1
|
Gladyshchuk O, Yoshida M, Togashi K, Sugimoto H, Suzuki K. Identification of the Csr global regulatory system mediated by small RNA decay in Aeromonas salmonicida. J GEN APPL MICROBIOL 2024; 70:n/a. [PMID: 38233172 DOI: 10.2323/jgam.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
We investigated the presence and functionality of the carbon storage regulator (Csr) system in Aeromonas salmonicida SWSY-1.411. CsrA, an RNA-binding protein, shared 89% amino acid sequence identity with Escherichia coli CsrA. CsrB/C sRNAs exhibited a typical stem-loop structure, with more GGA motifs, which bind CsrA, than E. coli. CsrD had limited sequence identity with E. coli CsrD; however, it contained the conserved GGDEF and EAL domains. Functional analysis in E. coli demonstrated that the Csr system of A. salmonicida influences glycogen biosynthesis, biofilm formation, motility, and stability of both CsrB and CsrC sRNAs. These findings suggest that in A. salmonicida, the Csr system affects phenotypes like its E. coli counterpart. In A. salmonicida, defects in csr homologs affected biofilm formation, motility, and chitinase production. However, glycogen accumulation and protease production were unaffected. The expression of flagellar-related genes and chitinase genes was suppressed in the csrA-deficient A. salmonicida. Northern blot analysis indicated the stabilization of CsrB and CsrC in the csrD-deficient A. salmonicida. Similar to that in E. coli, the Csr system in A. salmonicida comprises the RNA-binding protein CsrA, the sRNAs CsrB and CsrC, and the sRNA decay factor CsrD. This study underscores the conservation and functionality of the Csr system and raises questions about its regulatory targets and mechanisms in A. salmonicida.
Collapse
Affiliation(s)
| | - Masaki Yoshida
- Graduate School of Science and Technology, Niigata University
| | - Koume Togashi
- Department of Agriculture, Faculty of Agriculture, Niigata University
| | - Hayuki Sugimoto
- Graduate School of Science and Technology, Niigata University
- Department of Agriculture, Faculty of Agriculture, Niigata University
| | - Kazushi Suzuki
- Graduate School of Science and Technology, Niigata University
- Department of Agriculture, Faculty of Agriculture, Niigata University
| |
Collapse
|
2
|
CsrA Regulates Swarming Motility and Carbohydrate and Amino Acid Metabolism in Vibrio alginolyticus. Microorganisms 2021; 9:microorganisms9112383. [PMID: 34835507 PMCID: PMC8624728 DOI: 10.3390/microorganisms9112383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/11/2021] [Accepted: 11/15/2021] [Indexed: 11/17/2022] Open
Abstract
Vibrio alginolyticus, like other vibrio species, is a widely distributed marine bacterium that is able to outcompete other species in variable niches where diverse organic matters are supplied. However, it remains unclear how these cells sense and adjust metabolic flux in response to the changing environment. CsrA is a conserved RNA-binding protein that modulates critical cellular processes such as growth ability, central metabolism, virulence, and the stress response in gamma-proteobacteria. Here, we first characterize the csrA homolog in V. alginolyticus. The results show that CsrA activates swarming but not swimming motility, possibly by enhancing the expression of lateral flagellar associated genes. It is also revealed that CsrA modulates the carbon and nitrogen metabolism of V. alginolyticus, as evidenced by a change in the growth kinetics of various carbon and nitrogen sources when CsrA is altered. Quantitative RT-PCR shows that the transcripts of the genes encoding key enzymes involved in the TCA cycle and amino acid metabolism change significantly, which is probably due to the variation in mRNA stability given by CsrA binding. This may suggest that CsrA plays an important role in sensing and responding to environmental changes.
Collapse
|
3
|
Hernández-Cabanyero C, Sanjuán E, Fouz B, Pajuelo D, Vallejos-Vidal E, Reyes-López FE, Amaro C. The Effect of the Environmental Temperature on the Adaptation to Host in the Zoonotic Pathogen Vibrio vulnificus. Front Microbiol 2020; 11:489. [PMID: 32296402 PMCID: PMC7137831 DOI: 10.3389/fmicb.2020.00489] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/06/2020] [Indexed: 12/21/2022] Open
Abstract
Vibrio vulnificus is a zoonotic pathogen that lives in temperate, tropical and subtropical aquatic ecosystems whose geographical distribution is expanding due to global warming. The species is genetically variable and only the strains that belong to the zoonotic clonal-complex can cause vibriosis in both humans and fish (being its main host the eel). Interestingly, the severity of the vibriosis in the eel and the human depends largely on the water temperature (highly virulent at 28°C, avirulent at 20°C or below) and on the iron content in the blood, respectively. The objective of this work was to unravel the role of temperature in the adaptation to the host through a transcriptomic and phenotypic approach. To this end, we obtained the transcriptome of a zoonotic strain grown in a minimum medium (CM9) at 20, 25, 28, and 37°C, and confirmed the transcriptomic results by RT-qPCR and phenotypic tests. In addition, we compared the temperature stimulon with those previously obtained for iron and serum (from eel and human, respectively). Our results suggest that warm temperatures activate adaptive traits that would prepare the bacteria for host colonization (metabolism, motility, chemotaxis, and the protease activity) and fish septicemia (iron-uptake from transferrin and production of O-antigen of high molecular weight) in a generalized manner, while environmental iron controls the expression of a host-adapted virulent phenotype (toxins and the production of a protective envelope). Finally, our results confirm that beyond the effect of temperature on the V. vulnificus distribution in the environment, it also has an effect on the infectious capability of this pathogen that must be taken into account to predict the real risk of V. vulnificus infection caused by global warming.
Collapse
Affiliation(s)
- Carla Hernández-Cabanyero
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Sanjuán
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Belén Fouz
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - David Pajuelo
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| | - Eva Vallejos-Vidal
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
- Centro de Biotecnología Acuícola, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile
| | - Felipe E. Reyes-López
- Department of Cell Biology, Physiology and Immunology, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Carmen Amaro
- Departamento de Microbiología y Ecología and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina, Universitat de València, Valencia, Spain
| |
Collapse
|
4
|
Sugar-mediated regulation of a c-di-GMP phosphodiesterase in Vibrio cholerae. Nat Commun 2019; 10:5358. [PMID: 31767877 PMCID: PMC6877527 DOI: 10.1038/s41467-019-13353-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 10/31/2019] [Indexed: 01/03/2023] Open
Abstract
Biofilm formation protects bacteria from stresses including antibiotics and host immune responses. Carbon sources can modulate biofilm formation and host colonization in Vibrio cholerae, but the underlying mechanisms remain unclear. Here, we show that EIIAGlc, a component of the phosphoenolpyruvate (PEP):carbohydrate phosphotransferase system (PTS), regulates the intracellular concentration of the cyclic dinucleotide c-di-GMP, and thus biofilm formation. The availability of preferred sugars such as glucose affects EIIAGlc phosphorylation state, which in turn modulates the interaction of EIIAGlc with a c-di-GMP phosphodiesterase (hereafter referred to as PdeS). In a Drosophila model of V. cholerae infection, sugars in the host diet regulate gut colonization in a manner dependent on the PdeS-EIIAGlc interaction. Our results shed light into the mechanisms by which some nutrients regulate biofilm formation and host colonization.
Collapse
|
5
|
Ho YC, Hung FR, Weng CH, Li WT, Chuang TH, Liu TL, Lin CY, Lo CJ, Chen CL, Chen JW, Hashimoto M, Hor LI. Lrp, a global regulator, regulates the virulence of Vibrio vulnificus. J Biomed Sci 2017; 24:54. [PMID: 28800764 PMCID: PMC5554404 DOI: 10.1186/s12929-017-0361-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 08/04/2017] [Indexed: 12/18/2022] Open
Abstract
Background An attenuated mutant (designated NY303) of Vibrio vulnificus, which causes serious wound infection and septicemia in humans, was isolated fortuitously from a clinical strain YJ016. This mutant was defective in cytotoxicity, migration on soft agar and virulence in the mouse. The purpose of this study was to map the mutation in this attenuated mutant and further explore how the gene thus identified is involved in virulence. Methods The whole genome sequence of mutant NY303 determined by next-generation sequencing was compared with that of strain YJ016 to map the mutations. By isolating and characterizing the specific gene-knockout mutants, the gene associated with the phenotype of mutant NY303 was identified. This gene encodes a global regulator, Lrp. A mutant, YH01, deficient in Lrp was isolated and examined in vitro, in vivo and ex vivo to find the affected virulence mechanisms. The target genes of Lrp were further identified by comparing the transcriptomes, which were determined by RNA-seq, of strain YJ016 and mutant YH01. The promoters bound by Lrp were identified by genome footprinting-sequencing, and those related with virulence were further examined by electrophoretic mobility shift assay. Results A mutation in lrp was shown to be associated with the reduced cytotoxicity, chemotaxis and virulence of mutant NY303. Mutant YH01 exhibited a phenotype resembling that of mutant NY303, and was defective in colonization in the mouse and growth in mouse serum, but not the antiphagocytosis ability. 596 and 95 genes were down- and up-regulated, respectively, in mutant YH01. Many of the genes involved in secretion of the MARTX cytotoxin, chemotaxis and iron-acquisition were down-regulated in mutant YH01. The lrp gene, which was shown to be negatively autoregulated, and 7 down-regulated virulence-associated genes were bound by Lrp in their promoters. A 14-bp consensus sequence, mkCrTTkwAyTsTG, putatively recognized by Lrp was identified in the promoters of these genes. Conclusions Lrp is a global regulator involved in regulation of cytotoxicity, chemotaxis and iron-acquisition in V. vulnificus. Down-regulation of many of the genes associated with these properties may be responsible, at least partly, for loss of virulence in mutant NY303. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0361-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yu-Chi Ho
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Feng-Ru Hung
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Chao-Hui Weng
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Wei-Ting Li
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Tzu-Hung Chuang
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Tsung-Lin Liu
- Institute of Bioinformatics and Biosignal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Ching-Yuan Lin
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Taoyuan, 32001, Taiwan
| | - Chun-Liang Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan
| | - Jen-Wei Chen
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan.,Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Masayuki Hashimoto
- Center of Infectious Disease and Signal Transduction, National Cheng Kung University, Tainan, 70101, Taiwan.,Department of Molecular Medicine, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Lien-I Hor
- Department of Microbiology and Immunology, College of Medicine, Tainan, 70101, Taiwan. .,Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan, 70101, Taiwan.
| |
Collapse
|
6
|
Pajuelo D, Hernández-Cabanyero C, Sanjuan E, Lee CT, Silva-Hernández FX, Hor LI, MacKenzie S, Amaro C. Iron and Fur in the life cycle of the zoonotic pathogenVibrio vulnificus. Environ Microbiol 2016; 18:4005-4022. [DOI: 10.1111/1462-2920.13424] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 06/17/2016] [Indexed: 11/29/2022]
Affiliation(s)
- David Pajuelo
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Carla Hernández-Cabanyero
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Eva Sanjuan
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Chung-Te Lee
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan Taiwan Republic of China
| | - Francisco Xavier Silva-Hernández
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| | - Lien-I Hor
- Department of Microbiology and Immunology; Institute of Basic Medical Sciences; Tainan Taiwan Republic of China
- College of Medicine; National Cheng Kung University; Tainan 701 Taiwan Republic of China
| | - Simon MacKenzie
- Institute of Aquaculture; University of Stirling; Stirling UK
| | - Carmen Amaro
- Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI BIOTECMED); University of Valencia; Dr. Moliner, 50 Valencia 46100 Spain
| |
Collapse
|
7
|
Fields JA, Li J, Gulbronson CJ, Hendrixson DR, Thompson SA. Campylobacter jejuni CsrA Regulates Metabolic and Virulence Associated Proteins and Is Necessary for Mouse Colonization. PLoS One 2016; 11:e0156932. [PMID: 27257952 PMCID: PMC4892619 DOI: 10.1371/journal.pone.0156932] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Accepted: 05/20/2016] [Indexed: 12/28/2022] Open
Abstract
Campylobacter jejuni infection is a leading bacterial cause of gastroenteritis and a common antecedent leading to Gullian-Barré syndrome. Our previous data suggested that the RNA-binding protein CsrA plays an important role in regulating several important phenotypes including motility, biofilm formation, and oxidative stress resistance. In this study, we compared the proteomes of wild type, csrA mutant, and complemented csrA mutant C. jejuni strains in an effort to elucidate the mechanisms by which CsrA affects virulence phenotypes. The putative CsrA regulon was more pronounced at stationary phase (111 regulated proteins) than at mid-log phase (25 regulated proteins). Proteins displaying altered expression in the csrA mutant included diverse metabolic functions, with roles in amino acid metabolism, TCA cycle, acetate metabolism, and various other cell processes, as well as pathogenesis-associated characteristics such as motility, chemotaxis, oxidative stress resistance, and fibronectin binding. The csrA mutant strain also showed altered autoagglutination kinetics when compared to the wild type. CsrA specifically bound the 5' end of flaA mRNA, and we demonstrated that CsrA is a growth-phase dependent repressor of FlaA expression. Finally, the csrA mutant exhibited reduced ability to colonize in a mouse model when in competition with the wild type, further underscoring the role of CsrA in C. jejuni colonization and pathogenesis.
Collapse
Affiliation(s)
- Joshua A. Fields
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
- Department of Natural Sciences, Georgia Military College - Augusta, Augusta, GA, 30907, United States of America
| | - Jiaqi Li
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
| | - Connor J. Gulbronson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - David R. Hendrixson
- Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, United States of America
| | - Stuart A. Thompson
- Department of Medicine, Division of Infectious Diseases, Augusta University, Augusta, GA, 30912, United States of America
- * E-mail:
| |
Collapse
|
8
|
Abstract
Over the last decade, small (often noncoding) RNA molecules have been discovered as important regulators influencing myriad aspects of bacterial physiology and virulence. In particular, small RNAs (sRNAs) have been implicated in control of both primary and secondary metabolic pathways in many bacterial species. This chapter describes characteristics of the major classes of sRNA regulators, and highlights what is known regarding their mechanisms of action. Specific examples of sRNAs that regulate metabolism in gram-negative bacteria are discussed, with a focus on those that regulate gene expression by base pairing with mRNA targets to control their translation and stability.
Collapse
|
9
|
Kim MJ, Kim J, Lee HY, Noh HJ, Lee KH, Park SJ. Role of AcsR in expression of the acetyl-CoA synthetase gene in Vibrio vulnificus. BMC Microbiol 2015; 15:86. [PMID: 25887971 PMCID: PMC4409781 DOI: 10.1186/s12866-015-0418-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 03/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND VarS/VarA is one of the global factors regulating diverse aspects of the metabolism and virulence of bacteria including pathogenic Vibrio spp. An experiment to identify the VarS/VarA-regulon in V. vulnificus revealed that a putative LuxR-type transcriptional regulator was down-regulated in ΔvarA mutant. To investigate the roles of this regulatory cascade, the target gene regulated by a LuxR-regulator was identified and its expression was characterized. RESULTS Transcriptomic analysis of the mutant deficient in this LuxR-type regulator showed that the acsA gene encoding acetyl-CoA synthetase was down-regulated. Thus, this regulator was named AcsR for "regulator of acetyl-CoA synthetase". A putative histidine kinase gene, acsS, was located five ORFs downstream of the acsR gene. Expression of an acsA::luxAB transcriptional fusion was decreased in both ΔacsR and ΔacsS mutants. Similar to a ΔacsA mutant, strains carrying deletions either in acsR or acsS grew slowly than wild type in a minimal medium with acetate as a sole carbon source. Growth defect of the ΔacsR strain in acetate-minimal medium was restored by complementation. To investigate if AcsR directly regulates acsA expression, in vitro-gel shift assays were performed using the recombinant AcsR and the regulatory region of the acsA gene, showing that AcsR specifically bound the upstream region of the acsA ORF. CONCLUSION This study indicates that the VarS/VarA system plays a role in V. vulnificus metabolism via regulating AcsR, which in turn controls acetate metabolism by activating the transcription of the acetyl-CoA synthetase gene.
Collapse
Affiliation(s)
- Min Jung Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, South Korea.
| | - Juri Kim
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, South Korea.
| | - Hye Yeon Lee
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, South Korea.
| | - Hyeon Jin Noh
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, South Korea.
| | - Kyu-Ho Lee
- Department of Life Science, Sogang University, Seoul, 121-742, South Korea.
| | - Soon-Jung Park
- Department of Environmental Medical Biology and Institute of Tropical Medicine, Brain Korea 21 PLUS Project for Medical Science, Yonsei University, Seoul, 120-752, South Korea.
| |
Collapse
|
10
|
Krediet CJ, Carpinone EM, Ritchie KB, Teplitski M. Characterization of the gacA-dependent surface and coral mucus colonization by an opportunistic coral pathogen Serratia marcescens PDL100. FEMS Microbiol Ecol 2013; 84:290-301. [PMID: 23278392 DOI: 10.1111/1574-6941.12064] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 11/05/2012] [Accepted: 12/11/2012] [Indexed: 12/22/2022] Open
Abstract
Opportunistic pathogens rely on global regulatory systems to assess the environment and to control virulence and metabolism to overcome host defenses and outcompete host-associated microbiota. In Gammaproteobacteria, GacS/GacA is one such regulatory system. GacA orthologs direct the expression of the csr (rsm) small regulatory RNAs, which through their interaction with the RNA-binding protein CsrA (RsmA), control genes with functions in carbon metabolism, motility, biofilm formation, and virulence. The csrB gene was controlled by gacA in Serratia marcescens PDL100. A disruption of the S. marcescens gacA gene resulted in an increased fitness of the mutant on mucus of the host coral Acropora palmata and its high molecular weight fraction, whereas the mutant was as competitive as the wild type on the low molecular weight fraction of the mucus. Swarming motility and biofilm formation were reduced in the gacA mutant. This indicates a critical role for gacA in the efficient utilization of specific components of coral mucus and establishment within the surface mucopolysaccharide layer. While significantly affecting early colonization behaviors (coral mucus utilization, swarming motility, and biofilm formation), gacA was not required for virulence of S. marcescens PDL100 in either a model polyp Aiptasia pallida or in brine shrimp Artemia nauplii.
Collapse
Affiliation(s)
- Cory J Krediet
- Interdisciplinary Ecology, University of Florida-IFAS, Gainesville, FL 32610-3610, USA
| | | | | | | |
Collapse
|
11
|
Members of native coral microbiota inhibit glycosidases and thwart colonization of coral mucus by an opportunistic pathogen. ISME JOURNAL 2012; 7:980-90. [PMID: 23254513 DOI: 10.1038/ismej.2012.164] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The outcome of the interactions between native commensal microorganisms and opportunistic pathogens is crucial to the health of the coral holobiont. During the establishment within the coral surface mucus layer, opportunistic pathogens, including a white pox pathogen Serratia marcescens PDL100, compete with native bacteria for available nutrients. Both commensals and pathogens employ glycosidases and N-acetyl-glucosaminidase to utilize components of coral mucus. This study tested the hypothesis that specific glycosidases were critical for the growth of S. marcescens on mucus and that their inhibition by native coral microbiota reduces fitness of the pathogen. Consistent with this hypothesis, a S. marcescens transposon mutant with reduced glycosidase and N-acetyl-glucosaminidase activities was unable to compete with the wild type on the mucus of the host coral Acropora palmata, although it was at least as competitive as the wild type on a minimal medium with glycerol and casamino acids. Virulence of the mutant was modestly reduced in the Aiptasia model. A survey revealed that ∼8% of culturable coral commensal bacteria have the ability to inhibit glycosidases in the pathogen. A small molecular weight, ethanol-soluble substance(s) produced by the coral commensal Exiguobacterium sp. was capable of the inhibition of the induction of catabolic enzymes in S. marcescens. This inhibition was in part responsible for the 10-100-fold reduction in the ability of the pathogen to grow on coral mucus. These results provide insight into potential mechanisms of commensal interference with early colonization and infection behaviors in opportunistic pathogens and highlight an important function for the native microbiota in coral health.
Collapse
|
12
|
Williams JW, Ritter AL, Stevens AM. CsrA modulates luxR transcript levels in Vibrio fischeri. FEMS Microbiol Lett 2012; 329:28-35. [PMID: 22250984 DOI: 10.1111/j.1574-6968.2012.02499.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Revised: 12/29/2011] [Accepted: 01/05/2012] [Indexed: 01/24/2023] Open
Abstract
The quorum-sensing and CsrA regulons of Vibrios control overlapping cellular functions during growth. Hence, the potential exists for regulatory network interactions between the pathways that enable them to be coordinately controlled. In Vibrio cholerae, CsrA indirectly modulates the activity of LuxO in the quorum-sensing signaling pathway. In this study, it was demonstrated that in Vibrio fischeri, CsrA causes an increase in the transcript levels of a downstream quorum-sensing regulatory gene, luxR, which does not exist in the V. cholerae system. In V. fischeri, the increase in luxR transcripts caused by CsrA does not depend on the LitR transcriptional activator nor does the CsrA effect seem to occur through the global regulator cAMP-CRP. Thus, there appears to be more than one mechanism whereby the CsrA and quorum-sensing pathways integrate regulatory outputs in Vibrios.
Collapse
Affiliation(s)
- Joshua W Williams
- Department of Biological Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | | | | |
Collapse
|
13
|
Gauthier JD, Jones MK, Thiaville P, Joseph JL, Swain RA, Krediet CJ, Gulig PA, Teplitski M, Wright AC. Role of GacA in virulence of Vibrio vulnificus. Microbiology (Reading) 2010; 156:3722-3733. [PMID: 20817642 DOI: 10.1099/mic.0.043422-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The GacS/GacA two-component signal transduction system regulates virulence, biofilm formation and symbiosis in Vibrio species. The present study investigated this regulatory pathway in Vibrio vulnificus, a human pathogen that causes life-threatening disease associated with the consumption of raw oysters and wound infections. Small non-coding RNAs (csrB1, csrB2, csrB3 and csrC) commonly regulated by the GacS/GacA pathway were decreased (P<0.0003) in a V. vulnificus CMCP6 ΔgacA : : aph mutant compared with the wild-type parent, and expression was restored by complementation of the gacA deletion mutation in trans. Of the 20 genes examined by RT-PCR, significant reductions in the transcript levels of the mutant in comparison with the wild-type strain were observed only for genes related to motility (flaA), stationary phase (rpoS) and protease (vvpE) (P=0.04, 0.01 and 0.002, respectively). Swimming motility, flagellation and opaque colony morphology indicative of capsular polysaccharide (CPS) were unchanged in the mutant, while cytotoxicity, protease activity, CPS phase variation and the ability to acquire iron were decreased compared with the wild-type (P<0.01). The role of gacA in virulence of V. vulnificus was also demonstrated by significant impairment in the ability of the mutant strain to cause either skin (P<0.0005) or systemic infections (P<0.02) in subcutaneously inoculated, non-iron-treated mice. However, the virulence of the mutant was equivalent to that of the wild-type in iron-treated mice, demonstrating that the GacA pathway in V. vulnificus regulates the virulence of this organism in an iron-dependent manner.
Collapse
Affiliation(s)
- Julie D. Gauthier
- Department of Biological Sciences, Loyola University, New Orleans, LA 70118, USA
- Food Science and Human Nutrition Department, 212 Aquatic Food Products Laboratory, University of Florida, Gainesville, FL 32611, USA
| | - Melissa K. Jones
- Food Science and Human Nutrition Department, 212 Aquatic Food Products Laboratory, University of Florida, Gainesville, FL 32611, USA
| | - Patrick Thiaville
- Molecular Genetics and Microbiology Department, R1-144 Academic Research Building, University of Florida, Gainesville, FL 32611, USA
| | - Jennifer L. Joseph
- Molecular Genetics and Microbiology Department, R1-144 Academic Research Building, University of Florida, Gainesville, FL 32611, USA
| | - Rick A. Swain
- Food Science and Human Nutrition Department, 212 Aquatic Food Products Laboratory, University of Florida, Gainesville, FL 32611, USA
| | - Cory J. Krediet
- Soil and Water Science Department, 330E Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Paul A. Gulig
- Molecular Genetics and Microbiology Department, R1-144 Academic Research Building, University of Florida, Gainesville, FL 32611, USA
| | - Max Teplitski
- Soil and Water Science Department, 330E Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Anita C. Wright
- Food Science and Human Nutrition Department, 212 Aquatic Food Products Laboratory, University of Florida, Gainesville, FL 32611, USA
| |
Collapse
|
14
|
Timmermans J, Van Melderen L. Post-transcriptional global regulation by CsrA in bacteria. Cell Mol Life Sci 2010; 67:2897-908. [PMID: 20446015 PMCID: PMC11115721 DOI: 10.1007/s00018-010-0381-z] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 04/14/2010] [Accepted: 04/20/2010] [Indexed: 12/16/2022]
Abstract
Global regulation allows bacteria to rapidly modulate the expression of a large variety of unrelated genes in response to environmental changes. Global regulators act at different levels of gene expression. This review focuses on CsrA, a post-transcriptional regulator that affects translation of its gene targets by binding mRNAs. CsrA controls a large variety of physiological processes such as central carbon metabolism, motility and biofilm formation. The activity of CsrA is itself tightly regulated by the CsrB and CsrC small RNAs and the BarA-UvrY two-component system.
Collapse
Affiliation(s)
- Johan Timmermans
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| | - Laurence Van Melderen
- Laboratoire de Génétique et Physiologie Bactérienne, Institut de Biologie et de Médecine Moléculaires, Faculté des Sciences, Université Libre de Bruxelles, 12 rue des Professeurs Jeener et Brachet, 6041 Gosselies, Belgium
| |
Collapse
|
15
|
Yang TY, Sung YM, Lei GS, Romeo T, Chak KF. Posttranscriptional repression of the cel gene of the ColE7 operon by the RNA-binding protein CsrA of Escherichia coli. Nucleic Acids Res 2010; 38:3936-51. [PMID: 20378712 PMCID: PMC2896534 DOI: 10.1093/nar/gkq177] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Carbon storage regulator (CsrA) is a eubacterial RNA-binding protein that acts as a global regulator of many functionally diverse chromosomal genes. Here, we reveal that CsrA represses expression from an extrachromosomal element of Escherichia coli, the lysis gene (cel) of the ColE7 operon (cea-cei-cel). This operon and colicin expression are activated upon SOS response. Disruption of csrA caused ∼5-fold increase of the lysis protein. Gel mobility shift assays established that both the single-stranded loop of the T1 stem–loop distal to cei, and the putative CsrA binding site overlapping the Shine–Dalgarno sequence (SD) of the cel gene are important for CsrA binding. Substitution mutations at SD relieved CsrA-dependent repression of the cel gene in vivo. Steady-state levels and half-life of the cel mRNA were not affected by CsrA, implying that regulation is mediated at the translational level. Levels of CsrB and CsrC sRNAs, which bind to and antagonize CsrA, were drastically reduced upon induction of the SOS response, while the CsrA protein itself remained unaffected. Thus, CsrA is a trans-acting modulator that downregulates the expression of lysis protein, which may confer a survival advantage on colicinogenic E. coli under environment stress conditions.
Collapse
Affiliation(s)
- Tsung-Yeh Yang
- Institute of Biochemistry and Molecular Biology, National Yang-Ming University, Taipei 11221, Taiwan
| | | | | | | | | |
Collapse
|
16
|
Kim HS, Park SJ, Lee KH. Role of NtrC-regulated exopolysaccharides in the biofilm formation and pathogenic interaction of Vibrio vulnificus. Mol Microbiol 2009; 74:436-53. [PMID: 19737353 DOI: 10.1111/j.1365-2958.2009.06875.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vibrio vulnificus has been shown to require a global transcription factor, NtrC for mature biofilm development via controlling the biosyntheses of lipopolysaccharide and exopolysaccharide (EPS). Biofilm formation and EPS production were dramatically increased in a medium including a tricarboxylic acid cycle-intermediate as a carbon source. These phenotypes required functional NtrC and were abolished by the addition of ammonium chloride. During the initial stage of biofilm formation, both expression of the ntrC gene and the cellular content of NtrC protein increased. Thus, the regulatory roles of NtrC in EPS biosynthesis were studied with three gene clusters for EPS biosyntheses. Transcriptions of the three clusters were positively controlled by NtrC and showed maximal expression at the early stage of biofilm development. Mutants deficient in one of the genes (VV1_2661, VV2_1579 and VV1_2305) in each cluster showed decreased production of EPS, attenuated ability to form biofilm and lowered cytoadherence to human epithelial cells. However, mutations in VV2_1579 and VV1_2305 resulted in lower cytotoxicity to human cells and mortality to mice than the mutation in VV1_2661. These results demonstrate that NtrC-regulated EPS are crucial in biofilm formation of V. vulnificus, and some EPS components play important roles in interacting with hosts.
Collapse
Affiliation(s)
- Han-Suk Kim
- Department of Environmental Science and Protein Research Center for Bio-Industry, Hankuk University of Foreign Studies, Yongin, Kyunggi-Do 449-791, South Korea
| | | | | |
Collapse
|