1
|
Frühe L, Klein SG, Angulo‐Preckler C, Martynova A, Alamoudi T, García JVA, Arossa S, Breavington J, Frappi S, Laiolo E, Lim KK, Parry AJ, Re E, Rosas DER, Rodrigue M, Steckbauer A, Pieribone VA, Qurban MA, Duarte CM. Particle-Associated Bacterioplankton Communities Across the Red Sea. Environ Microbiol 2025; 27:e70075. [PMID: 40098226 PMCID: PMC11914372 DOI: 10.1111/1462-2920.70075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Pelagic particle-associated bacterioplankton play crucial roles in marine ecosystems, influencing biogeochemical cycling and ecosystem functioning. However, their diversity, composition, and dynamics remain poorly understood, particularly in unique environments such as the Red Sea. In this study, we employed eDNA metabarcoding to comprehensively characterise bacterioplankton communities associated with pelagic particles in a three-dimensional assessment spanning depths from the surface to a depth of 2300 m along the full length of the eastern Red Sea within the exclusive economic zone of the Kingdom of Saudi Arabia. Our results reveal a diverse assemblage of taxa, with Pseudomonadota, Cyanobacteriota, and Planctomycetota being the dominant phyla. We identified pronounced spatial variability in community composition among five major Red Sea geographical regions, with a third of all amplicon sequence variants being unique to the Southern Red Sea in contrast to a relatively homogenous distribution along the water column depth gradient. Our findings contribute to a deeper understanding of microbial ecology in the Red Sea and provide valuable insights into the factors governing pelagic particle-associated bacterioplankton communities in this basin.
Collapse
Affiliation(s)
- Larissa Frühe
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- OceanXNew YorkNew YorkUSA
| | - Shannon G. Klein
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Carlos Angulo‐Preckler
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Anastasiia Martynova
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Taiba Alamoudi
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Jacqueline V. Alva García
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Silvia Arossa
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
- National Center for Wildlife (NCW)RiyadhKingdom of Saudi Arabia
| | - Jessica Breavington
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Sofia Frappi
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Elisa Laiolo
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Kah Kheng Lim
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Anieka J. Parry
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Eleonora Re
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | - Diego E. Rivera Rosas
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | | | - Alexandra Steckbauer
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| | | | | | - Carlos M. Duarte
- Marine Science Program, Biological and Environmental Science and Engineering Division (BESE)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia
| |
Collapse
|
2
|
Yang T, He Y, Yang M, Gao Z, Zhou J, Wang Y. Community Structure and Biodiversity of Active Microbes in the Deep South China Sea. Microorganisms 2024; 12:2325. [PMID: 39597714 PMCID: PMC11596837 DOI: 10.3390/microorganisms12112325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/09/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
The deep ocean harbors a group of highly diversified microbes, while our understanding of the active microbes that are real contributors to the nutrient cycle remains limited. In this study, we report eukaryotic and prokaryotic communities in ~590 m and 1130 m depths using 16S and 18S rRNA Illumina reads (miTags) extracted from 15 metagenomes (MG) and 14 metatranscriptomes (MT). The metagenomic 16S miTags revealed the dominance of Gammaproteobacteria, Alphaproteobacteria, and Nitrososphaeria, while the metatranscriptomic 16S miTags were highly occupied by Gammaproteobacteria, Acidimicrobiia, and SAR324. The consistency of the active taxa between the two depths suggests the homogeneity of the functional microbial groups across the two depths. The eukaryotic microbial communities revealed by the 18S miTags of the metagenomic data are dominated by Polycystinea; however, they were almost all absent in the 18S metatranscriptomic miTags. The active eukaryotes were represented by the Arthropoda class (at 590 m depth), Dinophyceae, and Ciliophora classes. Consistent eukaryotic communities were also exhibited by the 18S miTags of the metatranscriptomic data of the two depths. In terms of biodiversity, the ACE and Shannon indices of the 590 m depth calculated using the 18S metatranscriptomic miTags were much higher than those of the 1130 m depth, while a reverse trend was shown for the indices based on the metagenomic data. Our study reports the active microbiomes functioning in the nutrient utilization and carbon cycle in the deep-sea zone, casting light on the quantification of the ecological processes occurring in the deep ocean.
Collapse
Affiliation(s)
- Taoran Yang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yinghui He
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Ming Yang
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhaoming Gao
- Institute of Deep Sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yong Wang
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Advanced Technology for Marine Ecology, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
3
|
Zhao S, Hu X, Li H, Zhang H, Lu J, Li Y, Chen Z, Bao M. Diversity and structure of pelagic microbial community in Kuroshio Extension. MARINE ENVIRONMENTAL RESEARCH 2024; 201:106697. [PMID: 39205358 DOI: 10.1016/j.marenvres.2024.106697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/27/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
Kuroshio Extension (KE) is the most active region of oceanic change in the North Pacific Ocean, which provides an essential place for the survival of marine microorganisms. However, Vertical changes in microbial communities in the Kuroshio Extension and the mechanisms by which environmental factors drive vertical changes in community structure remain unclear. In this work, microbial diversity, abundance, and community structure of 12 water layers (from surface to bottom) at five stations were uncovered by 16S rRNA gene high-throughput sequencing. Microbial diversity and richness decreased with increasing seawater depth. Microorganisms in the euphotic zone can be well separated from other zones based on NMDS analysis. Proteobacteria (65.20%), Bacteroidota (8.48%), Actinobacteriota (5.76%), and Crenarchaeota (4.49%) accounted for a relatively large proportion and their distribution is similar in four zones. Most of microorganisms were significantly (Spearman test, p < 0.05) correlated with salinity, density, pressure, and temperature. This work enhances our understanding of vertical microbial diversity and provides insights into the pelagic microbial community structure.
Collapse
Affiliation(s)
- Shanshan Zhao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Xin Hu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Haoshuai Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Honghai Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Jinren Lu
- College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Yiming Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China
| | - Zhaohui Chen
- Frontier Science Center for Deep Ocean Multispheres and Earth System (FDOMES) and Physical Oceanography Laboratory, Ocean University of China, Qingdao, China; Laoshan Laboratory, Qingdao, China
| | - Mutai Bao
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Laboratory of Marine Chemistry Theory and Technology Ministry of Education, Ocean University of China, Qingdao, Shandong Province, 266100, China; College of Chemistry & Chemical Engineering, Ocean University of China, Qingdao, Shandong Province, 266100, China.
| |
Collapse
|
4
|
Rawat M, Chauhan M, Pandey A. Extremophiles and their expanding biotechnological applications. Arch Microbiol 2024; 206:247. [PMID: 38713374 DOI: 10.1007/s00203-024-03981-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/16/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
Microbial life is not restricted to any particular setting. Over the past several decades, it has been evident that microbial populations can exist in a wide range of environments, including those with extremes in temperature, pressure, salinity, and pH. Bacteria and Archaea are the two most reported types of microbes that can sustain in extreme environments, such as hot springs, ice caves, acid drainage, and salt marshes. Some can even grow in toxic waste, organic solvents, and heavy metals. These microbes are called extremophiles. There exist certain microorganisms that are found capable of thriving in two or more extreme physiological conditions simultaneously, and are regarded as polyextremophiles. Extremophiles possess several physiological and molecular adaptations including production of extremolytes, ice nucleating proteins, pigments, extremozymes and exopolysaccharides. These metabolites are used in many biotechnological industries for making biofuels, developing new medicines, food additives, cryoprotective agents etc. Further, the study of extremophiles holds great significance in astrobiology. The current review summarizes the diversity of microorganisms inhabiting challenging environments and the biotechnological and therapeutic applications of the active metabolites obtained as a response to stress conditions. Bioprospection of extremophiles provides a progressive direction with significant enhancement in economy. Moreover, the introduction to omics approach including whole genome sequencing, single cell genomics, proteomics, metagenomics etc., has made it possible to find many unique microbial communities that could be otherwise difficult to cultivate using traditional methods. These findings might be capable enough to state that discovery of extremophiles can bring evolution to biotechnology.
Collapse
Affiliation(s)
- Manvi Rawat
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Mansi Chauhan
- Department of Microbiology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India
| | - Anita Pandey
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, Uttarakhand, 248002, India.
| |
Collapse
|
5
|
Marietou A, Schmidt JS, Rasmussen MR, Scoma A, Rysgaard S, Vergeynst L. The effect of hydrostatic pressure on the activity and community composition of hydrocarbon-degrading bacteria in Arctic seawater. Appl Environ Microbiol 2023; 89:e0098723. [PMID: 37943057 PMCID: PMC10686064 DOI: 10.1128/aem.00987-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 10/05/2023] [Indexed: 11/10/2023] Open
Abstract
IMPORTANCE Increased ship traffic in the Arctic region raises the risk of oil spills. With an average sea depth of 1,000 m, there is a growing concern over the potential release of oil sinking in the form of marine oil snow into deep Arctic waters. At increasing depth, the oil-degrading community is exposed to increasing hydrostatic pressure, which can reduce microbial activity. However, microbes thriving in polar regions may adapt to low temperature by modulation of membrane fluidity, which is also a well-known adaptation to high hydrostatic pressure. At mild hydrostatic pressures up to 8-12 MPa, we did not observe an altered microbial activity or community composition, whereas comparable studies using deep-sea or sub-Arctic microbial communities with in situ temperatures of 4-5°C showed pressure-induced effects at 10-15 MPa. Our results suggest that the psychrophilic nature of the underwater microbial communities in the Arctic may be featured by specific traits that enhance their fitness at increasing hydrostatic pressure.
Collapse
Affiliation(s)
- Angeliki Marietou
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | | | - Martin R. Rasmussen
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
| | - Alberto Scoma
- Department of Biology, Section for Microbiology, Aarhus University, Aarhus, Denmark
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
| | - Søren Rysgaard
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark
| | - Leendert Vergeynst
- Department of Biological and Chemical Engineering, Aarhus University, Aarhus, Denmark
- Arctic Research Centre, Department of Biology, Aarhus University, Aarhus, Denmark
- Centre for Water Technology (WATEC), Aarhus University, Aarhus, Denmark
| |
Collapse
|
6
|
Amano C, Zhao Z, Sintes E, Reinthaler T, Stefanschitz J, Kisadur M, Utsumi M, Herndl GJ. Limited carbon cycling due to high-pressure effects on the deep-sea microbiome. NATURE GEOSCIENCE 2022; 15:1041-1047. [PMID: 36504693 PMCID: PMC9726642 DOI: 10.1038/s41561-022-01081-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 10/20/2022] [Indexed: 06/17/2023]
Abstract
Deep-sea microbial communities are exposed to high-pressure conditions, which has a variable impact on prokaryotes depending on whether they are piezophilic (that is, pressure-loving), piezotolerant or piezosensitive. While it has been suggested that elevated pressures lead to higher community-level metabolic rates, the response of these deep-sea microbial communities to the high-pressure conditions of the deep sea is poorly understood. Based on microbial activity measurements in the major oceanic basins using an in situ microbial incubator, we show that the bulk heterotrophic activity of prokaryotic communities becomes increasingly inhibited at higher hydrostatic pressure. At 4,000 m depth, the bulk heterotrophic prokaryotic activity under in situ hydrostatic pressure was about one-third of that measured in the same community at atmospheric pressure conditions. In the bathypelagic zone-between 1,000 and 4,000 m depth-~85% of the prokaryotic community was piezotolerant and ~5% of the prokaryotic community was piezophilic. Despite piezosensitive-like prokaryotes comprising only ~10% (mainly members of Bacteroidetes, Alteromonas) of the deep-sea prokaryotic community, the more than 100-fold metabolic activity increase of these piezosensitive prokaryotes upon depressurization leads to high apparent bulk metabolic activity. Overall, the heterotrophic prokaryotic activity in the deep sea is likely to be substantially lower than hitherto assumed, with major impacts on the oceanic carbon cycling.
Collapse
Affiliation(s)
- Chie Amano
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Zihao Zhao
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Eva Sintes
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Instituto Español de Oceanografía-CSIC, Centro Oceanográfico de Baleares, Palma de Mallorca, Spain
| | - Thomas Reinthaler
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Julia Stefanschitz
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Present Address: Marine Evolutionary Ecology, Deep-Sea Biology Group, GEOMAR Helmholtz Centre for Ocean Research Kiel, Kiel, Germany
| | - Murat Kisadur
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| | - Motoo Utsumi
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki Japan
- Microbiology Research Center for Sustainability, University of Tsukuba, Tsukuba, Ibaraki Japan
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- NIOZ, Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research, Utrecht University, Texel, The Netherlands
- Vienna Metabolomics & Proteomics Center, University of Vienna, Vienna, Austria
| |
Collapse
|
7
|
In Situ Genomics and Transcriptomics of SAR202 Subclusters Revealed Subtle Distinct Activities in Deep-Sea Water. Microorganisms 2022; 10:microorganisms10081629. [PMID: 36014047 PMCID: PMC9416657 DOI: 10.3390/microorganisms10081629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/22/2022] [Accepted: 07/27/2022] [Indexed: 11/16/2022] Open
Abstract
Deep-sea water columns are enriched with SAR202 that may conduct detrital matter degradation. There are several subclusters in SAR202, but their subtle differences in geochemical cycles are largely unknown, particularly for their in situ activities in the marine deep zone. Deep-sea DNA/RNA samples obtained from 12 continuous time periods over two days by in situ nucleic acid collection apparatus were used to re-evaluate the ecological functions of each SAR202 subcluster at a depth of ~1000 m in the South China Sea (SCS). Phylogenomics of 32 new SAR202 genomes from the SCS and western Pacific revealed their distribution in five subclusters. Metatranscriptomics analysis showed that the subclusters II and III were the dominant SAR202 groups with higher transcriptional activities in the SCS deep-sea zone than other subclusters. The analyses of functional gene expression further indicated that SAR202 subclusters II and III might be involved in different metabolic pathways in the deep-sea environment. The SAR202 subcluster III might take part in the degradation of deep-sea aromatic compounds. Time-course metagenomics and metatranscriptomics data did not show metabolic correlation of subclusters II and III over two days, suggesting diversified ecological functions of SAR202 subclusters under different organic inputs from the overlying water column. Collectively, our results indicate that the SAR202 subclusters play different roles in organic degradation and have probably undergone subtle and gradual adaptive evolution in the dynamic environment of the deep ocean.
Collapse
|
8
|
Ceron-Chafla P, García-Timermans C, de Vrieze J, Ganigué R, Boon N, Rabaey K, van Lier JB, Lindeboom REF. Pre-incubation conditions determine the fermentation pattern and microbial community structure in fermenters at mild hydrostatic pressure. Biotechnol Bioeng 2022; 119:1792-1807. [PMID: 35312065 PMCID: PMC9325544 DOI: 10.1002/bit.28085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 02/08/2022] [Accepted: 03/05/2022] [Indexed: 11/11/2022]
Abstract
Fermentation at elevated hydrostatic pressure is a novel strategy targeting product selectivity. However, the role of inoculum history and cross-resistance, that is, acquired tolerance from incubation under distinctive environmental stress, remains unclear in high-pressure operation. In our here presented work, we studied fermentation and microbial community responses of halotolerant marine sediment inoculum (MSI) and anaerobic digester inoculum (ADI), pre-incubated in serum bottles at different temperatures and subsequently exposed to mild hydrostatic pressure (MHP; < 10 MPa) in stainless steel reactors. Results showed that MHP effects on microbial growth, activity, and community structure were strongly temperature-dependent. At moderate temperature (20°C), biomass yield and fermentation were not limited by MHP; suggesting a cross-resistance effect from incubation temperature and halotolerance. Low temperatures (10°C) and MHP imposed kinetic and bioenergetic limitations, constraining growth and product formation. Fermentation remained favorable in MSI at 28°C and ADI at 37°C, despite reduced biomass yield resulting from maintenance and decay proportionally increasing with temperature. Microbial community structure was modified by temperature during the enrichment, and slight differences observed after MHP-exposure did not compromise functionality. Results showed that the relation incubation temperature-halotolerance proved to be a modifier of microbial responses to MHP and could be potentially exploited in fermentations to modulate product/biomass ratio.
Collapse
Affiliation(s)
- Pamela Ceron-Chafla
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Cristina García-Timermans
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Jo de Vrieze
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Division of Soil and Water Management, Department of Earth and Environmental Sciences, KU Leuven, Leuven, Belgium.,Bio- and Chemical Systems Technology, Reactor Engineering and Safety (CREaS), Department of Chemical Engineering, KU Leuven, Leuven, Belgium
| | - Ramon Ganigué
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Nico Boon
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - Korneel Rabaey
- Faculty of Bioscience Engineering, Center for Microbial Ecology and Technology, Ghent University, Ghent, Belgium.,Center for Advanced Process Technology for Urban Resource Recovery, Ghent, Belgium
| | - Jules B van Lier
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| | - Ralph E F Lindeboom
- Sanitary Engineering Section, Department of Water Management, Delft University of Technology, Delft, the Netherlands
| |
Collapse
|
9
|
Microbial Community Structure and Ecological Networks during Simulation of Diatom Sinking. Microorganisms 2022; 10:microorganisms10030639. [PMID: 35336213 PMCID: PMC8949005 DOI: 10.3390/microorganisms10030639] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 11/17/2022] Open
Abstract
Microbial-mediated utilization of particulate organic matter (POM) during its downward transport from the surface to the deep ocean constitutes a critical component of the global ocean carbon cycle. However, it remains unclear as to how high hydrostatic pressure (HHP) and low temperature (LT) with the sinking particles affects community structure and network interactions of the particle-attached microorganisms (PAM) and those free-living microorganisms (FLM) in the surrounding water. In this study, we investigated microbial succession and network interactions in experiments simulating POM sinking in the ocean. Diatom-derived 13C- and 12C-labeled POM were used to incubate surface water microbial communities from the East China Sea (ECS) under pressure (temperature) of 0.1 (25 °C), 20 (4 °C), and 40 (4 °C) MPa (megapascal). Our results show that the diversity and species richness of the PAM and FLM communities decreased significantly with HHP and LT. Microbial community analysis indicated an increase in the relative abundance of Bacteroidetes at high pressure (40 MPa), mostly at the expense of Gammaproteobacteria, Alphaproteobacteria, and Gracilibacteria at atmospheric pressure. Hydrostatic pressure and temperature affected lifestyle preferences between particle-attached (PA) and free-living (FL) microbes. Ecological network analysis showed that HHP and LT enhanced microbial network interactions and resulted in higher vulnerability to networks of the PAM communities and more resilience of those of the FLM communities. Most interestingly, the PAM communities occupied most of the module hubs of the networks, whereas the FLM communities mainly served as connectors of the modules, suggesting their different ecological roles of the two groups of microbes. These results provided novel insights into how HHP and LT affected microbial community dynamics, ecological networks during POM sinking, and the implications for carbon cycling in the ocean.
Collapse
|
10
|
Stief P, Elvert M, Glud RN. Respiration by "marine snow" at high hydrostatic pressure: Insights from continuous oxygen measurements in a rotating pressure tank. LIMNOLOGY AND OCEANOGRAPHY 2021; 66:2797-2809. [PMID: 34413544 PMCID: PMC8359982 DOI: 10.1002/lno.11791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/07/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023]
Abstract
It is generally anticipated that particulate organic carbon (POC) for most part is degraded by attached microorganisms during the descent of "marine snow" aggregates toward the deep sea. There is, however, increasing evidence that fresh aggregates can reach great depth and sustain relatively high biological activity in the deep sea. Using a novel high-pressure setup, we tested the hypothesis that increasing levels of hydrostatic pressure inhibit POC degradation in aggregates rapidly sinking to the ocean interior. Respiration activity, a proxy for POC degradation, was measured directly and continuously at up to 100 MPa (corresponding to 10 km water depth) in a rotating pressure tank that keeps the aggregates in a sinking mode. Model diatom-bacteria aggregates, cultures of the aggregate-forming diatom Skeletonema marinoi, and seawater microbial communities devoid of diatoms showed incomplete and complete inhibition of respiration activity when exposed to pressure levels of 10-50 and 60-100 MPa, respectively. This implies reduced POC degradation and hence enhanced POC export to hadal trenches through fast-sinking, pressure-exposed aggregates. Notably, continuous respiration measurements at ≥50 MPa revealed curved instead of linear oxygen time series whenever S. marinoi was present, which was not captured by discrete respiration measurements. These curvatures correspond to alternating phases of high and low respiration activity likely connected to pressure effects on unidentified metabolic processes in S. marinoi.
Collapse
Affiliation(s)
- Peter Stief
- HADAL & Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
| | - Marcus Elvert
- MARUM—Center for Marine Environmental SciencesUniversity of BremenBremenGermany
- Faculty of GeosciencesUniversity of BremenBremenGermany
| | - Ronnie N. Glud
- HADAL & Nordcee, Department of BiologyUniversity of Southern DenmarkOdenseDenmark
- Danish Institute for Advanced Study (DIAS)University of Southern DenmarkOdenseDenmark
- Department of Ocean and Environmental SciencesTokyo University of Marine Science and TechnologyTokyoJapan
| |
Collapse
|
11
|
Maiti A, Daschakraborty S. Effect of TMAO on the Structure and Phase Transition of Lipid Membranes: Potential Role of TMAO in Stabilizing Cell Membranes under Osmotic Stress. J Phys Chem B 2021; 125:1167-1180. [PMID: 33481606 DOI: 10.1021/acs.jpcb.0c08335] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Extremophiles adopt strategies to deal with different environmental stresses, some of which are severely damaging to their cell membrane. To combat high osmotic stress, deep-sea organisms synthesize osmolytes, small polar organic molecules, like trimethylamine-N-oxide (TMAO), and incorporate them in the cell. TMAO is known to protect cells from high osmotic or hydrostatic pressure. Several experimental and simulation studies have revealed the roles of such osmolytes on stabilizing proteins. In contrast, the effect of osmolytes on the lipid membrane is poorly understood and broadly debated. A recent experiment has found strong evidence of the possible role of TMAO in stabilizing lipid membranes. Using the molecular dynamics (MD) simulation technique, we have demonstrated the effect of TMAO on two saturated fully hydrated lipid membranes in their fluid and gel phases. We have captured the impact of TMAO's concentration on the membrane's structural properties along with the fluid/gel phase transition temperatures. On increasing the concentration of TMAO, we see a substantial increase in the packing density of the membrane (estimated by area, thickness, and volume) and enhancement in the orientational order of lipid molecules. Having repulsive interaction with the lipid head group, the TMAO molecules are expelled away from the membrane surface, which induces dehydration of the lipid head groups, increasing the packing density. The addition of TMAO also increases the fluid/gel phase transition temperature of the membrane. All of these results are in close agreement with the experimental observations. This study, therefore, provides a molecular-level understanding of how TMAO can influence the cell membrane of deep-sea organisms and help in combating the osmotic stress condition.
Collapse
Affiliation(s)
- Archita Maiti
- Department of Chemistry, Indian Institute of Technology Patna, Patna, Bihar 801106, India
| | | |
Collapse
|
12
|
Barbato M, Scoma A. Mild hydrostatic-pressure (15 MPa) affects the assembly, but not the growth, of oil-degrading coastal microbial communities tested under limiting conditions (5°C, no added nutrients). FEMS Microbiol Ecol 2020; 96:5894919. [PMID: 32816016 DOI: 10.1093/femsec/fiaa160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 08/11/2020] [Indexed: 02/06/2023] Open
Abstract
Hydrostatic pressures (HP) <30-40 MPa are often considered mild, and their impact on petroleum biodegradation seldom considered. However, the frequent use of nutrient-rich media in lab-scale high-pressure reactors may exaggerate HP importance by resulting in a strong growth stimulation as compared to oligotrophic marine environments. Here, we tested coastal seawater microbial communities, presumably enriched in pressure-sensitive microorganisms. Limiting environmental conditions for growth were applied (i.e. low temperature [5°C], no added nutrients) and HP tested at 0.1 and 15 MPa, using crude oils from three different reservoirs. The cell number was not affected by HP contrary to the microbial community composition (based on 16S rRNA gene and 16S rRNA sequences). The most predominant genera were Zhongshania, Pseudomonas and Colwellia. The enrichment of Zhongshania was crude-oil dependent and comparable at 0.1 and 15 MPa, thus showing a piezotolerant phenotype under the present conditions; Pseudomonas' was crude-oil dependent at 0.1 MPa but unclear at 15 MPa. Colwellia was selectively enriched in the absence of crude oil and suppressed at 15 MPa. HP shaped the assemblage of oil-degrading communities even at mild levels (i.e. 15 MPa), and should thus be considered as a fundamental factor to assess oil bioremediation along the water column.
Collapse
Affiliation(s)
- Marta Barbato
- Department of Biology, Aarhus University, Ny munkegade 116, 8000, Aarhus C, Denmark.,Biological and Chemical Engineering Section (BCE), Department of Engineering, Aarhus University, Hangøvej 2, 8200, Aarhus N, Denmark
| | - Alberto Scoma
- Department of Biology, Aarhus University, Ny munkegade 116, 8000, Aarhus C, Denmark.,Biological and Chemical Engineering Section (BCE), Department of Engineering, Aarhus University, Hangøvej 2, 8200, Aarhus N, Denmark
| |
Collapse
|
13
|
Liu Y, Fang J, Jia Z, Chen S, Zhang L, Gao W. DNA stable-isotope probing reveals potential key players for microbial decomposition and degradation of diatom-derived marine particulate matter. Microbiologyopen 2020; 9:e1013. [PMID: 32166910 PMCID: PMC7221439 DOI: 10.1002/mbo3.1013] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 11/06/2022] Open
Abstract
Microbially mediated decomposition of particulate organic carbon (POC) is a central component of the oceanic carbon cycle, controlling the flux of organic carbon from the surface ocean to the deep ocean. Yet, the specific microbial taxa responsible for POC decomposition and degradation in the deep ocean are still unknown. To target the active microbial lineages involved in these processes, 13 C-labeled particulate organic matter (POM) was used as a substrate to incubate particle-attached (PAM) and free-living microbial (FLM) assemblages from the epi- and bathypelagic zones of the New Britain Trench (NBT). By combining DNA stable-isotope probing and Illumina Miseq high-throughput sequencing of bacterial 16S rRNA gene, we identified 14 active bacterial taxonomic groups that implicated in the decomposition of 13 C-labeled POM at low and high pressures under the temperature of 15°C. Our results show that both PAM and FLM were able to decompose POC and assimilate the released DOC. However, similar bacterial taxa in both the PAM and FLM assemblages were involved in POC decomposition and DOC degradation, suggesting the decoupling between microbial lifestyles and ecological functions. Microbial decomposition of POC and degradation of DOC were accomplished primarily by particle-attached bacteria at atmospheric pressure and by free-living bacteria at high pressures. Overall, the POC degradation rates were higher at atmospheric pressure (0.1 MPa) than at high pressures (20 and 40 MPa) under 15°C. Our results provide direct evidence linking the specific particle-attached and free-living bacterial lineages to decomposition and degradation of diatomic detritus at low and high pressures and identified the potential mediators of POC fluxes in the epi- and bathypelagic zones.
Collapse
Affiliation(s)
- Ying Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, USA
| | - Zhongjun Jia
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Songze Chen
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Li Zhang
- State Key Laboratory of Geological Process and Mineral Resources, Faculty of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Wei Gao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
14
|
Dutta A, Peoples LM, Gupta A, Bartlett DH, Sar P. Exploring the piezotolerant/piezophilic microbial community and genomic basis of piezotolerance within the deep subsurface Deccan traps. Extremophiles 2019; 23:421-433. [PMID: 31049708 DOI: 10.1007/s00792-019-01094-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/23/2019] [Indexed: 01/22/2023]
Abstract
The deep biosphere is often characterized by multiple extreme physical-chemical conditions, of which pressure is an important parameter that influences life but remains less studied. This geomicrobiology study was designed to understand the response of a subterranean microbial community of the Deccan traps to high-pressure conditions and to elucidate their genomic properties. Groundwater from a deep basaltic aquifer of the Deccan traps was used to ascertain the community response to 25 MPa and 50 MPa pressure following enrichment in high-salt and low-salt organic media. Quantitative PCR data indicated a decrease in bacterial and archaeal cell numbers with increasing pressure. 16S rRNA gene sequencing displayed substantial changes in the microbial community in which Acidovorax appeared to be the most dominant genus in the low-salt medium and Microbacteriaceae emerged as the major family in the high-salt medium under both pressure conditions. Genes present in metagenome-associated genomes which have previously been associated with piezotolerance include those related to nutrient uptake and extracytoplasmic stress (omp, rseC), protein folding and unfolding (dnaK, groEL and others), and DNA repair mechanisms (mutT, uvr and others). We hypothesize that these genes facilitate tolerance to high pressure by certain groups of microbes residing in subsurface Deccan traps.
Collapse
Affiliation(s)
- Avishek Dutta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.,School of Bioscience, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Logan M Peoples
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Abhishek Gupta
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India
| | - Douglas H Bartlett
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Pinaki Sar
- Environmental Microbiology and Genomics Laboratory, Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, 721302, India.
| |
Collapse
|
15
|
Mathieu L, Keraval A, Declercq NF, Block JC. Assessment of a low-frequency ultrasound device on prevention of biofilm formation and carbonate deposition in drinking water systems. ULTRASONICS SONOCHEMISTRY 2019; 52:41-49. [PMID: 30718177 DOI: 10.1016/j.ultsonch.2018.10.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/04/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
A device generating low-frequency and low-intensity ultrasound waves was used for mitigating biofilm accumulation and scaling. Two systems were tested: a lab-scale plate heat exchanger operated with continuously recycled water and a continually fed flow-through drinking water pilot used for mimicking water circulation in pipes. Initial deposition of bacterial cells was not prevented by ultrasound wave treatment. However, whatever the tested system, both further calcium carbonate deposition and biofilm growth were markedly inhibited. Biofilms formed in reactors subjected to low-frequency and low-intensity ultrasound waves were weakly attached to the material. Even though the activity of bacteria was affected as shown by their lower cultivability, membrane permeability did not appear compromised. Ultrasound technology sounds very promising in both the mitigation of drinking water biofilm and carbonate accumulation.
Collapse
Affiliation(s)
- Laurence Mathieu
- EPHE, PSL Research University, UMR 7564, LCPME, F-54500 Vandoeuvre-lès-Nancy, France.
| | - Anaïs Keraval
- Lorraine University, CNRS, UMR 7564, LCPME, F-54600 Villers-lès-Nancy, France
| | - Nico F Declercq
- Georgia Institute of Technology, UMI Georgia Tech - CNRS 2958, F-57070 Metz, France
| | - Jean-Claude Block
- Lorraine University, CNRS, UMR 7564, LCPME, F-54600 Villers-lès-Nancy, France
| |
Collapse
|
16
|
Perez Calderon LJ, Gontikaki E, Potts LD, Shaw S, Gallego A, Anderson JA, Witte U. Pressure and temperature effects on deep-sea hydrocarbon-degrading microbial communities in subarctic sediments. Microbiologyopen 2018; 8:e00768. [PMID: 30444300 PMCID: PMC6562134 DOI: 10.1002/mbo3.768] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022] Open
Abstract
The Hatton-Rockall Basin (North-East Atlantic) is an area with potential for deep-sea (2,900 m) hydrocarbon exploration. Following the Deepwater Horizon oil spill, many investigations into the responses of sediment microbial communities to oil pollution have been undertaken. However, hydrostatic pressure is a parameter that is often omitted due to the technical difficulties associated with conducting experiments at high pressure (>10 MPa). In this study, sediments from 2,900 m in the Hatton-Rockall Basin, following a one-week decompression period in a temperature-controlled room at 5°C, were incubated in factorial combinations of 0.1 and 30 MPa, 5 and 20°C, and contamination with a hydrocarbon mixture or uncontaminated controls to evaluate the effect of these environmental variables on the bacterial community composition. Our results revealed varying effects of pressure, temperature, and oil contamination on the composition of the bacterial community within the sediment. Temperature was the strongest determinant of differences in the bacterial community structure between samples followed by pressure. Oil contamination did not exert a strong change in the sediment bacterial community structure when pressure and temperature conditions were held at in situ levels (30 MPa and 5°C). The γ-proteobacteria Pseudomonas and Colwellia, and several Bacteroidetes dominated communities at 30 MPa. In contrast, hydrocarbon degraders such as Halomonas, Alcanivorax, and Marinobacter decreased in relative abundance at the same pressure. This study highlights the importance of considering hydrostatic pressure in ex situ investigations into hydrocarbon-degrading deepwater microbial communities.
Collapse
Affiliation(s)
- Luis J Perez Calderon
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK.,Marine Laboratory Aberdeen, Marine Scotland Science, Aberdeen, UK
| | - Evangelia Gontikaki
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| | - Lloyd D Potts
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK.,Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Sophie Shaw
- Centre for Genome Enabled Biology and Medicine, University of Aberdeen, Aberdeen, UK
| | | | - James A Anderson
- Surface Chemistry and Catalysis Group, Materials and Chemical Engineering, School of Engineering, University of Aberdeen, Aberdeen, UK
| | - Ursula Witte
- Institute of Biological and Environmental Science, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
17
|
Liu R, Wang L, Liu Q, Wang Z, Li Z, Fang J, Zhang L, Luo M. Depth-Resolved Distribution of Particle-Attached and Free-Living Bacterial Communities in the Water Column of the New Britain Trench. Front Microbiol 2018; 9:625. [PMID: 29670597 PMCID: PMC5893722 DOI: 10.3389/fmicb.2018.00625] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 03/19/2018] [Indexed: 01/24/2023] Open
Abstract
Particle-attached (PA) and free-living (FL) microorganisms play significant but different roles in mineralization of organic matter (OM) in the ocean. Currently, little is known about PA and FL microbial communities in bathyal and abyssal pelagic waters, and understanding of their diversity and distribution in the water column and their interactions with environmental factors in the trench area is limited. We investigated for the first time the variations of abundance and diversities of the PA and FL bacterial communities in the epi-, bathy-, and abyssopelagic zones of the New Britain Trench (NBT). The PA communities showed decreasing species richness but increasing relative abundance with depth, suggesting the increasing ecological significance of the PA bacteria in the deep ocean. The abundance and diversity of PA and FL bacterial communities in the NBT water column appeared to be shaped by different sets of environment factors, which might be related to different micro-niches of the two communities. Analysis on species distribution suggested that the differences between PA and FL bacteria communities mainly resulted from the different relative abundance of the “shared taxa” in the two types of communities. These findings provide valuable information for understanding the relative ecological roles of the PA and FL bacterial communities and their interactions with environmental factors in different pelagic zones along the vertical profile of the NBT water column.
Collapse
Affiliation(s)
- Rulong Liu
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Li Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Qianfeng Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China
| | - Zixuan Wang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| | - Zhenzhen Li
- State Key Laboratory of Geological Process and Mineral Resources, Department of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Jiasong Fang
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Department of Natural Sciences, Hawaii Pacific University, Honolulu, HI, United States
| | - Li Zhang
- State Key Laboratory of Geological Process and Mineral Resources, Department of Earth Sciences, China University of Geosciences, Wuhan, China
| | - Min Luo
- Shanghai Engineering Research Center of Hadal Science and Technology, College of Marine Sciences, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
18
|
Fasca H, de Castilho LVA, de Castilho JFM, Pasqualino IP, Alvarez VM, de Azevedo Jurelevicius D, Seldin L. Response of marine bacteria to oil contamination and to high pressure and low temperature deep sea conditions. Microbiologyopen 2018; 7:e00550. [PMID: 29057585 PMCID: PMC5912000 DOI: 10.1002/mbo3.550] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 09/05/2017] [Accepted: 09/12/2017] [Indexed: 01/16/2023] Open
Abstract
The effect of pressure and temperature on microbial communities of marine environments contaminated with petroleum hydrocarbons is understudied. This study aims to reveal the responses of marine bacterial communities to low temperature, high pressure, and contamination with petroleum hydrocarbons using seawater samples collected near an offshore Brazilian platform. Microcosms containing only seawater and those containing seawater contaminated with 1% crude oil were subjected to three different treatments of temperature and pressure as follows: (1) 22°C/0.1 MPa; (2) 4°C/0.1 MPa; and (3) 4°C/22 MPa. The effect of depressurization followed by repressurization on bacterial communities was also evaluated (4°C/22 MPaD). The structure and composition of the bacterial communities in the different microcosms were analyzed by PCR-DGGE and DNA sequencing, respectively. Contamination with oil influenced the structure of the bacterial communities in microcosms incubated either at 4°C or 22°C and at low pressure. Incubation at low temperature and high pressure greatly influenced the structure of bacterial communities even in the absence of oil contamination. The 4°C/22 MPa and 4°C/22 MPaD treatments resulted in similar DGGE profiles. DNA sequencing (after 40 days of incubation) revealed that the diversity and relative abundance of bacterial genera were related to the presence or absence of oil contamination in the nonpressurized treatments. In contrast, the variation in the relative abundances of bacterial genera in the 4°C/22 MPa-microcosms either contaminated or not with crude oil was less evident. The highest relative abundance of the phylum Bacteroidetes was observed in the 4°C/22 MPa treatment.
Collapse
Affiliation(s)
- Hanna Fasca
- Laboratório de Genética MicrobianaInstituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Livia V. A. de Castilho
- Laboratório de Tecnologia Submarina/PENO/COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | | | - Ilson P. Pasqualino
- Laboratório de Tecnologia Submarina/PENO/COPPEUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Vanessa M. Alvarez
- Laboratório de Genética MicrobianaInstituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Diogo de Azevedo Jurelevicius
- Laboratório de Genética MicrobianaInstituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| | - Lucy Seldin
- Laboratório de Genética MicrobianaInstituto de Microbiologia Paulo de GóesUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
| |
Collapse
|
19
|
Glombitza C, Adhikari RR, Riedinger N, Gilhooly WP, Hinrichs KU, Inagaki F. Microbial Sulfate Reduction Potential in Coal-Bearing Sediments Down to ~2.5 km below the Seafloor off Shimokita Peninsula, Japan. Front Microbiol 2016; 7:1576. [PMID: 27761134 PMCID: PMC5051215 DOI: 10.3389/fmicb.2016.01576] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 09/21/2016] [Indexed: 11/13/2022] Open
Abstract
Sulfate reduction is the predominant anaerobic microbial process of organic matter mineralization in marine sediments, with recent studies revealing that sulfate reduction not only occurs in sulfate-rich sediments, but even extends to deeper, methanogenic sediments at very low background concentrations of sulfate. Using samples retrieved off the Shimokita Peninsula, Japan, during the Integrated Ocean Drilling Program (IODP) Expedition 337, we measured potential sulfate reduction rates by slurry incubations with 35S-labeled sulfate in deep methanogenic sediments between 1276.75 and 2456.75 meters below the seafloor. Potential sulfate reduction rates were generally extremely low (mostly below 0.1 pmol cm-3 d-1) but showed elevated values (up to 1.8 pmol cm-3 d-1) in a coal-bearing interval (Unit III). A measured increase in hydrogenase activity in the coal-bearing horizons coincided with this local increase in potential sulfate reduction rates. This paired enzymatic response suggests that hydrogen is a potentially important electron donor for sulfate reduction in the deep coalbed biosphere. By contrast, no stimulation of sulfate reduction rates was observed in treatments where methane was added as an electron donor. In the deep coalbeds, small amounts of sulfate might be provided by a cryptic sulfur cycle. The isotopically very heavy pyrites (δ34S = +43‰) found in this horizon is consistent with its formation via microbial sulfate reduction that has been continuously utilizing a small, increasingly 34S-enriched sulfate reservoir over geologic time scales. Although our results do not represent in-situ activity, and the sulfate reducers might only have persisted in a dormant, spore-like state, our findings show that organisms capable of sulfate reduction have survived in deep methanogenic sediments over more than 20 Ma. This highlights the ability of sulfate-reducers to persist over geological timespans even in sulfate-depleted environments. Our study moreover represents the deepest evidence of a potential for sulfate reduction in marine sediments to date.
Collapse
Affiliation(s)
- Clemens Glombitza
- Department of Biosciences, Center for Geomicrobiology, Aarhus University Aarhus, Denmark
| | - Rishi R Adhikari
- MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Natascha Riedinger
- Boone Pickens School of Geology, Oklahoma State University Stillwater, OK, USA
| | - William P Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA
| | - Kai-Uwe Hinrichs
- MARUM Center for Marine Environmental Sciences, University of Bremen Bremen, Germany
| | - Fumio Inagaki
- Kochi Institute for Core Sample Research, Japan Agency for Marine-Earth Science and TechnologyKochi, Japan; Research and Development Center for Ocean Drilling Science, Japan Agency for Marine-Earth Science and TechnologyYokohama, Japan; Research and Development Center for Submarine Resources, Japan Agency for Marine-Earth Science and TechnologyYokosuka, Japan
| |
Collapse
|
20
|
Chen P, Zhang L, Guo X, Dai X, Liu L, Xi L, Wang J, Song L, Wang Y, Zhu Y, Huang L, Huang Y. Diversity, Biogeography, and Biodegradation Potential of Actinobacteria in the Deep-Sea Sediments along the Southwest Indian Ridge. Front Microbiol 2016; 7:1340. [PMID: 27621725 PMCID: PMC5002886 DOI: 10.3389/fmicb.2016.01340] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Accepted: 08/15/2016] [Indexed: 02/01/2023] Open
Abstract
The phylum Actinobacteria has been reported to be common or even abundant in deep marine sediments, however, knowledge about the diversity, distribution, and function of actinobacteria is limited. In this study, actinobacterial diversity in the deep sea along the Southwest Indian Ridge (SWIR) was investigated using both 16S rRNA gene pyrosequencing and culture-based methods. The samples were collected at depths of 1662–4000 m below water surface. Actinobacterial sequences represented 1.2–9.1% of all microbial 16S rRNA gene amplicon sequences in each sample. A total of 5 actinobacterial classes, 17 orders, 28 families, and 52 genera were detected by pyrosequencing, dominated by the classes Acidimicrobiia and Actinobacteria. Differences in actinobacterial community compositions were found among the samples. The community structure showed significant correlations to geochemical factors, notably pH, calcium, total organic carbon, total phosphorus, and total nitrogen, rather than to spatial distance at the scale of the investigation. In addition, 176 strains of the Actinobacteria class, belonging to 9 known orders, 18 families, and 29 genera, were isolated. Among these cultivated taxa, 8 orders, 13 families, and 15 genera were also recovered by pyrosequencing. At a 97% 16S rRNA gene sequence similarity, the pyrosequencing data encompassed 77.3% of the isolates but the isolates represented only 10.3% of the actinobacterial reads. Phylogenetic analysis of all the representative actinobacterial sequences and isolates indicated that at least four new orders within the phylum Actinobacteria were detected by pyrosequencing. More than half of the isolates spanning 23 genera and all samples demonstrated activity in the degradation of refractory organics, including polycyclic aromatic hydrocarbons and polysaccharides, suggesting their potential ecological functions and biotechnological applications for carbon recycling.
Collapse
Affiliation(s)
- Ping Chen
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Limin Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Xiaoxuan Guo
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Xin Dai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Li Liu
- Information Network Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lijun Xi
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Jian Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Lei Song
- China General Microbiological Culture Collection Center, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Disease and Health Genomics, Chinese National Human Genome Center at Shanghai Shanghai, China
| | - Yaxin Zhu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| | - Li Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of SciencesBeijing, China; College of Life Sciences, University of Chinese Academy of SciencesBeijing, China
| | - Ying Huang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences Beijing, China
| |
Collapse
|
21
|
Yang C, Bian G, Yang H, Zhang X, Chen L, Wang J. Development of High Hydrostatic Pressure Applied in Pathogen Inactivation for Plasma. PLoS One 2016; 11:e0161775. [PMID: 27561010 PMCID: PMC4999174 DOI: 10.1371/journal.pone.0161775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Accepted: 08/11/2016] [Indexed: 01/20/2023] Open
Abstract
High hydrostatic pressure has been used to inactivate pathogens in foods for decades. There is a great potential to adapt this technology to inactivate pathogens in plasma and derivatives. To better evaluate the potential of this method, pathogen inoculated plasma samples were pressurized under different pressure application modes and temperatures. The inactivation efficacy of pathogens and activities of plasma proteins were monitored after treatment. The CFUs of E.coli was examined as the indicator of the inactivation efficiency. The factor V and VIII were chosen as the indicator of the plasma function. Preliminary experiments identified optimized treatment conditions: 200-250MPa, with 5×1 minute multi-pulsed high pressure at near 0°C (ice-water bath). Under this conditions, the inactivation efficacy of EMCV was >8.5log. The CFUs of E. coli were reduced by 7.5log, B. cereus were 8log. However, PPV and S. aureus cannot be inactivated efficiently. The activities of factor II, VII, IX, X, XI, XII, fibrinogen, IgG, IgM stayed over 95% compared to untreated. Factor V and VIII activity was maintained at 46–63% and 77–82%, respectively.
Collapse
Affiliation(s)
- Chunhui Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Chengdu, Sichuan, China
| | - Guohui Bian
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Chengdu, Sichuan, China
| | - Hong Yang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Chengdu, Sichuan, China
| | - Xinmin Zhang
- Zhengzhou Feilong medic devices Co., Ltd, Zhengzhou, Henan, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Chengdu, Sichuan, China
| | - Jingxing Wang
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Chengdu, Sichuan, China
- * E-mail:
| |
Collapse
|