1
|
Jiang W, Cai Y, Sun S, Wang W, Tišma M, Baganz F, Hao J. Inactivation of hydrogenase-3 leads to enhancement of 1,3-propanediol and 2,3-butanediol production by Klebsiella pneumoniae. Enzyme Microb Technol 2024; 177:110438. [PMID: 38518554 DOI: 10.1016/j.enzmictec.2024.110438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/16/2024] [Accepted: 03/17/2024] [Indexed: 03/24/2024]
Abstract
Klebsiella pneumoniae can use glucose or glycerol as carbon sources to produce 1,3-propanediol or 2,3-butanediol, respectively. In the metabolism of Klebsiella pneumoniae, hydrogenase-3 is responsible for H2 production from formic acid, but it is not directly related to the synthesis pathways for 1,3-propanediol and 2,3-butanediol. In the first part of this research, hycEFG, which encodes subunits of the enzyme hydrogenase-3, was knocked out, so K. pneumoniae ΔhycEFG lost the ability to produce H2 during cultivation using glycerol as a carbon source. As a consequence, the concentration of 1,3-propanediol increased and the substrate (glycerol) conversion ratio reached 0.587 mol/mol. Then, K. pneumoniae ΔldhAΔhycEFG was constructed to erase lactic acid synthesis which led to the further increase of 1,3-propanediol concentration. A substrate (glycerol) conversion ratio of 0.628 mol/mol in batch conditions was achieved, which was higher compared to the wild type strain (0.545 mol/mol). Furthermore, since adhE encodes an alcohol dehydrogenase that catalyzes ethanol production from acetaldehyde, K. pneumoniae ΔldhAΔadhEΔhycEFG was constructed to prevent ethanol production. Contrary to expectations, this did not lead to a further increase, but to a decrease in 1,3-propanediol production. In the second part of this research, glucose was used as the carbon source to produce 2,3-butanediol. Knocking out hycEFG had distinct positive effect on 2,3-butanediol production. Especially in K. pneumoniae ΔldhAΔadhEΔhycEFG, a substrate (glucose) conversion ratio of 0.730 mol/mol was reached, which is higher compared to wild type strain (0.504 mol/mol). This work suggests that the inactivation of hydrogenase-3 may have a global effect on the metabolic regulation of K. pneumoniae, leading to the improvement of the production of two industrially important bulk chemicals, 1,3-propanediol and 2,3-butanediol.
Collapse
Affiliation(s)
- Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yaoyu Cai
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Shaoqi Sun
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenqi Wang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Marina Tišma
- Josip Juraj Strossmayer University of Osijek, Faculty of Food Technology Osijek, Franje Kuhača 18, Osijek HR-31000, Croatia
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai 201210, PR China; Department of Biochemical Engineering, University College London, Gordon Street, London WC1H 0AH, UK; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Phosriran C, Wong N, Jantama K. An efficient production of bio-succinate in a novel metabolically engineered Klebsiella oxytoca by rational metabolic engineering and evolutionary adaptation. BIORESOURCE TECHNOLOGY 2024; 393:130045. [PMID: 38006983 DOI: 10.1016/j.biortech.2023.130045] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/15/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023]
Abstract
Klebsiella oxytoca KC004 (ΔadhEΔpta-ackAΔldhAΔbudABΔpflB) was engineered to enhance succinate production. The strain exhibited poor growth without succinate production due to its deficiencies in ATP production and NADH reoxidation. To overcome obstacles, evolutionary adaptation with over 6,000 generations of growth-based selection was conducted. Under anaerobic conditions, enhanced productions of ATP for growth and succinate for NADH reoxidation by the evolved KC004-TF160 strain were coupled to an increased transcript of PEP carboxykinase (pck) while those of genes in the oxidative branch of TCA cycle (gltA, acnAB, and icd), and pyruvate and acetate metabolisms (pykA, acs, poxB and tdcD) were alleviated. The expression of pyruvate dehydrogenase repressor (pdhR) decreased whereas threonine decarboxylase (tdcE) increased. KC004-TF160 produced succinate at 84 g/L (0.84 g/g, 79 % theoretical maximum). KC004-TF160 produced succinate at 0.87 g/g non-pretreated sugarcane molasses without addition of nutrients and buffers. KC004-TF160 may be a microbial platform for commercial production of bio-succinate.
Collapse
Affiliation(s)
- Chutchawan Phosriran
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Nonthaporn Wong
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand
| | - Kaemwich Jantama
- Metabolic Engineering Research Unit, School of Biotechnology, Suranaree University of Technology, 111 University Avenue, Suranaree, Muang, Nakhon Ratchasima 30000, Thailand.
| |
Collapse
|
3
|
Lu P, Bai R, Gao T, Chen J, Jiang K, Zhu Y, Lu Y, Zhang S, Xu F, Zhao H. Systemic metabolic engineering of Enterobacter aerogenes for efficient 2,3-butanediol production. Appl Microbiol Biotechnol 2024; 108:146. [PMID: 38240862 PMCID: PMC10798932 DOI: 10.1007/s00253-023-12911-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/05/2023] [Accepted: 11/14/2023] [Indexed: 01/22/2024]
Abstract
2,3-Butanediol (2,3-BDO) is an important gateway molecule for many chemical derivatives. Currently, microbial production is gradually being recognized as a green and sustainable alternative to petrochemical synthesis, but the titer, yield, and productivity of microbial 2,3-BDO remain suboptimal. Here, we used systemic metabolic engineering strategies to debottleneck the 2,3-BDO production in Enterobacter aerogenes. Firstly, the pyruvate metabolic network was reconstructed by deleting genes for by-product synthesis to improve the flux toward 2,3-BDO synthesis, which resulted in a 90% increase of the product titer. Secondly, the 2,3-BDO productivity of the IAM1183-LPCT/D was increased by 55% due to the heterologous expression of DR1558 which boosted cell resistance to abiotic stress. Thirdly, carbon sources were optimized to further improve the yield of target products. The IAM1183-LPCT/D showed the highest titer of 2,3-BDO from sucrose, 20% higher than that from glucose, and the yield of 2,3-BDO reached 0.49 g/g. Finally, the titer of 2,3-BDO of IAM1183-LPCT/D in a 5-L fermenter reached 22.93 g/L, 85% higher than the wild-type strain, and the titer of by-products except ethanol was very low. KEY POINTS: Deletion of five key genes in E. aerogenes improved 2,3-BDO production The titer of 2,3-BDO was increased by 90% by regulating metabolic flux Response regulator DR1558 was expressed to increase 2,3-BDO productivity.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jiale Chen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yalun Zhu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ye Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Shuting Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris With Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang, 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
4
|
Hayes G, Laurel M, MacKinnon D, Zhao T, Houck HA, Becer CR. Polymers without Petrochemicals: Sustainable Routes to Conventional Monomers. Chem Rev 2023; 123:2609-2734. [PMID: 36227737 PMCID: PMC9999446 DOI: 10.1021/acs.chemrev.2c00354] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Access to a wide range of plastic materials has been rationalized by the increased demand from growing populations and the development of high-throughput production systems. Plastic materials at low costs with reliable properties have been utilized in many everyday products. Multibillion-dollar companies are established around these plastic materials, and each polymer takes years to optimize, secure intellectual property, comply with the regulatory bodies such as the Registration, Evaluation, Authorisation and Restriction of Chemicals and the Environmental Protection Agency and develop consumer confidence. Therefore, developing a fully sustainable new plastic material with even a slightly different chemical structure is a costly and long process. Hence, the production of the common plastic materials with exactly the same chemical structures that does not require any new registration processes better reflects the reality of how to address the critical future of sustainable plastics. In this review, we have highlighted the very recent examples on the synthesis of common monomers using chemicals from sustainable feedstocks that can be used as a like-for-like substitute to prepare conventional petrochemical-free thermoplastics.
Collapse
Affiliation(s)
- Graham Hayes
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Matthew Laurel
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Dan MacKinnon
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Tieshuai Zhao
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - Hannes A. Houck
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
- Institute
of Advanced Study, University of Warwick, CV4 7ALCoventry, United Kingdom
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, CV4 7ALCoventry, United Kingdom
| |
Collapse
|
5
|
Metabolic Engineering of Microorganisms to Produce Pyruvate and Derived Compounds. Molecules 2023; 28:molecules28031418. [PMID: 36771084 PMCID: PMC9919917 DOI: 10.3390/molecules28031418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/27/2023] [Accepted: 01/29/2023] [Indexed: 02/05/2023] Open
Abstract
Pyruvate is a hub of various endogenous metabolic pathways, including glycolysis, TCA cycle, amino acid, and fatty acid biosynthesis. It has also been used as a precursor for pyruvate-derived compounds such as acetoin, 2,3-butanediol (2,3-BD), butanol, butyrate, and L-alanine biosynthesis. Pyruvate and derivatives are widely utilized in food, pharmaceuticals, pesticides, feed additives, and bioenergy industries. However, compounds such as pyruvate, acetoin, and butanol are often chemically synthesized from fossil feedstocks, resulting in declining fossil fuels and increasing environmental pollution. Metabolic engineering is a powerful tool for producing eco-friendly chemicals from renewable biomass resources through microbial fermentation. Here, we review and systematically summarize recent advances in the biosynthesis pathways, regulatory mechanisms, and metabolic engineering strategies for pyruvate and derivatives. Furthermore, the establishment of sustainable industrial synthesis platforms based on alternative substrates and new tools to produce these compounds is elaborated. Finally, we discuss the potential difficulties in the current metabolic engineering of pyruvate and derivatives and promising strategies for constructing efficient producers.
Collapse
|
6
|
Lu P, Gao T, Bai R, Yang J, Xu Y, Chu W, Jiang K, Zhang J, Xu F, Zhao H. Regulation of carbon flux and NADH/NAD + supply to enhance 2,3-butanediol production in Enterobacter aerogenes. J Biotechnol 2022; 358:67-75. [PMID: 36087783 DOI: 10.1016/j.jbiotec.2022.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/23/2022] [Accepted: 09/05/2022] [Indexed: 10/31/2022]
Abstract
As a valuable platform chemical, 2,3-Butanediol (2,3-BDO) has a variety of industrial applications, and its microbial production is particularly attractive as an alternative to petroleum-based production. In this study, the regulation of intracellular carbon flux and NADH/NAD+ was used to increase the 2,3-BDO production of Enterobacter aerogenes. The genes encoding lactate dehydrogenase (ldh) and pyruvate formate lyase (pfl) were disrupted using the λ-Red recombination method and CRISPR-Cas9 to reduce the production of several byproducts and the consumption of NADH. Knockout of ldh or pfl increased intracellular NADH/NAD+ by 111 % and 113 %, respectively. Moreover, two important genes in the 2,3-BDO biosynthesis pathway, acetolactate synthase (budB) and acetoin reductase (budC), were overexpressed in E. aerogenes to further amply the metabolic flux toward 2,3-BDO production. And the overexpression of budB or budC increased intracellular NADH/NAD+ by 46 % and 57 %, respectively. In shake-flask cultivation with sucrose as carbon source, the 2,3-BDO titer of the IAM1183-LPBC was 3.55 times that of the wild type. In the 5-L fermenter, the maximal 2,3-BDO production produced by the IAM1183-LPBC was 2.88 times that of the original strain. This work offers new ideas for promoting the biosynthesis of 2,3-BDO for industrial applications.
Collapse
Affiliation(s)
- Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ting Gao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ruoxuan Bai
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jiayao Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yudong Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wanying Chu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingya Zhang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Fangxu Xu
- Liaoning Province Key Laboratory of Cordyceps Militaris with Functional Value, Experimental Teaching Center, Shenyang Normal University, Shenyang 110034, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
7
|
García-Depraect O, Martínez-Mendoza LJ, Diaz I, Muñoz R. Two-stage anaerobic digestion of food waste: Enhanced bioenergy production rate by steering lactate-type fermentation during hydrolysis-acidogenesis. BIORESOURCE TECHNOLOGY 2022; 358:127358. [PMID: 35605777 DOI: 10.1016/j.biortech.2022.127358] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
This study proposed a lactate-based two-stage anaerobic digestion (AD) process to enhance bioenergy production rate from food waste (FW) and investigated the effect of inoculum addition and culture pH on hydrolysis-acidogenesis and further methanization. A series of batch fermentations were performed with an enriched lactate-producing consortium and without inoculum addition under controlled (5.7) and uncontrolled pH (initial 6.7) conditions. The interplay between the studied factors dictated the fate of lactate, particularly if it is produced and accumulated in the fermentation broth or is consumed by butyrogenic bacteria. Only the self-fermentation of FW with uncontrolled pH resulted in lactate accumulation (0.2 g/g volatile solid (VS) fed) with limited off-gas production (0.32 NL/L) and VS losses (≈16%). Such lactate-rich broth was successfully digested through biochemical methane potential tests, resulting in a maximum bioenergy production rate of 2891 MJ/ton-VS fed per day, which was two-fold higher compared to that achieved by one-stage AD.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Leonardo J Martínez-Mendoza
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Israel Diaz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina, s/n, 47011 Valladolid, Spain.
| |
Collapse
|
8
|
Yang C, Yang M, Zhao W, Ding Y, Wang Y, Li J. Establishing a Klebsiella pneumoniae-Based Cell-Free Protein Synthesis System. Molecules 2022; 27:molecules27154684. [PMID: 35897861 PMCID: PMC9330377 DOI: 10.3390/molecules27154684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/25/2022] [Accepted: 07/18/2022] [Indexed: 02/01/2023] Open
Abstract
Cell-free protein synthesis (CFPS) systems are emerging as powerful platforms for in vitro protein production, which leads to the development of new CFPS systems for different applications. To expand the current CFPS toolkit, here we develop a novel CFPS system derived from a chassis microorganism Klebsiella pneumoniae, an important industrial host for heterologous protein expression and the production of many useful chemicals. First, we engineered the K. pneumoniae strain by deleting a capsule formation-associated wzy gene. This capsule-deficient strain enabled easy collection of the cell biomass for preparing cell extracts. Then, we optimized the procedure of cell extract preparation and the reaction conditions for CFPS. Finally, the optimized CFPS system was able to synthesize a reporter protein (superfolder green fluorescent protein, sfGFP) with a maximum yield of 253 ± 15.79 μg/mL. Looking forward, our K. pneumoniae-based CFPS system will not only expand the toolkit for protein synthesis, but also provide a new platform for constructing in vitro metabolic pathways for the synthesis of high-value chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
| | - Miaomiao Yang
- Clinical Pathology Center, The Fourth Affiliated Hospital of Anhui Medical University, Hefei 230012, China;
- Department of Biological Physics, University of Science and Technology of China, Hefei 230026, China
| | - Wanhua Zhao
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
| | - Yue Ding
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
| | - Yu Wang
- College of Life Sciences, Jiangxi Agricultural University, Nanchang 330045, China; (W.Z.); (Y.D.)
- Correspondence: (Y.W.); (J.L.)
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China;
- Correspondence: (Y.W.); (J.L.)
| |
Collapse
|
9
|
Su HY, Lin WH, Liang YL, Chou HH, Wu SW, Shi HL, Chen JY, Cheng KK. Co-production of acetoin and succinic acid using corncob hydrolysate by engineered Enterobacter cloacae. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Wang Q, Gu J, Shu L, Jiang W, Mojovic L, Knezevic-Jugovic Z, Shi J, Baganz F, Lye GJ, Xiang W, Hao J. Blocking the 2,3-butanediol synthesis pathway of Klebsiella pneumoniae resulted in L-valine production. World J Microbiol Biotechnol 2022; 38:81. [PMID: 35348886 DOI: 10.1007/s11274-022-03266-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/14/2022] [Indexed: 11/24/2022]
Abstract
Klebsiella pneumoniae is a 2,3-butanediol producing bacterium. Nevertheless, a design and construction of L-valine production strain was studied in this paper. The first step of 2,3-butanediol synthesis and branched-chain amino acid synthesis pathways share the same step of α-acetolactate synthesis from pyruvate. However, the two pathways are existing in parallel and do not interfere with each other in the wild-type strain. A knockout of budA blocked the 2,3-butanediol synthesis pathway and resulted in the L-valine production. The budA coded an α-acetolactate decarboxylase and catalyzed the acetoin formation from α-acetolactate. Furthermore, blocking the lactic acid synthesis by knocking out of ldhA, which is encoding a lactate dehydrogenase, improved the L-valine synthesis. 2-Ketoisovalerate is the precursor of L-valine, it is also an intermediate of the isobutanol synthesis pathway, while indole-3-pyruvate decarboxylase (ipdC) is responsible for isobutyraldehyde formation from 2-ketoisovalerate. Production of L-valine has been improved by knocking out of ipdC. On the other side, the ilvE, encoding a transaminase B, reversibly transfers one amino group from glutamate to α-ketoisovalerate. Overexpression of ilvE exhibited a distinct improvement of L-valine production. The brnQ encodes a branched-chain amino acid transporter, and L-valine production was further improved by disrupting brnQ. It is also revealed that weak acidic and aerobic conditions favor L-valine production. Based on these findings, L-valine production by metabolically engineered K. pneumonia was examined. In fed-batch fermentation, 22.4 g/L of L-valine was produced by the engineered K. pneumoniae ΔbudA-ΔldhA-ΔipdC-ΔbrnQ-ilvE after 55 h of cultivation, with a substrate conversion ratio of 0.27 mol/mol glucose.
Collapse
Affiliation(s)
- Qinghui Wang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.,Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Jinjie Gu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Lin Shu
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Weiyan Jiang
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Ljiljana Mojovic
- Faculty of Technology and Metallurgy, University of Belgrade, Belgrade, Serbia
| | | | - Jiping Shi
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China
| | - Frank Baganz
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Gary J Lye
- Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK
| | - Wensheng Xiang
- Key Laboratory of Agricultural Microbiology of Heilongjiang Province, Northeast Agricultural University, No. 59 Mucai Street, Xiangfang District, Harbin, 150030, People's Republic of China.
| | - Jian Hao
- Lab of Biorefinery, Shanghai Advanced Research Institute, Chinese Academy of Sciences, No. 99 Haike Road, Pudong, Shanghai, 201210, People's Republic of China. .,Department of Biochemical Engineering, University College London, Gordon Street, London, WC1H 0AH, UK.
| |
Collapse
|
11
|
Wu Y, Yang Y, Dang H, Xiao H, Huang W, Jia Z, Zhao X, Chen K, Ji N, Guo J, Qin Z, Wang J, Zou J. Molecular identification of Klebsiella pneumoniae and expression of immune genes in infected spotted gar Lepisosteus oculatus. FISH & SHELLFISH IMMUNOLOGY 2021; 119:220-230. [PMID: 34626790 DOI: 10.1016/j.fsi.2021.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Spotted gar (Lepisosteus oculatus) is a primitive ray-finned fish which has not undergone the third round whole genome duplication and commonly used as a model to study the evolution of immune genes. In this study, a pathogenic strain of Klebsiella pneumoniae (termed KPY01) was isolated from a diseased spotted gar, based on the Gram-stain and phylogenetic analysis of the 16S rDNA and khe genes. Further, the virulence genes and drug resistance genes were determined and drug sensitivity tests were performed to explore the virulence and drug resistance of the KPY01. Putative biosynthetic gene clusters (BGCs) for the biosynthesis of secondary metabolites were predicted using the anti-SMASH5.0 online genome mining platform. Histopathological analysis revealed that the immune cells were significantly decreased in the white pulp of spleen of fish infected with K. pneumonia and tissue inflammation became apparent. Besides, the expression of cytokines including interleukin (il) -8, il-10, il-12a, il-18 and interferon γ (ifn-γ) were shown to be modulated in the spleen, gills and kidney. Our work provides useful information for further investigation on the virulence of K. pneumoniae and host immune responses to K. pneumoniae infection in fish.
Collapse
Affiliation(s)
- Yaxin Wu
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Yibin Yang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Huifeng Dang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Hehe Xiao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Wenji Huang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhao Jia
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Xin Zhao
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Kangyong Chen
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Ning Ji
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jiahong Guo
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Zhiwei Qin
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, 100875, China; Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, Beijing Normal University at Zhuhai, Zhuhai, 100875, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China
| | - Jun Zou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
12
|
Wu Y, Chu W, Yang J, Xu Y, Shen Q, Yang H, Xu F, Liu Y, Lu P, Jiang K, Zhao H. Metabolic Engineering of Enterobacter aerogenes for Improved 2,3-Butanediol Production by Manipulating NADH Levels and Overexpressing the Small RNA RyhB. Front Microbiol 2021; 12:754306. [PMID: 34691005 PMCID: PMC8531500 DOI: 10.3389/fmicb.2021.754306] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/16/2021] [Indexed: 11/29/2022] Open
Abstract
Biotechnological production of 2,3-butanediol (2,3-BD), a versatile platform bio-chemical and a potential biofuel, is limited due to by-product toxicity. In this study, we aimed to redirect the metabolic flux toward 2,3-BD in Enterobacter aerogenes (E. aerogenes) by increasing the intracellular NADH pool. Increasing the NADH/NAD+ ratio by knocking out the NADH dehydrogenase genes (nuoC/nuoD) enhanced 2,3-BD production by up to 67% compared with wild-type E. aerogenes. When lactate dehydrogenase (ldh) was knocked out, the yield of 2,3-BD was increased by 71.2% compared to the wild type. Metabolic flux analysis revealed that upregulated expression of the sRNA RyhB led to a noteworthy shift in metabolism. The 2,3-BD titer of the best mutant Ea-2 was almost seven times higher than that of the parent strain in a 5-L fermenter. In this study, an effective metabolic engineering strategy for improved 2,3-BD production was implemented by increasing the NADH/NAD+ ratio and blocking competing pathways.
Collapse
Affiliation(s)
- Yan Wu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
- Key Laboratory of Urban Agriculture by Ministry of Agriculture of China, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanying Chu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jiayao Yang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yudong Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Qi Shen
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Haoning Yang
- Department of Bioengineering, Liaoning Technical University, Fuxin, China
| | - Fangxu Xu
- Experimental Teaching Center, College of Life Science, Shenyang Normal University, Shenyang, China
| | - Yefei Liu
- Experimental Teaching Center, College of Life Science, Shenyang Normal University, Shenyang, China
| | - Ping Lu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Ke Jiang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, China
| |
Collapse
|
13
|
Maina S, Prabhu AA, Vivek N, Vlysidis A, Koutinas A, Kumar V. Prospects on bio-based 2,3-butanediol and acetoin production: Recent progress and advances. Biotechnol Adv 2021; 54:107783. [PMID: 34098005 DOI: 10.1016/j.biotechadv.2021.107783] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 05/27/2021] [Accepted: 06/02/2021] [Indexed: 11/19/2022]
Abstract
The bio-based platform chemicals 2,3-butanediol (BDO) and acetoin have various applications in chemical, cosmetics, food, agriculture, and pharmaceutical industries, whereas the derivatives of BDO could be used as fuel additives, polymer and synthetic rubber production. This review summarizes the novel technological developments in adapting genetic and metabolic engineering strategies for selection and construction of chassis strains for BDO and acetoin production. The valorization of renewable feedstocks and bioprocess development for the upstream and downstream stages of bio-based BDO and acetoin production are discussed. The techno-economic aspects evaluating the viability and industrial potential of bio-based BDO production are presented. The commercialization of bio-based BDO and acetoin production requires the utilization of crude renewable resources, the chassis strains with high fermentation production efficiencies and development of sustainable purification or conversion technologies.
Collapse
Affiliation(s)
- Sofia Maina
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Ashish A Prabhu
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Anestis Vlysidis
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece
| | - Apostolis Koutinas
- Department of Food Science and Human Nutrition, Agricultural University of Athens, Iera Odos, 75, 11855 Athens, Greece.
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK.
| |
Collapse
|
14
|
Li NN, Li W, Feng JX, Zhang WW, Zhang R, Du SH, Liu SY, Xue GH, Yan C, Cui JH, Zhao HQ, Feng YL, Gan L, Zhang Q, Chen C, Liu D, Yuan J. High alcohol-producing Klebsiella pneumoniae causes fatty liver disease through 2,3-butanediol fermentation pathway in vivo. Gut Microbes 2021; 13:1979883. [PMID: 34632939 PMCID: PMC8510565 DOI: 10.1080/19490976.2021.1979883] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/26/2021] [Accepted: 08/30/2021] [Indexed: 02/08/2023] Open
Abstract
High alcohol-producing Klebsiella pneumoniae (HiAlc Kpn) in the gut microbiota had been demonstrated to be the causative agent of fatty liver disease (FLD). However, the catabolic pathways for alcohol production in vivo remain unclear. Here, we characterized the genome of HiAlc and medium alcohol-producing (MedAlc) Kpn and constructed an adh (an essential gene encoding alcohol dehydrogenase) knock-out HiAlc Kpn W14 strain (W14Δadh) using CRISPR-Cas9 system. Subsequently, we established the mouse model via gavage administration of HiAlc Kpn W14 and W14 Δadh strains, respectively. Proteome and metabolome analysis showed that 10 proteins and six major metabolites involved in the 2,3-butanediol fermentation pathway exhibited at least a three-fold change or greater during intestinal growth. Compared with HiAlc Kpn W14-fed mice, W14Δadh-fed mice with weak alcohol-producing ability did not show apparent pathological changes at 4 weeks, although some steatotic hepatocytes were observed at 12 weeks. Our data demonstrated that carbohydrate substances are catabolized to produce alcohol and 2,3-butanediol via the 2,3-butanediol fermentation pathway in HiAlc Kpn, which could be a promising clinical diagnostic marker. The production of high amounts of endogenous alcohol is responsible for the observed steatosis effects in hepatocytes in vivo.
Collapse
Affiliation(s)
- Nan-Nan Li
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| | - Wei Li
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jun-Xia Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Wei-Wei Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Rui Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shu-Heng Du
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Shi-Yu Liu
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Guan-Hua Xue
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chao Yan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Jing-Hua Cui
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Han-Qing Zhao
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Yan-Ling Feng
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Lin Gan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Qun Zhang
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
| | - Chen Chen
- Biomedical inovation center, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Di Liu
- Computational Virology Group, Center for Bacteria and Viruses Resources and Bioinformation, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China
- University of Chinese Academy of Sciences, Beijing, China, Beijing, China
| | - Jing Yuan
- Bacteriology Laboratory, Capital Institute of Pediatrics, Beijing, China
- Graduate School of Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Jung H, Han J, Oh M. Improved production of 2,3-butanediol and isobutanol by engineering electron transport chain in Escherichia coli. Microb Biotechnol 2021; 14:213-226. [PMID: 32954676 PMCID: PMC7888471 DOI: 10.1111/1751-7915.13669] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 12/17/2022] Open
Abstract
The electron transport chain (ETC) is one of the major energy generation pathways in microorganisms under aerobic condition. Higher yield of ATP can be achieved through oxidative phosphorylation with consumption of NADH than with substrate level phosphorylation. However, most value-added metabolites are in an electrochemically reduced state, which requires reducing equivalent NADH as a cofactor. Therefore, optimal production of value-added metabolites should be balanced with ETC in terms of energy production. In this study, we attempted to reduce the activity of ETC to secure availability of NADH. The ETC mutants exhibited poor growth rate and production of fermentative metabolites compared to parental strain. Introduction of heterologous pathways for synthesis of 2,3-butanediol and isobutanol to ETC mutants resulted in increased titres and yields of the metabolites. ETC mutants yielded higher NADH/NAD+ ratio but similar ATP content than that by the parental strain. Furthermore, ETC mutants operated fermentative metabolism pathways independent of oxygen supply in large-scale fermenter, resulting in increased yield and titre of 2,3-butanediol. Thus, engineering of ETC is a useful metabolic engineering approach for production of reduced metabolites.
Collapse
Affiliation(s)
- Hwi‐Min Jung
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Korea
| | - Jae‐Ho Han
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Korea
| | - Min‐Kyu Oh
- Department of Chemical and Biological EngineeringKorea University145 Anam‐ro, Seongbuk‐guSeoul02841Korea
| |
Collapse
|
16
|
Engineering of the 2,3-butanediol pathway of Paenibacillus polymyxa DSM 365. Metab Eng 2020; 61:381-388. [DOI: 10.1016/j.ymben.2020.07.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/12/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023]
|
17
|
Xu D, Jia Z, Zhang L, Fu S, Gong H. Analysis of the Growth and Metabolites of a Pyruvate Dehydrogenase Complex- Deficient Klebsiella pneumoniae Mutant in a Glycerol-Based Medium. J Microbiol Biotechnol 2020; 30:753-761. [PMID: 32482942 PMCID: PMC9728353 DOI: 10.4014/jmb.1801.01045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/01/2018] [Indexed: 12/15/2022]
Abstract
To determine the role of pyruvate dehydrogenase complex (PDHC) in Klebsiella pneumoniae, the growth and metabolism of PDHC-deficient mutant in glycerol-based medium were analyzed and compared with those of other strains. Under aerobic conditions, the PDHC activity was fourfold higher than that of pyruvate formate lyase (PFL), and blocking of PDHC caused severe growth defect and pyruvate accumulation, indicating that the carbon flux through pyruvate to acetyl coenzyme A mainly depended on PDHC. Under anaerobic conditions, although the PDHC activity was only 50% of that of PFL, blocking of PDHC resulted in more growth defect than blocking of PFL. Subsequently, combined with the requirement of CO2 and intracellular redox status, it was presumed that the critical role of PDHC was to provide NADH for the anaerobic growth of K. pneumoniae. This presumption was confirmed in the PDHC-deficient mutant by further blocking one of the formate dehydrogenases, FdnGHI. Besides, based on our data, it can also be suggested that an improvement in the carbon flux in the PFL-deficient mutant could be an effective strategy to construct highyielding 1,3-propanediol-producing K. pneumoniae strain.
Collapse
Affiliation(s)
- Danfeng Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Zongxiao Jia
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Lijuan Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, P.R. China
| |
Collapse
|
18
|
Regulation of Pyruvate Formate Lyase-Deficient Klebsiella pneumoniae for Efficient 1,3-Propanediol Bioproduction. Curr Microbiol 2019; 77:55-61. [PMID: 31705389 DOI: 10.1007/s00284-019-01795-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/16/2019] [Indexed: 10/25/2022]
Abstract
Anaerobic growth defect of pyruvate formate lyase (PFL)-deficient Klebsiella pneumoniae limits its industrial application, and the reason for this growth defect was analyzed in this study. The obtained evidences, combined with normal intracellular redox status and no further inhibition by adhE deletion, strongly suggested that growth defect in PFL-deficient K. pneumoniae was probably caused by lack of carbon flux from pyruvate to acetyl-CoA (AcCoA). Correspondingly, the anaerobic growth of PFL-deficient K. pneumoniae was promoted by deletion of pdhR, a negative transcriptional regulator gene for AcCoA generation. Through the regulation of pdhR deletion, the PFL-deficient K. pneumoniae exhibited highly efficient 1,3-propanediol production. Besides, in a 2-L fed-batch fermentation process, the cell growth of PFL-deficient K. pneumoniae strain almost recovered, when compared with that of the normal strain, and the 1,3-propanediol yield increased by 14%, while the byproducts acetate and 2,3-butanediol contents decreased by 29% and 24%, respectively.
Collapse
|
19
|
Zhou J, Lu X, Tian B, Wang C, Shi H, Luo C, Zhu X, Yuan X, Li X. Knockout of acetoacetate degradation pathway gene atoDA enhances the toxicity tolerance of Escherichia coli to isopropanol and acetone. 3 Biotech 2019; 9:343. [PMID: 31497461 DOI: 10.1007/s13205-019-1867-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 08/12/2019] [Indexed: 01/13/2023] Open
Abstract
Isopropanol and acetone are important chemical products and potential high-quality new fuels. Both of them are metabolites of isopropanol synthesis pathway, but they are toxic to most bacteria. In this study, toxicity tolerance of Escherichia coli strains was evaluated by detecting their growth rates under different concentrations of isopropanol and acetone. It was showed that isopropanol was more toxic to E. coli than acetone, and the native strain MG1655 had better tolerance over DH5α to either acetone or isopropanol of 300 mM. Key genes of ethanol synthesis pathway, acetic acid metabolism pathway, and acetoacetic acid degradation pathway, including adhE, ackA-pta, and atoDA, were knocked out in MG1655 to form mutants MGΔadhE, MGΔackA-pta, and MGΔatoDA. The tolerance performances of the mutants to isopropanol and acetone were determined under various concentrations including 300 mM, 500 mM, and 700 mM, respectively. The mutant MGΔatoDA exhibited excellent tolerance to both acetone and isopropanol of 500 mM, and MGΔackA-pta could tolerate acetone at 500 mM rather than isopropanol, while the deletion of adhE in MGΔadhE resulted in a severe cell growth defection. Although isopropanol and acetone at 700 mM caused severe growth inhibition on each strain, cell growth could be restored to varying degrees with the prolongation of culture time. This phenomenon was suggested to be related to the volatilization of isopropanol and acetone based on volatilization tests. It was envisioned that MG1655 was a suitable host strain for isopropanol metabolic engineering research, and the acetoacetic acid degradation pathway gene atoDA, was probably the key optimizing point for isopropanol production.
Collapse
Affiliation(s)
- Jia Zhou
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Xiaoqing Lu
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Baoxia Tian
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Chonglong Wang
- 3School of Biology and Basic Medical Sciences, Soochow University, 199 Renai Road, Suzhou, 215123 People's Republic of China
| | - Hao Shi
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Chuping Luo
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Xiaoyan Zhu
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| | - Xiaoqing Yuan
- Suzhou Xuhui Analysis Co., Ltd, 168 Yuan Feng Road, Kunshan High Tech Zone, Suzhou, 215300 People's Republic of China
| | - Xiangqian Li
- 1Faculty of Life Science and Food Engineering, HuaiYin Institute of Technology, Huaian, 223003 People's Republic of China
- 2Jiangsu Provincial Engineering Laboratory for Biomass Conversion and Process Integration, Huaiyin Institute of Technology, Huaian, 223003 People's Republic of China
| |
Collapse
|
20
|
Metabolic engineering of the type I methanotroph Methylomonas sp. DH-1 for production of succinate from methane. Metab Eng 2019; 54:170-179. [DOI: 10.1016/j.ymben.2019.03.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 03/21/2019] [Accepted: 03/31/2019] [Indexed: 12/20/2022]
|
21
|
Cortivo PRD, Machado J, Hickert LR, Rossi DM, Ayub MAZ. Production of 2,3-butanediol by Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1 cultivated in acid and enzymatic hydrolysates of soybean hull. Biotechnol Prog 2019; 35:e2793. [PMID: 30815989 DOI: 10.1002/btpr.2793] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/25/2019] [Accepted: 02/24/2019] [Indexed: 12/31/2022]
Abstract
We investigated the production of 2,3-butanediol by two enterobacteria isolated from an environmental consortium, Klebsiella pneumoniae BLh-1 and Pantoea agglomerans BL1, in a bioprocess using acid and enzymatic hydrolysates of soybean hull as substrates. Cultivations were carried out in orbital shaker under microaerophilic conditions, at 30°C and 37°C, for both bacteria. Both hydrolysates presented high osmotic pressures, around 2,000 mOsm/kg, with varying concentrations of glucose, xylose, and arabinose. Both bacteria were able to grow in the hydrolysates, at both temperatures, and they efficiently converted sugars into 2,3-butanediol, showing yields varying from 0.25 to 0.51 g/g of sugars and maximum 2,3-butanediol concentrations varying from 6.4 to 21.9 g/L. Other metabolic products were also obtained in lower amounts, notably ethanol, which peaked at 3.6 g/L in cultures using the enzymatic hydrolysate at 30°C. These results suggest the potential use of these recently isolated bacteria to convert lignocellulosic biomass hydrolysates into value-added products.
Collapse
Affiliation(s)
- Paulo R D Cortivo
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Jonas Machado
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Lilian R Hickert
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
- Department of Bioprocess Engineering, State University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daniele M Rossi
- Department of Chemical Engineering, Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Marco A Z Ayub
- Biotechnology & Biochemical Engineering Laboratory (BiotecLab), Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
22
|
Recent Advances in the Metabolic Engineering of Klebsiella pneumoniae: A Potential Platform Microorganism for Biorefineries. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-018-0346-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
23
|
Systematic metabolic engineering of Methylomicrobium alcaliphilum 20Z for 2,3-butanediol production from methane. Metab Eng 2018; 47:323-333. [DOI: 10.1016/j.ymben.2018.04.010] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/12/2018] [Accepted: 04/13/2018] [Indexed: 11/23/2022]
|
24
|
Lee JH, Jung MY, Oh MK. High-yield production of 1,3-propanediol from glycerol by metabolically engineered Klebsiella pneumoniae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:104. [PMID: 29657579 PMCID: PMC5890353 DOI: 10.1186/s13068-018-1100-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 03/30/2018] [Indexed: 05/21/2023]
Abstract
BACKGROUND Glycerol is a major byproduct of the biodiesel industry and can be converted to 1,3-propanediol (1,3-PDO) by microorganisms through a two-step enzymatic reaction. The production of 1,3-PDO from glycerol using microorganisms is accompanied by formation of unwanted byproducts, including lactate and 2,3-butanediol, resulting in a low-conversion yield. RESULTS Klebsiella pneumoniae was metabolically engineered to produce high-molar yield of 1,3-PDO from glycerol. First, the pathway genes for byproduct formation were deleted in K. pneumoniae. Then, glycerol assimilation pathways were eliminated and mannitol was co-fed to the medium. Finally, transcriptional regulation of the dha operon were genetically modified for enhancing 1,3-propanediol production. The batch fermentation of the engineered strain with co-feeding of a small amount of mannitol yielded 0.76 mol 1,3-PDO from 1 mol glycerol. CONCLUSIONS Klebsiella pneumoniae is useful microorganism for producing 1,3-PDO from glycerol. Implemented engineering in this study successfully improved 1,3-PDO production yield, which is significantly higher than those reported in previous studies.
Collapse
Affiliation(s)
- Jung Hun Lee
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| | - Moo-Young Jung
- CJ Research Institute of Biotechnology, Suwon, Gyeonggi 16495 Republic of Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul, 02841 Republic of Korea
| |
Collapse
|
25
|
Um J, Kim DG, Jung MY, Saratale GD, Oh MK. Metabolic engineering of Enterobacter aerogenes for 2,3-butanediol production from sugarcane bagasse hydrolysate. BIORESOURCE TECHNOLOGY 2017; 245:1567-1574. [PMID: 28596073 DOI: 10.1016/j.biortech.2017.05.166] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/25/2017] [Accepted: 05/26/2017] [Indexed: 06/07/2023]
Abstract
The pathway engineering of Enterobacter aerogenes was attempted to improve its production capability of 2,3-butanediol from lignocellulosic biomass. In the medium containing glucose and xylose mixture as carbon sources, the gene deletion of pflB improved 2,3-butanediol carbon yield by 40%, while the deletion of ptsG increased xylose consumption rate significantly, improving the productivity at 12 hr by 70%. The constructed strain, EMY-22-galP, overexpressing glucose transporter (galP) in the triple gene knockout E. aerogenes, ldhA, pflB, and ptsG, provided the highest 2,3-butanediol titer and yield at 12 hr flask cultivation. Sugarcane bagasse was pretreated with green liquor, a solution containing Na2CO3 and Na2SO3 and was hydrolyzed by enzymes. The resulting hydrolysate was used as a carbon source for 2,3-butanediol production. After 72 hr in fermentation, the yield of 0.395g/g sugar was achieved, suggesting an economic production of 2,3-butanediol was possible from lignocellulosic biomass with the metabolically engineered strain.
Collapse
Affiliation(s)
- Jaeyong Um
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Duck Gyun Kim
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea
| | - Moo-Young Jung
- CJ Research Institute of Biotechnology, Suwon, Gyeonggi 16495, South Korea
| | - Ganesh D Saratale
- Department of Food Science and Biotechnology, Dongguk University, Goyang, Gyeonggi 10326, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 02841, South Korea.
| |
Collapse
|
26
|
Holistic bioengineering: rewiring central metabolism for enhanced bioproduction. Biochem J 2017; 474:3935-3950. [PMID: 29146872 PMCID: PMC5688466 DOI: 10.1042/bcj20170377] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/17/2017] [Accepted: 10/20/2017] [Indexed: 12/29/2022]
Abstract
What does it take to convert a living organism into a truly productive biofactory? Apart from optimizing biosynthesis pathways as standalone units, a successful bioengineering approach must bend the endogenous metabolic network of the host, and especially its central metabolism, to support the bioproduction process. In practice, this usually involves three complementary strategies which include tuning-down or abolishing competing metabolic pathways, increasing the availability of precursors of the desired biosynthesis pathway, and ensuring high availability of energetic resources such as ATP and NADPH. In this review, we explore these strategies, focusing on key metabolic pathways and processes, such as glycolysis, anaplerosis, the TCA (tricarboxylic acid) cycle, and NADPH production. We show that only a holistic approach for bioengineering — considering the metabolic network of the host organism as a whole, rather than focusing on the production pathway alone — can truly mold microorganisms into efficient biofactories.
Collapse
|
27
|
Jung HM, Kim YH, Oh MK. Formate and Nitrate Utilization in Enterobacter aerogenes for Semi-Anaerobic Production of Isobutanol. Biotechnol J 2017; 12. [PMID: 28731532 DOI: 10.1002/biot.201700121] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 07/07/2017] [Indexed: 11/07/2022]
Abstract
Anaerobic bioprocessing is preferred because of its economic advantages. However, low productivity and decreased growth of the host strain have limited the use of the anaerobic process. Anaerobic respiration can be applied to anoxic processing using formate and nitrate metabolism to improve the productivity of value-added metabolites. A isobutanol-producing strains is constructed using Enterobacter aerogenes as a host strain by metabolic engineering approaches. The byproduct pathway (ldhA, budA, and pflB) is knocked out, and heterologous keto-acid decarboxylase (kivD) and alcohol dehydrogenase (adhA) are expressed along with the L-valine synthesis pathway (ilvCD and budB). The pyruvate formate-lyase mutant shows decreased growth rates when cultivated in semi-anaerobic conditions, which results in a decline in productivity. When formate and nitrate are supplied in the culture medium, the growth rates and amount of isobutanol production is restored (4.4 g L-1 , 0.23 g g-1 glucose, 0.18 g L-1 h-1 ). To determine the function of the formate and nitrate coupling reaction system, the mutant strains that could not utilize formate or nitrate is contructed. Decreased growth and productivity are observed in the nitrate reductase (narG) mutant strain. This is the first report of engineering isobutanol-producing E. aerogenes to increase strain fitness via augmentation of formate and nitrate metabolism during anaerobic cultivation.
Collapse
Affiliation(s)
- Hwi-Min Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| | - Yong Hwan Kim
- School of Energy and Chemical Engineering, UNIST, Ulsan, Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seoul, Korea
| |
Collapse
|
28
|
Zhang Y, Jia Z, Lin J, Xu D, Fu S, Gong H. Deletingpckimproves growth and suppresses by-product formation during 1,3-propanediol fermentation byKlebsiella pneumoniae. J Appl Microbiol 2017. [DOI: 10.1111/jam.13518] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yongqiang Zhang
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Zongxiao Jia
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Jie Lin
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Danfeng Xu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Shuilin Fu
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| | - Heng Gong
- State Key Laboratory of Bioreactor Engineering; East China University of Science and Technology; Shanghai China
| |
Collapse
|
29
|
Li Y, Ge XZ, Tian PF. Production of 1,3-propanediol from glycerol using a new isolateKlebsiellasp. AA405 carrying low levels of virulence factors. BIOTECHNOL BIOTEC EQ 2017. [DOI: 10.1080/13102818.2017.1335175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Affiliation(s)
- Ying Li
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
- College of Biochemical Engineering, Beijing Union University, Beijing, People's Republic of China
| | - Xi-Zhen Ge
- College of Biochemical Engineering, Beijing Union University, Beijing, People's Republic of China
| | - Ping-Fang Tian
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, People's Republic of China
| |
Collapse
|
30
|
Yang T, Rao Z, Zhang X, Xu M, Xu Z, Yang ST. Metabolic engineering strategies for acetoin and 2,3-butanediol production: advances and prospects. Crit Rev Biotechnol 2017; 37:990-1005. [DOI: 10.1080/07388551.2017.1299680] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu Province, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Jiangnan University (Rugao) Food Biotechnology Research Institute, Rugao, Jiangsu Province, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Zhenghong Xu
- Laboratory of Pharmaceutical Engineering, School of Pharmaceutical Science, Jiangnan University, Wuxi, China
| | - Shang-Tian Yang
- Department of Chemical and Biomolecular Engineering, Ohio State University, Columbus, OH, USA
| |
Collapse
|
31
|
Coordination of metabolic pathways: Enhanced carbon conservation in 1,3-propanediol production by coupling with optically pure lactate biosynthesis. Metab Eng 2017; 41:102-114. [PMID: 28396036 DOI: 10.1016/j.ymben.2017.03.009] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 01/09/2017] [Accepted: 03/31/2017] [Indexed: 11/23/2022]
Abstract
Metabolic engineering has emerged as a powerful tool for bioproduction of both fine and bulk chemicals. The natural coordination among different metabolic pathways contributes to the complexity of metabolic modification, which hampers the development of biorefineries. Herein, the coordination between the oxidative and reductive branches of glycerol metabolism was rearranged in Klebsiella oxytoca to improve the 1,3-propanediol production. After deliberating on the product value, carbon conservation, redox balance, biological compatibility and downstream processing, the lactate-producing pathway was chosen for coupling with the 1,3-propanediol-producing pathway. Then, the other pathways of 2,3-butanediol, ethanol, acetate, and succinate were blocked in sequence, leading to improved d-lactate biosynthesis, which as return drove the 1,3-propanediol production. Meanwhile, efficient co-production of 1,3-propanediol and l-lactate was also achieved by replacing ldhD with ldhL from Bacillus coagulans. The engineered strains PDL-5 and PLL co-produced over 70g/L 1,3-propanediol and over 100g/L optically pure d-lactate and l-lactate, respectively, with high conversion yields of over 0.95mol/mol from glycerol.
Collapse
|
32
|
Metabolic engineering of Klebsiella pneumoniae based on in silico analysis and its pilot-scale application for 1,3-propanediol and 2,3-butanediol co-production. ACTA ACUST UNITED AC 2017; 44:431-441. [DOI: 10.1007/s10295-016-1898-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 12/23/2016] [Indexed: 11/26/2022]
Abstract
Abstract
Klebsiella pneumoniae naturally produces relatively large amounts of 1,3-propanediol (1,3-PD) and 2,3-butanediol (2,3-BD) along with various byproducts using glycerol as a carbon source. The ldhA and mdh genes in K. pneumoniae were deleted based on its in silico gene knockout simulation with the criteria of maximizing 1,3-PD and 2,3-BD production and minimizing byproducts formation and cell growth retardation. In addition, the agitation speed, which is known to strongly affect 1,3-PD and 2,3-BD production in Klebsiella strains, was optimized. The K. pneumoniae ΔldhA Δmdh strain produced 125 g/L of diols (1,3-PD and 2,3-BD) with a productivity of 2.0 g/L/h in the lab-scale (5-L bioreactor) fed-batch fermentation using high-quality guaranteed reagent grade glycerol. To evaluate the industrial capacity of the constructed K. pneumoniae ΔldhA Δmdh strain, a pilot-scale (5000-L bioreactor) fed-batch fermentation was carried out using crude glycerol obtained from the industrial biodiesel plant. The pilot-scale fed-batch fermentation of the K. pneumoniae ΔldhA Δmdh strain produced 114 g/L of diols (70 g/L of 1,3-PD and 44 g/L of 2,3-BD), with a yield of 0.60 g diols per gram glycerol and a productivity of 2.2 g/L/h of diols, which should be suitable for the industrial co-production of 1,3-PD and 2,3-BD.
Collapse
|
33
|
Li C, Gai Z, Wang K, Jin L. Engineering Bacillus licheniformis as a thermophilic platform for the production of l-lactic acid from lignocellulose-derived sugars. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:235. [PMID: 29046721 PMCID: PMC5637338 DOI: 10.1186/s13068-017-0920-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 10/03/2017] [Indexed: 05/03/2023]
Abstract
BACKGROUND Bacillus licheniformis MW3 as a GRAS and thermophilic strain is a promising microorganism for chemical and biofuel production. However, its capacity to co-utilize glucose and xylose, the major sugars found in lignocellulosic biomass, is severely impaired by glucose-mediated carbon catabolite repression (CCR). In this study, a "dual-channel" process was implemented to engineer strain MW3 for simultaneous utilization of glucose and xylose, using l-lactic acid as a target product. RESULTS A non-phosphotransferase system (PTS) glucose uptake route was activated via deletion of the glucose transporter gene ptsG and introduction of the galactose permease gene galP. After replacing the promoter of glucokinase gene glck with the strong promoter Pals, the engineered strain recovered glucose consumption and utilized glucose and xylose simultaneously. Meanwhile, to improve the consumption rate of xylose in this strain, several measures were undertaken, such as relieving the regulation of the xylose repressor XylR, reducing the catabolite-responsive element, and optimizing the rate-limiting step. Knockout of ethanol and acetic acid pathway genes further increased lactic acid yield by 6.2%. The resultant strain, RH15, was capable of producing 121.9 g/L l-lactic acid at high yield (95.3%) after 40 h of fermentation from a mixture of glucose and xylose. When a lignocellulosic hydrolysate was used as the substrate, 99.3 g/L l-lactic acid was produced within 40 h, with a specific productivity of 2.48 g/[L h] and a yield of 94.6%. CONCLUSIONS Our engineered strain B. licheniformis RH15 could thermophilically produced l-lactic acid from lignocellulosic hydrolysate with relatively high concentration and productivity at levels that were competitive with most reported cases of l-lactic acid-producers. Thus, the engineered strain might be used as a platform for the production of other chemicals. In addition to engineering the B. licheniformis strain, the "dual-channel" process might serve as an alternative method for engineering a variety of other strains.
Collapse
Affiliation(s)
- Chao Li
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Zhongchao Gai
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Kai Wang
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092 People’s Republic of China
| | - Liping Jin
- Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, 200092 People’s Republic of China
| |
Collapse
|
34
|
Zhang Y, Liu D, Chen Z. Production of C2-C4 diols from renewable bioresources: new metabolic pathways and metabolic engineering strategies. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:299. [PMID: 29255482 PMCID: PMC5727944 DOI: 10.1186/s13068-017-0992-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/05/2017] [Indexed: 05/17/2023]
Abstract
C2-C4 diols classically derived from fossil resource are very important bulk chemicals which have been used in a wide range of areas, including solvents, fuels, polymers, cosmetics, and pharmaceuticals. Production of C2-C4 diols from renewable resources has received significant interest in consideration of the reducing fossil resource and the increasing environmental issues. While bioproduction of certain diols like 1,3-propanediol has been commercialized in recent years, biosynthesis of many other important C2-C4 diol isomers is highly challenging due to the lack of natural synthesis pathways. Recent advances in synthetic biology have enabled the de novo design of completely new pathways to non-natural molecules from renewable feedstocks. In this study, we review recent advances in bioproduction of C2-C4 diols, focusing on new metabolic pathways and metabolic engineering strategies being developed. We also discuss the challenges and future trends toward the development of economically competitive processes for bio-based diol production.
Collapse
Affiliation(s)
- Ye Zhang
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
| | - Dehua Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| | - Zhen Chen
- Department of Chemical Engineering, Tsinghua University, Beijing, 100084 China
- Key Lab of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084 China
- Tsinghua Innovation Center in Dongguan, Dongguan, 523808 China
- Center of Synthetic and Systems Biology, Tsinghua University, Beijing, 100084 China
| |
Collapse
|
35
|
The Role of the Pyruvate Acetyl-CoA Switch in the Production of 1,3-Propanediol by Klebsiella pneumoniae. Appl Biochem Biotechnol 2016; 181:1199-1210. [PMID: 27734285 DOI: 10.1007/s12010-016-2278-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/04/2016] [Indexed: 10/20/2022]
Abstract
Pyruvate dehydrogenase-complex (AcoABCD) and pyruvate formate-lyase (PFL) are two pathways responsible for synthesis of acetyl-CoA from pyruvate (pyruvate acetyl-CoA switch). The two pathways were individually deleted in Klebsiella pneumoniae, and the role of the pyruvate acetyl-CoA switch in 1,3-propanediol production was investigated. Fermentation results showed that the two pathways were both active in the wild-type strain. Acetyl-CoA formation between the two pathways was equal in the wild-type strain. The pflB mutant produced high level of lactic acid, and deletion of ldhA eliminated lactic acid synthesis. The conversion ratio of glycerol to 1,3-propanediol in the pflB-ldhA mutant reached 0.541 g/g, which was 9.4 % higher than that of the wild-type strain. However, the productivity of 1,3-propanediol was decreased in the pflB-ldhA mutant. In contrast, the productivity of 1,3-propanediol was increased by 19 % in the acoABCD mutant, with the disadvantage of lower substrate conversion ratio. Regulating the pyruvate acetyl-CoA switch presents a novel way to improve the conversion ratio or productivity of 1,3-propanediol produced by K. pneumoniae.
Collapse
|
36
|
Julien-Laferrière A, Bulteau L, Parrot D, Marchetti-Spaccamela A, Stougie L, Vinga S, Mary A, Sagot MF. A Combinatorial Algorithm for Microbial Consortia Synthetic Design. Sci Rep 2016; 6:29182. [PMID: 27373593 PMCID: PMC4931573 DOI: 10.1038/srep29182] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/07/2016] [Indexed: 11/16/2022] Open
Abstract
Synthetic biology has boomed since the early 2000s when it started being shown that it was possible to efficiently synthetize compounds of interest in a much more rapid and effective way by using other organisms than those naturally producing them. However, to thus engineer a single organism, often a microbe, to optimise one or a collection of metabolic tasks may lead to difficulties when attempting to obtain a production system that is efficient, or to avoid toxic effects for the recruited microorganism. The idea of using instead a microbial consortium has thus started being developed in the last decade. This was motivated by the fact that such consortia may perform more complicated functions than could single populations and be more robust to environmental fluctuations. Success is however not always guaranteed. In particular, establishing which consortium is best for the production of a given compound or set thereof remains a great challenge. This is the problem we address in this paper. We thus introduce an initial model and a method that enable to propose a consortium to synthetically produce compounds that are either exogenous to it, or are endogenous but where interaction among the species in the consortium could improve the production line.
Collapse
Affiliation(s)
- Alice Julien-Laferrière
- Erable team, INRIA Grenoble Rhône-Alpes, 655 avenue de I’Europe, 38330 Montbonnot-Saint-Martin, France
- University Lyon 1, CNRS UMR 5558, F-69622 Villeurbanne, France
| | - Laurent Bulteau
- Université Paris-Est, LIGM (UMR 8049), CNRS, UPEM, ESIEE Paris, ENPC, F-77454, Marne-la-Vallée, France
| | - Delphine Parrot
- Erable team, INRIA Grenoble Rhône-Alpes, 655 avenue de I’Europe, 38330 Montbonnot-Saint-Martin, France
- University Lyon 1, CNRS UMR 5558, F-69622 Villeurbanne, France
| | - Alberto Marchetti-Spaccamela
- Erable team, INRIA Grenoble Rhône-Alpes, 655 avenue de I’Europe, 38330 Montbonnot-Saint-Martin, France
- Sapienza University of Rome, Italy
| | - Leen Stougie
- Erable team, INRIA Grenoble Rhône-Alpes, 655 avenue de I’Europe, 38330 Montbonnot-Saint-Martin, France
- VU University and CWI, Amsterdam, The Netherlands
| | - Susana Vinga
- IDMEC, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal
| | - Arnaud Mary
- Erable team, INRIA Grenoble Rhône-Alpes, 655 avenue de I’Europe, 38330 Montbonnot-Saint-Martin, France
- University Lyon 1, CNRS UMR 5558, F-69622 Villeurbanne, France
| | - Marie-France Sagot
- Erable team, INRIA Grenoble Rhône-Alpes, 655 avenue de I’Europe, 38330 Montbonnot-Saint-Martin, France
- University Lyon 1, CNRS UMR 5558, F-69622 Villeurbanne, France
| |
Collapse
|
37
|
Kim C, Ainala SK, Oh YK, Jeon BH, Park S, Kim JR. Metabolic flux change in Klebsiella pneumoniae L17 by anaerobic respiration in microbial fuel cell. BIOTECHNOL BIOPROC E 2016. [DOI: 10.1007/s12257-015-0777-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
38
|
Saratale GD, Jung MY, Oh MK. Reutilization of green liquor chemicals for pretreatment of whole rice waste biomass and its application to 2,3-butanediol production. BIORESOURCE TECHNOLOGY 2016; 205:90-6. [PMID: 26820921 DOI: 10.1016/j.biortech.2016.01.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 05/06/2023]
Abstract
The performance of green liquor pretreatment using Na2CO3 and Na2SO3 and its optimization for whole rice waste biomass (RWB) was investigated. Incubation of Na2CO3-Na2SO3 at a 1:1 ratio (chemical charge 10%) for 12% RWB at 100°C for 6h resulted in maximum delignification (58.2%) with significant glucan yield (88%) and total sugar recovery (545mg/g of RWB) after enzymatic hydrolysis. Recovery and reusability of the resulting chemical spent wash were evaluated to treat RWB along with its compatibility for enzymatic digestibility. Significant hydrolysis and lignin removal were observed for up to three cycles; however, further reuse of Na2CO3 and Na2SO3 lowered their performance. Significant 2,3-butanediol (BDO) was produced by Klebsiella pneumoniae KMK-05 with the RWB enzymatic hydrolysate from each pretreatment cycle. BDO yield achieved using RWB-derived sugars was similar to those using laboratory-grade sugars. This pretreatment strategy constitutes an ecofriendly, cost-effective, and practical method for utilizing lignocellulosic biomass.
Collapse
Affiliation(s)
- Ganesh D Saratale
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 136-713, South Korea
| | - Moo-Young Jung
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 136-713, South Korea
| | - Min-Kyu Oh
- Department of Chemical and Biological Engineering, Korea University, Seongbuk-gu, Seoul 136-713, South Korea.
| |
Collapse
|
39
|
2,3-Butanediol production from cellobiose using exogenous beta-glucosidase-expressing Bacillus subtilis. Appl Microbiol Biotechnol 2016; 100:5781-9. [DOI: 10.1007/s00253-016-7326-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 01/04/2023]
|
40
|
Chen Z, Wu Y, Huang J, Liu D. Metabolic engineering of Klebsiella pneumoniae for the de novo production of 2-butanol as a potential biofuel. BIORESOURCE TECHNOLOGY 2015; 197:260-5. [PMID: 26342337 DOI: 10.1016/j.biortech.2015.08.086] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/14/2015] [Accepted: 08/17/2015] [Indexed: 05/14/2023]
Abstract
Butanol isomers are important bulk chemicals and promising fuel substitutes. The inevitable toxicity of n-butanol and isobutanol to microbial cells hinders their final titers. In this study, we attempt to engineer Klebsiella pneumoniae for the de novo production of 2-butanol, another butanol isomer which shows lower toxicity than n-butanol and isobutanol. 2-Butanol synthesis was realized by the extension of the native meso-2,3-butanediol synthesis pathway with the introduction of diol dehydratase and secondary alcohol dehydrogenase. By the screening of different secondary alcohol dehydrogenases and diol dehydratases, 320mg/L of 2-butanol was produced by the best engineered K. pneumoniae. The production was increased to 720mg/L by knocking out the ldhA gene and appropriate addition of coenzyme B12. Further improvement of 2-butanol to 1030mg/L was achieved by protein engineering of diol dehydratase. This work lays the basis for the metabolic engineering of microorganism for the production of 2-butanol as potential biofuel.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China.
| | - Yao Wu
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinhai Huang
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
41
|
Chen Z, Sun H, Huang J, Wu Y, Liu D. Metabolic Engineering of Klebsiella pneumoniae for the Production of 2-Butanone from Glucose. PLoS One 2015; 10:e0140508. [PMID: 26465746 PMCID: PMC4605612 DOI: 10.1371/journal.pone.0140508] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/25/2015] [Indexed: 11/27/2022] Open
Abstract
2-Butanone is an important commodity chemical of wide application in different areas. In this study, Klebsiella pneumoniae was engineered to directly produce 2-butanone from glucose by extending its native 2, 3-butanediol synthesis pathway. To identify the potential enzyme for the efficient conversion of 2, 3-butanediol to 2-butanone, we screened different glycerol dehydratases and diol dehydratases. By introducing the diol dehydratase from Lactobacillus brevis and deleting the ldhA gene encoding lactate dehydrogenase, the engineered K. pneumoniae was able to accumulate 246 mg/L of 2-butanone in shake flask. With further optimization of culture condition, the titer of 2-butanone was increased to 450 mg/L. This study lays the basis for developing an efficient biological process for 2-butanone production.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
- * E-mail:
| | - He Sun
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Jinhai Huang
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yao Wu
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Dehua Liu
- Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
- Tsinghua Innovation Center in Dongguan, Dongguan 523808, China
| |
Collapse
|
42
|
Shin SH, Roh H, Kim J, Cho S, Um Y, Lee J, Ryu YW, Chong H, Yang KS. Complete genome sequence of Klebsiella oxytoca M1, isolated from Manripo area of South Korea. J Biotechnol 2015; 198:1-2. [PMID: 25660421 DOI: 10.1016/j.jbiotec.2015.01.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 01/16/2015] [Indexed: 11/29/2022]
Abstract
Here we report the full genome sequence of Klesiella oxytoca M1, isolated from Manripo area of South Korea. The strain K. oxytoca M1 is able to produce either 2,3-butanediol or acetoin selectively by controlling the pH and temperature.
Collapse
Affiliation(s)
- Sang Heum Shin
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea; Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hanseong Roh
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea
| | - Juhyeok Kim
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea
| | - Sukhyeong Cho
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Youngsoon Um
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 136-791, Republic of Korea
| | - Jinwon Lee
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul 121-742, Republic of Korea
| | - Yeon-Woo Ryu
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Hyonyong Chong
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea
| | - Kap-Seok Yang
- Macrogen Inc., Gasan-dong, Seoul 153-781, Republic of Korea.
| |
Collapse
|
43
|
The influence of budA deletion on glucose metabolism related in 2,3-butanediol production by Klebsiella pneumoniae. Enzyme Microb Technol 2015; 73-74:1-8. [PMID: 26002498 DOI: 10.1016/j.enzmictec.2015.03.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 02/27/2015] [Accepted: 03/02/2015] [Indexed: 11/27/2022]
Abstract
Klebsiella pneumoniae (K. pneumoniae), which is a promising microorganism for industrial bulk production of 2,3-butanediol (2,3-BDO), naturally converts glucose to 2,3-BDO. The 2,3-BDO biosynthesis from glucose is composed of three steps; α-acetolactate biosynthesis by α-acetolactate synthase (budB); acetoin biosynthesis by α-acetolactate decarboxylase (budA); and 2,3-BDO biosynthesis by acetoin reductase (budC). In an effort to understand the influence of blocked 2,3-BDO pathway on K. pneumoniae glucose metabolism by budA deletion, we constructed K. pneumoniaeΔwabGΔbudA (SGSB106). Carbon flux distribution analysis, transcriptome analysis and extracellular amino acid concentration analysis were carried out to understand the effects of the budA deletion, and K. pneumoniaeΔwabG (SGSB100) was used as a control strain. Approximately 50.3% decrease in CO2 emission; and approximately 3.8-fold increase in amino acid production was observed in SGSB106. In addition to, among the amino acids, valine production significantly increased, suggesting that the branched-chain amino acid biosynthesis (BACC) in SGSB106 was activated by deletion of budA. Furthermore, whole genome transcriptome analysis of SGSB106 and SGSB100, correlates with the results from carbon distribution and amino acids concentration analyses.
Collapse
|
44
|
Metabolic engineering of Klebsiella pneumoniae for the production of cis,cis-muconic acid. Appl Microbiol Biotechnol 2015; 99:5217-25. [DOI: 10.1007/s00253-015-6442-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 01/26/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
|
45
|
Jung MY, Jung HM, Lee J, Oh MK. Alleviation of carbon catabolite repression in Enterobacter aerogenes for efficient utilization of sugarcane molasses for 2,3-butanediol production. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:106. [PMID: 26236395 PMCID: PMC4521459 DOI: 10.1186/s13068-015-0290-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Accepted: 07/22/2015] [Indexed: 05/23/2023]
Abstract
BACKGROUND Due to its cost-effectiveness and rich sugar composition, sugarcane molasses is considered to be a promising carbon source for biorefinery. However, the sugar mixture in sugarcane molasses is not consumed as efficiently as glucose in microbial fermentation due to complex interactions among their utilizing pathways, such as carbon catabolite repression (CCR). In this study, 2,3-butanediol-producing Enterobacter aerogenes was engineered to alleviate CCR and improve sugar utilization by modulating its carbon preference. RESULTS The gene encoding catabolite repressor/activator (Cra) was deleted in the genome of E. aerogenes to increase the fructose consumption rate. However, the deletion mutation repressed sucrose utilization, resulting in the accumulation of sucrose in the fermentation medium. Cra regulation on expression of the scrAB operon involved in sucrose catabolism was verified by reverse transcription and real-time PCR, and the efficiency of sucrose utilization was restored by disrupting the scrR gene and overexpressing the scrAB operon. In addition, overexpression of the ptsG gene involved in glucose utilization enhanced the glucose preference among mixed sugars, which relieved glucose accumulation in fed-batch fermentation. In fed-batch fermentation using sugarcane molasses, the maximum titer of 2,3-butanediol production by the mutant reached 140.0 g/L at 54 h, which was by far the highest titer of 2,3-butanediol with E. aerogenes achieved through genetic engineering. CONCLUSIONS We have developed genetically engineered E. aerogenes as a 2,3-butanediol producer that efficiently utilizes sugarcane molasses. The fermentation efficiency was dramatically improved by the alleviation of CCR and modulation of carbon preference. These results offer a metabolic engineering approach for achieving highly efficient utilization of mixed sugars for the biorefinery industry.
Collapse
Affiliation(s)
- Moo-Young Jung
- />Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Hwi-Min Jung
- />Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| | - Jinwon Lee
- />Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, Republic of Korea
| | - Min-Kyu Oh
- />Department of Chemical and Biological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
46
|
Chu H, Xin B, Liu P, Wang Y, Li L, Liu X, Zhang X, Ma C, Xu P, Gao C. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:143. [PMID: 26379775 PMCID: PMC4570510 DOI: 10.1186/s13068-015-0324-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 08/25/2015] [Indexed: 05/12/2023]
Abstract
BACKGROUND Butane-2,3-diol (2,3-BD) is a fuel and platform biochemical with various industrial applications. 2,3-BD exists in three stereoisomeric forms: (2R,3R)-2,3-BD, meso-2,3-BD and (2S,3S)-2,3-BD. Microbial fermentative processes have been reported for (2R,3R)-2,3-BD and meso-2,3-BD production. RESULTS The production of (2S,3S)-2,3-BD from glucose was acquired by whole cells of recombinant Escherichia coli coexpressing the α-acetolactate synthase and meso-butane-2,3-diol dehydrogenase of Enterobacter cloacae subsp. dissolvens strain SDM. An optimal biocatalyst for (2S,3S)-2,3-BD production, E. coli BL21 (pETDuet-PT7-budB-PT7-budC), was constructed and the bioconversion conditions were optimized. With the addition of 10 mM FeCl3 in the bioconversion system, (2S,3S)-2,3-BD at a concentration of 2.2 g/L was obtained with a stereoisomeric purity of 95.0 % using the metabolically engineered strain from glucose. CONCLUSIONS The engineered E. coli strain is the first one that can be used in the direct production of (2S,3S)-2,3-BD from glucose. The results demonstrated that the method developed here would be a promising process for efficient (2S,3S)-2,3-BD production.
Collapse
Affiliation(s)
- Haipei Chu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Bo Xin
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Peihai Liu
- />Rizhao Entry-Exit Inspection and Quarantine Bureau, Rizhao, 276800 People’s Republic of China
| | - Yu Wang
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Lixiang Li
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Xiuxiu Liu
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Xuan Zhang
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Cuiqing Ma
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ping Xu
- />State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Chao Gao
- />State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|