1
|
Demars M, McDowell T, Renaud JB, Scott A, Fruci M, Topp E. Persistence and evidence for accelerated biodegradation of streptomycin in agricultural soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172502. [PMID: 38636872 DOI: 10.1016/j.scitotenv.2024.172502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/12/2024] [Accepted: 04/13/2024] [Indexed: 04/20/2024]
Abstract
Some antibiotics are used for the treatment of various bacterial crop diseases, and there is a concern that this practice may represent a selection pressure that increases the reservoir of antibiotic resistance carried by bacteria in crop production systems. Since the 1950s the aminoglycoside antibiotic streptomycin has been widely used for the treatment of some bacterial crop diseases such as fire blight in apples and pears. Following application, the time that bacteria will be exposed to the antibiotic, and therefore the pressure for selection of resistance, will vary according to the environmental persistence of the antibiotic. In the present study, the dissipation of streptomycin was examined in soils supplemented with 5 mg streptomycin/kg soil and incubated for 21 days under laboratory conditions. The impact of two key rate-controlling variables, soil texture (sandy loam, loam, clay loam) and temperature (4, 20, 30 °C) on streptomycin persistence were explored. -Robust methods for streptomycin extraction and analysis by LC-MS/MS were developed. Streptomycin dissipation followed first order kinetics, with the time to dissipate 50 % of the parent compound (DT50) in soils of varying texture incubated at 20 °C ranging from about seven to 15 days. In contrast, the DT50 of streptomycin in autoclaved loam soil incubated at 20 °C was about 111 days. At 4 °C the DT50 ranged from 49 to 137 days. Under no incubation conditions were any extractable transformation products obtained. Streptomycin was dissipated significantly more rapidly in field soil that had a prior history of exposure to the antibiotic than in soil that did not. Taken together, these results indicate that streptomycin is amenable to biodegradation in agricultural soils with DT50s of several days when temperature is permissive.
Collapse
Affiliation(s)
- Megan Demars
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada; Department of Biology, University of Western Ontario, London, ON, Canada
| | - Tim McDowell
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Justin B Renaud
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Andrew Scott
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada
| | - Michael Fruci
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada; Department of Microbiology and Immunology, University of Western Ontario, London, ON, Canada
| | - Edward Topp
- London Research and Development Centre, Agriculture and Agri-Food Canada, London, ON, Canada; Department of Biology, University of Western Ontario, London, ON, Canada.
| |
Collapse
|
2
|
Boutin S, Lussier E, Laforest-Lapointe I. Investigating the spatiotemporal dynamics of apple tree phyllosphere bacterial and fungal communities across cultivars in orchards. Can J Microbiol 2024; 70:238-251. [PMID: 38452350 DOI: 10.1139/cjm-2023-0215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
The phyllosphere, a reservoir of diverse microbial life associated with plant health, harbors microbial communities that are subject to various complex ecological processes acting at multiple scales. In this study, we investigated the determinants of the spatiotemporal variation in bacterial and fungal communities within the apple tree phyllosphere, employing 16S and ITS amplicon sequencing. Our research assessed the impact of key factors-plant compartment, site, time, and cultivar-on the composition and diversity of leaf and flower microbial communities. Our analyses, based on samples collected from three cultivars in three orchards in 2022, revealed that site and time are the strongest drivers of apple tree phyllosphere microbial communities. Conversely, plant compartment and cultivar exhibited minor roles in explaining community composition and diversity. Predominantly, bacterial communities comprised Hymenobacter (25%) and Sphingomonas (10%), while the most relatively abundant fungal genera included Aureobasidium (27%) and Sporobolomyces (10%). Additionally, our results show a gradual decrease in alpha-diversity throughout the growth season. These findings emphasize the necessity to consider local microbial ecology dynamics in orchards, especially as many groups worldwide aim for the development of biocontrol strategies (e.g., by manipulating plant-microbe interactions). More research is needed to improve our understanding of the determinants of time and site-specific disparities within apple tree phyllosphere microbial communities across multiple years, locations, and cultivars.
Collapse
Affiliation(s)
- Sophie Boutin
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Ema Lussier
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| | - Isabelle Laforest-Lapointe
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
- Centre SÈVE, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada
| |
Collapse
|
3
|
Batuman O, Britt-Ugartemendia K, Kunwar S, Yilmaz S, Fessler L, Redondo A, Chumachenko K, Chakravarty S, Wade T. The Use and Impact of Antibiotics in Plant Agriculture: A Review. PHYTOPATHOLOGY 2024; 114:885-909. [PMID: 38478738 DOI: 10.1094/phyto-10-23-0357-ia] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Growers have depended on the specificity and efficacy of streptomycin and oxytetracycline as a part of their plant disease arsenal since the middle of the 20th century. With climate change intensifying plant bacterial epidemics, the established success of these antibiotics remains threatened. Our strong reliance on certain antibiotics for devastating diseases eventually gave way to resistance development. Although antibiotics in plant agriculture equal to less than 0.5% of overall antibiotic use in the United States, it is still imperative for humans to continue to monitor usage, environmental residues, and resistance in bacterial populations. This review provides an overview of the history and use, resistance and mitigation, regulation, environmental impact, and economics of antibiotics in plant agriculture. Bacterial issues, such as the ongoing Huanglongbing (citrus greening) epidemic in Florida citrus production, may need antibiotics for adequate control. Therefore, preserving the efficacy of our current antibiotics by utilizing more targeted application methods, such as trunk injection, should be a major focus. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.
Collapse
Affiliation(s)
- Ozgur Batuman
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kellee Britt-Ugartemendia
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Sanju Kunwar
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Salih Yilmaz
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Lauren Fessler
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Ana Redondo
- Department of Plant Pathology, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Kseniya Chumachenko
- Department of Wildlife Ecology and Conservation, University of Florida, Gainesville, FL
| | - Shourish Chakravarty
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| | - Tara Wade
- Department of Food and Resource Economics, Southwest Florida Research and Education Center, University of Florida, Immokalee, FL
| |
Collapse
|
4
|
Wang Y, Liu Z, Hao X, Wang Z, Wang Z, Liu S, Tao C, Wang D, Wang B, Shen Z, Shen Q, Li R. Biodiversity of the beneficial soil-borne fungi steered by Trichoderma-amended biofertilizers stimulates plant production. NPJ Biofilms Microbiomes 2023; 9:46. [PMID: 37407614 DOI: 10.1038/s41522-023-00416-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
The soil microbiota is critical to plant performance. Improving the ability of plant-associated soil probiotics is thus essential for establishing dependable and sustainable crop yields. Although fertilizer applications may provide an effective way of steering soil microbes, it is still unknown how the positive effects of soil-borne probiotics can be maximized and how their effects are mediated. This work aims to seek the ecological mechanisms involved in cabbage growth using bio-organic fertilizers. We conducted a long-term field experiment in which we amended soil with non-sterilized organic or sterilized organic fertilizer either containing Trichoderma guizhouense NJAU4742 or lacking this inoculum and tracked cabbage plant growth and the soil fungal community. Trichoderma-amended bio-organic fertilizers significantly increased cabbage plant biomass and this effect was attributed to changes in the resident fungal community composition, including an increase in the relative abundance and number of indigenous soil growth-promoting fungal taxa. We specifically highlight the fundamental role of the biodiversity and population density of these plant-beneficial fungal taxa in improving plant growth. Together, our results suggest that the beneficial effects of bio-organic fertilizer seem to be a combination of the biological inoculum within the organic amendment as well as the indirect promotion through effects on the diversity and composition of the soil resident plant-beneficial fungal microbiome.
Collapse
Affiliation(s)
- Yan Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Zhengyang Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Xinyi Hao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Ziqi Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Zhe Wang
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Shanshan Liu
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
| | - Chengyuan Tao
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China.
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China.
| | - Dongsheng Wang
- Nanjing Institute of Vegetable Science, Nanjing, 210042, Jiangsu, P. R. China
| | - Bei Wang
- Nanjing Institute of Vegetable Science, Nanjing, 210042, Jiangsu, P. R. China
| | - Zongzhuan Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Qirong Shen
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| | - Rong Li
- Jiangsu Provincial Key Lab of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center of Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Laboratory of Bio-interactions and Crop Health, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, P. R. China
- The Sanya Institute of Nanjing Agricultural University, Sanya, 572000, Hainan, P. R. China
| |
Collapse
|
5
|
Verhaegen M, Bergot T, Liebana E, Stancanelli G, Streissl F, Mingeot-Leclercq MP, Mahillon J, Bragard C. On the use of antibiotics to control plant pathogenic bacteria: a genetic and genomic perspective. Front Microbiol 2023; 14:1221478. [PMID: 37440885 PMCID: PMC10333595 DOI: 10.3389/fmicb.2023.1221478] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Despite growing attention, antibiotics (such as streptomycin, oxytetracycline or kasugamycin) are still used worldwide for the control of major bacterial plant diseases. This raises concerns on their potential, yet unknown impact on antibiotic and multidrug resistances and the spread of their genetic determinants among bacterial pathogens. Antibiotic resistance genes (ARGs) have been identified in plant pathogenic bacteria (PPB), with streptomycin resistance genes being the most commonly reported. Therefore, the contribution of mobile genetic elements (MGEs) to their spread among PPB, as well as their ability to transfer to other bacteria, need to be further explored. The only well-documented example of ARGs vector in PPB, Tn5393 and its highly similar variants (carrying streptomycin resistance genes), is concerning because of its presence outside PPB, in Salmonella enterica and Klebsiella pneumoniae, two major human pathogens. Although its structure among PPB is still relatively simple, in human- and animal-associated bacteria, Tn5393 has evolved into complex associations with other MGEs and ARGs. This review sheds light on ARGs and MGEs associated with PPB, but also investigates the potential role of antibiotic use in resistance selection in plant-associated bacteria.
Collapse
Affiliation(s)
- Marie Verhaegen
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Thomas Bergot
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | | | | | | | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit, Louvain Drug Research Institute, UCLouvain, Woluwe-Saint-Lambert, Belgium
| | - Jacques Mahillon
- Laboratory of Food and Environmental Microbiology, Earth and Life Institute, Catholic University of Louvain (UCLouvain), Louvain-la-Neuve, Belgium
| | - Claude Bragard
- Plant Health Laboratory, Earth and Life Institute, UCLouvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
6
|
Coates J, Bostick KJ, Jones BA, Caston N, Ayalew M. What is the impact of aminoglycoside exposure on soil and plant root-associated microbiota? A systematic review protocol. ENVIRONMENTAL EVIDENCE 2022; 11:18. [PMID: 39294802 PMCID: PMC11378799 DOI: 10.1186/s13750-022-00274-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 04/28/2022] [Indexed: 09/21/2024]
Abstract
BACKGROUND Aminoglycosides are potent bactericidal antibiotics naturally produced by soil microorganisms and are commonly used in agriculture. Exposure to these antibiotics has the potential to cause shifts in the microorganisms that impact plant health. The systematic review described in this protocol will compile and synthesize literature on soil and plant root-associated microbiota, with special attention to aminoglycoside exposure. The systematic review should provide insight into how the soil and plant microbiota are impacted by aminoglycoside exposure with specific attention to the changes in the overall species richness and diversity (microbial composition), changes of the resistome (i.e. the changes in the quantification of resistance genes), and maintenance of plant health through suppression of pathogenic bacteria. Moreover, the proposed contribution will provide comprehensive information about data available to guide future primary research studies. This systematic review protocol is based on the question, "What is the impact of aminoglycoside exposure on the soil and plant root-associated microbiota?". METHODS A boolean search of academic databases and specific websites will be used to identify research articles, conference presentations and grey literature meeting the search criteria. All search results will be compiled and duplicates removed before title and abstract screening. Two reviewers will screen all the included titles and abstracts using a set of predefined inclusion criteria. Full-texts of all titles and abstracts meeting the eligibility criteria will be screened independently by two reviewers. Inclusion criteria will describe the eligible soil and plant root-associated microbiome populations of interest and eligible aminoglycosides constituting our exposure. Study validity will be evaluated using the CEE Critical Appraisal Tool Version 0.2 (Prototype) to evaluate the risk of bias in publications. Data from studies with a low risk of bias will be extracted and compiled into a narrative synthesis and summarized into tables and figures. If sufficient evidence is available, findings will be used to perform a meta-analysis.
Collapse
Affiliation(s)
- Jessica Coates
- Microbiology and Molecular Genetics Graduate Program, Graduate Division of Biological and Biomedical Sciences, Emory University, Atlanta, GA, 30329, USA
| | - Kathleen J Bostick
- Department of Biology, Spelman College, 350 Spelman Lane, Atlanta, GA, 30314, USA
| | - Brooke A Jones
- Division of Natural Sciences and Mathematics, Miles College, 5500 Myron Massy Blvd, Fairfield, AL, 35064, USA
| | - Nymeer Caston
- Department of Biological and Environmental Sciences, Alabama A&M University, 4900 Meridian Street N, Huntsville, AL, 35811, USA
| | - Mentewab Ayalew
- Biology Department, Spelman College, 350 Spelman Lane, Atlanta, GA, 30314, USA.
| |
Collapse
|
7
|
Hu J, Yang T, Friman VP, Kowalchuk GA, Hautier Y, Li M, Wei Z, Xu Y, Shen Q, Jousset A. Introduction of probiotic bacterial consortia promotes plant growth via impacts on the resident rhizosphere microbiome. Proc Biol Sci 2021; 288:20211396. [PMID: 34641724 PMCID: PMC8511750 DOI: 10.1098/rspb.2021.1396] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Plant growth depends on a range of functions provided by their associated rhizosphere microbiome, including nutrient mineralization, hormone co-regulation and pathogen suppression. Improving the ability of plant-associated microbiomes to deliver these functions is thus important for developing robust and sustainable crop production. However, it is yet unclear how beneficial effects of probiotic microbial inoculants can be optimized and how their effects are mediated. Here, we sought to enhance tomato plant growth by targeted introduction of probiotic bacterial consortia consisting of up to eight plant-associated Pseudomonas strains. We found that the effect of probiotic consortium inoculation was richness-dependent: consortia that contained more Pseudomonas strains reached higher densities in the tomato rhizosphere and had clearer beneficial effects on multiple plant growth characteristics. Crucially, these effects were best explained by changes in the resident community diversity, composition and increase in the relative abundance of initially rare taxa, instead of introduction of plant-beneficial traits into the existing community along with probiotic consortia. Together, our results suggest that beneficial effects of microbial introductions can be driven indirectly through effects on the diversity and composition of the resident plant rhizosphere microbiome.
Collapse
Affiliation(s)
- Jie Hu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant immunity, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China.,Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| | - Tianjie Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant immunity, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China
| | - Ville-Petri Friman
- Department of Biology, University of York, Wentworth Way, York YO10 5DD, UK
| | - George A Kowalchuk
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| | - Yann Hautier
- Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| | - Mei Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant immunity, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China.,Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| | - Zhong Wei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant immunity, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant immunity, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant immunity, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China
| | - Alexandre Jousset
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, Key Lab of Plant immunity, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Weigang 1, Nanjing 210095, People's Republic of China.,Institute for Environmental Biology, Ecology and Biodiversity, Utrecht University, Padualaan 8, Utrecht 3584CH, The Netherlands
| |
Collapse
|
8
|
Khan SJ, Osborn AM, Eswara PJ. Effect of Sunlight on the Efficacy of Commercial Antibiotics Used in Agriculture. Front Microbiol 2021; 12:645175. [PMID: 34140934 PMCID: PMC8203823 DOI: 10.3389/fmicb.2021.645175] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/28/2021] [Indexed: 11/13/2022] Open
Abstract
Antibiotic stewardship is of paramount importance to limit the emergence of antibiotic-resistant bacteria in not only hospital settings, but also in animal husbandry, aquaculture, and agricultural sectors. Currently, large quantities of antibiotics are applied to treat agricultural diseases like citrus greening disease (CGD). The two commonly used antibiotics approved for this purpose are streptomycin and oxytetracycline. Although investigations are ongoing to understand how efficient this process is to control the spread of CGD, to our knowledge, there have been no studies that evaluate the effect of environmental factors such as sunlight on the efficacy of the above-mentioned antibiotics. We conducted a simple disc-diffusion assay to study the efficacy of streptomycin and oxytetracycline after exposure to sunlight for 7- or 14-day periods using Escherichia coli and Bacillus subtilis as the representative strains of Gram-negative and Gram-positive organisms, respectively. Freshly prepared discs and discs stored in the dark for 7 or 14 days served as our controls. We show that the antibiotic potential of oxytetracycline exposed to sunlight dramatically decreases over the course of 14 days against both E. coli and B. subtilis. However, the effectiveness of streptomycin was only moderately impacted by sunlight. It is important to note that antibiotics that last longer in the environment may play a deleterious role in the rise and spread of antibiotic-resistant bacteria. Further studies are needed to substantively analyze the safety and efficacy of antibiotics used for broader environmental applications.
Collapse
Affiliation(s)
| | | | - Prahathees J. Eswara
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, United States
| |
Collapse
|
9
|
Sodhi KK, Kumar M, Balan B, Dhaulaniya AS, Shree P, Sharma N, Singh DK. Perspectives on the antibiotic contamination, resistance, metabolomics, and systemic remediation. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-020-04003-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
AbstractAntibiotics have been regarded as the emerging contaminants because of their massive use in humans and veterinary medicines and their persistence in the environment. The global concern of antibiotic contamination to different environmental matrices and the emergence of antibiotic resistance has posed a severe impact on the environment. Different mass-spectrometry-based techniques confirm their presence in the environment. Antibiotics are released into the environment through the wastewater steams and runoff from land application of manure. The microorganisms get exposed to the antibiotics resulting in the development of antimicrobial resistance. Consistent release of the antibiotics, even in trace amount into the soil and water ecosystem, is the major concern because the antibiotics can lead to multi-resistance in bacteria which can cause hazardous effects on agriculture, aquaculture, human, and livestock. A better understanding of the correlation between the antibiotic use and occurrence of antibiotic resistance can help in the development of policies to promote the judicious use of antibiotics. The present review puts a light on the remediation, transportation, uptake, and antibiotic resistance in the environment along with a novel approach of creating a database for systemic remediation, and metabolomics for the cleaner and safer environment.
Collapse
|
10
|
Liu J, Yu F, Call DR, Mills DA, Zhang A, Zhao Z. On-farm soil resistome is modified after treating dairy calves with the antibiotic florfenicol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 750:141694. [PMID: 32871373 DOI: 10.1016/j.scitotenv.2020.141694] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
We determined the immediate impact of exposure to antibiotic-treated animals on housing soil microbiome and resistome. Fecal (n = 36) and soil (n = 108) samples from dairy calves (n = 6) treated with and without florfenicol over 30 days were collected. There were temporary changes in the gut microbiome of antibiotic-treated calves as measured by Shannon diversity (16S rRNA gene sequencing; P = 0.03), but not in the housing soil microbiome (P > 0.05). Droplet-digital PCR demonstrated that floR gene increased by 1-log in soil exposed to treated animals (P < 0.001), but it remained relatively stable in the control soil whereby calves were not treated with antibiotic. Resistome in exposed soil was largely modified (P = 0.004) with the overall prevalence of antimicrobial resistance genes (ARGs) significantly elevated (3.8-fold increase by day 10; P = 0.01). In addition to florfenicol, enriched ARGs collectively conferring resistance to tetracyclines, aminoglycosides, sulfonamides, elfamycins, macrolides-lincosamides-streptrogramin A/B, and beta-lactams. Quantitative PCR validated that ARGs including str and tetG in soil exposed to florfenicol-treated calves had gradually increased fold-change difference relative to the control soil over time. Moreover, a greater diversity of transferrable ARGs was observed in exposed soil and these were associated with a greater diversity of bacterial species. Evaluation of on-farm effects to soil in situ after exposure to antibiotic-treated animals can help design effective managements to mitigate antibiotic resistance in food-animal production.
Collapse
Affiliation(s)
- Jinxin Liu
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, USA; Foods for Health Institute, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Feng Yu
- School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Douglas R Call
- Paul G. Allen School for Global Animal Health, College of Veterinary Medicine, Washington State University, Pullman, WA 99164, USA
| | - David A Mills
- Department of Food Science and Technology, Robert Mondavi Institute for Wine and Food Science, University of California, Davis, CA 95616, USA; Foods for Health Institute, University of California, One Shields Ave., Davis, CA 95616, USA; Department of Viticulture and Enology, Robert Mondavi Institute for Wine and Food Science, University of California, One Shields Ave., Davis, CA 95616, USA
| | - Anyun Zhang
- Animal Disease Prevention and Food Safety Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu, Sichuan, PR China
| | - Zhe Zhao
- Institute of Marine Biology, College of Oceanography, Hohai University, Nanjing, Jiangsu, PR China.
| |
Collapse
|
11
|
Arrigoni E, Albanese D, Longa CMO, Angeli D, Donati C, Ioriatti C, Pertot I, Perazzolli M. Tissue age, orchard location and disease management influence the composition of fungal and bacterial communities present on the bark of apple trees. Environ Microbiol 2020; 22:2080-2093. [PMID: 32114708 DOI: 10.1111/1462-2920.14963] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 01/09/2023]
Abstract
Plants host microbial communities that can be affected by environmental conditions and agronomic practices. Despite the role of bark as a reservoir of plant pathogens and beneficial microorganisms, no information is available on the effects of disease management on the taxonomic composition of the bark-associated communities of apple trees. We assessed the impact of disease management strategies on fungal and bacterial communities on the bark of a scab-resistant apple cultivar in two orchard locations and for two consecutive seasons. The amplicon sequencing revealed that bark age and orchard location strongly affected fungal and bacterial diversity. Microbiota dissimilarity between orchards evolved during the growing season and showed specific temporal series for fungal and bacterial populations in old and young bark. Disease management did not induce global changes in the microbial populations across locations and seasons, but specifically affected the abundance of some taxa according to bark age, orchard location and sampling time. Therefore, the disease management applied to scab-resistant cultivars, which is based on a limited use of fungicides, partially changed the taxonomic composition of bark-associated fungal and bacterial communities, suggesting the need for a more accurate risk assessment regarding possible pathogen outbreaks.
Collapse
Affiliation(s)
- Elena Arrigoni
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy.,Department of Agricultural and Environmental Sciences, University of Udine, 33100, Udine, Italy
| | - Davide Albanese
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | | | - Dario Angeli
- Technology Transfer Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Claudio Donati
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Claudio Ioriatti
- Technology Transfer Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy
| | - Ilaria Pertot
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, Italy
| | - Michele Perazzolli
- Research and Innovation Centre, Fondazione Edmund Mach, 38010, San Michele all'Adige, Italy.,Center Agriculture Food Environment (C3A), University of Trento, 38010, San Michele all'Adige, Italy
| |
Collapse
|
12
|
Cycoń M, Mrozik A, Piotrowska-Seget Z. Antibiotics in the Soil Environment-Degradation and Their Impact on Microbial Activity and Diversity. Front Microbiol 2019; 10:338. [PMID: 30906284 PMCID: PMC6418018 DOI: 10.3389/fmicb.2019.00338] [Citation(s) in RCA: 419] [Impact Index Per Article: 69.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 02/08/2019] [Indexed: 01/11/2023] Open
Abstract
Antibiotics play a key role in the management of infectious diseases in humans, animals, livestock, and aquacultures all over the world. The release of increasing amount of antibiotics into waters and soils creates a potential threat to all microorganisms in these environments. This review addresses issues related to the fate and degradation of antibiotics in soils and the impact of antibiotics on the structural, genetic and functional diversity of microbial communities. Due to the emergence of bacterial resistance to antibiotics, which is considered a worldwide public health problem, the abundance and diversity of antibiotic resistance genes (ARGs) in soils are also discussed. When antibiotic residues enter the soil, the main processes determining their persistence are sorption to organic particles and degradation/transformation. The wide range of DT50 values for antibiotic residues in soils shows that the processes governing persistence depend on a number of different factors, e.g., physico-chemical properties of the residue, characteristics of the soil, and climatic factors (temperature, rainfall, and humidity). The results presented in this review show that antibiotics affect soil microorganisms by changing their enzyme activity and ability to metabolize different carbon sources, as well as by altering the overall microbial biomass and the relative abundance of different groups (i.e., Gram-negative bacteria, Gram-positive bacteria, and fungi) in microbial communities. Studies using methods based on analyses of nucleic acids prove that antibiotics alter the biodiversity of microbial communities and the presence of many types of ARGs in soil are affected by agricultural and human activities. It is worth emphasizing that studies on ARGs in soil have resulted in the discovery of new genes and enzymes responsible for bacterial resistance to antibiotics. However, many ambiguous results indicate that precise estimation of the impact of antibiotics on the activity and diversity of soil microbial communities is a great challenge.
Collapse
Affiliation(s)
- Mariusz Cycoń
- Department of Microbiology and Virology, School of Pharmacy with the Division of Laboratory Medicine, Medical University of Silesia, Sosnowiec, Poland
| | - Agnieszka Mrozik
- Department of Biochemistry, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| | - Zofia Piotrowska-Seget
- Department of Microbiology, Faculty of Biology and Environmental Protection, University of Silesia, Katowice, Poland
| |
Collapse
|
13
|
Abstract
Antibiotics have been used for the management of relatively few bacterial plant diseases and are largely restricted to high-value fruit crops because of the expense involved. Antibiotic resistance in plant-pathogenic bacteria has become a problem in pathosystems where these antibiotics have been used for many years. Where the genetic basis for resistance has been examined, antibiotic resistance in plant pathogens has most often evolved through the acquisition of a resistance determinant via horizontal gene transfer. For example, the strAB streptomycin-resistance genes occur in Erwinia amylovora, Pseudomonas syringae, and Xanthomonas campestris, and these genes have presumably been acquired from nonpathogenic epiphytic bacteria colocated on plant hosts under antibiotic selection. We currently lack knowledge of the effect of the microbiome of commensal organisms on the potential of plant pathogens to evolve antibiotic resistance. Such knowledge is critical to the development of robust resistance management strategies to ensure the safe and effective continued use of antibiotics in the management of critically important diseases.
Collapse
Affiliation(s)
- George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, Michigan 48824, USA;
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, Florida 33850, USA
| |
Collapse
|
14
|
Jin T, Wang Y, Huang Y, Xu J, Zhang P, Wang N, Liu X, Chu H, Liu G, Jiang H, Li Y, Xu J, Kristiansen K, Xiao L, Zhang Y, Zhang G, Du G, Zhang H, Zou H, Zhang H, Jie Z, Liang S, Jia H, Wan J, Lin D, Li J, Fan G, Yang H, Wang J, Bai Y, Xu X. Taxonomic structure and functional association of foxtail millet root microbiome. Gigascience 2018; 6:1-12. [PMID: 29050374 PMCID: PMC7059795 DOI: 10.1093/gigascience/gix089] [Citation(s) in RCA: 170] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 08/28/2017] [Indexed: 01/09/2023] Open
Abstract
The root microbes play pivotal roles in plant productivity, nutrient uptakes, and disease resistance. The root microbial community structure has been extensively investigated by 16S/18S/ITS amplicons and metagenomic sequencing in crops and model plants. However, the functional associations between root microbes and host plant growth are poorly understood. This work investigates the root bacterial community of foxtail millet (Setaria italica) and its potential effects on host plant productivity. We determined the bacterial composition of 2882 samples from foxtail millet rhizoplane, rhizosphere and corresponding bulk soils from 2 well-separated geographic locations by 16S rRNA gene amplicon sequencing. We identified 16 109 operational taxonomic units (OTUs), and defined 187 OTUs as shared rhizoplane core OTUs. The β-diversity analysis revealed that microhabitat was the major factor shaping foxtail millet root bacterial community, followed by geographic locations. Large-scale association analysis identified the potential beneficial bacteria correlated with plant high productivity. Besides, the functional prediction revealed specific pathways enriched in foxtail millet rhizoplane bacterial community. We systematically described the root bacterial community structure of foxtail millet and found its core rhizoplane bacterial members. Our results demonstrated that host plants enrich specific bacteria and functions in the rhizoplane. The potentially beneficial bacteria may serve as a valuable knowledge foundation for bio-fertilizer development in agriculture.
Collapse
Affiliation(s)
- Tao Jin
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | | | | | - Jin Xu
- BGI-Qingdao, Qingdao, 266510, China.,Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Pengfan Zhang
- BGI-Qingdao, Qingdao, 266510, China.,BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | - Xin Liu
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Haiyan Chu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, East Beijing Road 71, Nanjing, 210008, China
| | | | | | | | - Jing Xu
- BGI-Qingdao, Qingdao, 266510, China
| | - Karsten Kristiansen
- BGI-Qingdao, Qingdao, 266510, China.,Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | | | - Yunzeng Zhang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, IFAS, University of Florida, Lake Alfred, FL, USA
| | | | | | | | - Hongfeng Zou
- BGI-Qingdao, Qingdao, 266510, China.,BGI Millet Co., Ltd, Shenzhen, 518083, China
| | | | | | | | | | | | | | | | - Guangyi Fan
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| | - Huanming Yang
- BGI-Qingdao, Qingdao, 266510, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Jian Wang
- BGI-Qingdao, Qingdao, 266510, China.,James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, 100101, China.,Centre of Excellence for Plant and Microbial Sciences (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Science & John Innes Centre, Beijing, 100101, China.,The University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xun Xu
- BGI-Qingdao, Qingdao, 266510, China.,China National Genebank-Shenzhen, BGI-Shenzhen, Shenzhen, 518083, China
| |
Collapse
|
15
|
Weinhold A, Karimi Dorcheh E, Li R, Rameshkumar N, Baldwin IT. Antimicrobial peptide expression in a wild tobacco plant reveals the limits of host-microbe-manipulations in the field. eLife 2018; 7:e28715. [PMID: 29661271 PMCID: PMC5908438 DOI: 10.7554/elife.28715] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 03/09/2018] [Indexed: 12/20/2022] Open
Abstract
Plant-microbe associations are thought to be beneficial for plant growth and resistance against biotic or abiotic stresses, but for natural ecosystems, the ecological analysis of microbiome function remains in its infancy. We used transformed wild tobacco plants (Nicotiana attenuata) which constitutively express an antimicrobial peptide (Mc-AMP1) of the common ice plant, to establish an ecological tool for plant-microbe studies in the field. Transgenic plants showed in planta activity against plant-beneficial bacteria and were phenotyped within the plants´ natural habitat regarding growth, fitness and the resistance against herbivores. Multiple field experiments, conducted over 3 years, indicated no differences compared to isogenic controls. Pyrosequencing analysis of the root-associated microbial communities showed no major alterations but marginal effects at the genus level. Experimental infiltrations revealed a high heterogeneity in peptide tolerance among native isolates and suggests that the diversity of natural microbial communities can be a major obstacle for microbiome manipulations in nature.
Collapse
Affiliation(s)
- Arne Weinhold
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Elham Karimi Dorcheh
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Ran Li
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Natarajan Rameshkumar
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
- Biotechnology DepartmentNational Institute for Interdisciplinary Science and TechnologyThiruvananthapuramIndia
| | - Ian T Baldwin
- Department of Molecular EcologyMax Planck Institute for Chemical EcologyJenaGermany
| |
Collapse
|
16
|
Bengtsson-Palme J. Antibiotic resistance in the food supply chain: where can sequencing and metagenomics aid risk assessment? Curr Opin Food Sci 2017. [DOI: 10.1016/j.cofs.2017.01.010] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
17
|
Cleary DW, Bishop AH, Zhang L, Topp E, Wellington EMH, Gaze WH. Long-term antibiotic exposure in soil is associated with changes in microbial community structure and prevalence of class 1 integrons. FEMS Microbiol Ecol 2016; 92:fiw159. [DOI: 10.1093/femsec/fiw159] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 11/12/2022] Open
|
18
|
Abstract
In this article, the current knowledge and knowledge gaps in the emergence and spread of antimicrobial resistance (AMR) in livestock and plants and importance in terms of animal and human health are discussed. Some recommendations are provided for generation of the data required in order to develop risk assessments for AMR within agriculture and for risks through the food chain to animals and humans.
Collapse
Affiliation(s)
- Sophie Thanner
- Agroscope, Institute for Livestock Sciences, Posieux, Switzerland
| | - David Drissner
- Agroscope, Institute for Food Sciences, Waedenswil, Switzerland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Maynooth, County Kildare, Ireland
| |
Collapse
|
19
|
Westcott SL, Schloss PD. De novo clustering methods outperform reference-based methods for assigning 16S rRNA gene sequences to operational taxonomic units. PeerJ 2015; 3:e1487. [PMID: 26664811 PMCID: PMC4675110 DOI: 10.7717/peerj.1487] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 11/19/2015] [Indexed: 12/13/2022] Open
Abstract
Background. 16S rRNA gene sequences are routinely assigned to operational taxonomic units (OTUs) that are then used to analyze complex microbial communities. A number of methods have been employed to carry out the assignment of 16S rRNA gene sequences to OTUs leading to confusion over which method is optimal. A recent study suggested that a clustering method should be selected based on its ability to generate stable OTU assignments that do not change as additional sequences are added to the dataset. In contrast, we contend that the quality of the OTU assignments, the ability of the method to properly represent the distances between the sequences, is more important. Methods. Our analysis implemented six de novo clustering algorithms including the single linkage, complete linkage, average linkage, abundance-based greedy clustering, distance-based greedy clustering, and Swarm and the open and closed-reference methods. Using two previously published datasets we used the Matthew's Correlation Coefficient (MCC) to assess the stability and quality of OTU assignments. Results. The stability of OTU assignments did not reflect the quality of the assignments. Depending on the dataset being analyzed, the average linkage and the distance and abundance-based greedy clustering methods generated OTUs that were more likely to represent the actual distances between sequences than the open and closed-reference methods. We also demonstrated that for the greedy algorithms VSEARCH produced assignments that were comparable to those produced by USEARCH making VSEARCH a viable free and open source alternative to USEARCH. Further interrogation of the reference-based methods indicated that when USEARCH or VSEARCH were used to identify the closest reference, the OTU assignments were sensitive to the order of the reference sequences because the reference sequences can be identical over the region being considered. More troubling was the observation that while both USEARCH and VSEARCH have a high level of sensitivity to detect reference sequences, the specificity of those matches was poor relative to the true best match. Discussion. Our analysis calls into question the quality and stability of OTU assignments generated by the open and closed-reference methods as implemented in current version of QIIME. This study demonstrates that de novo methods are the optimal method of assigning sequences into OTUs and that the quality of these assignments needs to be assessed for multiple methods to identify the optimal clustering method for a particular dataset.
Collapse
Affiliation(s)
- Sarah L. Westcott
- Department of Microbiology and Immunology, University of Michigan—Ann Arbor, Ann Arbor, MI, United States
| | - Patrick D. Schloss
- Department of Microbiology and Immunology, University of Michigan—Ann Arbor, Ann Arbor, MI, United States
| |
Collapse
|
20
|
Brandt KK, Amézquita A, Backhaus T, Boxall A, Coors A, Heberer T, Lawrence JR, Lazorchak J, Schönfeld J, Snape JR, Zhu YG, Topp E. Ecotoxicological assessment of antibiotics: A call for improved consideration of microorganisms. ENVIRONMENT INTERNATIONAL 2015; 85:189-205. [PMID: 26411644 DOI: 10.1016/j.envint.2015.09.013] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 09/03/2015] [Accepted: 09/10/2015] [Indexed: 05/06/2023]
Abstract
Antibiotics play a pivotal role in the management of infectious disease in humans, companion animals, livestock, and aquaculture operations at a global scale. Antibiotics are produced, consumed, and released into the environment at an unprecedented scale causing concern that the presence of antibiotic residues may adversely impact aquatic and terrestrial ecosystems. Here we critically review the ecotoxicological assessment of antibiotics as related to environmental risk assessment (ERA). We initially discuss the need for more specific protection goals based on the ecosystem service concept, and suggest that the ERA of antibiotics, through the application of a mode of toxic action approach, should make more use of ecotoxicological endpoints targeting microorganisms (especially bacteria) and microbial communities. Key ecosystem services provided by microorganisms and associated ecosystem service-providing units (e.g. taxa or functional groups) are identified. Approaches currently available for elucidating ecotoxicological effects on microorganisms are reviewed in detail and we conclude that microbial community-based tests should be used to complement single-species tests to offer more targeted protection of key ecosystem services. Specifically, we propose that ecotoxicological tests should not only assess microbial community function, but also microbial diversity (‘species’ richness) and antibiotic susceptibility. Promising areas for future basic and applied research of relevance to ERA are highlighted throughout the text. In this regard, the most fundamental knowledge gaps probably relate to our rudimentary understanding of the ecological roles of antibiotics in nature and possible adverse effects of environmental pollution with subinhibitory levels of antibiotics.
Collapse
Affiliation(s)
- Kristian K Brandt
- Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg, Denmark; Sino Danish Center for Education and Research, Beijing, China.
| | - Alejandro Amézquita
- Unilever-Safety & Environmental Assurance Centre, Sharnbrook, United Kingdom
| | - Thomas Backhaus
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | | | - Anja Coors
- ECT Oekotoxikologie GmbH, Flörsheim/Main, Germany
| | - Thomas Heberer
- Federal Office of Consumer Protection and Food Safety, Department 3: Veterinary Drugs, Berlin, Germany
| | | | - James Lazorchak
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Jens Schönfeld
- Umweltbundesamt, Federal Environment Agency, Dessau, Germany
| | - Jason R Snape
- AstraZeneca Global Environment, Alderley Park, United Kingdom
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Edward Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada.
| |
Collapse
|
21
|
Gusberti M, Klemm U, Meier MS, Maurhofer M, Hunger-Glaser I. Fire Blight Control: The Struggle Goes On. A Comparison of Different Fire Blight Control Methods in Switzerland with Respect to Biosafety, Efficacy and Durability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2015; 12:11422-47. [PMID: 26378562 PMCID: PMC4586684 DOI: 10.3390/ijerph120911422] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/27/2015] [Accepted: 09/01/2015] [Indexed: 12/03/2022]
Abstract
Fire blight (FB), caused by Erwinia amylovora, is one of the most important pome fruit pathogens worldwide. To control this devastating disease, various chemical and biological treatments are commonly applied in Switzerland, but they fail to keep the infection at an acceptable level in years of heavy disease pressure. The Swiss authorities therefore currently allow the controlled use of the antibiotic streptomycin against FB in years that are predicted to have heavy infection periods, but only one treatment per season is permitted. Another strategy for controlling Erwinia is to breed resistant/tolerant apple cultivars. One way of accelerating the breeding process is to obtain resistant cultivars by inserting one or several major resistance genes, using genetic engineering. To date, no study summarizing the impact of different FB control measures on the environment and on human health has been performed. This study consequently aims to compare different disease-control measures (biological control, chemical control, control by antibiotics and by resistant/tolerant apple cultivars obtained through conventional or molecular breeding) applied against E. amylovora, considering different protection goals (protection of human health, environment, agricultural diversity and economic interest), with special emphasis on biosafety aspects. Information on each FB control measure in relation to the specified protection goal was assessed by literature searches and by interviews with experts. Based on our results it can be concluded that the FB control measures currently applied in Switzerland are safe for consumers, workers and the environment. However, there are several gaps in our knowledge of the human health and environmental impacts analyzed: data are missing (1) on long term studies on the efficacy of most of the analyzed FB control measures; (2) on the safety of operators handling streptomycin; (3) on residue analyses of Equisetum plant extract, the copper and aluminum compounds used in apple production; and (4) on the effect of biological and chemical control measures on non-target fauna and flora. These gaps urgently need to be addressed in the near future.
Collapse
Affiliation(s)
- Michele Gusberti
- Institute of Integrative Biology Zurich, Plant Pathology Group, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland.
| | - Urs Klemm
- Swiss Expert Committee for Biosafety, Bern CH-3003, Switzerland.
| | - Matthias S Meier
- Swiss Expert Committee for Biosafety, Bern CH-3003, Switzerland.
- Research Institute of Organic Agriculture (FiBL), Frick CH-5070, Switzerland.
| | - Monika Maurhofer
- Institute of Integrative Biology Zurich, Plant Pathology Group, Swiss Federal Institute of Technology, Zurich CH-8092, Switzerland.
- Swiss Expert Committee for Biosafety, Bern CH-3003, Switzerland.
| | | |
Collapse
|
22
|
Abstract
Antibiotic resistance is a threat to human and animal health worldwide, and key measures are required to reduce the risks posed by antibiotic resistance genes that occur in the environment. These measures include the identification of critical points of control, the development of reliable surveillance and risk assessment procedures, and the implementation of technological solutions that can prevent environmental contamination with antibiotic resistant bacteria and genes. In this Opinion article, we discuss the main knowledge gaps, the future research needs and the policy and management options that should be prioritized to tackle antibiotic resistance in the environment.
Collapse
|
23
|
Williams RJ, Howe A, Hofmockel KS. Demonstrating microbial co-occurrence pattern analyses within and between ecosystems. Front Microbiol 2014; 5:358. [PMID: 25101065 PMCID: PMC4102878 DOI: 10.3389/fmicb.2014.00358] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Accepted: 06/25/2014] [Indexed: 11/13/2022] Open
Abstract
Co-occurrence patterns are used in ecology to explore interactions between organisms and environmental effects on coexistence within biological communities. Analysis of co-occurrence patterns among microbial communities has ranged from simple pairwise comparisons between all community members to direct hypothesis testing between focal species. However, co-occurrence patterns are rarely studied across multiple ecosystems or multiple scales of biological organization within the same study. Here we outline an approach to produce co-occurrence analyses that are focused at three different scales: co-occurrence patterns between ecosystems at the community scale, modules of co-occurring microorganisms within communities, and co-occurring pairs within modules that are nested within microbial communities. To demonstrate our co-occurrence analysis approach, we gathered publicly available 16S rRNA amplicon datasets to compare and contrast microbial co-occurrence at different taxonomic levels across different ecosystems. We found differences in community composition and co-occurrence that reflect environmental filtering at the community scale and consistent pairwise occurrences that may be used to infer ecological traits about poorly understood microbial taxa. However, we also found that conclusions derived from applying network statistics to microbial relationships can vary depending on the taxonomic level chosen and criteria used to build co-occurrence networks. We present our statistical analysis and code for public use in analysis of co-occurrence patterns across microbial communities.
Collapse
Affiliation(s)
- Ryan J. Williams
- Department of Ecology, Evolution, and Organismal Biology, Iowa State UniversityAmes, IA, USA
| | - Adina Howe
- Mathematics and Computer Science, Argonne National LaboratoryArgonne, IL, USA
- Microbiology and Microbial Genetics, Michigan State UniversityEast Lansing, MI, USA
| | - Kirsten S. Hofmockel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State UniversityAmes, IA, USA
| |
Collapse
|
24
|
McManus PS. Does a drop in the bucket make a splash? Assessing the impact of antibiotic use on plants. Curr Opin Microbiol 2014; 19:76-82. [PMID: 25006016 DOI: 10.1016/j.mib.2014.05.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 04/29/2014] [Accepted: 05/21/2014] [Indexed: 11/27/2022]
Abstract
Antibiotics are applied to plants to prevent bacterial diseases, although the diversity of antibiotics and total amounts used are dwarfed by antibiotic use in animal agriculture. Nevertheless, the release of antibiotics into the open environment during crop treatment draws scrutiny for its potential impact on the global pool of resistance genes. The main use of antibiotics on plants is application of streptomycin to prevent fire blight, a serious disease of apple and pear trees. A series of recent studies identified and quantified antibiotic resistance genes and profiled bacterial communities in apple orchard plots that were or were not sprayed with streptomycin. While the specific objectives and methods varied, the results of these studies suggest that streptomycin application for fire blight control does not influence bacterial community structure or increase the abundance of resistance genes in orchards.
Collapse
Affiliation(s)
- Patricia S McManus
- Department of Plant Pathology, University of Wisconsin-Madison, United States.
| |
Collapse
|
25
|
Walsh F, Smith DP, Owens SM, Duffy B, Frey JE. Restricted streptomycin use in apple orchards did not adversely alter the soil bacteria communities. Front Microbiol 2014; 4:383. [PMID: 24550889 PMCID: PMC3908321 DOI: 10.3389/fmicb.2013.00383] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 11/25/2013] [Indexed: 02/01/2023] Open
Abstract
Streptomycin has been authorized for restricted use in the prevention of the fire blight disease of pome fruit orchards in the EU and Switzerland. This study addresses the important topic of the influence of the use of streptomycin in agriculture on the total bacteria community within the soil ecosystem. Soil samples were taken from soils under apple trees, prior to streptomycin application and 2 weeks post streptomycin application or water application (untreated control). High throughput 16S rRNA gene amplicon sequencing was used to generate datasets from the soils under apple trees in apple orchards from three different locations in Switzerland. We hypothesized that the use of streptomycin would reduce the bacterial diversity within the soil samples and enhance a reduction in the variety of taxa present. Bacterial species such as Pseudomonas, Burkholderia, and Stenotrophomonas are intrinsically resistant to many antibiotics and as such it is of interest to investigate if the use of streptomycin provided a selective advantage for these bacteria in the soil ecosystem. The application of streptomycin did not influence the abundance and diversities of major bacteria taxa of the soils or the Pseudomonas, Burkholderia, and Stenotrophomonas species. We also discovered that apple orchards under the same management practices, did not harbor the same bacterial communities. The restricted application of streptomycin in the protection of apple orchards from the fire blight pathogen Erwinia amylovora under the guidelines in Switzerland did not alter either the bacterial diversity or abundance within these soil ecosystems.
Collapse
Affiliation(s)
- Fiona Walsh
- Federal Department of Economic Affairs, Education and Research EAER, Research Station Agroscope Changins-Wädenswil ACWWädenswil, Switzerland
| | - Daniel P. Smith
- Institute of Genomic and Systems Biology, Argonne National LaboratoryArgonne, IL, USA
| | - Sarah M. Owens
- Institute of Genomic and Systems Biology, Argonne National LaboratoryArgonne, IL, USA
- Computation Institute, University of ChicagoChicago, IL, USA
| | - Brion Duffy
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, LSFM, Zurich University of Applied SciencesZurich, Switzerland
| | - Jürg E. Frey
- Federal Department of Economic Affairs, Education and Research EAER, Research Station Agroscope Changins-Wädenswil ACWWädenswil, Switzerland
| |
Collapse
|