1
|
Winand L, Nett M. Whole-cell biocatalysis with Myxococcus xanthus. Methods Enzymol 2025; 714:219-237. [PMID: 40288840 DOI: 10.1016/bs.mie.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Biocatalysis has become an attractive complement to conventional chemical catalysis in the field of organic synthesis. This trend is due to the excellent chemo-, regio- and stereoselectivity of biocatalysis, which typically avoids the formation of unwanted by-products as well as cross-reactivity between reactants. Since the use of isolated enzymes and their cofactors can be associated with high costs, there is a continued interest in whole-cell biocatalysts. Applications range from the production of chiral building blocks to the derivatization of natural products and the generation of new drug candidates for the pharmaceutical and fine chemical industries. The bacterium Myxococcus xanthus is an emerging cell factory, especially for the production of antibiotics and other bioactive natural products. Not only possesses M. xanthus a considerable tolerance toward xenobiotics, but it is also a metabolically versatile host providing important building blocks for natural product biosynthesis. In this chapter, we describe procedures for the whole-cell biocatalysis with M. xanthus. This also involves methods for the construction of expression plasmids and their transfer into M. xanthus.
Collapse
Affiliation(s)
- Lea Winand
- TU Dortmund University, Department of Biochemical and Chemical Engineering, Dortmund, Germany.
| | - Markus Nett
- TU Dortmund University, Department of Biochemical and Chemical Engineering, Dortmund, Germany.
| |
Collapse
|
2
|
Jain S, Sharma G. Putative evolution of Myxococcus fulvus 124B02 plasmid pMF1 from a chromosomal segment in another Myxococcus species. Microbiol Spectr 2025; 13:e0120624. [PMID: 39545733 PMCID: PMC11705834 DOI: 10.1128/spectrum.01206-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 10/11/2024] [Indexed: 11/17/2024] Open
Abstract
Myxobacteria or order Myxococcales (old nomenclature) or phylum Myxococcota (new terminology) are fascinating organisms well known for their diverse peculiar physiological, taxonomic, and genomic properties. Researchers have long sought to identify plasmids within these organisms, yet thus far, only two organisms from different families have been found to harbor a plasmid. This study delves into the putative evolution of one of these plasmids, i.e., pMF1 present in Myxococcus fulvus 124B02 in the suborder Cystobacterineae and family Myxococcaceae. Here, we first reannotated the pMF1 plasmid genome sequence and identified two additional open reading frames or putative genes which were not annotated until now. We further reported that all pMF1 plasmid genes depict homology with Myxococcus stipitatus CYD1 draft genome (contig 28) and a chromosomal segment of M. stipitatus DSM14675 in a syntenic manner, implying the presence of plasmid-like structure in M. stipitatus CYD1, integrated into its chromosome. To comprehend the relationship among these three species, we conducted phylogenetic analyses using 16S and concatenated housekeeping genes and genome-to-genome distance calculator (GGDC) analysis, which confirmed that M. stipitatus CYD1 is a distinct and novel species within the genus Myxococcus. Overall, this comparative genomic study sheds light on the putative emergence of the pMF1 plasmid from a common ancestor of closely related yet distinct species, M. stipitatus CYD1, possibly through the partition from its chromosome as a segment.IMPORTANCEMyxobacteria are not well known to have plasmids. Until now, only two organisms have been shown to have plasmids, raising a pertinent question about how these plasmids evolved randomly within the phylum Myxococcota. The study presented in this manuscript delves into the emergence of the pMF1 plasmid found in Myxococcus fulvus 124B02, a member of the suborder Cystobacterineae and family Myxococcaceae. Our research addresses this intriguing topic of plasmid identification and evolution within myxobacteria, which are a group of fascinating organisms that have garnered significant interest due to their diverse physiological, taxonomic, and genomic properties.
Collapse
Affiliation(s)
- Shruti Jain
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bangalore, Karnataka, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Sangareddy, Telangana, India
| |
Collapse
|
3
|
Wan T, Zhuo L, Pan Z, Chen RY, Ma H, Cao Y, Wang J, Wang JJ, Hu WF, Lai YJ, Hayat M, Li YZ. Dosage constraint of the ribosome-associated molecular chaperone drives the evolution and fates of its duplicates in bacteria. mBio 2024; 15:e0199424. [PMID: 39373534 PMCID: PMC11559001 DOI: 10.1128/mbio.01994-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/17/2024] [Indexed: 10/08/2024] Open
Abstract
Gene duplication events happen prevalently during evolution, and the mechanisms governing the loss or retention of duplicated genes are mostly elusive. Our genome scanning analysis revealed that trigger factor (TF), the one and only bacterial ribosome-associated molecular chaperone, is singly copied in virtually every bacterium except for a very few that possess two or more copies. However, even in these exceptions, only one complete TF copy exists, while other homologs lack the N-terminal domain that contains the conserved ribosome binding site (RBS) motif. Consistently, we demonstrated that the overproduction of the N-terminal complete TF proteins is detrimental to the cell, which can be rescued by removing the N-terminal domain. Our findings also indicated that TF overproduction leads to a decrease in protein productivity and profile changes in proteome due to its characteristic ribosome binding and holdase activities. Additionally, these N-terminal deficient TF homologs in bacteria with multiple TF homologs partition the function of TF via subfunctionalization. Our results revealed that TF is subjected to a dosage constraint that originates from its own intrinsic functions, which may drive the evolution and fates of duplicated TFs in bacteria. IMPORTANCE Gene duplication events presumably occur in tig, which encodes the ribosome-associated molecular chaperone trigger factor (TF). However, TF is singly copied in virtually every bacterium, and these exceptions with multiple TF homologs always retain only one complete copy while other homologs lack the N-terminal domain. Here, we reveal the manner and mechanism underlying the evolution and fates of TF duplicates in bacteria. We discovered that the mutation-to-loss or retention-to-sub/neofunctionalization of TF duplicates is associated with the dosage constraint of N-terminal complete TF. The dosage constraint of TF is attributed to its characteristic ribosome binding and substrate-holding activities, causing a decrease in protein productivity and profile changes in cellular proteome.
Collapse
Affiliation(s)
- Tianyu Wan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
- Shenzhen Research Institute, Shandong University, Shenzhen, China
- Suzhou Research Institute, Shandong University, Suzhou, China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Rui-yun Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Han Ma
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ying Cao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jianing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-jun Lai
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Muhammad Hayat
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
4
|
Yue XJ, Wang JR, Zhao JN, Pan Z, Li YZ. Determination of the chromosomal position effects for plug-and-play application in the Myxococcus xanthus chassis cells. Synth Syst Biotechnol 2024; 9:540-548. [PMID: 38680947 PMCID: PMC11046052 DOI: 10.1016/j.synbio.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/30/2024] [Accepted: 04/08/2024] [Indexed: 05/01/2024] Open
Abstract
The chromosomal position effect can significantly affect the transgene expression, which may provide an efficient strategy for the inauguration of alien genes in new hosts, but has been less explored rationally. The bacterium Myxococcus xanthus harbors a large circular high-GC genome, and the position effect in this chassis may result in a thousand-fold expression variation of alien natural products. In this study, we conducted transposon insertion at TA sites on the M. xanthus genome, and used enrichment and dilution indexes to respectively appraise high and low expression potentials of alien genes at insertion sites. The enrichment sites are characteristically distributed along the genome, and the dilution sites are overlapped well with the horizontal transfer genes. We experimentally demonstrated the enrichment sites as high expression integration sites (HEISs), and the dilution sites unsuitable for gene integration expression. This work highlights that HEISs are the plug-and-play sites for efficient expression of integrated genes.
Collapse
Affiliation(s)
- Xin-jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jia-rui Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Jun-ning Zhao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Zhuo Pan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, PR China
| |
Collapse
|
5
|
Wang CY, Hu JQ, Wang DG, Li YZ, Wu C. Recent advances in discovery and biosynthesis of natural products from myxobacteria: an overview from 2017 to 2023. Nat Prod Rep 2024; 41:905-934. [PMID: 38390645 DOI: 10.1039/d3np00062a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
Covering: 2017.01 to 2023.11Natural products biosynthesized by myxobacteria are appealing due to their sophisticated chemical skeletons, remarkable biological activities, and intriguing biosynthetic enzymology. This review aims to systematically summarize the advances in the discovery methods, new structures, and bioactivities of myxobacterial NPs reported in the period of 2017-2023. In addition, the peculiar biosynthetic pathways of several structural families are also highlighted.
Collapse
Affiliation(s)
- Chao-Yi Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Jia-Qi Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - De-Gao Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| | - Changsheng Wu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, 266237 Qingdao, P.R. China.
| |
Collapse
|
6
|
Hu WF, Yang JY, Wang JJ, Yuan SF, Yue XJ, Zhang Z, Zhang YQ, Meng JY, Li YZ. Characteristics and immune functions of the endogenous CRISPR-Cas systems in myxobacteria. mSystems 2024; 9:e0121023. [PMID: 38747603 PMCID: PMC11237760 DOI: 10.1128/msystems.01210-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 04/15/2024] [Indexed: 06/19/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) system widely occurs in prokaryotic organisms to recognize and destruct genetic invaders. Systematic collation and characterization of endogenous CRISPR-Cas systems are conducive to our understanding and potential utilization of this natural genetic machinery. In this study, we screened 39 complete and 692 incomplete genomes of myxobacteria using a combined strategy to dispose of the abridged genome information and revealed at least 19 CRISPR-Cas subtypes, which were distributed with a taxonomic difference and often lost stochastically in intraspecies strains. The cas genes in each subtype were evolutionarily clustered but deeply separated, while most of the CRISPRs were divided into four types based on the motif characteristics of repeat sequences. The spacers recorded in myxobacterial CRISPRs were in high G+C content, matching lots of phages, tiny amounts of plasmids, and, surprisingly, massive organismic genomes. We experimentally demonstrated the immune and self-target immune activities of three endogenous systems in Myxococcus xanthus DK1622 against artificial genetic invaders and revealed the microhomology-mediated end-joining mechanism for the immunity-induced DNA repair but not homology-directed repair. The panoramic view and immune activities imply potential omnipotent immune functions and applications of the endogenous CRISPR-Cas machinery. IMPORTANCE Serving as an adaptive immune system, clustered regularly interspaced short palindromic repeats and their associated proteins (CRISPR-Cas) empower prokaryotes to fend off the intrusion of external genetic materials. Myxobacteria are a collective of swarming Gram-stain-negative predatory bacteria distinguished by intricate multicellular social behavior. An in-depth analysis of their intrinsic CRISPR-Cas systems is beneficial for our understanding of the survival strategies employed by host cells within their environmental niches. Moreover, the experimental findings presented in this study not only suggest the robust immune functions of CRISPR-Cas in myxobacteria but also their potential applications.
Collapse
Affiliation(s)
- Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jiang-Yu Yang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jing-Jing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya-Qi Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jun-Yan Meng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
7
|
Liu L, Xu F, Lei J, Wang P, Zhang L, Wang J, Zhao J, Mao D, Ye X, Huang Y, Hu G, Cui Z, Li Z. Genome analysis of a plasmid-bearing myxobacterim Myxococcus sp. strain MxC21 with salt-tolerant property. Front Microbiol 2023; 14:1250602. [PMID: 37789850 PMCID: PMC10544341 DOI: 10.3389/fmicb.2023.1250602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/28/2023] [Indexed: 10/05/2023] Open
Abstract
Myxobacteria are widely distributed in various habitats of soil and oceanic sediment. However, it is unclear whether soil-dwelling myxobacteria tolerate a saline environment. In this study, a salt-tolerant myxobacterium Myxococcus sp. strain MxC21 was isolated from forest soil with NaCl tolerance >2% concentration. Under 1% salt-contained condition, strain MxC21 could kill and consume bacteria prey and exhibited complex social behaviors such as S-motility, biofilm, and fruiting body formation but adopted an asocial living pattern with the presence of 1.5% NaCl. To investigate the genomic basis of stress tolerance, the complete genome of MxC21 was sequenced and analyzed. Strain MxC21 consists of a circular chromosome with a total length of 9.13 Mbp and a circular plasmid of 64.3 kb. Comparative genomic analysis revealed that the genomes of strain MxC21 and M. xanthus DK1622 share high genome synteny, while no endogenous plasmid was found in DK1622. Further analysis showed that approximately 21% of its coding genes from the genome of strain MxC21 are predominantly associated with signal transduction, transcriptional regulation, and protein folding involved in diverse niche adaptation such as salt tolerance, which enables social behavior such as gliding motility, sporulation, and predation. Meantime, a high number of genes are also found to be involved in defense against oxidative stress and production of antimicrobial compounds. All of these functional genes may be responsible for the potential salt-toleration. Otherwise, strain MxC21 is the second reported myxobacteria containing indigenous plasmid, while only a small proportion of genes was specific to the circular plasmid of strain MxC21, and most of them were annotated as hypothetical proteins, which may have a direct relationship with the habitat adaptation of strain MxC21 under saline environment. This study provides an inspiration of the adaptive evolution of salt-tolerant myxobacterium and facilitates a potential application in the improvement of saline soil in future.
Collapse
Affiliation(s)
- Lin Liu
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Fengjuan Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jinhui Lei
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Peiwen Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lei Zhang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jihong Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jingya Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Dongmei Mao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Gang Hu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
8
|
Saggu SK, Nath A, Kumar S. Myxobacteria: biology and bioactive secondary metabolites. Res Microbiol 2023; 174:104079. [PMID: 37169232 DOI: 10.1016/j.resmic.2023.104079] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 04/22/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Myxobacteria are Gram-negative eubacteria and they thrive in a variety of habitats including soil rich in organic matter, rotting wood, animal dung and marine environment. Myxobacteria are a promising source of new compounds associated with diverse bioactive spectrum and unique mode of action. The genome information of myxobacteria has revealed many orphan biosynthetic pathways indicating that these bacteria can be the source of several novel natural products. In this review, we highlight the biology of myxobacteria with emphasis on their habitat, life cycle, isolation methods and enlist all the bioactive secondary metabolites purified till date and their mode of action.
Collapse
Affiliation(s)
- Sandeep Kaur Saggu
- Department of Biotechnology, Kanya Maha Vidyalaya, Jalandhar, Punjab, India - 144004.
| | - Amar Nath
- University Centre of Excellence in Research, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| | - Shiv Kumar
- Guru Gobind Singh Medical College, Baba Farid University of Health Sciences, Faridkot, Punjab India 151203.
| |
Collapse
|
9
|
Yue X, Sheng D, Zhuo L, Li YZ. Genetic manipulation and tools in myxobacteria for the exploitation of secondary metabolism. ENGINEERING MICROBIOLOGY 2023; 3:100075. [PMID: 39629250 PMCID: PMC11610982 DOI: 10.1016/j.engmic.2023.100075] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/18/2023] [Accepted: 01/19/2023] [Indexed: 12/07/2024]
Abstract
Myxobacteria are famous for their capacity for social behavior and natural product biosynthesis. The unique sociality of myxobacteria is not only an intriguing scientific topic but also the main limiting factor for their manipulation. After more than half a century of research, a series of genetic techniques for myxobacteria have been developed, rendering these mysterious bacteria manipulable. Here, we review the advances in genetic manipulation of myxobacteria, with a particular focus on the exploitation of secondary metabolism. We emphasize the necessity and urgency of constructing the myxobacterial chassis for synthetic biology research and the exploitation of untapped secondary metabolism.
Collapse
Affiliation(s)
- Xinjing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao 266237, China
| |
Collapse
|
10
|
Winand L, Lernoud L, Meyners SA, Kuhr K, Hiller W, Nett M. Myxococcus xanthus as Host for the Production of Benzoxazoles. Chembiochem 2023; 24:e202200635. [PMID: 36484355 DOI: 10.1002/cbic.202200635] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/09/2022] [Accepted: 12/09/2022] [Indexed: 12/13/2022]
Abstract
Benzoxazoles are important structural motifs in pharmaceutical drugs. Here, we present the heterologous production of 3-hydroxyanthranilate-derived benzoxazoles in the host bacterium Myxococcus xanthus following the expression of two genes from the nataxazole biosynthetic gene cluster of Streptomyces sp. Tü 6176. The M. xanthus expression strain achieved a benzoxazole titer of 114.6±7.4 mg L-1 upon precursor supplementation, which is superior to other bacterial production systems. Crosstalk between the heterologously expressed benzoxazole pathway and the endogenous myxochelin pathway led to the combinatorial biosynthesis of benzoxazoles featuring a 2,3-dihydroxybenzoic acid (2,3-DHBA) building block. Subsequent in vitro studies confirmed that this crosstalk is not only due to the availability of 2,3-DHBA in M. xanthus, rather, it is promoted by the adenylating enzyme MxcE from the myxochelin pathway, which contributes to the activation of aryl carboxylic acids and delivers them to benzoxazole biosynthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Lucia Lernoud
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Saskia Anna Meyners
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Katharina Kuhr
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, NMR Laboratory, TU Dortmund University, Otto-Hahn-Str. 4a, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Str. 66, 44227, Dortmund, Germany
| |
Collapse
|
11
|
Lombe BK, Winand L, Diettrich J, Töbermann M, Hiller W, Kaiser M, Nett M. Discovery, Biosynthetic Origin, and Heterologous Production of Massinidine, an Antiplasmodial Alkaloid. Org Lett 2022; 24:2935-2939. [PMID: 35412834 DOI: 10.1021/acs.orglett.2c00963] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteria of the genus Massilia represent an underexplored source of bioactive natural products. Here, we report the discovery of massinidine (1), a guanidine alkaloid with antiplasmodial activity, from these microbes. The unusual scaffold of massinidine is shown to originate from l-phenylalanine, acetate, and l-arginine. Massinidine biosynthesis genes were identified in the native producer and validated through heterologous expression in Myxococcus xanthus. Bioinformatic analyses indicate that the potential for massinidine biosynthesis is distributed in various proteobacteria.
Collapse
Affiliation(s)
- Blaise Kimbadi Lombe
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Lea Winand
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Jan Diettrich
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Melanie Töbermann
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, 44227 Dortmund, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, 4123 Allschwil, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, 44227 Dortmund, Germany
| |
Collapse
|
12
|
Wang Y, Yue XJ, Yuan SF, Hong Y, Hu WF, Li YZ. Internal Promoters and Their Effects on the Transcription of Operon Genes for Epothilone Production in Myxococcus xanthus. Front Bioeng Biotechnol 2021; 9:758561. [PMID: 34778232 PMCID: PMC8579030 DOI: 10.3389/fbioe.2021.758561] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 09/20/2021] [Indexed: 12/20/2022] Open
Abstract
The biosynthetic genes for secondary metabolites are often clustered into giant operons with no transcription terminator before the end. The long transcripts are frangible and the transcription efficiency declines along with the process. Internal promoters might occur in operons to coordinate the transcription of individual genes, but their effects on the transcription of operon genes and the yield of metabolites have been less investigated. Epothilones are a kind of antitumor polyketides synthesized by seven multifunctional enzymes encoded by a 56-kb operon. In this study, we identified multiple internal promoters in the epothilone operon. We performed CRISPR-dCas9–mediated transcription activation of internal promoters, combined activation of different promoters, and activation in different epothilone-producing M. xanthus strains. We found that activation of internal promoters in the operon was able to promote the gene transcription, but the activation efficiency was distinct from the activation of separate promoters. The transcription of genes in the operon was influenced by not only the starting promoter but also internal promoters of the operon; internal promoters affected the transcription of the following and neighboring upstream/downstream genes. Multiple interferences between internal promoters thus changed the transcriptional profile of operon genes and the production of epothilones. Better activation efficiency for the gene transcription and the epothilone production was obtained in the low epothilone-producing strains. Our results highlight that interactions between promoters in the operon are critical for the gene transcription and the metabolite production efficiency.
Collapse
Affiliation(s)
- Ye Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xin-Jing Yue
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Shu-Fei Yuan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yu Hong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Wei-Feng Hu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related 'Omics Studies. Microorganisms 2021; 9:microorganisms9102143. [PMID: 34683464 PMCID: PMC8538405 DOI: 10.3390/microorganisms9102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein–DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).
Collapse
|
14
|
Pal S, Sharma G, Subramanian S. Complete genome sequence and identification of polyunsaturated fatty acid biosynthesis genes of the myxobacterium Minicystis rosea DSM 24000 T. BMC Genomics 2021; 22:655. [PMID: 34511070 PMCID: PMC8436480 DOI: 10.1186/s12864-021-07955-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022] Open
Abstract
Background Myxobacteria harbor numerous biosynthetic gene clusters that can produce a diverse range of secondary metabolites. Minicystis rosea DSM 24000T is a soil-dwelling myxobacterium belonging to the suborderSorangiineae and family Polyangiaceae and is known to produce various secondary metabolites as well as polyunsaturated fatty acids (PUFAs). Here, we use whole-genome sequencing to explore the diversity of biosynthetic gene clusters in M. rosea. Results Using PacBio sequencing technology, we assembled the 16.04 Mbp complete genome of M. rosea DSM 24000T, the largest bacterial genome sequenced to date. About 44% of its coding potential represents paralogous genes predominantly associated with signal transduction, transcriptional regulation, and protein folding. These genes are involved in various essential functions such as cellular organization, diverse niche adaptation, and bacterial cooperation, and enable social behavior like gliding motility, sporulation, and predation, typical of myxobacteria. A profusion of eukaryotic-like kinases (353) and an elevated ratio of phosphatases (8.2/1) in M. rosea as compared to other myxobacteria suggest gene duplication as one of the primary modes of genome expansion. About 7.7% of the genes are involved in the biosynthesis of a diverse array of secondary metabolites such as polyketides, terpenes, and bacteriocins. Phylogeny of the genes involved in PUFA biosynthesis (pfa) together with the conserved synteny of the complete pfa gene cluster suggests acquisition via horizontal gene transfer from Actinobacteria. Conclusion Overall, this study describes the complete genome sequence of M. rosea, comparative genomic analysis to explore the putative reasons for its large genome size, and explores the secondary metabolite potential, including the biosynthesis of polyunsaturated fatty acids. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07955-x.
Collapse
Affiliation(s)
- Shilpee Pal
- CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India
| | - Gaurav Sharma
- CSIR-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India.,Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, India
| | | |
Collapse
|
15
|
Winand L, Schneider P, Kruth S, Greven NJ, Hiller W, Kaiser M, Pietruszka J, Nett M. Mutasynthesis of Physostigmines in Myxococcus xanthus. Org Lett 2021; 23:6563-6567. [PMID: 34355569 DOI: 10.1021/acs.orglett.1c02374] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The alkaloid physostigmine is an approved anticholinergic drug and an important lead structure for the development of novel therapeutics. Using a complementary approach that merged chemical synthesis with pathway refactoring, we produced a series of physostigmine analogues with altered specificity and toxicity profiles in the heterologous host Myxococcus xanthus. The compounds that were generated by applying a simple feeding strategy include the promising drug candidate phenserine, which was previously accessible only by total synthesis.
Collapse
Affiliation(s)
- Lea Winand
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Pascal Schneider
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany
| | - Sebastian Kruth
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Nico-Joel Greven
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| | - Marcel Kaiser
- Parasite Chemotherapy Unit, Swiss Tropical and Public Health Institute, 4002 Basel, Switzerland.,University of Basel, 4001 Basel, Switzerland
| | - Jörg Pietruszka
- Institute of Bioorganic Chemistry, Heinrich-Heine-University Düsseldorf at Forschungszentrum Jülich, Jülich, 44227 Nordrhein-Westfalen, Germany.,Institut für Bio- und Geowissenschaften: Biotechnologie (IBG-1), Forschungszentrum Jülich, Jülich, 52428 Nordrhein-Westfalen, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, TU Dortmund University, Dortmund, 44227 Nordrhein-Westfalen, Germany
| |
Collapse
|
16
|
Sheng D, Chen X, Li Y, Wang J, Zhuo L, Li Y. ParC, a New Partitioning Protein, Is Necessary for the Active Form of ParA From Myxococcus pMF1 Plasmid. Front Microbiol 2021; 11:623699. [PMID: 33519784 PMCID: PMC7843461 DOI: 10.3389/fmicb.2020.623699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 12/16/2020] [Indexed: 11/13/2022] Open
Abstract
The ParABS partitioning system, a main driver of DNA segregation in bacteria, employs two proteins, ParA and ParB, for plasmid partition. The pMF1 plasmid from Myxococcus fulvus 124B02 has a par operon encoding a small acidic protein, ParC, in addition to type I ParA and ParB homologs. Here, we show that expression of parC upstream of parA (as in the natural case), but not ectopic expression, is essential for the plasmid inheritance in Myxococcus cells. Co-expression of parC upstream of parA was determined to form a soluble ParC-ParA heterodimer at a 1:1 ratio, while individual expression of parA or co-expression of parA with ectopic parC formed insoluble ParA proteins. Purified ParA proteins alone had no ATPase activity and was easily dimerized, while mixing ParA with ParC formed the ParC-ParA heterodimer with the ATPase and polymerization activities. Fusing ParC and ParA also produced soluble proteins and some chimeras restored the ATPase activity and plasmid inheritance. The results highlight that proximal location of parC before parA is critical to realize the functions of ParA in the partition of Myxococcus plasmid pMF1 and shed light on a new mechanism to realize a protein function by two separate proteins.
Collapse
Affiliation(s)
- Duohong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xiaojing Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yajie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Jingjing Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
17
|
Chen XJ, Zhang Z, Li YJ, Zhuo L, Sheng DH, Li YZ. Insights into the persistence and phenotypic effects of the endogenous and cryptic plasmid pMF1 in its host strain Myxococcus fulvus 124B02. FEMS Microbiol Ecol 2020; 96:5698802. [PMID: 31917409 DOI: 10.1093/femsec/fiaa001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 01/08/2020] [Indexed: 11/12/2022] Open
Abstract
Many endogenous plasmids carry no noticeable benefits for their bacterial hosts, and the persistence of these 'cryptic plasmids' and their functional impacts are mostly unclear. In this study, we investigated these uncertainties using the social bacterium Myxococcus fulvus 124B02 and its endogenous plasmid pMF1. pMF1 possesses diverse genes that originated from myxobacteria, suggesting a longstanding co-existence of the plasmid with various myxobacterial species. The curing of pMF1 from 124B02 had almost no phenotypic effects on the host. Laboratory evolution experiments showed that the 124B02 strain retained pMF1 when subcultured on dead Escherichia coli cells but lost pMF1 when subcultured on living E. coli cells or on casitone medium; these results indicated that the persistence of pMF1 in 124B02 was environment-dependent. Curing pMF1 caused the mutant to lose the ability to predate and develop fruiting bodies more quickly than the pMF1-containing strain after they were subcultured on dead E. coli cells, which indicated that the presence of pMF1 in M. fulvus 124B02 has some long-term effects on its host. The results provide some new insights into the persistence and impacts of cryptic plasmids in their natural bacterial cells.
Collapse
Affiliation(s)
- Xiao-Jing Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China.,Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, Shandong, 250033, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Ya-Jie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
18
|
Self-identity barcodes encoded by six expansive polymorphic toxin families discriminate kin in myxobacteria. Proc Natl Acad Sci U S A 2019; 116:24808-24818. [PMID: 31744876 DOI: 10.1073/pnas.1912556116] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Myxobacteria are an example of how single-cell individuals can transition into multicellular life by an aggregation strategy. For these and all organisms that consist of social groups of cells, discrimination against, and exclusion of, nonself is critical. In myxobacteria, TraA is a polymorphic cell surface receptor that identifies kin by homotypic binding, and in so doing exchanges outer membrane (OM) proteins and lipids between cells with compatible receptors. However, TraA variability alone is not sufficient to discriminate against all cells, as traA allele diversity is not necessarily high among local strains. To increase discrimination ability, myxobacteria include polymorphic OM lipoprotein toxins called SitA in their delivered cargo, which poison recipient cells that lack the cognate, allele-specific SitI immunity protein. We previously characterized 3 SitAI toxin/immunity pairs that belong to 2 families. Here, we discover 4 additional SitA families. Each family is unique in sequence, but share the characteristic features of SitA: OM-associated toxins delivered by TraA. We demonstrate that, within a SitA family, C-terminal nuclease domains are polymorphic and often modular. Remarkably, sitA loci are strikingly numerous and diverse, with most genomes possessing >30 and up to 83 distinct sitAI loci. Interestingly, all SitA protein families are serially transferred between cells, allowing a SitA inhibitor cell to poison multiple targets, including cells that never made direct contact. The expansive suites of sitAI loci thus serve as identify barcodes to exquisitely discriminate against nonself to ensure populations are genetically homogenous to conduct cooperative behaviors.
Collapse
|
19
|
Yang YJ, Singh RP, Lan X, Zhang CS, Li YZ, Li YQ, Sheng DH. Genome Editing in Model Strain Myxococcus xanthus DK1622 by a Site-Specific Cre/loxP Recombination System. Biomolecules 2018; 8:biom8040137. [PMID: 30404219 PMCID: PMC6316027 DOI: 10.3390/biom8040137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
Myxococcus xanthus DK1622 is a rich source of novel secondary metabolites, and it is often used as an expression host of exogenous biosynthetic gene clusters. However, the frequency of obtaining large genome-deletion variants by using traditional strategies is low, and progenies generated by homologous recombination contain irregular deletions. The present study aims to develop an efficient genome-engineering system for this bacterium based on the Cre/loxP system. We first verified the functionality of the native cre system that was integrated into the chromosome with an inducible promoter PcuoA. Then we assayed the deletion frequency of 8-bp-spacer-sequence mutants in loxP by Cre recombinase which was expressed by suicide vector pBJ113 or self-replicative vector pZJY41. It was found that higher guanine content in a spacer sequence had higher deletion frequency, and the self-replicative vector was more suitable for the Cre/loxP system, probably due to the leaky expression of inducible promoter PcuoA. We also inspected the effects of different antibiotics and the native or synthetic cre gene. Polymerase chain reaction (PCR) and sequencing of new genome joints confirmed that the Cre/loxP system was able to delete a 466 kb fragment in M. xanthus. This Cre/loxP-mediated recombination could serve as an alternative genetic manipulation method.
Collapse
Affiliation(s)
- Ying-Jie Yang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Raghvendra Pratap Singh
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
- Research and Development Department, Biotechnology, Uttaranchal University, Dehradun 248007, India.
| | - Xin Lan
- Department of Bio-Chemistry, Qingdao Technical College, Qingdao 266555, China.
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
| | - Yi-Qiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
20
|
Engineering Pseudochelin Production in Myxococcus xanthus. Appl Environ Microbiol 2018; 84:AEM.01789-18. [PMID: 30217842 DOI: 10.1128/aem.01789-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Myxobacteria utilize the catechol natural products myxochelin A and B in order to maintain their iron homeostasis. Recently, the production of these siderophores, along with a new myxochelin derivative named pseudochelin A, was reported for the marine bacterium Pseudoalteromonas piscicida S2040. The latter derivative features a characteristic imidazoline moiety, which was proposed to originate from an intramolecular condensation reaction of the β-aminoethyl amide group in myxochelin B. To identify the enzyme catalyzing this conversion, we compared the myxochelin regulons of two myxobacterial strains that produce solely myxochelin A and B with those of P. piscicida S2040. This approach revealed a gene exclusive to the myxochelin regulon in P. piscicida S2040, coding for an enzyme of the amidohydrolase superfamily. To prove that this enzyme is indeed responsible for the postulated conversion, the reaction was reconstituted in vitro using a hexahistidine-tagged recombinant protein made in Escherichia coli, with myxochelin B as the substrate. To test the production of pseudochelin A under in vivo conditions, the amidohydrolase gene was cloned into the myxobacterial plasmid pZJY156 and placed under the control of a copper-inducible promoter. The resulting vector was introduced into the myxobacterium Myxococcus xanthus DSM 16526, a native producer of myxochelin A and B. Following induction with copper, the myxobacterial expression strain was found to synthesize small quantities of pseudochelin A. Replacement of the copper-inducible promoter with the constitutive pilA promoter led to increased production levels in M. xanthus, which facilitated the isolation and subsequent structural verification of the heterologously produced compound.IMPORTANCE In this study, an enzyme for imidazoline formation in pseudochelin biosynthesis was identified. Evidence for the involvement of this enzyme in the postulated reaction was obtained after in vitro reconstitution. Furthermore, the function of this enzyme was demonstrated in vivo by transferring the corresponding gene into the bacterium Myxococcus xanthus, which thereby became a producer of pseudochelin A. In addition to clarifying the molecular basis of imidazoline formation in siderophore biosynthesis, we describe the heterologous expression of a gene in a myxobacterium without chromosomal integration. Due to its metabolic proficiency, M. xanthus represents an interesting alternative to established host systems for the reconstitution and manipulation of biosynthetic pathways. Since the plasmid used in this study is easily adaptable for the expression of other enzymes as well, we expand the conventional expression strategy for myxobacteria, which is based on the integration of biosynthetic genes into the host genome.
Collapse
|
21
|
Li YJ, Liu Y, Zhang Z, Chen XJ, Gong Y, Li YZ. A Post-segregational Killing Mechanism for Maintaining Plasmid PMF1 in Its Myxococcus fulvus Host. Front Cell Infect Microbiol 2018; 8:274. [PMID: 30131946 PMCID: PMC6091211 DOI: 10.3389/fcimb.2018.00274] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023] Open
Abstract
Although plasmids provide additional functions for cellular adaptation to the environment, they also create a metabolic burden, which causes the host cells to be less competitive with their siblings. Low-copy-number plasmids have thus evolved several mechanisms for their long-term maintenance in host cells. pMF1, discovered in Myxococcus fulvus 124B02, is the only endogenous autonomously replicated plasmid yet found in myxobacteria. Here we report that a post-segregational killing system, encoded by a co-transcriptional gene pair of pMF1.19 and pMF1.20, is involved in maintaining the pMF1 plasmid in its host cells. We demonstrate that the protein encoded by pMF1.20 is a new kind of nuclease, which is able to cleave DNA in vitro. The nuclease activity can be neutralized by the protein encoded by pMF1.19 through protein–protein interaction, suggesting that the protein is an immune protein for nuclease cleavage. We propose that the post-segregational killing mechanism of the nuclease toxin and immune protein pair encoded by pMF1.20 and pMF1.19 is helpful for the stable maintenance of pMF1 in M. fulvus cells.
Collapse
Affiliation(s)
- Ya-Jie Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Xiao-Jing Chen
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Ya Gong
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
22
|
Gong Y, Zhang Z, Liu Y, Zhou X, Anwar MN, Li Z, Hu W, Li Y. A nuclease‐toxin and immunity system for kin discrimination inMyxococcus xanthus. Environ Microbiol 2018; 20:2552-2567. [DOI: 10.1111/1462-2920.14282] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 05/14/2018] [Indexed: 11/29/2022]
Affiliation(s)
- Ya Gong
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Zheng Zhang
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Ya Liu
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Xiu‐Wen Zhou
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Mian Nabeel Anwar
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Ze‐Shuo Li
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| | - Yue‐Zhong Li
- State Key Laboratory of Microbial Technology, School of Life ScienceShandong University Jinan 250100 China
| |
Collapse
|
23
|
Affiliation(s)
- Silke C. Wenzel
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| | - Rolf Müller
- Saarland University; Department of Microbial Natural Products, Helmholtz-Institute for Pharmaceutical Research Saarland, Helmholtz Centre for Infection Research and Pharmaceutical Biotechnology; Saarland University Campus, Building E8.1 66123 Saarbrücken Germany
| |
Collapse
|
24
|
Sharma G, Khatri I, Subramanian S. Complete Genome of the Starch-Degrading Myxobacteria Sandaracinus amylolyticus DSM 53668T. Genome Biol Evol 2016; 8:2520-9. [PMID: 27358428 PMCID: PMC5010890 DOI: 10.1093/gbe/evw151] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Myxobacteria are members of δ-proteobacteria and are typified by large genomes, well-coordinated social behavior, gliding motility, and starvation-induced fruiting body formation. Here, we report the 10.33 Mb whole genome of a starch-degrading myxobacterium Sandaracinus amylolyticus DSM 53668T that encodes 8,962 proteins, 56 tRNA, and two rRNA operons. Phylogenetic analysis, in silico DNA-DNA hybridization and average nucleotide identity reveal its divergence from other myxobacterial species and support its taxonomic characterization into a separate family Sandaracinaceae, within the suborder Sorangiineae. Sequence similarity searches using the Carbohydrate-active enzymes (CAZyme) database help identify the enzyme repertoire of S. amylolyticus involved in starch, agar, chitin, and cellulose degradation. We identified 16 α-amylases and two γ-amylases in the S. amylolyticus genome that likely play a role in starch degradation. While many of the amylases are seen conserved in other δ-proteobacteria, we notice several novel amylases acquired via horizontal transfer from members belonging to phylum Deinococcus-Thermus, Acidobacteria, and Cyanobacteria. No agar degrading enzyme(s) were identified in the S. amylolyticus genome. Interestingly, several putative β-glucosidases and endoglucanases proteins involved in cellulose degradation were identified. However, the absence of cellobiohydrolases/exoglucanases corroborates with the lack of cellulose degradation by this bacteria.
Collapse
Affiliation(s)
- Gaurav Sharma
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Indu Khatri
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| | - Srikrishna Subramanian
- Protein Science and Engineering, CSIR-Institute of Microbial Technology, Sector-39A, Chandigarh, India
| |
Collapse
|
25
|
Chen XJ, Han K, Feng J, Zhuo L, Li YJ, Li YZ. The complete genome sequence and analysis of a plasmid-bearing myxobacterial strain Myxococcus fulvus 124B02 (M 206081). Stand Genomic Sci 2016; 11:1. [PMID: 26734118 PMCID: PMC4700575 DOI: 10.1186/s40793-015-0121-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 09/11/2015] [Indexed: 11/12/2023] Open
Abstract
Myxobacteria, phylogenetically located in the delta division of the Proteobacteria, are well known for characterized social behaviors and large genomes of more than 9 Mb in size. Myxococcus fulvus is a typical species of the genus Myxococcus in the family Myxococcaceae. M. fulvus 124B02, originally isolated from a soil sample collected in Northeast China, is the one and only presently known myxobacterial strain that harbors an endogenous autonomously replicating plasmid, named pMF1. The endogenous plasmid is of importance for understanding the genome evolution of myxobacteria, as well as for the development of genetic engineering tools in myxobacteria. Here we describe the complete genome sequence of this organism. M. fulvus 124B02 consists of a circular chromosome with a total length of 11,048,835 bp and a circular plasmid of 18,634 bp. Comparative genomic analyses suggest that pMF1 has a longstanding sustention within myxobacteria, and probably contributes to the genome expansion of myxobacteria.
Collapse
Affiliation(s)
- Xiao-jing Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Kui Han
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Jing Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Li Zhuo
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Ya-jie Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| |
Collapse
|
26
|
Poust S, Hagen A, Katz L, Keasling JD. Narrowing the gap between the promise and reality of polyketide synthases as a synthetic biology platform. Curr Opin Biotechnol 2014; 30:32-9. [DOI: 10.1016/j.copbio.2014.04.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/09/2014] [Accepted: 04/11/2014] [Indexed: 11/27/2022]
|
27
|
Li SG, Zhao L, Han K, Li PF, Li ZF, Hu W, Liu H, Wu ZH, Li YZ. Diversity of epothilone producers among Sorangium strains in producer-positive soil habitats. Microb Biotechnol 2013; 7:130-41. [PMID: 24308800 PMCID: PMC3937717 DOI: 10.1111/1751-7915.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/29/2022] Open
Abstract
Large-scale surveys show that the anti-tumour compounds known as epothilones are produced by only a small proportion of Sorangium strains, thereby greatly hampering the research and development of these valuable compounds. In this study, to investigate the niche diversity of epothilone-producing Sorangium strains, we re-surveyed four soil samples where epothilone producers were previously found. Compared with the < 2.5% positive strains collected from different places, epothilone producers comprised 25.0-75.0% of the Sorangium isolates in these four positive soil samples. These sympatric epothilone producers differed not only in their 16S rRNA gene sequences and morphologies but also in their production of epothilones and biosynthesis genes. A further exploration of 14 soil samples collected from a larger area around a positive site showed a similar high positive ratio of epothilone producers among the Sorangium isolates. The present results suggest that, in an area containing epothilone producers, the long-term genetic variations and refinements resulting from selective pressure form a large reservoir of epothilone-producing Sorangium strains with diverse genetic compositions.
Collapse
Affiliation(s)
- Shu-Guang Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100, China
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Extraordinary expansion of a Sorangium cellulosum genome from an alkaline milieu. Sci Rep 2013; 3:2101. [PMID: 23812535 PMCID: PMC3696898 DOI: 10.1038/srep02101] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 06/13/2013] [Indexed: 01/03/2023] Open
Abstract
Complex environmental conditions can significantly affect bacterial genome size by unknown mechanisms. The So0157-2 strain of Sorangium cellulosum is an alkaline-adaptive epothilone producer that grows across a wide pH range. Here, we show that the genome of this strain is 14,782,125 base pairs, 1.75-megabases larger than the largest bacterial genome from S. cellulosum reported previously. The total 11,599 coding sequences (CDSs) include massive duplications and horizontally transferred genes, regulated by lots of protein kinases, sigma factors and related transcriptional regulation co-factors, providing the So0157-2 strain abundant resources and flexibility for ecological adaptation. The comparative transcriptomics approach, which detected 90.7% of the total CDSs, not only demonstrates complex expression patterns under varying environmental conditions but also suggests an alkaline-improved pathway of the insertion and duplication, which has been genetically testified, in this strain. These results provide insights into and a paradigm for how environmental conditions can affect bacterial genome expansion.
Collapse
|
29
|
Tan Z, Li H, Pan H, Zhou X, Liu X, Luo N, Hu W, Li Y. Characterization of four type IV pilin homologues in Stigmatella aurantiaca DSM17044 by heterologous expression in Myxococcus xanthus. PLoS One 2013; 8:e75105. [PMID: 24058653 PMCID: PMC3776727 DOI: 10.1371/journal.pone.0075105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 08/09/2013] [Indexed: 11/19/2022] Open
Abstract
As prokaryotic models for multicellular development, Stigmatella aurantiaca and Myxococcus xanthus share many similarities in terms of social behaviors, such as gliding motility. Our current understanding of myxobacterial grouped-cell motilities comes mainly from the research on M. xanthus, which shows that filamentous type IV pili (TFP), composed of type IV pilin (also called PilA protein) subunits, are the key apparatus for social motility (S-motility). However, little is known about the pilin protein in S. aurantiaca. We cloned and sequenced four genes (pilA(Sa1~4)) from S. aurantiaca DSM17044 that are homologous to pilA(Mx) (pilA gene in M. xanthus DK1622). The homology and similarities among pilA(Sa) proteins and other myxobacterial homologues were systematically analyzed. To determine their potential biological functions, the four pilA(Sa) genes were expressed in M. xanthus DK10410 (ΔpilA(Mx)), which did not restore S-motility on soft agar or EPS production to host cells. After further analysis of the motile behaviors in a methylcellulose solution, the M. xanthus strains were categorized into three types. YL6101, carrying pilA(Sa1), and YL6104, carrying pilA(Sa4), produced stable but unretractable surface pili; YL6102, carrying pilA(Sa2), produced stable surface pili and exhibited reduced TFP-dependent motility in methylcellulose; YL6103, carrying pilA(Sa3), produced unstable surface pili. Based on these findings, we propose that pilA(Sa2) might be responsible for the type IV pilin production involved in group motility in S. aurantiaca DSM17044. After examining the developmental processes, it was suggested that the expression of PilA(Sa4) protein might have positive effects on the fruiting body formation of M. xanthus DK10410 cells. Moreover, the formation of fruiting body in M. xanthus cells with stable exogenous TFPSa were compensated by mixing them with S. aurantiaca DSM17044 cells. Our results shed some light on the features and functions of type IV pilin homologues in S. aurantiaca.
Collapse
Affiliation(s)
- Zaigao Tan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Haoming Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Hongwei Pan
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xiuwen Zhou
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Xin Liu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Ningning Luo
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| | - Wei Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
- * E-mail:
| | - Yuezhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
30
|
Two systems for conditional gene expression in Myxococcus xanthus inducible by isopropyl-β-D-thiogalactopyranoside or vanillate. J Bacteriol 2012; 194:5875-85. [PMID: 22923595 DOI: 10.1128/jb.01110-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Conditional expression of a gene is a powerful tool to study its function and is typically achieved by placing the gene under the control of an inducible promoter. There is, however, a dearth of such inducible systems in Myxococcus xanthus, a well-studied prokaryotic model for multicellular development, cell differentiation, motility, and light response and a promising source of secondary metabolites. The few available systems have limitations, and exogenously based ones are unavailable. Here, we describe two new, versatile inducible systems for conditional expression of genes in M. xanthus. One employs isopropyl-β-d-thiogalactopyranoside (IPTG) as an inducer and is inspired by those successfully applied in some other bacteria. The other requires vanillate as an inducer and is based on the system developed originally for Caulobacter crescentus and recently adapted for mammalian cells. Both systems are robust, with essentially no expression in the absence of an inducer. Depending on the inducer and the amounts added, expression levels can be modulated such that either system can conditionally express genes, including ones that are essential and are required at high levels such as ftsZ. The two systems operate during vegetative growth as well as during M. xanthus development. Moreover, they can be used to simultaneously induce expression of distinct genes within the same cell. The conditional expression systems we describe substantially expand the genetic tool kit available for studying M. xanthus gene function and cellular biology.
Collapse
|
31
|
Feng J, Chen XJ, Sun X, Wang N, Li YZ. Characterization of the replication origin of the myxobacterial self-replicative plasmid pMF1. Plasmid 2012; 68:105-12. [PMID: 22537554 DOI: 10.1016/j.plasmid.2012.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2011] [Revised: 04/01/2012] [Accepted: 04/06/2012] [Indexed: 10/28/2022]
Abstract
Thus far, pMF1 is the only endogenous myxobacterial plasmid whose replication mechanism is unclear. In this study, we determined that the plasmid replicates via the theta-mode. The pMF1.14 gene, located in the pMF1.13-pMF1.15 operon (repABC), encodes an essential replication initiation protein that was predicted to have no typical DNA/protein binding motifs but contains rich disordered regions. The pMF1 replication-related essential cis-acting DNA region, approximate 370bp, was located within pMF1.14, and was found to contain several directly and inverted atypical repeats. The unique characteristics of the pMF1 replicon are suggested to be the reason for its strict narrow host range in Myxococcus cells.
Collapse
Affiliation(s)
- Jing Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan 250100, China
| | | | | | | | | |
Collapse
|
32
|
Ogilvie LA, Firouzmand S, Jones BV. Evolutionary, ecological and biotechnological perspectives on plasmids resident in the human gut mobile metagenome. Bioeng Bugs 2012; 3:13-31. [PMID: 22126801 PMCID: PMC3329251 DOI: 10.4161/bbug.3.1.17883] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Numerous mobile genetic elements (MGE) are associated with the human gut microbiota and collectively referred to as the gut mobile metagenome. The role of this flexible gene pool in development and functioning of the gut microbial community remains largely unexplored, yet recent evidence suggests that at least some MGE comprising this fraction of the gut microbiome reflect the co-evolution of host and microbe in the gastro-intestinal tract. In conjunction, the high level of novel gene content typical of MGE coupled with their predicted high diversity, suggests that the mobile metagenome constitutes an immense and largely unexplored gene-space likely to encode many novel activities with potential biotechnological or pharmaceutical value, as well as being important to the development and functioning of the gut microbiota. Of the various types of MGE that comprise the gut mobile metagenome, plasmids are of particular importance since these elements are often capable of autonomous transfer between disparate bacterial species, and are known to encode accessory functions that increase bacterial fitness in a given environment facilitating bacterial adaptation. In this article current knowledge regarding plasmids resident in the human gut mobile metagenome is reviewed, and available strategies to access and characterize this portion of the gut microbiome are described. The relative merits of these methods and their present as well as prospective impact on our understanding of the human gut microbiota is discussed.
Collapse
Affiliation(s)
- Lesley A Ogilvie
- Centre for Biomedical and Health Science Research, School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, UK
| | | | | |
Collapse
|
33
|
Sun X, Chen XJ, Feng J, Zhao JY, Li YZ. Characterization of the partitioning system of Myxococcus plasmid pMF1. PLoS One 2011; 6:e28122. [PMID: 22174771 PMCID: PMC3235114 DOI: 10.1371/journal.pone.0028122] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 11/01/2011] [Indexed: 11/18/2022] Open
Abstract
pMF1 is the only autonomously replicating plasmid that has been recently identified in myxobacteria. This study characterized the partitioning (par) system of this plasmid. The fragment that significantly increased the retaining stability of plasmids in Myxococcus cells in the absence of selective antibiotics contained three open reading frames (ORFs) pMF1.21-pMF1.23 (parCAB). The pMF1.22 ORF (parA) is homologous to members of the parA ATPase family, with the highest similarity (56%) to the Sphingobium japonicum ParA-like protein, while the other two ORFs had no homologs in GenBank. DNase I footprinting and electrophoretic mobility shift assays showed that the pMF1.23 (parB) product is a DNA-binding protein of iteron DNA sequences, while the product of pMF1.21 (parC) has no binding activity but is able to enhance the DNA-binding activity of ParB to iterons. The ParB protein autogenously repressed the expression of the par genes, consistent with the type Ib par pattern, while the ParC protein has less repressive activity. The ParB-binding iteron sequences are distributed not only near the partitioning gene loci but also along pMF1. These results indicate that the pMF1 par system has novel structural and functional characteristics.
Collapse
Affiliation(s)
- Xia Sun
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Xiao-jing Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Jing Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Jing-yi Zhao
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
34
|
Identification and localization of Myxococcus xanthus porins and lipoproteins. PLoS One 2011; 6:e27475. [PMID: 22132103 PMCID: PMC3222651 DOI: 10.1371/journal.pone.0027475] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2011] [Accepted: 10/17/2011] [Indexed: 11/19/2022] Open
Abstract
Myxococcus xanthus DK1622 contains inner (IM) and outer membranes (OM) separated by a peptidoglycan layer. Integral membrane, β-barrel proteins are found exclusively in the OM where they form pores allowing the passage of nutrients, waste products and signals. One porin, Oar, is required for intercellular communication of the C-signal. An oar mutant produces CsgA but is unable to ripple or stimulate csgA mutants to develop suggesting that it is the channel for C-signaling. Six prediction programs were evaluated for their ability to identify β-barrel proteins. No program was reliable unless the predicted proteins were first parsed using Signal P, Lipo P and TMHMM, after which TMBETA-SVM and TMBETADISC-RBF identified β-barrel proteins most accurately. 228 β-barrel proteins were predicted from among 7331 protein coding regions, representing 3.1% of total genes. Sucrose density gradients were used to separate vegetative cell IM and OM fractions, and LC-MS/MS of OM proteins identified 54 β-barrel proteins. Another class of membrane proteins, the lipoproteins, are anchored in the membrane via a lipid moiety at the N-terminus. 44 OM proteins identified by LC-MS/MS were predicted lipoproteins. Lipoproteins are distributed between the IM, OM and ECM according to an N-terminal sorting sequence that varies among species. Sequence analysis revealed conservation of alanine at the +7 position of mature ECM lipoproteins, lysine at the +2 position of IM lipoproteins, and no noticable conservation within the OM lipoproteins. Site directed mutagenesis and immuno transmission electron microscopy showed that alanine at the +7 position is essential for sorting of the lipoprotein FibA into the ECM. FibA appears at normal levels in the ECM even when a +2 lysine is added to the signal sequence. These results suggest that ECM proteins have a unique method of secretion. It is now possible to target lipoproteins to specific IM, OM and ECM locations by manipulating the amino acid sequence near the +1 cysteine processing site.
Collapse
|
35
|
Abstract
Myxococcus xanthus belongs to the delta class of the proteobacteria and is notable for its complex life-style with social behaviors and relatively large genome. Although previous observations have suggested the existence of horizontal gene transfer in M. xanthus, its ability to take up exogenous DNA via natural transformation has not been experimentally demonstrated. In this study, we achieved natural transformation in M. xanthus using the autonomously replicating myxobacterial plasmid pZJY41 as donor DNA. M. xanthus exopolysaccharide (EPS) was shown to be an extracellular barrier for transformation. Cells deficient in EPS production, e.g., mutant strains carrying ΔdifA or ΔepsA, became naturally transformable. Among the inner barriers to transformation were restriction-modification systems in M. xanthus, which could be partially overcome by methylating DNA in vitro using cell extracts of M. xanthus prior to transformation. In addition, the incubation time of DNA with cells and the presence of divalent magnesium ion affected transformation frequency of M. xanthus. Furthermore, we also observed a potential involvement of the type IV pilus system in the DNA uptake machinery of M. xanthus. The natural transformation was totally eliminated in the ΔpilQ/epsA and Δtgl/epsA mutants, and null mutation of pilB or pilC in an ΔepsA background diminished the transformation rate. Our study, to the best of our knowledge, provides the first example of a naturally transformable species among deltaproteobacteria.
Collapse
|
36
|
Wenzel SC, Müller R. Myxobacteria--'microbial factories' for the production of bioactive secondary metabolites. MOLECULAR BIOSYSTEMS 2009; 5:567-74. [PMID: 19462013 DOI: 10.1039/b901287g] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In this article, we briefly review the potential of myxobacteria as 'natural product factories' by highlighting results from the recently sequenced myxobacterial model strain Myxococcus xanthus. We will focus on the production of polyketides, non-ribosomally-made peptides, and their hybrids, and discuss the evaluation of biosynthetic potential using genome-based methods, as well as biosynthetic process engineering.
Collapse
Affiliation(s)
- Silke C Wenzel
- Pharmaceutical Biotechnology, Saarland University, Saarbrücken, Germany
| | | |
Collapse
|
37
|
A brief tour of myxobacterial secondary metabolism. Bioorg Med Chem 2009; 17:2121-36. [DOI: 10.1016/j.bmc.2008.11.025] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 11/07/2008] [Accepted: 11/11/2008] [Indexed: 12/16/2022]
|
38
|
A vitamin B12-based system for conditional expression reveals dksA to be an essential gene in Myxococcus xanthus. J Bacteriol 2009; 191:3108-19. [PMID: 19251845 DOI: 10.1128/jb.01737-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Myxococcus xanthus is a prokaryotic model system for the study of multicellular development and the response to blue light. The previous analyses of these processes and the characterization of new genes would benefit from a robust system for controlled gene expression, which has been elusive so far for this bacterium. Here, we describe a system for conditional expression of genes in M. xanthus based on our recent finding that vitamin B12 and CarH, a MerR-type transcriptional repressor, together downregulate a photoinducible promoter. Using this system, we confirmed that M. xanthus rpoN, encoding sigma(54), is an essential gene, as reported earlier. We then tested it with ftsZ and dksA. In most bacteria, ftsZ is vital due to its role in cell division, whereas null mutants of dksA, whose product regulates the stringent response via transcriptional control of rRNA and amino acid biosynthesis promoters, are viable but cause pleiotropic effects. As with rpoN, it was impossible to delete endogenous ftsZ or dksA in M. xanthus except in a merodiploid background carrying another functional copy, which indicates that these are essential genes. B12-based conditional expression of ftsZ was insufficient to provide the high intracellular FtsZ levels required. With dksA, as with rpoN, cells were viable under permissive but not restrictive conditions, and depletion of DksA or sigma(54) produced filamentous, aberrantly dividing cells. dksA thus joins rpoN in a growing list of genes dispensable in many bacteria but essential in M. xanthus.
Collapse
|
39
|
Zhao JY, Xia ZJ, Sun X, Zhong L, Jiang DM, Liu H, Wang J, Qin ZJ, Li YZ. Cloning and characterization of an rRNA methyltransferase from Sorangium cellulosum. Biochem Biophys Res Commun 2008; 370:140-4. [PMID: 18355448 DOI: 10.1016/j.bbrc.2008.03.045] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Accepted: 03/11/2008] [Indexed: 11/24/2022]
Abstract
A locus (kmr) responsible for aminoglycosides-resistance of Sorangium cellulosum was cloned and characterized in Myxococcus xanthus. The gene kmr encodes a putative rRNA methyltransferase. Expression of the complete ORF endowed the Myxococcus transformants with the resistance to aminoglycosidic antibiotics of kanamycin, apramycin, gentamycin, neomycin, and tobramycin at an extraordinary high-level (MIC, higher than 500 microg/ml). However, the gene did not function in Escherichia coli cells. In Sorangium genome, the gene kmr was followed by a putative integrase gene, and was highly homologous in different Sorangium strains. The Sorangium rRNA methyltransferase sequence was in low similarity to the reported 16S rRNA methyltransferases, and their resistance spectrums were also different. The results indicate that the rRNA methyltransferase (Kmr) in Sorangium strains is a new member of the rRNA methyltransferases family.
Collapse
Affiliation(s)
- Jing-Yi Zhao
- State Key Laboratory of Microbial Technology, College of Life Science, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|