa found in each lake. Stress response, quorum sensing and circadian clock were other important pathways predicted by the in silico metagenome analysis. The enrichment of CRISPR/Cas and phage shock associated genes in these cyanobacteria-rich communities suggests that they may be under selective pressure from viral infection. Together, these results highlight that a very stable ecosystem function is maintained by distinctly different communities in microbialite-forming mats in the five South Australian lakes and reinforce the concept that 'who' is in the community is not as critical as their net metabolic capacity.
Collapse
Affiliation(s)
- Suong T. T. Nguyen
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - David P. Vardeh
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| | - Tiffanie M. Nelson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Leanne A. Pearson
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Andrew S. Kinsela
- School of Civil and Environmental EngineeringThe University of New South WalesSydneyNew South WalesAustralia
| | - Brett A. Neilan
- School of Environmental and Life SciencesUniversity of NewcastleCallaghanNew South WalesAustralia
- School of Biotechnology and Biomolecular SciencesThe University of New South WalesSydneyNew South WalesAustralia
| |
Collapse
|
6
|
Abstract
Here we review the application of molecular biological approaches to mineral precipitation in modern marine microbialites. The review focuses on the nearly two decades of nucleotide sequencing studies of the microbialites of Shark Bay, Australia; and The Bahamas. Molecular methods have successfully characterized the overall community composition of mats, pinpointed microbes involved in key metabolisms, and revealed patterns in the distributions of microbial groups and functional genes. Molecular tools have become widely accessible, and we can now aim to establish firmer links between microbes and mineralization. Two promising future directions include “zooming in” to assess the roles of specific organisms, microbial groups, and surfaces in carbonate biomineralization and “zooming out” to consider broader spans of space and time. A middle ground between the two can include model systems that contain representatives of important microbial groups, processes, and metabolisms in mats and simplify hypothesis testing. These directions will benefit from expanding reference datasets of marine microbes and enzymes and enrichments of representative microbes from mats. Such applications of molecular tools should improve our ability to interpret ancient and modern microbialites and increase the utility of these rocks as long-term recorders of microbial processes and environmental chemistry.
Collapse
|
7
|
Dai X, Wang Y, Luo L, Pfiffner SM, Li G, Dong Z, Xu Z, Dong H, Huang L. Detection of the deep biosphere in metamorphic rocks from the Chinese continental scientific drilling. GEOBIOLOGY 2021; 19:278-291. [PMID: 33559972 DOI: 10.1111/gbi.12430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 01/17/2021] [Accepted: 01/19/2021] [Indexed: 06/12/2023]
Abstract
It is generally accepted that there is a vast, well-populated biosphere in the subsurface, but the depth limit of the terrestrial biosphere has yet to be determined, largely because of the lack of access to the subsurface. Here as part of the Chinese Continental Scientific Drilling (CCSD) project in eastern China, we acquired continuous rock cores and endeavored to probe the depth limit of the biosphere and the depth-dependent distribution of microorganisms at a geologically unique site, that is, a convergent plate boundary. Microbiological analyses of ultra-high-pressure metamorphic rock cores taken from the ground surface to 5,158-meter reveal that microbial distribution was continuous up to a depth of ~4,850 m, where temperature was estimated to be ~137°C. The metabolic state of these organisms at such great depth remains to be determined. Microbial abundance, ranging from 103 to 108 cells/g, was also related to porosity, but not to the depth and rock composition. In addition, microbial diversity systematically decreased with depth. Our results support the notion that temperature is a key factor in determining the lower limit of the biosphere in the continental subsurface.
Collapse
Affiliation(s)
- Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuanliang Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Liqiang Luo
- National Research Center for Geoanalysis, Chinese Academy of Geological Sciences, Beijing, China
| | - Susan M Pfiffner
- Center for Environmental Biotechnology, University of Tennessee, Knoxville, TN, USA
| | - Guangyu Li
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiyang Dong
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Zhiqin Xu
- State Key Laboratory for Mineral Deposits Research, School of Earth Sciences and Engineering, Nanjing University, Nanjing, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
8
|
Iniesto M, Moreira D, Reboul G, Deschamps P, Benzerara K, Bertolino P, Saghaï A, Tavera R, López-García P. Core microbial communities of lacustrine microbialites sampled along an alkalinity gradient. Environ Microbiol 2020; 23:51-68. [PMID: 32985763 DOI: 10.1111/1462-2920.15252] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 08/26/2020] [Accepted: 09/23/2020] [Indexed: 11/28/2022]
Abstract
Microbialites are usually carbonate-rich sedimentary rocks formed by the interplay of phylogenetically and metabolically complex microbial communities with their physicochemical environment. Yet, the biotic and abiotic determinants of microbialite formation remain poorly constrained. Here, we analysed the structure of prokaryotic and eukaryotic communities associated with microbialites occurring in several crater lakes of the Trans-Mexican volcanic belt along an alkalinity gradient. Microbialite size and community structure correlated with lake physicochemical parameters, notably alkalinity. Although microbial community composition varied across lake microbialites, major taxa-associated functions appeared quite stable with both, oxygenic and anoxygenic photosynthesis and, to less extent, sulphate reduction, as major putative carbonatogenic processes. Despite interlake microbialite community differences, we identified a microbial core of 247 operational taxonomic units conserved across lake microbialites, suggesting a prominent ecological role in microbialite formation. This core mostly encompassed Cyanobacteria and their typical associated taxa (Bacteroidetes, Planctomycetes) and diverse anoxygenic photosynthetic bacteria, notably Chloroflexi, Alphaproteobacteria (Rhodobacteriales, Rhodospirilalles), Gammaproteobacteria (Chromatiaceae) and minor proportions of Chlorobi. The conserved core represented up to 40% (relative abundance) of the total community in lakes Alchichica and Atexcac, displaying the highest alkalinities and the most conspicuous microbialites. Core microbialite communities associated with carbonatogenesis might be relevant for inorganic carbon sequestration purposes.
Collapse
Affiliation(s)
- Miguel Iniesto
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - David Moreira
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Guillaume Reboul
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Philippe Deschamps
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Muséum National d'Histoire Naturelle, Sorbonne Université, Paris, France
| | - Paola Bertolino
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Aurélien Saghaï
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France.,Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Rosaluz Tavera
- Departamento de Ecología y Recursos Naturales, Universidad Nacional Autónoma de México, DF Mexico, Mexico
| | - Purificación López-García
- Unité d'Ecologie Systématique et Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| |
Collapse
|
9
|
Nitschke MR, Fidalgo C, Simões J, Brandão C, Alves A, Serôdio J, Frommlet JC. Symbiolite formation: a powerful in vitro model to untangle the role of bacterial communities in the photosynthesis-induced formation of microbialites. THE ISME JOURNAL 2020; 14:1533-1546. [PMID: 32203119 PMCID: PMC7242451 DOI: 10.1038/s41396-020-0629-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 02/21/2020] [Accepted: 02/28/2020] [Indexed: 11/09/2022]
Abstract
Microbially induced calcification is an ancient, community-driven mineralisation process that produces different types of microbialites. Symbiolites are photosynthesis-induced microbialites, formed by calcifying co-cultures of dinoflagellates from the family Symbiodiniaceae and bacteria. Symbiolites encase the calcifying community as endolithic cells, pointing at an autoendolithic niche of symbiotic dinoflagellates, and provide a rare opportunity to study the role of bacteria in bacterial-algal calcification, as symbiodiniacean cultures display either distinct symbiolite-producing (SP) or non-symbiolite-producing (NP) phenotypes. Using Illumina sequencing, we found that the bacterial communities of SP and NP cultures differed significantly in the relative abundance of 23 genera, 14 families, and 2 phyla. SP cultures were rich in biofilm digesters from the phylum Planctomycetes and their predicted metagenomes were enriched in orthologs related to biofilm formation. In contrast, NP cultures were dominated by biofilm digesters from the Bacteroidetes, and were inferred as enriched in proteases and nucleases. Functional assays confirmed the potential of co-cultures and bacterial isolates to produce biofilms and point at acidic polysaccharides as key stimulators for mineral precipitation. Hence, bacteria appear to influence symbiolite formation primarily through their biofilm-producing and modifying activity and we anticipate that symbiolite formation, as a low-complexity in vitro model, will significantly advance our understanding of photosynthesis-induced microbial calcification processes.
Collapse
Affiliation(s)
- Matthew R Nitschke
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
- Climate Change Cluster, University of Technology Sydney, Broadway, NSW, 2007, Australia
| | - Cátia Fidalgo
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Simões
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Cláudio Brandão
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Artur Alves
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Jörg C Frommlet
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
10
|
DeMott LM, Napieralski SA, Junium CK, Teece M, Scholz CA. Microbially influenced lacustrine carbonates: A comparison of Late Quaternary Lahontan tufa and modern thrombolite from Fayetteville Green Lake, NY. GEOBIOLOGY 2020; 18:93-112. [PMID: 31682069 DOI: 10.1111/gbi.12367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 09/15/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Carbonate microbialites in lakes can serve as valuable indicators of past environments, so long as the biogenicity and depositional setting of the microbialite can be accurately determined. Late Pleistocene to Early Holocene frondose draping tufa deposits from Winnemucca Dry Lake (Nevada, USA), a subbasin of pluvial Lake Lahontan, were examined in outcrop, petrographically, and geochemically to determine whether microbially induced precipitation is a dominant control on deposition. These observations were compared to modern, actively accumulating microbialites from Fayetteville Green Lake (New York, USA) using similar methods. In addition, preserved microbial DNA was extracted from the Lahontan tufa and sequenced to provide a more complete picture of the microbial communities. Tufas are texturally and geochemically similar to modern thrombolitic microbialites from Fayetteville Green Lake, and the stable isotopic composition of organic C, N, inorganic C, and O supports deposition associated with a lacustrine microbial mat environment dominated by photosynthetic processes. DNA extraction and sequencing indicate that photosynthetic microbial builders were present during tufa deposition, primarily Chloroflexi and Proteobacteria with minor abundances of Cyanobacteria and Acidobacteria. Based on the sequencing results, the depositional environment of the tufas can be constrained to the photic zone of the lake, contrasting with some previous interpretations that put tufa formation in deeper waters. Additionally, the presence of a number of mesothermophilic phyla, including Deinococcus-Thermus, indicates that thermal groundwater may have played a role in tufa deposition at sites not previously associated with groundwater influx. The interpretation of frondose tufas as microbially influenced deposits provides new context to interpretations of lake level and past environments in the Lahontan lake basins.
Collapse
Affiliation(s)
- Laura M DeMott
- Department of Earth Sciences, Syracuse University, Syracuse, New York, USA
| | | | | | - Mark Teece
- Chemistry Department, State University of New York College of Environmental Science and Forestry, Syracuse, New York, USA
| | | |
Collapse
|
11
|
Methods for extracting 'omes from microbialites. J Microbiol Methods 2019; 160:1-10. [PMID: 30877015 DOI: 10.1016/j.mimet.2019.02.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 02/21/2019] [Accepted: 02/21/2019] [Indexed: 11/20/2022]
Abstract
Microbialites are organo-sedimentary structures formed by complex microbial communities that interact with abiotic factors to form carbonate rich fabrics. Extraction of DNA or total RNA from microbialites can be difficult because of the high carbonate mineral concentration and exopolymeric substances. The methods employed until now include substances such as cetyltrimethylammonium bromide, sodium dodecyl sulfate, xanthogenate, lysozyme and proteinase K, as well as mechanical disruption. Additionally, several commercial kits have been used to improve DNA and total RNA extraction. This minireview presents different methods applied for DNA and RNA extraction from microbialites and discusses their advantages and disadvantages. Moreover, extraction of all 'omes (DNA, RNA, Protein, Lipids, polar metabolites) using multiomic extraction methods (MPlex), as well as the state of art for extraction of viruses from microbialites, are also discussed.
Collapse
|
12
|
White RA, Soles SA, Gavelis G, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Eurythermal Firmicute Exiguobacterium chiriqhucha Strain RW2 Isolated From a Freshwater Microbialite, Widely Adaptable to Broad Thermal, pH, and Salinity Ranges. Front Microbiol 2019; 9:3189. [PMID: 30671032 PMCID: PMC6331483 DOI: 10.3389/fmicb.2018.03189] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 12/10/2018] [Indexed: 11/25/2022] Open
Abstract
Members of the genus Exiguobacterium are found in diverse environments from marine, freshwaters, permafrost to hot springs. Exiguobacterium can grow in a wide range of temperature, pH, salinity, and heavy-metal concentrations. We characterized Exiguobacterium chiriqhucha strain RW2 isolated from a permanently cold freshwater microbialite in Pavilion Lake, British Columbia using metabolic assays, genomics, comparative genomics, phylogenetics, and fatty acid composition. Strain RW2 has the most extensive growth range for temperature (4–50°C) and pH (5–11) of known Exiguobacterium isolates. Strain RW2 genome predicts pathways for wide differential thermal, cold and osmotic stress using cold and heat shock cascades (e.g., csp and dnaK), choline and betaine uptake/biosynthesis (e.g., opu and proU), antiporters (e.g., arcD and nhaC Na+/K+), membrane fatty acid unsaturation and saturation. Here, we provide the first complete genome from Exiguobacterium chiriqhucha strain RW2, which was isolated from a freshwater microbialite. Its genome consists of a single 3,019,018 bp circular chromosome encoding over 3,000 predicted proteins, with a GC% content of 52.1%, and no plasmids. In addition to growing at a wide range of temperatures and salinities, our findings indicate that RW2 is resistant to sulfisoxazole and has the genomic potential for detoxification of heavy metals (via mercuric reductases, arsenic resistance pumps, chromate transporters, and cadmium-cobalt-zinc resistance genes), which may contribute to the metabolic potential of Pavilion Lake microbialites. Strain RW2 could also contribute to microbialite formation, as it is a robust biofilm former and encodes genes involved in the deamination of amino acids to ammonia (i.e., L-asparaginase/urease), which could potentially boost carbonate precipitation by lowering the local pH and increasing alkalinity. We also used comparative genomic analysis to predict the pathway for orange pigmentation that is conserved across the entire Exiguobacterium genus, specifically, a C30 carotenoid biosynthesis pathway is predicted to yield diaponeurosporene-4-oic acid as its final product. Carotenoids have been found to protect against ultraviolet radiation by quenching reactive oxygen, releasing excessive light energy, radical scavenging, and sunscreening. Together these results provide further insight into the potential of Exiguobacterium to exploit a wide range of environmental conditions, its potential roles in ecosystems (e.g., microbialites/microbial mats), and a blueprint model for diverse metabolic processes.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver, BC, Canada.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Institute for the Oceans and Fisheries, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
13
|
White RA, Gavelis G, Soles SA, Gosselin E, Slater GF, Lim DSS, Leander B, Suttle CA. The Complete Genome and Physiological Analysis of the Microbialite-Dwelling Agrococcus pavilionensis sp. nov; Reveals Genetic Promiscuity and Predicted Adaptations to Environmental Stress. Front Microbiol 2018; 9:2180. [PMID: 30374333 PMCID: PMC6196244 DOI: 10.3389/fmicb.2018.02180] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 08/24/2018] [Indexed: 12/15/2022] Open
Abstract
Members of the bacterial genus Agrococcus are globally distributed and found across environments so highly diverse that they include forests, deserts, and coal mines, as well as in potatoes and cheese. Despite how widely Agrococcus occurs, the extent of its physiology, genomes, and potential roles in the environment are poorly understood. Here we use whole-genome analysis, chemotaxonomic markers, morphology, and 16S rRNA gene phylogeny to describe a new isolate of the genus Agrococcus from freshwater microbialites in Pavilion Lake, British Columbia, Canada. We characterize this isolate as a new species Agrococcus pavilionensis strain RW1 and provide the first complete genome from a member of the genus Agrococcus. The A. pavilionensis genome consists of one chromosome (2,627,177 bp) as well as two plasmids (HC-CG1 1,427 bp, and LC-RRW783 31,795 bp). The genome reveals considerable genetic promiscuity via mobile elements, including a prophage and plasmids involved in integration, transposition, and heavy-metal stress. A. pavilionensis strain RW1 differs from other members of the Agrococcus genus by having a novel phospholipid fatty acid iso-C15:1Δ4, β-galactosidase activity and amygdalin utilization. Carotenoid biosynthesis is predicted by genomic metabolic reconstruction, which explains the characteristic yellow pigmentation of A. pavilionensis. Metabolic reconstructions of strain RW1 genome predicts a pathway for releasing ammonia via ammonification amino acids, which could increase the saturation index leading to carbonate precipitation. Our genomic analyses suggest signatures of environmental adaption to the relatively cold and oligotrophic conditions of Pavilion Lake microbialites. A. pavilionensis strain RW1 in modern microbialites has an ecological significance in Pavilion Lake microbialites, which include potential roles in heavy-metal cycling and carbonate precipitation (e.g., ammonification of amino acids and filamentation which many trap carbonate minerals).
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Greg Gavelis
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - Sarah A Soles
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Emma Gosselin
- Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada
| | - Greg F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton, ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Research Institute, Petaluma, CA, United States.,NASA Ames Research Center, Moffett Field, CA, United States
| | - Brian Leander
- Bay Area Environmental Research Institute, Petaluma, CA, United States
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada.,Department of Earth, Ocean and Atmospheric Sciences, The University of British Columbia, Vancouver, BC, Canada.,Canadian Institute for Advanced Research, Toronto, ON, Canada
| |
Collapse
|
14
|
Louyakis AS, Gourlé H, Casaburi G, Bonjawo RME, Duscher AA, Foster JS. A year in the life of a thrombolite: comparative metatranscriptomics reveals dynamic metabolic changes over diel and seasonal cycles. Environ Microbiol 2017; 20:842-861. [DOI: 10.1111/1462-2920.14029] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/01/2022]
Affiliation(s)
- Artemis S. Louyakis
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Hadrien Gourlé
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
- Department of Animal Breeding and Genetics; Global Bioinformatics Centre, Swedish University of Agricultural Sciences; Uppsala Sweden
| | - Giorgio Casaburi
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Rachelle M. E. Bonjawo
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Alexandrea A. Duscher
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| | - Jamie S. Foster
- Department of Microbiology and Cell Science; University of Florida, Space Life Sciences Lab; Merritt Island FL USA
| |
Collapse
|
15
|
Proemse BC, Eberhard RS, Sharples C, Bowman JP, Richards K, Comfort M, Barmuta LA. Stromatolites on the rise in peat-bound karstic wetlands. Sci Rep 2017; 7:15384. [PMID: 29133809 PMCID: PMC5684344 DOI: 10.1038/s41598-017-15507-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023] Open
Abstract
Stromatolites are the oldest evidence for life on Earth, but modern living examples are rare and predominantly occur in shallow marine or (hyper-) saline lacustrine environments, subject to exotic physico-chemical conditions. Here we report the discovery of living freshwater stromatolites in cool-temperate karstic wetlands in the Giblin River catchment of the UNESCO-listed Tasmanian Wilderness World Heritage Area, Australia. These stromatolites colonize the slopes of karstic spring mounds which create mildly alkaline (pH of 7.0-7.9) enclaves within an otherwise uniformly acidic organosol terrain. The freshwater emerging from the springs is Ca-HCO3 dominated and water temperatures show no evidence of geothermal heating. Using 16 S rRNA gene clone library analysis we revealed that the bacterial community is dominated by Cyanobacteria, Alphaproteobacteria and an unusually high proportion of Chloroflexi, followed by Armatimonadetes and Planctomycetes, and is therefore unique compared to other living examples. Macroinvertebrates are sparse and snails in particular are disadvantaged by the development of debilitating accumulations of carbonate on their shells, corroborating evidence that stromatolites flourish under conditions where predation by metazoans is suppressed. Our findings constitute a novel habitat for stromatolites because cool-temperate freshwater wetlands are not a conventional stromatolite niche, suggesting that stromatolites may be more common than previously thought.
Collapse
Affiliation(s)
- Bernadette C Proemse
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
- Australian Centre for Research on Separation Science, University of Tasmania, Tasmania, 7001, Australia
| | - Rolan S Eberhard
- Department of Primary Industries, Parks, Water & Environment, GPO Box 44, Hobart, Tasmania, 7001, Australia.
| | - Chris Sharples
- Geography and Spatial Science, University of Tasmania, Private Bag 76, Hobart, Tasmania, 7001, Australia
| | - John P Bowman
- Tasmanian Institute of Agriculture, University of Tasmania, Private Bag 98, Hobart, Tasmania, 7001, Australia
| | - Karen Richards
- Department of Primary Industries, Parks, Water & Environment, GPO Box 44, Hobart, Tasmania, 7001, Australia
| | - Michael Comfort
- Department of Primary Industries, Parks, Water & Environment, GPO Box 44, Hobart, Tasmania, 7001, Australia
| | - Leon A Barmuta
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, Tasmania, 7001, Australia
| |
Collapse
|
16
|
O'Reilly SS, Mariotti G, Winter AR, Newman SA, Matys ED, McDermott F, Pruss SB, Bosak T, Summons RE, Klepac-Ceraj V. Molecular biosignatures reveal common benthic microbial sources of organic matter in ooids and grapestones from Pigeon Cay, The Bahamas. GEOBIOLOGY 2017; 15:112-130. [PMID: 27378151 DOI: 10.1111/gbi.12196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 05/22/2016] [Indexed: 06/06/2023]
Abstract
Ooids are sedimentary grains that are distributed widely in the geologic record. Their formation is still actively debated, which limits our understanding of the significance and meaning of these grains in Earth's history. Central questions include the role played by microbes in the formation of ooids and the sources of ubiquitous organic matter within ooid cortices. To address these issues, we investigated the microbial community composition and associated lipids in modern oolitic sands at Pigeon Cay on Cat Island, The Bahamas. Surface samples were taken along a transect from the shallow, turbulent surf zone to calmer, deeper water. Grains transitioned from shiny and abraded ooids in the surf zone, to biofilm-coated ooids at about 3 m water depth. Further offshore, grapestones (cemented aggregates of ooids) dominated. Benthic diatoms and Proteobacteria dominated biofilms. Taxa that may promote carbonate precipitation were abundant, particularly those associated with sulfur cycling. Compared to the lipids associated with surface biofilms, relict lipids bound within carbonate exhibited remarkably similar profiles in all grain types. The enhanced abundance of methyl-branched fatty acids and β-hydroxy fatty acids, 1-O-monoalkyl glycerol ethers and hopanoids bound within ooid and grapestone carbonate confirms a clear association of benthic sedimentary bacteria with these grains. Lipids bound within ooid cortices also contain molecular indicators of microbial heterotrophic degradation of organic matter, possibly in locally reducing conditions. These included the loss of labile unsaturated fatty acids, enhanced long-chain fatty acids/short-chain fatty acids, enriched stable carbon isotopes ratios of fatty acids, and very high stanol/stenol ratios. To what extent some of these molecular signals are derived from later heterotrophic endolithic activity remains to be fully resolved. We speculate that some ooid carbonate forms in microbial biofilms and that early diagenetic degradation of biofilms may also play a role in early stage carbonate precipitation around ooids.
Collapse
Affiliation(s)
- S S O'Reilly
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- School of Earth Sciences, University College Dublin, Dublin 4, Ireland
| | - G Mariotti
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - A R Winter
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| | - S A Newman
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - E D Matys
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - F McDermott
- School of Earth Sciences, University College Dublin, Dublin 4, Ireland
- UCD Earth Institute, University College Dublin, Dublin 4, Ireland
| | - S B Pruss
- Department of Geosciences, Smith College, Northampton, MA, USA
| | - T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - V Klepac-Ceraj
- Department of Biological Sciences, Wellesley College, Wellesley, MA, USA
| |
Collapse
|
17
|
Santos HF, Carmo FL, Martirez N, Duarte GAS, Calderon EN, Castro CB, Pires DO, Rosado AS, Peixoto RS. Cyanobacterial and microeukaryotic profiles of healthy, diseased, and dead Millepora alcicornis from the South Atlantic. DISEASES OF AQUATIC ORGANISMS 2016; 119:163-172. [PMID: 27137074 DOI: 10.3354/dao02972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coral reefs are at risk due to events associated with human activities, which have resulted in the increasing occurrence of coral diseases. Corals live in symbiotic relationships with different microorganisms, such as cyanobacteria, a very important group. Members of the phylum Cyanobacteria are found in great abundance in the marine environment and may play an essential role in keeping corals healthy but may also be pathogenic. Furthermore, some studies are showing a rise in cyanobacterial abundance in coral reefs as a result of climate change. The current study aimed to improve our understanding of the relationship between cyanobacteria and coral health. Our results revealed that the cyanobacterial genus GPI (Anabaena) is a possible opportunistic pathogen of the coral species Millepora alcicornis in the South Atlantic Ocean. Furthermore, the bacterial and microeukaryotic profile of healthy, diseased, and post-disease (skeletal) regions of affected coral indicated that a microbial consortium composed of Anabaena sp., Prosthecochloris sp., and microeukaryotes could be involved in this pathogenicity or could be taking advantage of the diseased state.
Collapse
Affiliation(s)
- Henrique F Santos
- LEMM - Laboratory of Molecular Microbial Ecology, Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro 21941-902, RJ, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Ziegler M, Roik A, Porter A, Zubier K, Mudarris MS, Ormond R, Voolstra CR. Coral microbial community dynamics in response to anthropogenic impacts near a major city in the central Red Sea. MARINE POLLUTION BULLETIN 2016; 105:629-40. [PMID: 26763316 DOI: 10.1016/j.marpolbul.2015.12.045] [Citation(s) in RCA: 118] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/25/2015] [Accepted: 12/22/2015] [Indexed: 05/20/2023]
Abstract
Coral-associated bacteria play an increasingly recognized part in coral health. We investigated the effect of local anthropogenic impacts on coral microbial communities on reefs near Jeddah, the largest city on the Saudi Arabian coast of the central Red Sea. We analyzed the bacterial community structure of water and corals (Pocillopora verrucosa and Acropora hemprichii) at sites that were relatively unimpacted, exposed to sedimentation & local sewage, or in the discharge area of municipal wastewaters. Coral microbial communities were significantly different at impacted sites: in both corals the main symbiotic taxon decreased in abundance. In contrast, opportunistic bacterial families, such as e.g. Vibrionaceae and Rhodobacteraceae, were more abundant in corals at impacted sites. In conclusion, microbial community response revealed a measurable footprint of anthropogenic impacts to coral ecosystems close to Jeddah, even though the corals appeared visually healthy.
Collapse
Affiliation(s)
- Maren Ziegler
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Anna Roik
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia
| | - Adam Porter
- College of Life and Environmental Sciences: Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, United Kingdom
| | - Khalid Zubier
- Faculty of Marine Science, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia
| | - Mohammed S Mudarris
- Faculty of Marine Science, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia
| | - Rupert Ormond
- Faculty of Marine Science, King Abdulaziz University, PO Box 80207, Jeddah 21589, Saudi Arabia; Centre for Marine Biotechnology and Biodiversity, School of Life Sciences, Heriot-Watt University, Riccarton, Edinburgh EH14 4AS, Scotland, United Kingdom
| | - Christian R Voolstra
- Red Sea Research Center, Division of Biological and Environmental Science and Engineering, 4700 King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia.
| |
Collapse
|
19
|
White RA, Chan AM, Gavelis GS, Leander BS, Brady AL, Slater GF, Lim DSS, Suttle CA. Metagenomic Analysis Suggests Modern Freshwater Microbialites Harbor a Distinct Core Microbial Community. Front Microbiol 2016; 6:1531. [PMID: 26903951 PMCID: PMC4729913 DOI: 10.3389/fmicb.2015.01531] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 12/21/2015] [Indexed: 11/13/2022] Open
Abstract
Modern microbialites are complex microbial communities that interface with abiotic factors to form carbonate-rich organosedimentary structures whose ancestors provide the earliest evidence of life. Past studies primarily on marine microbialites have inventoried diverse taxa and metabolic pathways, but it is unclear which of these are members of the microbialite community and which are introduced from adjacent environments. Here we control for these factors by sampling the surrounding water and nearby sediment, in addition to the microbialites and use a metagenomics approach to interrogate the microbial community. Our findings suggest that the Pavilion Lake microbialite community profile, metabolic potential and pathway distributions are distinct from those in the neighboring sediments and water. Based on RefSeq classification, members of the Proteobacteria (e.g., alpha and delta classes) were the dominant taxa in the microbialites, and possessed novel functional guilds associated with the metabolism of heavy metals, antibiotic resistance, primary alcohol biosynthesis and urea metabolism; the latter may help drive biomineralization. Urea metabolism within Pavilion Lake microbialites is a feature not previously associated in other microbialites. The microbialite communities were also significantly enriched for cyanobacteria and acidobacteria, which likely play an important role in biomineralization. Additional findings suggest that Pavilion Lake microbialites are under viral selection as genes associated with viral infection (e.g CRISPR-Cas, phage shock and phage excision) are abundant within the microbialite metagenomes. The morphology of Pavilion Lake microbialites changes dramatically with depth; yet, metagenomic data did not vary significantly by morphology or depth, indicating that microbialite morphology is altered by other factors, perhaps transcriptional differences or abiotic conditions. This work provides a comprehensive metagenomic perspective of the interactions and differences between microbialites and their surrounding environment, and reveals the distinct nature of these complex communities.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia, Vancouver BC, Canada
| | - Amy M Chan
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, Vancouver BC, Canada
| | - Gregory S Gavelis
- Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | - Brian S Leander
- Department of Zoology, University of British Columbia, VancouverBC, Canada; Department of Botany, University of British Columbia, VancouverBC, Canada
| | - Allyson L Brady
- School of Geography and Earth Sciences, McMaster University, Hamilton ON, Canada
| | - Gregory F Slater
- School of Geography and Earth Sciences, McMaster University, Hamilton ON, Canada
| | - Darlene S S Lim
- Bay Area Environmental Institute, PetalumaCA, USA; NASA Ames Research Center, Moffett FieldCA, USA
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia, VancouverBC, Canada; Department of Botany, University of British Columbia, VancouverBC, Canada; Canadian Institute for Advanced Research, TorontoON, Canada
| |
Collapse
|
20
|
Beltrán Y, Cerqueda-García D, Taş N, Thomé PE, Iglesias-Prieto R, Falcón LI. Microbial composition of biofilms associated with lithifying rubble of Acropora palmata branches. FEMS Microbiol Ecol 2015; 92:fiv162. [PMID: 26705570 DOI: 10.1093/femsec/fiv162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 11/13/2022] Open
Abstract
Coral reefs are among the most productive ecosystems on the planet, but are rapidly declining due to global-warming-mediated changes in the oceans. Particularly for the Caribbean region, Acropora sp. stony corals have lost ∼80% of their original coverage, resulting in vast extensions of dead coral rubble. We analyzed the microbial composition of biofilms that colonize and lithify dead Acropora palmata rubble in the Mexican Caribbean and identified the microbial assemblages that can persist under scenarios of global change, including high temperature and low pH. Lithifying biofilms have a mineral composition that includes aragonite and magnesium calcite (16 mole% MgCO(3)) and calcite, while the mineral phase corresponding to coral skeleton is basically aragonite. Microbial composition of the lithifying biofilms are different in comparison to surrounding biotopes, including a microbial mat, water column, sediments and live A. palmata microbiome. Significant shifts in biofilm composition were detected in samples incubated in mesocosms. The combined effect of low pH and increased temperature showed a strong effect after two-week incubations for biofilm composition. Findings suggest that lithifying biofilms could remain as a secondary structure on reef rubble possibly impacting the functional role of coral reefs.
Collapse
Affiliation(s)
- Yislem Beltrán
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, D.F., México 04510, Mexico
| | - Daniel Cerqueda-García
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, D.F., México 04510, Mexico
| | - Neslihan Taş
- Lawrence Berkeley National Laboratory, Ecology Department, Earth & Environmental Sciences, Berkeley, CA 94720, USA
| | - Patricia E Thomé
- Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Instituto de Ciencias del Mar y Limnología, UNAM. Ado. Post. 1152, Cancun, QR, México 77500, Mexico
| | - Roberto Iglesias-Prieto
- Unidad Académica de Sistemas Arrecifales, Puerto Morelos, Instituto de Ciencias del Mar y Limnología, UNAM. Ado. Post. 1152, Cancun, QR, México 77500, Mexico
| | - Luisa I Falcón
- Laboratorio de Ecología Bacteriana, Instituto de Ecología, UNAM, D.F., México 04510, Mexico
| |
Collapse
|
21
|
White RA, Power IM, Dipple GM, Southam G, Suttle CA. Metagenomic analysis reveals that modern microbialites and polar microbial mats have similar taxonomic and functional potential. Front Microbiol 2015; 6:966. [PMID: 26441900 PMCID: PMC4585152 DOI: 10.3389/fmicb.2015.00966] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 08/31/2015] [Indexed: 12/15/2022] Open
Abstract
Within the subarctic climate of Clinton Creek, Yukon, Canada, lies an abandoned and flooded open-pit asbestos mine that harbors rapidly growing microbialites. To understand their formation we completed a metagenomic community profile of the microbialites and their surrounding sediments. Assembled metagenomic data revealed that bacteria within the phylum Proteobacteria numerically dominated this system, although the relative abundances of taxa within the phylum varied among environments. Bacteria belonging to Alphaproteobacteria and Gammaproteobacteria were dominant in the microbialites and sediments, respectively. The microbialites were also home to many other groups associated with microbialite formation including filamentous cyanobacteria and dissimilatory sulfate-reducing Deltaproteobacteria, consistent with the idea of a shared global microbialite microbiome. Other members were present that are typically not associated with microbialites including Gemmatimonadetes and iron-oxidizing Betaproteobacteria, which participate in carbon metabolism and iron cycling. Compared to the sediments, the microbialite microbiome has significantly more genes associated with photosynthetic processes (e.g., photosystem II reaction centers, carotenoid, and chlorophyll biosynthesis) and carbon fixation (e.g., CO dehydrogenase). The Clinton Creek microbialite communities had strikingly similar functional potentials to non-lithifying microbial mats from the Canadian High Arctic and Antarctica, but are functionally distinct, from non-lithifying mats or biofilms from Yellowstone. Clinton Creek microbialites also share metabolic genes (R2 < 0.750) with freshwater microbial mats from Cuatro Ciénegas, Mexico, but are more similar to polar Arctic mats (R2 > 0.900). These metagenomic profiles from an anthropogenic microbialite-forming ecosystem provide context to microbialite formation on a human-relevant timescale.
Collapse
Affiliation(s)
- Richard Allen White
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada
| | - Ian M Power
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Gregory M Dipple
- Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada
| | - Gordon Southam
- School of Earth Sciences, University of Queensland Brisbane, QLD, Australia
| | - Curtis A Suttle
- Department of Microbiology and Immunology, University of British Columbia Vancouver, BC, Canada ; Department of Earth, Ocean and Atmospheric Sciences, University of British Columbia Vancouver, BC, Canada ; Department of Botany, University of British Columbia Vancouver, BC, Canada ; Canadian Institute for Advanced Research Toronto, ON, Canada
| |
Collapse
|
22
|
Pajares S, Souza V, Eguiarte LE. Multivariate and phylogenetic analyses assessing the response of bacterial mat communities from an ancient oligotrophic aquatic ecosystem to different scenarios of long-term environmental disturbance. PLoS One 2015; 10:e0119741. [PMID: 25781013 PMCID: PMC4363631 DOI: 10.1371/journal.pone.0119741] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 01/16/2015] [Indexed: 01/22/2023] Open
Abstract
Understanding the response of bacterial communities to environmental change is extremely important in predicting the effect of biogeochemical modifications in ecosystem functioning. The Cuatro Cienegas Basin is an ancient oasis in the Mexican Chihuahuan desert that hosts a wide diversity of microbial mats and stromatolites that have survived in extremely oligotrophic pools with nearly constant conditions. However, thus far, the response of these unique microbial communities to long-term environmental disturbances remains unexplored. We therefore studied the compositional stability of these bacterial mat communities by using a replicated (3x) mesocosm experiment: a) Control; b) Fluct: fluctuating temperature; c) 40C: increase to 40 ºC; d) UVplus: artificial increase in UV radiation; and f) UVmin: UV radiation protection. In order to observe the changes in biodiversity, we obtained 16S rRNA gene clone libraries from microbial mats at the end of the experiment (eight months) and analyzed them using multivariate and phylogenetic tools. Sequences were assigned to 13 major lineages, among which Cyanobacteria (38.8%) and Alphaproteobacteria (25.5%) were the most abundant. The less extreme treatments (Control and UVmin) had a more similar composition and distribution of the phylogenetic groups with the natural pools than the most extreme treatments (Fluct, 40C, and UVplus), which showed drastic changes in the community composition and structure, indicating a different community response to each environmental disturbance. An increase in bacterial diversity was found in the UVmin treatment, suggesting that protected environments promote the establishment of complex bacterial communities, while stressful environments reduce diversity and increase the dominance of a few Cyanobacterial OTUs (mainly Leptolyngbya sp) through environmental filtering. Mesocosm experiments using complex bacterial communities, along with multivariate and phylogenetic analyses of molecular data, can assist in addressing questions about bacterial responses to long-term environmental stress.
Collapse
Affiliation(s)
- Silvia Pajares
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
- * E-mail:
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, CU, Mexico City, Mexico
| |
Collapse
|
23
|
Kaźmierczak J, Fenchel T, Kühl M, Kempe S, Kremer B, Łącka B, Małkowski K. CaCO3 precipitation in multilayered cyanobacterial mats: clues to explain the alternation of micrite and sparite layers in calcareous stromatolites. Life (Basel) 2015; 5:744-69. [PMID: 25761263 PMCID: PMC4390877 DOI: 10.3390/life5010744] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Revised: 02/17/2015] [Accepted: 02/25/2015] [Indexed: 11/17/2022] Open
Abstract
Marine cyanobacterial mats were cultured on coastal sediments (Nivå Bay, Øresund, Denmark) for over three years in a closed system. Carbonate particles formed in two different modes in the mat: (i) through precipitation of submicrometer-sized grains of Mg calcite within the mucilage near the base of living cyanobacterial layers, and (ii) through precipitation of a variety of mixed Mg calcite/aragonite morphs in layers of degraded cyanobacteria dominated by purple sulfur bacteria. The d13C values were about 2‰ heavier in carbonates from the living cyanobacterial zones as compared to those generated in the purple bacterial zones. Saturation indices calculated with respect to calcite, aragonite, and dolomite inside the mats showed extremely high values across the mat profile. Such high values were caused by high pH and high carbonate alkalinity generated within the mats in conjunction with increased concentrations of calcium and magnesium that were presumably stored in sheaths and extracellular polymer substances (EPS) of the living cyanobacteria and liberated during their post-mortem degradation. The generated CaCO3 morphs were highly similar to morphs reported from heterotrophic bacterial cultures, and from bacterially decomposed cyanobacterial biomass emplaced in Ca-rich media. They are also similar to CaCO3 morphs precipitated from purely inorganic solutions. No metabolically (enzymatically) controlled formation of particular CaCO3 morphs by heterotrophic bacteria was observed in the studied mats. The apparent alternation of in vivo and post-mortem generated calcareous layers in the studied cyanobacterial mats may explain the alternation of fine-grained (micritic) and coarse-grained (sparitic) laminae observed in modern and fossil calcareous cyanobacterial microbialites as the result of a probably similar multilayered mat organization.
Collapse
Affiliation(s)
- Józef Kaźmierczak
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| | - Tom Fenchel
- Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Michael Kühl
- Marine Biological Laboratory, University of Copenhagen, Strandpromenaden 5, 3000 Helsingør, Denmark.
| | - Stephan Kempe
- Institute of Applied Geosciences, Technische Universität Darmstadt, Schnittspahnstr. 9, 64287 Darmstadt, Germany.
| | - Barbara Kremer
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| | - Bożena Łącka
- Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| | - Krzysztof Małkowski
- Institute of Paleobiology, Polish Academy of Sciences, Twarda 51/55, 00-818 Warsaw, Poland.
| |
Collapse
|
24
|
Machado A, Bordalo AA. Diversity and dynamics of the Vibrio community in well water used for drinking in Guinea-Bissau (West Africa). ENVIRONMENTAL MONITORING AND ASSESSMENT 2014; 186:5697-5709. [PMID: 24859857 DOI: 10.1007/s10661-014-3813-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 05/07/2014] [Indexed: 06/03/2023]
Abstract
Bacteria of the genus Vibrio are ubiquitous in aquatic environments and can be found either in culturable or in a viable but nonculturable (VBNC) state. The genus comprises many pathogenic species accountable for water and food-borne diseases that prove to be fatal, especially in developing countries, as in Guinea-Bissau (West Africa), where cholera is endemic. In order to ascertain the abundance and structure of Vibrio spp. community in well waters that serve as the sole source of water for the population, quantitative polymerase chain reaction (qPCR), PCR-denaturant gradient gel electrophoresis (DGGE), and cloning approaches were used. Results suggest that Vibrio spp. were present throughout the year in acidic, freshwater wells with a seasonal community composition shift. Vibrio spp. abundance was in accordance with the abundance found in coastal environments. Sequences closely related to pathogenic Vibrio species were retrieved from well water revealing exposure of the population to such pathogens. pH, ammonium, and turbidity, regulated by the rain pattern, seem to be the variables that contributed mostly to the shaping and selection of the Vibrio spp. community. These results reinforce the evidence for water monitoring with culture-independent methods and the clear need to create/recover water infrastructures and a proper water resources management in West African countries with similar environmental conditions.
Collapse
Affiliation(s)
- A Machado
- Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences (ICBAS-UP), University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal,
| | | |
Collapse
|
25
|
Machado A, Bordalo AA. Analysis of the bacterial community composition in acidic well water used for drinking in Guinea-Bissau, West Africa. J Environ Sci (China) 2014; 26:1605-1614. [PMID: 25108716 DOI: 10.1016/j.jes.2014.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 06/03/2023]
Abstract
Potable water is a resource out of reach for millions worldwide, and the available water may be chemically and microbiologically compromised. This is particularly acute in Africa, where water-networks may be non-existent or restricted to a small fraction of the urban population, as in the case of Guinea-Bissau, West Africa. This study was carried out seasonally in Bolama (11°N), where unprotected hand-dug wells with acidic water are the sole source of water for the population. We inspected the free-living bacterial community dynamics by automated rRNA intergenic spacer analyses, quantitative polymerase chain reaction and cloning approaches. The results revealed a clear seasonal shift in bacterial assemblage composition and microbial abundance within the same sampling site. Temperature, pH and turbidity, together with the infiltration and percolation of surface water, which takes place in the wet season, seemed to be the driving factors in the shaping and selection of the bacterial community and deterioration of water quality. Analysis of 16S rDNA sequences revealed several potential pathogenic bacteria and uncultured bacteria associated with water and sediments, corroborating the importance of a culture-independent approach in drinking water monitoring.
Collapse
Affiliation(s)
- Ana Machado
- Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences, University of Porto, Porto 4050-313, Portugal; CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto 4050-123, Portugal.
| | - Adriano A Bordalo
- Laboratory of Hydrobiology and Ecology, Institute of Biomedical Sciences, University of Porto, Porto 4050-313, Portugal; CIIMAR/CIMAR-Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Porto 4050-123, Portugal
| |
Collapse
|
26
|
Russell JA, Brady AL, Cardman Z, Slater GF, Lim DSS, Biddle JF. Prokaryote populations of extant microbialites along a depth gradient in Pavilion Lake, British Columbia, Canada. GEOBIOLOGY 2014; 12:250-264. [PMID: 24636451 DOI: 10.1111/gbi.12082] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 01/29/2014] [Indexed: 06/03/2023]
Abstract
Pavilion Lake in British Columbia, Canada, is home to modern-day microbialites that are actively growing at multiple depths within the lake. While microbialite morphology changes with depth and previous isotopic investigations suggested a biological role in the formation of these carbonate structures, little is known about their microbial communities. Microbialite samples acquired through the Pavilion Lake Research Project (PLRP) were first investigated for phototrophic populations using Cyanobacteria-specific primers and 16S rRNA gene cloning. These data were expounded on by high-throughput tagged sequencing analyses of the general bacteria population. These molecular analyses show that the microbial communities of Pavilion Lake microbialites are diverse compared to non-lithifying microbial mats also found in the lake. Phototrophs and heterotrophs were detected, including species from the recently described Chloroacidobacteria genus, a photoheterotroph that has not been previously observed in microbialite systems. Phototrophs were shown as the most influential contributors to community differences above and below 25 meters, and corresponding shifts in heterotrophic populations were observed at this interface as well. The isotopic composition of carbonate also mirrored this shift in community states. Comparisons to previous studies indicated this population shift may be a consequence of changes in lake chemistry at this depth. Microbial community composition did not correlate with changing microbialite morphology with depth, suggesting something other than community changes may be a key to observed variations in microbialite structure.
Collapse
Affiliation(s)
- J A Russell
- School of Marine Science and Policy, University of Delaware, Lewes, DE, USA
| | | | | | | | | | | |
Collapse
|
27
|
Chan OW, Bugler-Lacap DC, Biddle JF, Lim DS, McKay CP, Pointing SB. Phylogenetic diversity of a microbialite reef in a cold alkaline freshwater lake. Can J Microbiol 2014; 60:391-8. [PMID: 24861562 DOI: 10.1139/cjm-2014-0024] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A culture-independent multidomain survey of biodiversity in microbialite structures within the cold alkaline Pavilion Lake (British Columbia, Canada) revealed a largely homogenous community at depths from 10 to 30 m. Real-time quantitative PCR was used to demonstrate that bacteria comprised approximately 80%-95% of recoverable phylotypes. Archaeal phylotypes accounted for <5% of the community in microbialites exposed to the water column, while structures in sediment contact supported 4- to 5-fold higher archaeal abundance. Eukaryal phylotypes were rare and indicated common aquatic diatoms that were concluded not to be part of the microbialite community. Phylogenetic analysis of rRNA genes from clone libraries (N = 491) revealed that alphaproteobacterial phylotypes were most abundant. Cyanobacterial phylotypes were highly diverse but resolved into 4 dominant genera: Acaryochloris, Leptolyngbya, Microcoleus, and Pseudanabaena. Interestingly, microbialite cyanobacteria generally affiliated phylogenetically with aquatic and coral cyanobacterial groups rather than those from stromatolites. Other commonly encountered bacterial phylotypes were from members of the Acidobacteria, with relatively low abundance of the Betaproteobacteria, Chloroflexi, Nitrospirae, and Planctomycetes. Archaeal diversity (N = 53) was largely accounted for by Euryarchaeota, with most phylotypes affiliated with freshwater methanogenic taxa.
Collapse
Affiliation(s)
- Olivia W Chan
- a Institute for Applied Ecology New Zealand, School of Applied Sciences, Auckland University of Technology, Auckland, New Zealand
| | | | | | | | | | | |
Collapse
|
28
|
Effects of Elevated Carbon Dioxide and Salinity on the Microbial Diversity in Lithifying Microbial Mats. MINERALS 2014. [DOI: 10.3390/min4010145] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Benzerara K, Couradeau E, Gérard E, Tavera R, Lopez-Archilla AI, Moreira D, Lopez-Garcia P. Geomicrobiological study of modern microbialites from Mexico: towards a better understanding of the ancient fossil record. BIO WEB OF CONFERENCES 2014. [DOI: 10.1051/bioconf/20140202002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
30
|
Centeno CM, Legendre P, Beltrán Y, Alcántara-Hernández RJ, Lidström UE, Ashby MN, Falcón LI. Microbialite genetic diversity and composition relate to environmental variables. FEMS Microbiol Ecol 2012; 82:724-35. [PMID: 22775797 DOI: 10.1111/j.1574-6941.2012.01447.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 06/28/2012] [Accepted: 06/29/2012] [Indexed: 11/30/2022] Open
Abstract
Microbialites have played an important role in the early history of life on Earth. Their fossilized forms represent the oldest evidence of life on our planet dating back to 3500 Ma. Extant microbialites have been suggested to be highly productive and diverse communities with an evident role in the cycling of major elements, and in contributing to carbonate precipitation. Although their ecological and evolutionary importance has been recognized, the study of their genetic diversity is yet scanty. The main goal of this study was to analyse microbial genetic diversity of microbialites living in different types of environments throughout Mexico, including desert ponds, coastal lagoons and a crater-lake. We followed a pyrosequencing approach of hypervariable regions of the 16S rRNA gene. Results showed that microbialite communities were very diverse (H' = 6-7) and showed geographic variation in composition, as well as an environmental effect related to pH and conductivity, which together explained 33% of the genetic variation. All microbialites had similar proportions of major bacterial and archaeal phyla.
Collapse
Affiliation(s)
- Carla M Centeno
- Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | | | | | | | | | | |
Collapse
|
31
|
Nitti A, Daniels CA, Siefert J, Souza V, Hollander D, Breitbart M. Spatially resolved genomic, stable isotopic, and lipid analyses of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. ASTROBIOLOGY 2012; 12:685-98. [PMID: 22882001 PMCID: PMC3426887 DOI: 10.1089/ast.2011.0812] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2011] [Accepted: 02/23/2012] [Indexed: 05/26/2023]
Abstract
Microbialites are biologically mediated carbonate deposits found in diverse environments worldwide. To explore the organisms and processes involved in microbialite formation, this study integrated genomic, lipid, and both organic and inorganic stable isotopic analyses to examine five discrete depth horizons spanning the surface 25 mm of a modern freshwater microbialite from Cuatro Ciénegas, Mexico. Distinct bacterial communities and geochemical signatures were observed in each microbialite layer. Photoautotrophic organisms accounted for approximately 65% of the sequences in the surface community and produced biomass with distinctive lipid biomarker and isotopic (δ(13)C) signatures. This photoautotrophic biomass was efficiently degraded in the deeper layers by heterotrophic organisms, primarily sulfate-reducing proteobacteria. Two spatially distinct zones of carbonate precipitation were observed within the microbialite, with the first zone corresponding to the phototroph-dominated portion of the microbialite and the second zone associated with the presence of sulfate-reducing heterotrophs. The coupling of photoautotrophic production, heterotrophic decomposition, and remineralization of organic matter led to the incorporation of a characteristic biogenic signature into the inorganic CaCO(3) matrix. Overall, spatially resolved multidisciplinary analyses of the microbialite enabled correlations to be made between the distribution of specific organisms, precipitation of carbonate, and preservation of unique lipid and isotopic geochemical signatures. These findings are critical for understanding the formation of modern microbialites and have implications for the interpretation of ancient microbialite records.
Collapse
Affiliation(s)
- Anthony Nitti
- College of Marine Science, University of South Florida, Florida, USA
| | | | - Janet Siefert
- Department of Statistics, Rice University, Texas, USA
| | - Valeria Souza
- Department Ecologia Evolutiva, Instituto de Ecologia, National Autonomous University of Mexico, Coyoacan, Mexico
| | - David Hollander
- College of Marine Science, University of South Florida, Florida, USA
| | - Mya Breitbart
- College of Marine Science, University of South Florida, Florida, USA
| |
Collapse
|
32
|
Pepe-Ranney C, Berelson WM, Corsetti FA, Treants M, Spear JR. Cyanobacterial construction of hot spring siliceous stromatolites in Yellowstone National Park. Environ Microbiol 2012; 14:1182-97. [PMID: 22356555 DOI: 10.1111/j.1462-2920.2012.02698.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Living stromatolites growing in a hot spring in Yellowstone National Park are composed of silica-encrusted cyanobacterial mats. Two cyanobacterial mat types grow on the stromatolite surfaces and are preserved as two distinct lithofacies. One mat is present when the stromatolites are submerged or at the water-atmosphere interface and the other when stromatolites protrude from the hot spring. The lithofacies created by the encrustation of submerged mats constitutes the bulk of the stromatolites, is comprised of silica-encrusted filaments, and is distinctly laminated. To better understand the cyanobacterial membership and community structure differences between the mats, we collected mat samples from each type. Molecular methods revealed that submerged mat cyanobacteria were predominantly one novel phylotype while the exposed mats were predominantly heterocystous phylotypes (Chlorogloeopsis HTF and Fischerella). The cyanobacterium dominating the submerged mat type does not belong in any of the subphylum groups of cyanobacteria recognized by the Ribosomal Database Project and has also been found in association with travertine stromatolites in a Southwest Japan hot spring. Cyanobacterial membership profiles indicate that the heterocystous phylotypes are 'rare biosphere' members of the submerged mats. The heterocystous phylotypes likely emerge when the water level of the hot spring drops. Environmental pressures tied to water level such as sulfide exposure and possibly oxygen tension may inhibit the heterocystous types in submerged mats. These living stromatolites are finely laminated and therefore, in texture, may better represent similarly laminated ancient forms compared with more coarsely laminated living marine examples.
Collapse
Affiliation(s)
- Charles Pepe-Ranney
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | | | | | | | | |
Collapse
|
33
|
Ravva SV, Hernlem BJ, Sarreal CZ, Mandrell RE. Bacterial communities in urban aerosols collected with wetted-wall cyclonic samplers and seasonal fluctuations of live and culturable airborne bacteria. ACTA ACUST UNITED AC 2012; 14:473-81. [DOI: 10.1039/c1em10753d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Couradeau E, Benzerara K, Moreira D, Gérard E, Kaźmierczak J, Tavera R, López-García P. Prokaryotic and eukaryotic community structure in field and cultured microbialites from the alkaline Lake Alchichica (Mexico). PLoS One 2011; 6:e28767. [PMID: 22194908 PMCID: PMC3237500 DOI: 10.1371/journal.pone.0028767] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 11/14/2011] [Indexed: 11/18/2022] Open
Abstract
The geomicrobiology of crater lake microbialites remains largely unknown despite their evolutionary interest due to their resemblance to some Archaean analogs in the dominance of in situ carbonate precipitation over accretion. Here, we studied the diversity of archaea, bacteria and protists in microbialites of the alkaline Lake Alchichica from both field samples collected along a depth gradient (0-14 m depth) and long-term-maintained laboratory aquaria. Using small subunit (SSU) rRNA gene libraries and fingerprinting methods, we detected a wide diversity of bacteria and protists contrasting with a minor fraction of archaea. Oxygenic photosynthesizers were dominated by cyanobacteria, green algae and diatoms. Cyanobacterial diversity varied with depth, Oscillatoriales dominating shallow and intermediate microbialites and Pleurocapsales the deepest samples. The early-branching Gloeobacterales represented significant proportions in aquaria microbialites. Anoxygenic photosynthesizers were also diverse, comprising members of Alphaproteobacteria and Chloroflexi. Although photosynthetic microorganisms dominated in biomass, heterotrophic lineages were more diverse. We detected members of up to 21 bacterial phyla or candidate divisions, including lineages possibly involved in microbialite formation, such as sulfate-reducing Deltaproteobacteria but also Firmicutes and very diverse taxa likely able to degrade complex polymeric substances, such as Planctomycetales, Bacteroidetes and Verrucomicrobia. Heterotrophic eukaryotes were dominated by Fungi (including members of the basal Rozellida or Cryptomycota), Choanoflagellida, Nucleariida, Amoebozoa, Alveolata and Stramenopiles. The diversity and relative abundance of many eukaryotic lineages suggest an unforeseen role for protists in microbialite ecology. Many lineages from lake microbialites were successfully maintained in aquaria. Interestingly, the diversity detected in aquarium microbialites was higher than in field samples, possibly due to more stable and favorable laboratory conditions. The maintenance of highly diverse natural microbialites in laboratory aquaria holds promise to study the role of different metabolisms in the formation of these structures under controlled conditions.
Collapse
Affiliation(s)
- Estelle Couradeau
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
- Institut de Minéralogie et de Physique des Milieux Condensés, CNRS UMR 7590, Université Pierre et Marie Curie, Paris, France
- Institut de Physique du Globe de Paris, CNRS UMR 7154, Université Paris Diderot, Paris, France
| | - Karim Benzerara
- Institut de Minéralogie et de Physique des Milieux Condensés, CNRS UMR 7590, Université Pierre et Marie Curie, Paris, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
| | - Emmanuelle Gérard
- Institut de Physique du Globe de Paris, CNRS UMR 7154, Université Paris Diderot, Paris, France
| | - Józef Kaźmierczak
- Institute of Paleobiology, Polish Academy of Sciences, Warszawa, Poland
| | - Rosaluz Tavera
- Departamento de Ecología y Recursos Naturales, Facultad de Ciencias, Universidad Nacional Autónoma de México, Distrito Federal, Mexico
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution, CNRS UMR 8079, Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
35
|
Mobberley JM, Ortega MC, Foster JS. Comparative microbial diversity analyses of modern marine thrombolitic mats by barcoded pyrosequencing. Environ Microbiol 2011; 14:82-100. [PMID: 21658172 DOI: 10.1111/j.1462-2920.2011.02509.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thrombolites are unlaminated carbonate structures that form as a result of the metabolic interactions of complex microbial mat communities. Thrombolites have a long geological history; however, little is known regarding the microbes associated with modern structures. In this study, we use a barcoded 16S rRNA gene-pyrosequencing approach coupled with morphological analysis to assess the bacterial, cyanobacterial and archaeal diversity associated with actively forming thrombolites found in Highborne Cay, Bahamas. Analyses revealed four distinct microbial mat communities referred to as black, beige, pink and button mats on the surfaces of the thrombolites. At a coarse phylogenetic resolution, the domain bacterial sequence libraries from the four mats were similar, with Proteobacteria and Cyanobacteria being the most abundant. At the finer resolution of the rRNA gene sequences, significant differences in community structure were observed, with dramatically different cyanobacterial communities. Of the four mat types, the button mats contained the highest diversity of Cyanobacteria, and were dominated by two sequence clusters with high similarity to the genus Dichothrix, an organism associated with the deposition of carbonate. Archaeal diversity was low, but varied in all mat types, and the archaeal community was predominately composed of members of the Thaumarchaeota and Euryarchaeota. The morphological and genetic data support the hypothesis that the four mat types are distinctive thrombolitic mat communities.
Collapse
Affiliation(s)
- Jennifer M Mobberley
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Kennedy Space Center, FL 32899, USA
| | | | | |
Collapse
|
36
|
Microbial Diversity in Modern Stromatolites. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2011. [DOI: 10.1007/978-94-007-0397-1_17] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
37
|
Myshrall KL, Mobberley JM, Green SJ, Visscher PT, Havemann SA, Reid RP, Foster JS. Biogeochemical cycling and microbial diversity in the thrombolitic microbialites of Highborne Cay, Bahamas. GEOBIOLOGY 2010; 8:337-354. [PMID: 20491947 DOI: 10.1111/j.1472-4669.2010.00245.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Thrombolites are unlaminated carbonate build-ups that are formed via the metabolic activities of complex microbial mat communities. The thrombolitic mats of Highborne Cay, Bahamas develop in close proximity (1-2 m) to accreting laminated stromatolites, providing an ideal opportunity for biogeochemical and molecular comparisons of these two distinctive microbialite ecosystems. In this study, we provide the first comprehensive characterization of the biogeochemical activities and microbial diversity of the Highborne Cay thrombolitic mats. Morphological and molecular analyses reveal two dominant mat types associated with the thrombolite deposits, both of which are dominated by bacteria from the taxa Cyanobacteria and Alphaproteobacteria. Diel cycling of dissolved oxygen (DO) and dissolved inorganic carbon (DIC) were measured in all thrombolitic mat types. DO production varied between thrombolitic types and one morphotype, referred to in this study as 'button mats', produced the highest levels among all mat types, including the adjacent stromatolites. Characterization of thrombolite bacterial communities revealed a high bacterial diversity, roughly equivalent to that of the nearby stromatolites, and a low eukaryotic diversity. Extensive phylogenetic overlap between thrombolitic and stromatolitic microbial communities was observed, although thrombolite-specific cyanobacterial populations were detected. In particular, the button mats were dominated by a calcified, filamentous cyanobacterium identified via morphology and 16S rRNA gene sequencing as Dichothrix sp. The distinctive microbial communities and chemical cycling patterns within the thrombolitic mats provide novel insight into the biogeochemical processes related to the lithifying mats in this system, and provide data relevant to understanding microbially induced carbonate biomineralization.
Collapse
Affiliation(s)
- K L Myshrall
- Center for Integrative Geosciences, University of Connecticut, CT, USA
| | | | | | | | | | | | | |
Collapse
|
38
|
Coman C, Bica A, Drugă B, Barbu-Tudoran L, Dragoş N. Methodological constraints in the molecular biodiversity study of a thermomineral spring cyanobacterial mat: a case study. Antonie van Leeuwenhoek 2010; 99:271-81. [PMID: 20665239 DOI: 10.1007/s10482-010-9486-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2010] [Accepted: 07/16/2010] [Indexed: 10/19/2022]
Abstract
The biodiversity of a specific cyanobacterial mat associated to a thermomineral spring from the Western Plain of Romania was investigated. Light and electron microscopy, together with molecular tools (denaturing gradient gel electrophoresis-DGGE, automated ribosomal intergenic spacer analysis-ARISA and amplified ribosomal DNA restriction analysis-ARDRA), based on 16S rDNA and 16S-23S internal transcribed spacer markers were used. Based on the partial 16S rRNA fragments sequenced, eight cyanobacterial taxons were identified, all belonging to the Oscillatoriales order, Phormidium and Leptolyngbya being dominant. A significant difference was observed, in comparison with the morphological approach. In certain conditions, DGGE can provide misleading information due to multiple melting domains in the same sequence, to multiple rrn operons in the same genome and due to unspecific hybridization among closely related sequences. This can lead to an overestimated species abundance which can cause incorrect description of the microbial community investigated. Additional techniques, such as ARISA and ARDRA, can improve the microbial biodiversity studies, thus providing optimal results.
Collapse
Affiliation(s)
- Cristian Coman
- Department of Biology, Babeş-Bolyai University, 1 Kogălniceanu Street, Cluj-Napoca, Romania.
| | | | | | | | | |
Collapse
|
39
|
Bacterial diversity in dry modern freshwater stromatolites from Ruidera Pools Natural Park, Spain. Syst Appl Microbiol 2010; 33:209-21. [PMID: 20409657 DOI: 10.1016/j.syapm.2010.02.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 02/22/2010] [Indexed: 11/21/2022]
Abstract
Ruidera Pools Natural Park, Spain, constitutes one of the most representative systems of carbonate precipitation in Europe. The prokaryotic community of a dry modern stromatolite recovered from the park has been analyzed by molecular techniques that included denaturing gradient gel electrophoresis (DGGE) and 16S rRNA gene clone library analysis, together with microscopic observations from the sample and cultures. Ribosomal RNA was directly extracted to study the putatively active part of the microbial community present in the sample. A total of 295 16S rRNA gene sequences were analyzed. Libraries were dominated by sequences related to Cyanobacteria, most frequently to the genus Leptolyngbya. A diverse and abundant assemblage of non-cyanobacterial sequences was also found, including members of Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, Acidobacteria,Planctomycetes and Chloroflexi groups. No amplification was obtained when using archaeal primers. The results showed that at the time of sampling, when the pool was dry, the bacterial community of the stromatolites was dominated by groups of highly related Cyanobacteria, including new groups that had not been previously reported, although a high diversity outside this phylogenetic group was also found. The results indicated that part of the Cyanobacteria assemblage was metabolically active and could thus play a role in the mineralization processes inside the stromatolites.
Collapse
|
40
|
Past, Present, and Future: Microbial Mats as Models for Astrobiological Research. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2010. [DOI: 10.1007/978-90-481-3799-2_29] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
41
|
Foster JS, Green SJ, Ahrendt SR, Golubic S, Reid RP, Hetherington KL, Bebout L. Molecular and morphological characterization of cyanobacterial diversity in the stromatolites of Highborne Cay, Bahamas. ISME JOURNAL 2009; 3:573-87. [DOI: 10.1038/ismej.2008.129] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|