1
|
Wang Q, Zhang J, Liang J, Wang Y, Ren C, Chen X, Cheng D, Zhang H, Liu H. Genomic Insights into Selenate Reduction by Anaerobacillus Species. Microorganisms 2025; 13:659. [PMID: 40142551 PMCID: PMC11944866 DOI: 10.3390/microorganisms13030659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025] Open
Abstract
Selenium (Se), a potentially toxic trace element, undergoes complex biogeochemical cycling in the environment, largely driven by microbial activity. The reduction in selenate or selenite to elemental selenium is an environmentally beneficial process, as it decreases both Se toxicity and mobility. This reduction is catalyzed by enzymes encoded by various related genes. The link between Se reduction gene clusters and specific taxonomic groups is significant for elucidating the ecological roles and processes of Se reduction in diverse environments. In this study, a new species of Se-reducing microorganism belonging to the genus Anaerobacillus was isolated from a mining site. A comparative analysis of the growth characteristics reveals that Anaerobacillus species exhibit notable metabolic versatility, particularly in their fermentation abilities and utilization of diverse electron donors and acceptors. Genome analysis identified a diverse array of gene clusters associated with selenate uptake (sul, pst), selenate reduction (ser), and selenite reduction (hig, frd, trx, and bsh). Since selenate reduction is the first crucial step in Se reduction, genes linked to selenate reductase are the focus. The serA gene clusters analysis suggests that the serA gene is highly conserved across Anaerobacillus species. The surrounding genes of serA show significant variability in both presence and gene size. This evolutionary difference in coenzyme utilization and serA regulation suggests distinct survival strategies among Anaerobacillus species. This study offers insights into Se bio-transformations and the adaptive strategies of Se-reducing microorganisms.
Collapse
Affiliation(s)
- Qidong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Jian Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
- School of Geographical Environment, Shandong Normal University, Jinan 250358, China
| | - Jinhui Liang
- State Environmental Protection Key Laboratory of Land and Sea Ecological Governance and Systematic Regulation, Jinan 250101, China;
- Shandong Academy for Environmental Planning, Jinan 250101, China
| | - Yanlong Wang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Chongyang Ren
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Xinhan Chen
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Dongle Cheng
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huanxin Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; (Q.W.); (J.Z.); (Y.W.); (C.R.); (X.C.); (D.C.); (H.L.)
- Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao 266590, China
| |
Collapse
|
2
|
Naiel MA, Taher ES, Rashed F, Ghazanfar S, Shehata AM, Mohammed NA, Pascalau R, Smuleac L, Ibrahim AM, Abdeen A, Shukry M. The arsenic bioremediation using genetically engineered microbial strains on aquatic environments: An updated overview. Heliyon 2024; 10:e36314. [PMID: 39286167 PMCID: PMC11402758 DOI: 10.1016/j.heliyon.2024.e36314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/01/2024] [Accepted: 08/13/2024] [Indexed: 09/19/2024] Open
Abstract
Heavy metal contamination threatens the aquatic environment and human health. Different physical and chemical procedures have been adopted in many regions; however, their adoption is usually limited since they take longer time, are more expensive, and are ineffective in polluted areas with high heavy metal contents. Thus, biological remediation is considered a suitable applicable method for treating contaminates due to its aquatic-friendly features. Bacteria possess an active metabolism that enables them to thrive and develop in highly contaminated water bodies with arsenic (As). They achieve this by utilizing their genetic structure to selectively target As and deactivate its toxic influences. Therefore, this review extensively inspects the bacterial reactions and interactions with As. In addition, this literature demonstrated the potential of certain genetically engineered bacterial strains to upregulate the expression and activity of specific genes associated with As detoxification. The As resistant mechanisms in bacteria exhibit significant variation depending on the genetics and type of the bacterium, which is strongly affected by the physical water criteria of their surrounding aquatic environment. Moreover, this literature has attempted to establish scientific connections between existing knowledge and suggested sustainable methods for removing As from aquatic bodies by utilizing genetically engineered bacterial strains. We shall outline the primary techniques employed by bacteria to bioremediate As from aquatic environments. Additionally, we will define the primary obstacles that face the wide application of genetically modified bacterial strains for As bioremediation in open water bodies. This review can serve as a target for future studies aiming to implement real-time bioremediation techniques. In addition, potential synergies between the bioremediation technology and other techniques are suggested, which can be employed for As bioremediation.
Collapse
Affiliation(s)
- Mohammed A.E. Naiel
- Animal Production Department, Faculty of Agriculture, Zagazig University, Zagazig, 44519, Egypt
| | - Ehab S. Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Fatema Rashed
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa, 13110, Jordan
| | - Shakira Ghazanfar
- National Institute for Genomics Advanced Biotechnology, National Agricultural Research Centre, Park Road, Islamabad, 45500, Pakistan
| | - Abdelrazeq M. Shehata
- Department of Animal Production, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Nourelhuda A. Mohammed
- Department of Physiology and Biochemistry, Faculty of Medicine, Mutah University, Mutah, 61710, Al-Karak, Jordan
| | - Raul Pascalau
- Department of Agricultural Technologies, Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Romania
| | - Laura Smuleac
- Department of Sustainable Development and Environmental Engineering Faculty of Agriculture, University of Life Sciences "King Mihai I" from Timisoara, Timisoara, Roman, Romania
| | - Ateya Megahed Ibrahim
- Department of Administration and Nursing Education, College of Nursing, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Saudi Arabia
- Department of Family and Community Health Nursing, Faculty of Nursing, Port-Said University, Egypt
| | - Ahmed Abdeen
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Benha University, Toukh, 13736, Egypt
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83523, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516, Egypt
| |
Collapse
|
3
|
Teng ZJ, Li J, Wang P, Li CY, Peng M, Qin QL, Chen XL, Chen Y, Fu HH, Wang N, Zhang YZ. Meta-omics analysis reveals the marine arsenic cycle driven by bacteria. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135137. [PMID: 39024770 DOI: 10.1016/j.jhazmat.2024.135137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/16/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024]
Abstract
Arsenic is a toxic element widely distributed in the Earth's crust and ranked as a class I human carcinogen. Microbial metabolism makes significant contributions to arsenic detoxification, migration and transformation. Nowadays, research on arsenic is primarily in areas affected by arsenic pollution associated with human health activities. However, the biogeochemical traits of arsenic in the global marine ecosystem remain to be explicated. In this study, we revealed that seawater environments were primarily governed by the process of arsenate reduction to arsenite, while arsenite methylation was predominant in marine sediments which may serve as significant sources of arsenic emission into the atmosphere. Significant disparities existed in the distribution patterns of the arsenic cycle between surface and deep seawaters at middle and low latitudes, whereas these situations tend to be similar in the Arctic and Antarctic oceans. Significant variations were also observed in the taxonomic diversity and core microbial community of arsenic cycling across different marine environments. Specifically, γ-proteobacteria played a pivotal role in the arsenic cycle in the whole marine environment. Temperature, dissolved oxygen and phosphate were the crucial factors that related to these differentiations in seawater environments. Overall, our study contributes to a deeper understanding of the marine arsenic cycle.
Collapse
Affiliation(s)
- Zhao-Jie Teng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Jian Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Peng Wang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Chun-Yang Li
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Ming Peng
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Qi-Long Qin
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Yin Chen
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; School of Life Sciences, The University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Hui-Hui Fu
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China
| | - Ning Wang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| | - Yu-Zhong Zhang
- MOE Key Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean Multispheres and Earth System & College of Marine Life Sciences, Ocean University of China, Qingdao 266003, China; Joint Research Center for Marine Microbial Science and Technology, Shandong University and Ocean University of China, Qingdao 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, 266373, China; Marine Biotechnology Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Chen X, Yu T, Zeng XC. Functional features of a novel Sb(III)- and As(III)-oxidizing bacterium: Implications for the interactions between bacterial Sb(III) and As(III) oxidation pathways. CHEMOSPHERE 2024; 352:141385. [PMID: 38316280 DOI: 10.1016/j.chemosphere.2024.141385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/07/2024]
Abstract
Antimony (Sb) and arsenic (As) share similar chemical characteristics and commonly coexist in contaminated environments. It has been reported that the biogeochemical cycles of antimony and arsenic affect each other. However, there is limited understanding regarding microbial coupling between the biogeochemical processes of antimony and arsenic. Here, we aimed to solve this issue. We successfully isolated a novel bacterium, Shinella sp. SbAsOP1, which possesses both Sb(III) and As(III) oxidase, and can effectively oxidize both Sb(III) and As(III) under aerobic and anaerobic conditions. SbAsOP1 exhibits greater aerobic oxidation activity for the oxidation of As(III) or Sb(III) compared to its anaerobic activity. SbAsOP1 also significantly catalyzes the oxidative mobilization of solid-phase Sb(III) under aerobic conditions. The activity of SbAsOP1 in oxidizing solid Sb(III) is 3 times lower than its activity in oxidizing soluble form. It is noteworthy that, in the presence of both Sb(III) and As(III) under aerobic conditions, either As(III) or Sb(III) significantly inhibits the oxidation of Sb(III) or As(III), respectively. In comparison, under anaerobic conditions and in the coexistence of Sb(III) and As(III), As(III) significantly inhibits Sb(III) oxidation, whereas Sb(III) almost completely inhibits As(III) oxidation. These findings suggest that under both aerobic and anaerobic conditions, SbAsOP1 demonstrates a partial preference for Sb(III) oxidation. Additionally, bacterial oxidations of Sb(III) and As(III) mutually inhibit each other to varying degrees. These observations gain a novel understanding of the interplay between the biogeochemical processes of antimony and arsenic.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Tingting Yu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, Peoples' Republic of China.
| |
Collapse
|
5
|
Ye L, Tian H, Jing C. Arsenic mobilization in nZVI residue by Alkaliphilus sp. IMB: Comparison between static and flowing incubation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:121019. [PMID: 36621712 DOI: 10.1016/j.envpol.2023.121019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Arsenate reducing bacteria (AsRB) enhance arsenic (As) release via reducing As(V) to As(III), and As mobility is usually controlled by As(III) re-uptake on in-situ formed secondary iron minerals. The re-uptake of As(III) under groundwater flow conditions significantly impacts the fate and transport of As. Herein, a novel As(V)-reducing bacterium Alkaliphilus IMB was isolated in an As-contaminated soil. Scanning transmission X-ray microscopy showed that dissolved As(V) was mainly bound to the cell walls whereas dissolved As(III) was homogeneously distributed around IMB, indicating that As(V) reduction occurs outside the cell membrane. To explore the effect of IMB on As mobility, IMB was incubated with As-loaded nanoscale zero-valent iron (nZVI) residues under static and flowing conditions. IMB reduced 100% dissolved As(V) to As(III) even in a short contact time (∼1 h) during flowing incubation. The formation of As(III) did not influence As mobility under static condition as evidenced by the comparable concentrations of released As in the presence of IMB (8.5% to total As) and the abiotic control (10% to total As). Biogenic As(III) was re-adsorbed on the solids as shown by the higher ratio of solid-bound As(III) to total As in the presence of IMB (54%) than that in the abiotic control (12%). By contrast, the degree of As(III) re-adsorption was inhibited in the flowing environment, as suggested by the lower As(III) ratio in the solid (31%). This inhibition can be ascribed to the relatively slow adsorption of As(III) compared with the quick reduction of As(V) (∼1 h). Thus, IMB significantly enhanced As release during flowing incubation as shown that 9.8% As was released in the presence of IMB while 2.1% As in the abiotic control. This study found the contrary effect of AsRB on As mobility in static and flowing environments, highlighting the importance of re-adsorption rate of As(III).
Collapse
Affiliation(s)
- Li Ye
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Haixia Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, China
| | - Chuanyong Jing
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| |
Collapse
|
6
|
Min D, Cheng L, Liu DF, Liu JQ, Li WW, Yu HQ. Single Strain-Triggered Biogeochemical Cycle of Arsenic. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:16410-16418. [PMID: 36268776 DOI: 10.1021/acs.est.2c02015] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The microbial metabolism of arsenic plays a prominent role in governing the biogeochemical cycle of arsenic. Although diverse microbes are known to be involved in the redox transformation of inorganic arsenic, the underlying mechanisms about the arsenic redox cycle mediated by a single microbial strain remain unclear yet. Herein, we discover that Shewanella putrefaciens CN32, a well-known arsenate-respiring and dissimilatory metal-reducing bacterium, could mediate the reversible arsenic redox transformation under aerobic conditions. Genetic analysis shows that S. putrefaciens CN32 contains both ars and arr operon but lacks an As(III) oxidase encoding gene. Arsenic(V) reduction tests demonstrate that the ars operon is advantageous but not essential for As(V) respiration in S. putrefaciens CN32. The Arr complex encoded by the arr operon not only plays a crucial role in arsenate respiration under anaerobic conditions but also participates in the sequential process of As(V) reduction and As(III) oxidation under aerobic conditions. The Arr enzyme also contributes to the microbial As(III) resistance. The expression and catalysis directionality of Arr in S. putrefaciens CN32 are regulated by the carbon source types. Our results highlight the complexity of arsenic redox biotransformation in environments and provide new insights into the important contribution of Arr to the As biogeochemical cycle in nature.
Collapse
Affiliation(s)
- Di Min
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Lei Cheng
- School of Life Sciences, University of Science and Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Jia-Qi Liu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- Department of Environmental Science and Engineering, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
7
|
Shi LD, Ji HR, Jin R, Chen YB, Gao TY, Ma F, Zhao HP. Biotic shortcut deselenization coupled to abiotic sulfide oxidation enabled pollutants co-removal and products recovery. WATER RESEARCH 2021; 204:117602. [PMID: 34481283 DOI: 10.1016/j.watres.2021.117602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Selenate and sulfide are both contaminants which severely pollute water bodies. Respective bioremediation of selenate- and sulfide-contaminated wastewaters requires abundant electron donors and acceptors. Here, we present a novel concept coupling biological selenate to selenite (shortcut deselenization) and chemical sulfide-driven selenite reduction, to remove multiple pollutants simultaneously. Vial tests showed that shortcut deselenization could save at least two thirds of operation time and one third of carbon source, compared to the complete deselenization to elemental selenium. Subsequent co-removal of sulfide and selenite was optimized at reaction pH of ∼10 and reactant molar ratio of ∼4. Using a newly-designed continuous flow system, >95% removal of both selenate and sulfide was achieved by coupling shortcut deselenization to sulfide oxidation. A series of characterization tools revealed that the final collected precipitates were comprised of high-purity hexagonal selenium (97.4%, wt) and inconsiderable sulfur (2.6%, wt). Superior over selenate-reducing solutions generally producing selenium mixed with reagents or microorganisms, the selenium products generated here were highly purified thus very favorable for further recovery and reuse. Overall, this proof-of-concept study provided a promising technology not only for co-removal of multiple pollutants, but also for substantial costs saving, as well as for valuable products recovery.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058 China
| | - Han-Rui Ji
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058 China
| | - Rui Jin
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058 China
| | - Yan-Bo Chen
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058 China
| | - Tian-Yu Gao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058 China
| | - Fang Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou, 310058 China.
| |
Collapse
|
8
|
Wells M, Stolz JF. Microbial selenium metabolism: a brief history, biogeochemistry and ecophysiology. FEMS Microbiol Ecol 2020; 96:5921172. [DOI: 10.1093/femsec/fiaa209] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/08/2020] [Indexed: 01/02/2023] Open
Abstract
ABSTRACTSelenium is an essential trace element for organisms from all three domains of life. Microorganisms, in particular, mediate reductive transformations of selenium that govern the element's mobility and bioavailability in terrestrial and aquatic environments. Selenium metabolism is not just ubiquitous but an ancient feature of life likely extending back to the universal common ancestor of all cellular lineages. As with the sulfur biogeochemical cycle, reductive transformations of selenium serve two metabolic functions: assimilation into macromolecules and dissimilatory reduction during anaerobic respiration. This review begins with a historical overview of how research in both aspects of selenium metabolism has developed. We then provide an overview of the global selenium biogeochemical cycle, emphasizing the central role of microorganisms in the cycle. This serves as a basis for a robust discussion of current models for the evolution of the selenium biogeochemical cycle over geologic time, and how knowledge of the evolution and ecophysiology of selenium metabolism can enrich and refine these models. We conclude with a discussion of the ecophysiological function of selenium-respiring prokaryotes within the cycle, and the tantalizing possibility of oxidative selenium transformations during chemolithoautotrophic growth.
Collapse
Affiliation(s)
- Michael Wells
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - John F Stolz
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
9
|
Shi LD, Lv PL, Wang M, Lai CY, Zhao HP. A mixed consortium of methanotrophic archaea and bacteria boosts methane-dependent selenate reduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139310. [PMID: 32442771 DOI: 10.1016/j.scitotenv.2020.139310] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 05/07/2020] [Accepted: 05/07/2020] [Indexed: 06/11/2023]
Abstract
Though methane-based selenate reduction has been reported, neither the selenate load nor the removal rate could satisfy practical applications, thus limiting this technique to bio-remediate selenate pollution. In the present study, using a membrane biofilm batch reactor (MBBR), we successfully enriched a consortium performing methane-dependent selenate reduction, with enhanced reduction rates from 16.1 to 28.9 μM-day-1 under a comparable Se concentration to industrial wastewaters (i.e., ~500 μM). During active reduction, 16S rRNA gene copies of Archaea and Bacteria were both increased more than one order of magnitude. Clone library construction and high-throughput sequencing indicated that Methanosarcina and Methylocystis were the only methane-oxidizing microorganisms. The presence of 20 mM bromoethanesulphonate or 0.15 mM acetylene both significantly, but not completely, inhibited methane-dependent selenate reduction, indicating the concurrent contributions of methanotrophic archaea and bacteria. Fluorescence in situ hybridization (FISH) revealed that archaea directly adhered to the surface of the membrane while bacteria were in the outer layer, together forming the mature biofilm. This study highlights the crucial role of both methanotrophic archaea and bacteria in methane-dependent selenate reduction, and lays foundations in applying methane to bio-remediate practical selenate pollution.
Collapse
Affiliation(s)
- Ling-Dong Shi
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Pan-Long Lv
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China
| | - Min Wang
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - Chun-Yu Lai
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China
| | - He-Ping Zhao
- MOE Key Lab of Environmental Remediation and Ecosystem Health, College of Environmental and Resource Science, Zhejiang University, Hangzhou 310058, China; Zhejiang Prov Key Lab Water Pollut Control & Envi, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
10
|
Chen X, Zeng XC, Kawa YK, Wu W, Zhu X, Ullah Z, Wang Y. Microbial reactions and environmental factors affecting the dissolution and release of arsenic in the severely contaminated soils under anaerobic or aerobic conditions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109946. [PMID: 31759742 DOI: 10.1016/j.ecoenv.2019.109946] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 11/05/2019] [Accepted: 11/10/2019] [Indexed: 06/10/2023]
Abstract
The soils near the abandoned Shimen Realgar Mine are characterized by containing extremely high contents of total and soluble arsenic. To determine the microbial reactions and environmental factors affecting the mobilization and release of arsenic from soils phase into pore water, we collected 24 soil samples from the representative points around the abandoned Shimen Realgar Mine. They contained 8310.84 mg/kg total arsenic and 703.21 mg/kg soluble arsenic in average. The soluble arsenic in the soils shows significant positive and negative correlations with environmental SO42-/TOC/pH/PO43-, and Fe/Mn, respectively. We found that diverse dissimilatory As(V)-respiring prokaryotes (DARPs) and As(III)-oxidizing bacteria (AOB) exist in all the examined soil samples. The activities of DARPs led to 65-1275% increase of soluble As(III) in the examined soils after 21.0 days of anaerobic incubation, and the microbial dissolution and releases of arsenic show significant positive and negative correlations with the environmental pH/TN and NH4+/PO43-, respectively. In comparison, the activities of AOB led to 24-346% inhibition of the dissolved oxygen-mediated dissolution of arsenic in the soils, and the AOB-mediated releases of As(V) show significant positive and negative correlations with the environmental SO42- and pH/NH4+, respectively. The microbial communities of 24 samples contain 54 phyla of bacteria that show extremely high diversities. Total arsenic, TOC, NO3- and pH are the key environmental factors that indirectly controlled the mobilization and release of arsenic via influencing the structures of the microbial communities in the soils. This work gained new insights into the mechanism for how microbial communities catalyze the dissolution and releases of arsenic from the soils with extremely high contents of arsenic.
Collapse
Affiliation(s)
- Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China.
| | - Yahaya Kudush Kawa
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Weiwei Wu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Xianbin Zhu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Zahid Ullah
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, People's Republic of China
| |
Collapse
|
11
|
Ngegla JV, Zhou X, Chen X, Zhu X, Liu Z, Feng J, Zeng XC. Unique diversity and functions of the arsenic-methylating microorganisms from the tailings of Shimen Realgar Mine. ECOTOXICOLOGY (LONDON, ENGLAND) 2020; 29:86-96. [PMID: 31832832 DOI: 10.1007/s10646-019-02144-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 05/27/2023]
Abstract
Microbial arsenic (As) methylation plays important roles in the As biogeochemical cycle. However, little is known about the diversity and functions of As-methylating microorganisms from the tailings of a Realgar Mine, which is characterized as containing extremely high concentrations of As. To address this issue, we collected five samples (T1-T5) from the tailings of Shimen Realgar Mine. Microcosm assays without addition of exogenous As and carbon indicated that all the five samples possess significant As-methylating activities, producing 0.8-5.7 μg/L DMAsV, and 1.1-10.7 μg/L MMAsV with an exception of T3, from which MMAsV was not detectable after 14.0 days of incubation. In comparison, addition of 20.0 mM lactate to the microcosms significantly enhanced the activities of these samples; the produced DMAsV and MMAsV are 8.0-39.7 μg/L and 5.8-38.3 μg/L, respectively. The biogenic DMAsV shows significant positive correlations with the Fe concentrations and negative correlations with the total nitrogen concentrations in the environment. A total of 63 different arsM genes were identified from the five samples, which code for new or new-type ArsM proteins, suggesting that a unique diversity of As-methylating microbes are present in the environment. The microbial community structures of the samples were significantly shaped by the environmental total organic carbon, total As contents and NO3- contents. These data help to better understand the microorganisms-catalyzed As methylation occurred in the environment with extremely high contents of As.
Collapse
Affiliation(s)
- Janet Victoria Ngegla
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, PR China
| | - Xing Zhou
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, PR China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, PR China
| | - Xianbin Zhu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, PR China
| | - Ziwei Liu
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, PR China
| | - Jilong Feng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, PR China
| | - Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology & School of Environmental Studies, China University of Geosciences, Wuhan, PR China.
| |
Collapse
|
12
|
Han YH, Yin DX, Jia MR, Wang SS, Chen Y, Rathinasabapathi B, Chen DL, Ma LQ. Arsenic-resistance mechanisms in bacterium Leclercia adecarboxylata strain As3-1: Biochemical and genomic analyses. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 690:1178-1189. [PMID: 31470481 DOI: 10.1016/j.scitotenv.2019.07.098] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 07/06/2019] [Accepted: 07/07/2019] [Indexed: 06/10/2023]
Abstract
Microbial arsenic transformation is important in As biogeochemical cycles in the environment. In this study, a new As-resistant bacterial strain Leclercia adecarboxylata As3-1 was isolated and its associated mechanisms in As resistance and detoxification were evaluated based on genome sequencing and gene annotations. After subjecting strain As3-1 to medium containing arsenate (AsV), AsV reduction occurred and an AsV-enhanced bacterial growth was observed. Strain As3-1 lacked arsenite (AsIII) oxidation ability and displayed lower AsIII resistance than AsV, probably due to its higher AsIII accumulation. Polymerase chain reaction and phylogenetic analysis showed that strain As3-1 harbored a typical AsV reductase gene (arsC) on the plasmids. Genome sequencing and gene annotations identified four operons phoUpstBACS, arsHRBC, arsCRDABC and ttrRSBCA, with 8 additional genes outside the operons that might have involved in As resistance and detoxification in strain As3-1. These included 5 arsC genes explaining why strain As3-1 tolerated high AsV concentrations. Besides ArsC, TtrB, TtrC and TtrA proteins could also be involved in AsV reduction and consequent energy acquisition for bacterial growth. Our data provided a new example of diverse As-regulating systems and AsV-enhanced growth without ArrA in bacteria. The information helps to understand the role of As in selecting microbial systems that can transform and utilize As.
Collapse
Affiliation(s)
- Yong-He Han
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian 362801, China; College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control and Resource Reuse, Fuzhou 350007, China
| | - Dai-Xia Yin
- School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Meng-Ru Jia
- School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Shan-Shan Wang
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian 362801, China
| | - Yanshan Chen
- School of the Environment, Nanjing Normal University, Nanjing, Jiangsu 210023, China
| | - Bala Rathinasabapathi
- Horticultural Sciences Department, University of Florida, Gainesville, FL 32611, United States
| | - Deng-Long Chen
- Quangang Petrochemical Research Institute, Fujian Normal University, Quanzhou, Fujian 362801, China; Innovative Center for Eco-Friendly Polymeric Materials, Quanzhou, Fujian 362801, China.
| | - Lena Q Ma
- College of Environmental Science and Engineering, Fujian Normal University, Fuzhou, Fujian 350007, China; Soil and Water Sciences Department, University of Florida, Gainesville, FL 32611, United States.
| |
Collapse
|
13
|
Zeng XC, He Z, Chen X, Cao QAD, Li H, Wang Y. Effects of arsenic on the biofilm formations of arsenite-oxidizing bacteria. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 165:1-10. [PMID: 30173020 DOI: 10.1016/j.ecoenv.2018.08.079] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Arsenite-oxidizing bacteria (AOB) play a key role in the biogeochemical cycle of arsenic in the environment, and are used for the bioremediation of As contaminated groundwater; however, it is not yet known about how arsenic affects biofilm formations of AOB, and how biofilm formations affect bacterial arsenite-oxidizing activities. To address these issues, we isolated seven novel AOB strains from the arsenic-contaminated soils. They can completely oxidize 1.0 mM As(III) in 22-60 h. Their arsenite oxidase sequences show 43-99% identities to those of other known AOB. Strains Cug1, Cug2, Cug3, Cug4, and Cug6 are able to form biofilms with thickness of 15-95 µm, whereas Cug8 and Cug9 cannot form biofilms. It is interesting to see that arsenite inhibited the biofilm formations of heterotrophic AOB strains, but promoted the biofilm formations of autotrophic strains in a concentration-dependent manner. The arsenite-oxidizing rates of Cug1 and Cug4 biofilms are 31.6% and 27.6% lower than those of their suspension cultures, whereas the biofilm activities of other strains are similar to those of their suspension cultures. The biofilm formation significantly promoted the bacterial resistance to arsenic. This work is the first report on the complex correlations among environmental arsenic, bacterial biofilm formations and bacterial arsenite-oxidizing activities. The data highlight the diverse lifestyle of different AOB under arsenic stress, and provide essential knowledge for the screening of efficient AOB strains used for constructions of bioreactors.
Collapse
Affiliation(s)
- Xian-Chun Zeng
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China.
| | - Zhong He
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Xiaoming Chen
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Qian A D Cao
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Hao Li
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| | - Yanxin Wang
- State Key Laboratory of Biogeology and Environmental Geology, School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan 430070, People's Republic of China
| |
Collapse
|
14
|
Edwardson CF, Hollibaugh JT. Composition and Activity of Microbial Communities along the Redox Gradient of an Alkaline, Hypersaline, Lake. Front Microbiol 2018; 9:14. [PMID: 29445359 PMCID: PMC5797777 DOI: 10.3389/fmicb.2018.00014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 01/05/2018] [Indexed: 11/21/2022] Open
Abstract
We compared the composition of microbial communities obtained by sequencing 16S rRNA gene amplicons with taxonomy derived from metatranscriptomes from the same samples. Samples were collected from alkaline, hypersaline Mono Lake, California, USA at five depths that captured the major redox zones of the lake during the onset of meromixis. The prokaryotic community was dominated by bacteria from the phyla Proteobacteria, Firmicutes, and Bacteroidetes, while the picoeukaryotic chlorophyte Picocystis dominated the eukaryotes. Most (80%) of the abundant (>1% relative abundance) OTUs recovered as amplicons of 16S rRNA genes have been reported in previous surveys, indicating that Mono Lake's microbial community has remained stable over 12 years that have included periods of regular, annual overturn interspersed by episodes of prolonged meromixis that result in extremely reducing conditions in bottom water. Metatranscriptomic sequences binned predominately to the Gammaproteobacteria genera Thioalkalivibrio (4–13%) and Thioalkalimicrobium (0–14%); and to the Firmicutes genera Dethiobacter (0–5%) and Clostridium (1–4%), which were also abundant in the 16S rRNA gene amplicon libraries. This study provides insight into the taxonomic affiliations of transcriptionally active communities of the lake's water column under different redox conditions.
Collapse
Affiliation(s)
- Christian F Edwardson
- Department of Marine Sciences, University of Georgia, Athens, GA, United States.,Department of Microbiology, University of Georgia, Athens, GA, United States
| | - James T Hollibaugh
- Department of Marine Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
15
|
Bruneel O, Mghazli N, Hakkou R, Dahmani I, Filali Maltouf A, Sbabou L. In-depth characterization of bacterial and archaeal communities present in the abandoned Kettara pyrrhotite mine tailings (Morocco). Extremophiles 2017; 21:671-685. [PMID: 28447266 DOI: 10.1007/s00792-017-0933-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/17/2017] [Indexed: 01/28/2023]
Abstract
In Morocco, pollution caused by closed mines continues to be a serious threat to the environment, like the generation of acid mine drainage. Mine drainage is produced by environmental and microbial oxidation of sulfur minerals originating from mine wastes. The fundamental role of microbial communities is well known, like implication of Fe-oxidizing and to a lesser extent S-oxidizing microorganism in bioleaching. However, the structure of the microbial communities varies a lot from one site to another, like diversity depends on many factors such as mineralogy, concentration of metals and metalloids or pH, etc. In this study, prokaryotic communities in the pyrrhotite-rich tailings of Kettara mine were characterized using the Illumina sequencing. In-depth phylogenetic analysis revealed a total of 12 phyla of bacteria and 1 phyla of Archaea. The majority of sequences belonged to the phylum of Proteobacteria and Firmicutes with a predominance of Bacillus, Pseudomonas or Corynebacterium genera. Many microbial populations are implicated in the iron, sulfur and arsenic cycles, like Acidiferrobacter, Leptospirillum, or Alicyclobacillus in Fe; Acidiferrobacter and Sulfobacillus in S; and Bacillus or Pseudomonas in As. This is one of the first description of prokaryotic communities in pyrrhotite-rich mine tailings using high-throughput sequencing.
Collapse
Affiliation(s)
- Odile Bruneel
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco.
- Laboratoire HydroSciences Montpellier, UMR5569 (CNRS/IRD/UM), Université de Montpellier, CC0057 (MSE), 16, rue Auguste Broussonet, 34090, Montpellier, France.
| | - N Mghazli
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| | - R Hakkou
- Laboratoire de Chimie des Matériaux et de l'Environnement (LCME), Faculté des Sciences et Technique Guéliz, Université de Cadi Ayyad, Avenue Abdelkarim Elkhattabi, Gueliz, P.O. Box 549, Marrakech, Morocco
| | - I Dahmani
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| | - A Filali Maltouf
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| | - L Sbabou
- Laboratoire de Microbiologie et Biologie Moléculaire, LMBM, Faculté des Sciences, Université Mohammed V, Av Ibn Batouta, BP1014, Rabat, Morocco
| |
Collapse
|
16
|
Functions and Unique Diversity of Genes and Microorganisms Involved in Arsenite Oxidation from the Tailings of a Realgar Mine. Appl Environ Microbiol 2016; 82:7019-7029. [PMID: 27663031 DOI: 10.1128/aem.02190-16] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 09/12/2016] [Indexed: 11/20/2022] Open
Abstract
The tailings of the Shimen realgar mine have unique geochemical features. Arsenite oxidation is one of the major biogeochemical processes that occurs in the tailings. However, little is known about the functional and molecular aspects of the microbial community involved in arsenite oxidation. Here, we fully explored the functional and molecular features of the microbial communities from the tailings of the Shimen realgar mine. We collected six samples of tailings from sites A, B, C, D, E, and F. Microcosm assays indicated that all of the six sites contain both chemoautotrophic and heterotrophic arsenite-oxidizing microorganisms; their activities differed considerably from each other. The microbial arsenite-oxidizing activities show a positive correlation with soluble arsenic concentrations. The microbial communities of the six sites contain 40 phyla of bacteria and 2 phyla of archaea that show extremely high diversity. Soluble arsenic, sulfate, pH, and total organic carbon (TOC) are the key environmental factors that shape the microbial communities. We further identified 114 unique arsenite oxidase genes from the samples; all of them code for new or new-type arsenite oxidases. We also isolated 10 novel arsenite oxidizers from the samples, of which 4 are chemoautotrophic and 6 are heterotrophic. These data highlight the unique diversities of the arsenite-oxidizing microorganisms and their oxidase genes from the tailings of the Shimen realgar mine. To the best of our knowledge, this is the first report describing the functional and molecular features of microbial communities from the tailings of a realgar mine. IMPORTANCE This study focused on the functional and molecular characterizations of microbial communities from the tailings of the Shimen realgar mine. We fully explored, for the first time, the arsenite-oxidizing activities and the functional gene diversities of microorganisms from the tailings, as well as the correlation of the microbial activities/diversities with environmental factors. The findings of this study help us to better understand the diversities of the arsenite-oxidizing bacteria and the geochemical cycle of arsenic in the tailings of the Shimen realgar mine and gain insights into the microbial mechanisms by which the secondary minerals of the tailings were formed. This work also offers a set of unique arsenite-oxidizing bacteria for basic research of the molecular regulation of arsenite oxidation in bacterial cells and for the environmentally friendly bioremediation of arsenic-contaminated groundwater.
Collapse
|
17
|
Zhang Z, Yin N, Cai X, Wang Z, Cui Y. Arsenic redox transformation by Pseudomonas sp. HN-2 isolated from arsenic-contaminated soil in Hunan, China. J Environ Sci (China) 2016; 47:165-173. [PMID: 27593283 DOI: 10.1016/j.jes.2015.11.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Revised: 10/12/2015] [Accepted: 11/04/2015] [Indexed: 06/06/2023]
Abstract
A mesophilic, Gram-negative, arsenite[As(III)]-oxidizing and arsenate[As(V)]-reducing bacterial strain, Pseudomonas sp. HN-2, was isolated from an As-contaminated soil. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that the strain was closely related to Pseudomonas stutzeri. Under aerobic conditions, this strain oxidized 92.0% (61.4μmol/L) of arsenite to arsenate within 3hr of incubation. Reduction of As(V) to As(III) occurred in anoxic conditions. Pseudomonas sp. HN-2 is among the first soil bacteria shown to be capable of both aerobic As(III) oxidation and anoxic As(V) reduction. The strain, as an efficient As(III) oxidizer and As(V) reducer in Pseudomonas, has the potential to impact arsenic mobility in both anoxic and aerobic environments, and has potential application in As remediation processes.
Collapse
Affiliation(s)
- Zhennan Zhang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Naiyi Yin
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaolin Cai
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Zhenzhou Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanshan Cui
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 101408, China; Research Center for Eco-environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
18
|
Arsenite oxidizing multiple metal resistant bacteria isolated from industrial effluent: their potential use in wastewater treatment. World J Microbiol Biotechnol 2016; 32:133. [DOI: 10.1007/s11274-016-2079-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
19
|
Tan LC, Nancharaiah YV, van Hullebusch ED, Lens PNL. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol Adv 2016; 34:886-907. [PMID: 27235190 DOI: 10.1016/j.biotechadv.2016.05.005] [Citation(s) in RCA: 238] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/26/2016] [Accepted: 05/21/2016] [Indexed: 10/21/2022]
Abstract
Selenium is an essential trace element needed for all living organisms. Despite its essentiality, selenium is a potential toxic element to natural ecosystems due to its bioaccumulation potential. Though selenium is found naturally in the earth's crust, especially in carbonate rocks and volcanic and sedimentary soils, about 40% of the selenium emissions to atmospheric and aquatic environments are caused by various industrial activities such as mining-related operations. In recent years, advances in water quality and pollution monitoring have shown that selenium is a contaminant of potential environmental concern. This has practical implications on industry to achieve the stringent selenium regulatory discharge limit of 5μgSeL(-1) for selenium containing wastewaters set by the United States Environmental Protection Agency. Over the last few decades, various technologies have been developed for the treatment of selenium-containing wastewaters. Biological selenium reduction has emerged as the leading technology for removing selenium from wastewaters since it offers a cheaper alternative compared to physico-chemical treatments and is suitable for treating dilute and variable selenium-laden wastewaters. Moreover, biological treatment has the advantage of forming elemental selenium nanospheres which exhibit unique optical and spectral properties for various industrial applications, i.e. medical, electrical, and manufacturing processes. However, despite the advances in biotechnology employing selenium reduction, there are still several challenges, particularly in achieving stringent discharge limits, the long-term stability of biogenic selenium and predicting the fate of bioreduced selenium in the environment. This review highlights the significance of selenium in the environment, health, and industry and biotechnological advances made in the treatment of selenium contaminated wastewaters. The challenges and future perspectives are overviewed considering recent biotechnological advances in the management of these selenium-laden wastewaters.
Collapse
Affiliation(s)
- Lea Chua Tan
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands.
| | - Yarlagadda V Nancharaiah
- Biofouling and Biofilm Process Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Kalpakkam, 603102 Tamil Nadu, India.
| | - Eric D van Hullebusch
- Université Paris-Est, Laboratoire Géomatériaux et Environnement (EA 4508), UPEM, 77454 Marne-la-Vallée, France.
| | - Piet N L Lens
- UNESCO-IHE Institute for Water Education, Westvest 7, 2611 AX Delft, The Netherlands; Department of Chemistry and Bioengineering, Tampere University of Technology, P.O-Box 541, Tampere, Finland.
| |
Collapse
|
20
|
Zhu YG, Yoshinaga M, Zhao FJ, Rosen BP. Earth Abides Arsenic Biotransformations. ANNUAL REVIEW OF EARTH AND PLANETARY SCIENCES 2014; 42:443-467. [PMID: 26778863 PMCID: PMC4712701 DOI: 10.1146/annurev-earth-060313-054942] [Citation(s) in RCA: 352] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Arsenic is the most prevalent environmental toxic element and causes health problems throughout the world. The toxicity, mobility, and fate of arsenic in the environment are largely determined by its speciation, and arsenic speciation changes are driven, at least to some extent, by biological processes. In this article, biotransformation of arsenic is reviewed from the perspective of the formation of Earth and the evolution of life, and the connection between arsenic geochemistry and biology is described. The article provides a comprehensive overview of molecular mechanisms of arsenic redox and methylation cycles as well as other arsenic biotransformations. It also discusses the implications of arsenic biotransformation in environmental remediation and food safety, with particular emphasis on groundwater arsenic contamination and arsenic accumulation in rice.
Collapse
Affiliation(s)
- Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People’s Republic of China
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, People’s Republic of China
| | - Masafumi Yoshinaga
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| | - Fang-Jie Zhao
- College of Resources & Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, People’s Republic of China
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, United Kingdom
| | - Barry P. Rosen
- Department of Cellular Biology and Pharmacology, Herbert Wertheim College of Medicine, Florida International University, Miami, Florida 33199
| |
Collapse
|
21
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
22
|
Corsini A, Zaccheo P, Muyzer G, Andreoni V, Cavalca L. Arsenic transforming abilities of groundwater bacteria and the combined use of Aliihoeflea sp. strain 2WW and goethite in metalloid removal. JOURNAL OF HAZARDOUS MATERIALS 2014; 269:89-97. [PMID: 24411461 DOI: 10.1016/j.jhazmat.2013.12.037] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 12/09/2013] [Accepted: 12/16/2013] [Indexed: 06/03/2023]
Abstract
Several technologies have been developed for lowering arsenic in drinking waters below the World Health Organization limit of 10 μg/L. When in the presence of the reduced form of inorganic arsenic, i.e. arsenite, one options is pre-oxidation of arsenite to arsenate and adsorption on iron-based materials. Microbial oxidation of arsenite is considered a sustainable alternative to the chemical oxidants. In this contest, the present study investigates arsenic redox transformation abilities of bacterial strains in reductive groundwater from Lombardia (Italy), where arsenite was the main arsenic species. Twenty isolates were able to reduce 75 mg/L arsenate to arsenite, and they were affiliated to the genera Pseudomonas, Achromobacter and Rhodococcus and genes of the ars operon were detected. Three arsenite oxidizing strains were isolated: they belonged to Rhodococcus sp., Achromobacter sp. and Aliihoeflea sp., and aioA genes for arsenite oxidase were detected in Aliihoeflea sp. strain 2WW and in Achromobacter sp. strain 1L. Uninduced resting cells of strain 2WW were used in combination with goethite for arsenic removal in a model system, in order to test the feasibility of an arsenic removal process. In the presence of 200 μg/L arsenite, the combined 2WW-goethite system removed 95% of arsenic, thus lowering it to 8 μg/L. These results indicate that arsenite oxidation by strain 2WW combined to goethite adsorption is a promising approach for arsenic removal from contaminated groundwater.
Collapse
Affiliation(s)
- Anna Corsini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali - Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy.
| | - Gerard Muyzer
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy; Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands.
| | - Vincenza Andreoni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l'Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| |
Collapse
|
23
|
Cavalca L, Corsini A, Zaccheo P, Andreoni V, Muyzer G. Microbial transformations of arsenic: perspectives for biological removal of arsenic from water. Future Microbiol 2013; 8:753-68. [DOI: 10.2217/fmb.13.38] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Arsenic is present in many environments and is released by various natural processes and anthropogenic actions. Although arsenic is recognized to cause a wide range of adverse health effects in humans, diverse bacteria can metabolize it by detoxification and energy conservation reactions. This review highlights the current understanding of the ecology, biochemistry and genomics of these bacteria, and their potential application in the treatment of arsenic-polluted water.
Collapse
Affiliation(s)
- Lucia Cavalca
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy.
| | - Anna Corsini
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Patrizia Zaccheo
- Dipartimento di Scienze Agrarie e Ambientali – Produzione, Territorio, Agroenergia (DiSAA), Università degli Studi di Milano, Milano, Italy
| | - Vincenza Andreoni
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
| | - Gerard Muyzer
- Dipartimento di Scienze per gli Alimenti, la Nutrizione e l’Ambiente (DeFENS), Università degli Studi di Milano, Milano, Italy
- Institute for Biodiversity & Ecosystem Dynamics, University of Amsterdam, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
24
|
The prokaryotic Mo/W-bisPGD enzymes family: a catalytic workhorse in bioenergetic. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1048-85. [PMID: 23376630 DOI: 10.1016/j.bbabio.2013.01.011] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 01/21/2013] [Accepted: 01/23/2013] [Indexed: 01/05/2023]
Abstract
Over the past two decades, prominent importance of molybdenum-containing enzymes in prokaryotes has been put forward by studies originating from different fields. Proteomic or bioinformatic studies underpinned that the list of molybdenum-containing enzymes is far from being complete with to date, more than fifty different enzymes involved in the biogeochemical nitrogen, carbon and sulfur cycles. In particular, the vast majority of prokaryotic molybdenum-containing enzymes belong to the so-called dimethylsulfoxide reductase family. Despite its extraordinary diversity, this family is characterized by the presence of a Mo/W-bis(pyranopterin guanosine dinucleotide) cofactor at the active site. This review highlights what has been learned about the properties of the catalytic site, the modular variation of the structural organization of these enzymes, and their interplay with the isoprenoid quinones. In the last part, this review provides an integrated view of how these enzymes contribute to the bioenergetics of prokaryotes. This article is part of a Special Issue entitled: Metals in Bioenergetics and Biomimetics Systems.
Collapse
|
25
|
van Lis R, Nitschke W, Duval S, Schoepp-Cothenet B. Arsenics as bioenergetic substrates. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1827:176-88. [PMID: 22982475 DOI: 10.1016/j.bbabio.2012.08.007] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/28/2012] [Accepted: 08/31/2012] [Indexed: 01/24/2023]
Abstract
Although at low concentrations, arsenic commonly occurs naturally as a local geological constituent. Whereas both arsenate and arsenite are strongly toxic to life, a number of prokaryotes use these compounds as electron acceptors or donors, respectively, for bioenergetic purposes via respiratory arsenate reductase, arsenite oxidase and alternative arsenite oxidase. The recent burst in discovered arsenite oxidizing and arsenate respiring microbes suggests the arsenic bioenergetic metabolisms to be anything but exotic. The first goal of the present review is to bring to light the widespread distribution and diversity of these metabolizing pathways. The second goal is to present an evolutionary analysis of these diverse energetic pathways. Taking into account not only the available data on the arsenic metabolizing enzymes and their phylogenetical relatives but also the palaeogeochemical records, we propose a crucial role of arsenite oxidation via arsenite oxidase in primordial life. This article is part of a Special Issue entitled: The evolutionary aspects of bioenergetic systems.
Collapse
Affiliation(s)
- Robert van Lis
- Laboratoire de Bioénergétique et Ingénierie des Protéines UMR 7281 CNRS/AMU, FR3479, F-13402 Marseille Cedex 20, France
| | | | | | | |
Collapse
|
26
|
Gounder K, Brzuszkiewicz E, Liesegang H, Wollherr A, Daniel R, Gottschalk G, Reva O, Kumwenda B, Srivastava M, Bricio C, Berenguer J, van Heerden E, Litthauer D. Sequence of the hyperplastic genome of the naturally competent Thermus scotoductus SA-01. BMC Genomics 2011; 12:577. [PMID: 22115438 PMCID: PMC3235269 DOI: 10.1186/1471-2164-12-577] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Accepted: 11/24/2011] [Indexed: 11/13/2022] Open
Abstract
Background Many strains of Thermus have been isolated from hot environments around the world. Thermus scotoductus SA-01 was isolated from fissure water collected 3.2 km below surface in a South African gold mine. The isolate is capable of dissimilatory iron reduction, growth with oxygen and nitrate as terminal electron acceptors and the ability to reduce a variety of metal ions, including gold, chromate and uranium, was demonstrated. The genomes from two different Thermus thermophilus strains have been completed. This paper represents the completed genome from a second Thermus species - T. scotoductus. Results The genome of Thermus scotoductus SA-01 consists of a chromosome of 2,346,803 bp and a small plasmid which, together are about 11% larger than the Thermus thermophilus genomes. The T. thermophilus megaplasmid genes are part of the T. scotoductus chromosome and extensive rearrangement, deletion of nonessential genes and acquisition of gene islands have occurred, leading to a loss of synteny between the chromosomes of T. scotoductus and T. thermophilus. At least nine large inserts of which seven were identified as alien, were found, the most remarkable being a denitrification cluster and two operons relating to the metabolism of phenolics which appear to have been acquired from Meiothermus ruber. The majority of acquired genes are from closely related species of the Deinococcus-Thermus group, and many of the remaining genes are from microorganisms with a thermophilic or hyperthermophilic lifestyle. The natural competence of Thermus scotoductus was confirmed experimentally as expected as most of the proteins of the natural transformation system of Thermus thermophilus are present. Analysis of the metabolic capabilities revealed an extensive energy metabolism with many aerobic and anaerobic respiratory options. An abundance of sensor histidine kinases, response regulators and transporters for a wide variety of compounds are indicative of an oligotrophic lifestyle. Conclusions The genome of Thermus scotoductus SA-01 shows remarkable plasticity with the loss, acquisition and rearrangement of large portions of its genome compared to Thermus thermophilus. Its ability to naturally take up foreign DNA has helped it adapt rapidly to a subsurface lifestyle in the presence of a dense and diverse population which acted as source of nutrients. The genome of Thermus scotoductus illustrates how rapid adaptation can be achieved by a highly dynamic and plastic genome.
Collapse
Affiliation(s)
- Kamini Gounder
- BioPAD Metagenomics Platform, Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein, South Africa
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Cuebas M, Villafane A, McBride M, Yee N, Bini E. Arsenate reduction and expression of multiple chromosomal ars operons in Geobacillus kaustophilus A1. Microbiology (Reading) 2011; 157:2004-2011. [DOI: 10.1099/mic.0.048678-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Geobacillus kaustophilus strain A1 was previously isolated from a geothermal environment for its ability to grow in the presence of high arsenate levels. In this study, the molecular mechanisms of arsenate resistance of the strain were investigated. As(V) was reduced to As(III), as shown by HPLC analysis. Consistent with the observation that the micro-organism is not capable of anaerobic growth, no respiratory arsenate reductases were identified. Using specific PCR primers based on the genome sequence of G. kaustophilus HTA426, three unlinked genes encoding detoxifying arsenate reductases were detected in strain A1. These genes were designated arsC1, arsC2 and arsC3. While arsC3 is a monocistronic locus, sequencing of the regions flanking arsC1 and arsC2 revealed the presence of additional genes encoding a putative arsenite transporter and an ArsR-like regulator upstream of each arsenate reductase, indicating the presence of sequences with putative roles in As(V) reduction, As(III) export and arsenic-responsive regulation. RT-PCR demonstrated that both sets of genes were co-transcribed. Furthermore, arsC1 and arsC2, monitored by quantitative real-time RT-PCR, were upregulated in response to As(V), while arsC3 was constitutively expressed at a low level. A mechanism for regulation of As(V) detoxification by Geobacillus that is both consistent with our findings and relevant to the biogeochemical cycle of arsenic and its mobility in the environment is proposed.
Collapse
Affiliation(s)
- Mariola Cuebas
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Aramis Villafane
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Michelle McBride
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| | - Nathan Yee
- Department of Environmental Sciences, Rutgers, The State University of New Jersey, 14 College Farm Road, New Brunswick, NJ 08901-8551, USA
| | - Elisabetta Bini
- Department of Biochemistry and Microbiology, Rutgers, The State University of New Jersey, 76 Lipman Drive, New Brunswick, NJ 08901-0231, USA
| |
Collapse
|
28
|
Kuroda M, Notaguchi E, Sato A, Yoshioka M, Hasegawa A, Kagami T, Narita T, Yamashita M, Sei K, Soda S, Ike M. Characterization of Pseudomonas stutzeri NT-I capable of removing soluble selenium from the aqueous phase under aerobic conditions. J Biosci Bioeng 2011; 112:259-64. [PMID: 21676651 DOI: 10.1016/j.jbiosc.2011.05.012] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 05/11/2011] [Accepted: 05/20/2011] [Indexed: 11/26/2022]
Abstract
Pseudomonas stutzeri strain NT-I was isolated from the drainage wastewater of a selenium refinery plant. This bacterium efficiently reduced selenate to elemental selenium without prolonged accumulation of selenite under aerobic conditions. Strain NT-I was able to reduce selenate completely at high concentrations (up to 10 mM) and selenite almost completely (up to 9 mM). In addition, higher concentrations of selenate and selenite were substantially reduced. Activity was observed under the following experimental conditions: 20-50°C, pH 7-9, and 0.05-20 g L(-1) NaCl for selenate reduction, and 20-50°C, pH 6-9, and 0.05-50 g L(-1) NaCl for selenite reduction. Under anaerobic conditions, selenate was reduced more rapidly, whereas selenite was not reduced at all. The high selenate- and selenite-reducing capability at high concentrations suggested that strain NT-I is suitable for the removal of selenium from high-strength industrial wastewater.
Collapse
Affiliation(s)
- Masashi Kuroda
- Division of Sustainable Energy and Environmental Engineering, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Sun W, Sierra-Alvarez R, Field JA. The role of denitrification on arsenite oxidation and arsenic mobility in an anoxic sediment column model with activated alumina. Biotechnol Bioeng 2011; 107:786-94. [PMID: 20662039 DOI: 10.1002/bit.22883] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Arsenite (As(III)) is the predominant arsenic (As) species in reducing environments. As(III) is less strongly adsorbed than As(V) at circumneutral pH conditions by common non-iron metal oxides in sediments such as those of aluminum. Therefore, oxidation of As(III) to As(V) could contribute to an improved immobilization of As and thus help mitigate As contamination in groundwater. Microbial oxidation of As(III) is known to readily under aerobic conditions, however, the dissolved oxygen (O₂) concentration in groundwater may be limited due to the poor solubility of O₂ and its high chemical reactivity with reduced compounds. Nitrate (NO₃⁻), can be considered as an alternative electron acceptor, which can support oxidation of As(III) to As(V) by denitrifying bacteria. In this study, two up-flow sediment columns packed with activated alumina (AA) were utilized to demonstrate the role of denitrification on the oxidation of As(III) to As(V) and its contribution to improved As adsorption onto AA. One column was supplied with NO₃⁻(C1) and its performance was compared with a control column lacking NO₃⁻(C2). During most of the operation when the pH was in the circumneutral range (days 50-250), the release of arsenic was greater from C2 compared to C1. The effluent As concentrations started increasing on days 60 and 100 in C2 and C1, respectively. Complete breakthrough started on day 200 in C2; whereas in C1, complete breakthrough was never achieved. The effluent and solid phase As speciation was dominated by As(V) in C1, indicating the occurrence of As(III) oxidation due to NO₃⁻; whereas in C2, only As(III) was dominant. This study illustrates a bioremediation or natural attenuation process based on anoxic microbial NO₃⁻-dependent oxidation of As(III) to more readily adsorbed As(V) as a means to enhance the immobilization of As on alumina oxide particles in subsurface environments.
Collapse
Affiliation(s)
- Wenjie Sun
- Department of Chemical and Environmental Engineering, University of Arizona, PO Box 210011, Tucson, Arizona, USA.
| | | | | |
Collapse
|
30
|
Gates AJ, Butler CS, Richardson DJ, Butt JN. Electrocatalytic reduction of nitrate and selenate by NapAB. Biochem Soc Trans 2011; 39:236-42. [PMID: 21265780 DOI: 10.1042/bst0390236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2025]
Abstract
Bacterial cellular metabolism is renowned for its metabolic diversity and adaptability. However, certain environments present particular challenges. Aerobic metabolism of highly reduced carbon substrates by soil bacteria such as Paracoccus pantotrophus presents one such challenge since it may result in excessive electron delivery to the respiratory redox chain when compared with the availability of terminal oxidant, O2. The level of a periplasmic ubiquinol-dependent nitrate reductase, NAP, is up-regulated in the presence of highly reduced carbon substrates. NAP oxidizes ubiquinol at the periplasmic face of the cytoplasmic membrane and reduces nitrate in the periplasm. Thus its activity counteracts the accumulation of excess reducing equivalents in ubiquinol, thereby maintaining the redox poise of the ubiquinone/ubiquinol pool without contributing to the protonmotive force across the cytoplasmic membrane. Although P. pantotrophus NapAB shows a high level of substrate specificity towards nitrate, the enzyme has also been reported to reduce selenate in spectrophotometric solution assays. This transaction draws on our current knowledge concerning the bacterial respiratory nitrate reductases and extends the application of PFE (protein film electrochemistry) to resolve and quantify the selenate reductase activity of NapAB.
Collapse
Affiliation(s)
- Andrew J Gates
- Centre for Molecular and Structural Biochemistry, School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, UK
| | | | | | | |
Collapse
|
31
|
Abstract
Microorganisms play a significant role in the speciation and mobility of arsenic in the environment. In this study, the oxidation of arsenite [As(III)] to arsenate [As(V)] linked to chlorate (ClO₃⁻) reduction was shown to be catalyzed by sludge samples, enrichment cultures (ECs), and pure cultures incubated under anaerobic conditions. No activity was observed in treatments lacking inoculum or with heat-killed sludge, or in controls lacking ClO₃⁻. The As(III) oxidation was linked to the complete reduction of ClO₃⁻ to Cl⁻, and the molar ratio of As(V) formed to ClO₃⁻ consumed approached the theoretical value of 3:1 assuming the e⁻ equivalents from As(III) were used to completely reduce ClO₃⁻. In keeping with O₂ as a putative intermediate of ClO₃⁻ reduction, the ECs could also oxidize As(III) to As(V) with O₂ at low concentrations. Low levels of organic carbon were essential in heterotrophic ECs but not in autotrophic ECs. 16S rRNA gene clone libraries indicated that the ECs were dominated by clones of Rhodocyclaceae (including Dechloromonas, Azospira, and Azonexus phylotypes) and Stenotrophomonas under autotrophic conditions. Additional phylotypes (Alicycliphilus, Agrobacterium, and Pseudoxanthomonas) were identified in heterotrophic ECs. Two isolated autotrophic pure cultures, Dechloromonas sp. strain ECC1-pb1 and Azospira sp. strain ECC1-pb2, were able to grow by linking the oxidation of As(III) to As(V) with the reduction of ClO₃⁻. The presence of the arsenite oxidase subunit A (aroA) gene was demonstrated with PCR in the ECs and pure cultures. This study demonstrates that ClO₃⁻ is an alternative electron acceptor to support the microbial oxidation of As(III).
Collapse
|
32
|
Yamamura S, Watanabe M, Yamamoto N, Sei K, Ike M. Potential for microbially mediated redox transformations and mobilization of arsenic in uncontaminated soils. CHEMOSPHERE 2009; 77:169-174. [PMID: 19716583 DOI: 10.1016/j.chemosphere.2009.07.071] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 05/28/2023]
Abstract
Surface soil samples, which had no significant As contamination, were examined for As(V) reduction, As(III) oxidation and As mobilization capability. All five soil samples tested exhibited microbial As(V)-reducing activities both in aerobic and anaerobic conditions. Under aerobic conditions when As(V) reduction had almost ceased, oxidation of As(III) to As(V) occurred, whereas only As(V) reduction was observed under anaerobic conditions. In cultures incubated with As(III), As(III) was oxidized by indigenous soil microbes only under aerobic conditions. These results indicate that microbial redox transformations of As are ubiquitous in the natural environment regardless of background As levels. Mobilization through microbially mediated As(V) and Fe(III) reduction occurred both in the presence and absence of oxygen. Significant variation in dissolved As occurred depending on the Fe contents of soils, and re-immobilization of As arose in the presence of oxygen, presumably as a consequence of dissolved As(III) and Fe(II) oxidation. There was no apparent correlation between dissolved Fe(II) and As, suggesting that reductive dissolution of Fe(III) minerals does not necessarily determine the extent of As release from soils.
Collapse
Affiliation(s)
- Shigeki Yamamura
- National Institute for Environmental Studies, Tsukuba, Ibaraki, Japan.
| | | | | | | | | |
Collapse
|
33
|
Baesman SM, Stolz JF, Kulp TR, Oremland RS. Enrichment and isolation of Bacillus beveridgei sp. nov., a facultative anaerobic haloalkaliphile from Mono Lake, California, that respires oxyanions of tellurium, selenium, and arsenic. Extremophiles 2009; 13:695-705. [PMID: 19536453 DOI: 10.1007/s00792-009-0257-z] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 05/28/2009] [Indexed: 11/30/2022]
Abstract
Mono Lake sediment slurries incubated with lactate and tellurite [Te(IV)] turned progressively black with time because of the precipitation of elemental tellurium [Te(0)]. An enrichment culture was established from these slurries that demonstrated Te(IV)-dependent growth. The enrichment was purified by picking isolated black colonies from lactate/Te(IV) agar plates, followed by repeated streaking and picking. The isolate, strain MLTeJB, grew in aqueous Te(IV)-medium if provided with a small amount of sterile solid phase material (e.g., agar plug; glass beads). Strain MLTeJB grew at high concentrations of Te(IV) (~8 mM) by oxidizing lactate to acetate plus formate, while reducing Te(IV) to Te(0). Other electron acceptors that were found to sustain growth were tellurate, selenate, selenite, arsenate, nitrate, nitrite, fumarate and oxygen. Notably, growth on arsenate, nitrate, nitrite and fumarate did not result in the accumulation of formate, implying that in these cases lactate was oxidized to acetate plus CO(2). Strain MLTeJB is a low G + C Gram positive motile rod with pH, sodium, and temperature growth optima at 8.5-9.0, 0.5-1.5 M, and 40 degrees C, respectively. The epithet Bacillus beveridgei strain MLTeJB(T) is proposed.
Collapse
Affiliation(s)
- S M Baesman
- U.S. Geological Survey, Menlo Park, CA 94025, USA
| | | | | | | |
Collapse
|
34
|
Handley KM, Héry M, Lloyd JR. Redox cycling of arsenic by the hydrothermal marine bacteriumMarinobacter santoriniensis. Environ Microbiol 2009; 11:1601-11. [DOI: 10.1111/j.1462-2920.2009.01890.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Navarro JB, Moser DP, Flores A, Ross C, Rosen MR, Dong H, Zhang G, Hedlund BP. Bacterial succession within an ephemeral hypereutrophic Mojave Desert playa Lake. MICROBIAL ECOLOGY 2009; 57:307-320. [PMID: 18758846 DOI: 10.1007/s00248-008-9426-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2008] [Accepted: 07/03/2008] [Indexed: 05/26/2023]
Abstract
Ephemerally wet playas are conspicuous features of arid landscapes worldwide; however, they have not been well studied as habitats for microorganisms. We tracked the geochemistry and microbial community in Silver Lake playa, California, over one flooding/desiccation cycle following the unusually wet winter of 2004-2005. Over the course of the study, total dissolved solids increased by approximately 10-fold and pH increased by nearly one unit. As the lake contracted and temperatures increased over the summer, a moderately dense planktonic population of approximately 1x10(6) cells ml(-1) of culturable heterotrophs was replaced by a dense population of more than 1x10(9) cells ml(-1), which appears to be the highest concentration of culturable planktonic heterotrophs reported in any natural aquatic ecosystem. This correlated with a dramatic depletion of nitrate as well as changes in the microbial community, as assessed by small subunit ribosomal RNA gene sequencing of bacterial isolates and uncultivated clones. Isolates from the early-phase flooded playa were primarily Actinobacteria, Firmicutes, and Bacteroidetes, yet clone libraries were dominated by Betaproteobacteria and yet uncultivated Actinobacteria. Isolates from the late-flooded phase ecosystem were predominantly Proteobacteria, particularly alkalitolerant isolates of Rhodobaca, Porphyrobacter, Hydrogenophaga, Alishwenella, and relatives of Thauera; however, clone libraries were composed almost entirely of Synechococcus (Cyanobacteria). A sample taken after the playa surface was completely desiccated contained diverse culturable Actinobacteria typically isolated from soils. In total, 205 isolates and 166 clones represented 82 and 44 species-level groups, respectively, including a wide diversity of Proteobacteria, Bacteroidetes, Actinobacteria, Firmicutes, Gemmatimonadetes, Acidobacteria, and Cyanobacteria.
Collapse
Affiliation(s)
- Jason B Navarro
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV 89154-4004, USA
| | | | | | | | | | | | | | | |
Collapse
|