1
|
Feng J, Cai LT, Li T, Wang HC, Zhang CQ. G462S substitution of AaCYP51 confers moderate resistance to tebuconazole in Alternaria alternata. PEST MANAGEMENT SCIENCE 2025; 81:2891-2900. [PMID: 39810643 DOI: 10.1002/ps.8654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/27/2024] [Accepted: 01/01/2025] [Indexed: 01/16/2025]
Abstract
BACKGROUND Tobacco brown spot (TBS) caused by Alternaria alternata is one of the most common diseases of tobacco in China, resulting in large loss in yield and quality. Demethylation inhibitors (DMIs) such as tebuconazole are commonly used pesticides to control TBS. However, their control effect has shown a downward trend in recent years. In this study, the occurrence and molecular mechanism of resistance to tebuconazole in Alternaria alternata were analyzed. RESULTS The resistance of 63 strains of Alternaria alternata to tebuconazole was investigated with the concentration of 5 and 20 μg/mL as the identification standard, and the resistance frequency was as high as 93.65%. It was found that the target mutation from G to S at the 462nd amino acid position of CYP51 was the cause of moderate resistance to tebuconazole in A. alternata. Molecular docking analysis further confirmed that the G462S mutation of AaCYP51 decreased the binding affinity of tebuconazole to CYP51. The artificial AaCYP51-G462S transformants based on wild-sensitive GZA-24 showed resistance to tebuconazole and cross-resistance to metconazole and prothioconazole. In the present investigation, the virulence of the CYP51-G462S mutant was reduced, while mycelial growth, sporulation, and conidial germination did not change in comparison with the progenitor strain GZA-24. In addition, the mutants containing the G462S mutation in AaCYP51 exhibited decreased sensitivity to high osmotic stress stimulated by 1 M NaCl, and the capacity to respond to cell wall- and cytomembrane-damaging agents did not change in the mutants. CONCLUSION The G462S substitution of CYP51 is the main factor for the moderate resistance to tebuconazole in A. alternata and mechanisms other than CYP51-target mutation might be involved in tebuconazole lowly resistant isolates. © 2025 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ji Feng
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Liu-Ti Cai
- Guizhou Academy of Tobacco Plant Science, Guiyang, China
| | - Tao Li
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou, China
| | - Han-Cheng Wang
- Guizhou Academy of Tobacco Plant Science, Guiyang, China
| | - Chuan-Qing Zhang
- Department of Crop Protection, Zhejiang Agriculture and Forest University, Hangzhou, China
| |
Collapse
|
2
|
Gelain J, Zhao B, Price SGA, Kaur H, Blank A, Zeng Z, Luo CX, Schnabel G. Propiconazole Resistance Phenotypes in Geotrichum candidum from South Carolina Peaches Are Linked to Point Mutations in the GcCYP51B Gene. PLANT DISEASE 2025; 109:882-889. [PMID: 39460401 DOI: 10.1094/pdis-09-24-1962-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2024]
Abstract
Geotrichum candidum Link (1809) is a yeast-like fungus that causes sour rot of peach (Prunus persica). Outbreaks of the disease have occurred since 2021 in peach fruit kept in cold storage despite postharvest treatments with propiconazole at a commercial farm in South Carolina (SC). A total of 58 isolates, 40 from symptomatic fruit from cold storage in Saluda County (SC packing house isolates), 11 from three SC orchards in Saluda County, Spartanburg County, and Pickens County (SC non-packing house isolates), and 7 California (CA) isolates (at least 3 from packing houses) were evaluated for propiconazole sensitivity. Mycelial growth assays revealed that six of seven CA isolates had the lowest fungicide concentration causing inhibition of mycelial growth by 50% (EC50) values and were considered sensitive (S) to propiconazole with an average EC50 value of 0.02 μg/ml and minimum inhibitory concentration (MIC) values of >1 to <3 μg/ml. Isolate 02J018 from CA and all SC non-packing house isolates were considered reduced-sensitive (RS) to propiconazole with an average EC50 value of 0.33 μg/ml and MIC values of >10 to <30 μg/ml. SC packing house isolates were considered resistant (R) to propiconazole and had an average EC50 value of 3.55 μg/ml and MIC values of >300 μg/ml. Two CYP51 genes, GcCYP51A and GcCYP51B, encoding two demethylase inhibitor (DMI) target enzyme 14α-demethylases were identified, sequenced, and characterized. Two GcCYP51A and three GcCYP51B variants were found. Although both GcCYP51A variants were linked to S isolates, the GcCYP51B2 variant possessing the mutation Y143F was found in RS, and the GcCYP51B3 variant possessing Y143F, E126K, and G460S mutations was identified in R isolates. The Y143F and G460S mutations had been associated with DMI fungicide resistance in other plant pathogens. No increased constitutive expression of GcCYP51A or GcCYP51B was observed in RS or R isolates. Detached fruit assays revealed that label rates of propiconazole controlled sour rot caused by S and RS but not R isolates. Our results suggest that sour rot outbreaks in an SC packing house were linked to target gene-induced propiconazole resistance in G. candidum.
Collapse
Affiliation(s)
- Jhulia Gelain
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Bingyu Zhao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Sara Grace Argo Price
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Harleen Kaur
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Antonia Blank
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| | - Zhezheng Zeng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
3
|
Wesche J, Wu P, Luo CX, Schnabel G. Pyrrolnitrin in Pseudomonas chlororaphis Strain AFS009 Metabolites Reduces Constitutive and Demethylation Inhibitor-Induced MfCYP51 Gene Expression in Monilinia fructicola. PLANT DISEASE 2025; 109:657-663. [PMID: 39359038 DOI: 10.1094/pdis-07-24-1470-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Brown rot, caused by Monilinia fructicola, is one of the most economically important diseases of peach. Demethylation inhibitor (DMI) fungicides play an important part in managing brown rot in the Southeastern United States, but over the last 20 years, reduced efficacy to DMIs has been reported in field isolates overexpressing the DMI target enzyme encoding the MfCYP51 gene. Metabolites of the biocontrol agent (BCA) Pseudomonas chlororaphis strain AFS009 suppressed the MfCYP51 gene in sensitive and resistant M. fructicola isolates previously, but it is not known what molecule was responsible. The goals of this study were to determine the presence and role of pyrrolnitrin (PRN), a common metabolite of P. chlororaphis and chemical analog to fludioxonil with antifungal activity, in the suppression of the MfCYP51 gene and to investigate whether MfCYP51 expression can also be suppressed by Bacillus subtilis (Theia). High-performance liquid chromatography detected PRN at 1.75 μg/mg in P. chlororaphis metabolites formulated as Howler EVO (Howler). PRN at 0.1 μg/ml, fludioxonil at 0.1 μg/ml, and Howler applied at a dose that contained 0.1 μg/ml PRN significantly reduced the MfCYP51 gene expression at similar levels in DMI-resistant isolates. Furthermore, MfCYP51 expression in DMI-sensitive and three DMI-resistant isolates treated with Howler (88.1 μg/ml), Theia (209.5 μg/ml), propiconazole (0.3 μg/ml), or the mixture of either Howler or Theia + propiconazole revealed that Howler significantly reduced the MfCYP51 target gene expression in two of three sensitive and all three resistant M. fructicola isolates. On the other hand, Theia showed no suppressive effect and even increased the MfCYP51 gene expression level in two of three resistant isolates. In detached fruit assays on apple with a DMI-resistant isolate, only the mixture of Howler + 50 μg/ml propiconazole resulted in synergism. The results indicate that suppression of MfCYP51 target gene is BCA dependent and can be induced by PRN.
Collapse
Affiliation(s)
- Johanna Wesche
- Department of Plant and Environmental Science, Clemson University, Clemson, SC 29634, U.S.A
| | - Peishan Wu
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guido Schnabel
- Department of Plant and Environmental Science, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
4
|
Naqvi SAH, Farhan M, Ahmad M, Kiran R, Shahbaz M, Abbas A, Hakim F, Shabbir M, Tan YS, Sathiya Seelan JS. Fungicide resistance in Fusarium species: exploring environmental impacts and sustainable management strategies. Arch Microbiol 2025; 207:31. [PMID: 39792175 DOI: 10.1007/s00203-024-04219-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/12/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025]
Abstract
The agricultural productivity and world-wide food security is affected by different phytopathogens, in which Fusarium is more destructive affecting more than 150 crops, now got resistance against many fungicides that possess harmful effects on environment such as soil health, air pollution, and human health. Fusarium fungicide resistance is an increasing concern in agricultural and environmental contexts, requiring a thorough understanding of its causes, implications, and management approaches. The mechanisms of fungicide resistance in Fusarium spp., are reviewed in this article, including increased efflux pump activity, target-site mutations, and metabolic detoxification pathways. Fusarium is naturally resistant to some of the fungicides, on the other hand; it speedily develops resistance against the other fungicides groups. Most of the important plant pathogenic Fusarium species including F. oxysporum, F. psedogramanium, F. graminearium and Fusarium solani, which have shown resistance to major groups of fungicides including triazoles, phenylpyrole and benzimedazoles in various regions of the world. The review also covers a range of management techniques, including fungicide rotation, resistant cultivars, cultural methods, and biological control agents, to lessen fungicide resistance. By shedding light on the current state of knowledge concerning fungicide resistance in Fusarium spp., this review provides valuable information to researchers, policymakers, and practitioners to design long-term effective disease management approaches, as well as fungal menace control to preserve fungicides' effectiveness in agriculture and conservancy activities.
Collapse
Affiliation(s)
- Syed Atif Hasan Naqvi
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Farhan
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Ahmad
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Rafia Kiran
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| | - Aqleem Abbas
- Department of Agriculture and Food Technology, Faculty of Life Sciences, Karakoram International University, 15100, Gilgit, Gilgit-Baltistan, Pakistan
| | - Fahad Hakim
- Department of Horticulture, Lithuanian Institute of Agriculture and Forestry, 58344, Kėdainiai, Lithuania
| | - Muhammad Shabbir
- Department of Plant Pathology, Faculty of Agricultural Sciences and Technology, Bahauddin Zakariya University, 60800, Multan, Pakistan
| | - Yee Shin Tan
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
- Mushroom Research Center, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Jaya Seelan Sathiya Seelan
- Institute for Tropical Biology and Conservation, Universiti Malaysia Sabah, Jalan, UMS, 88400, Kota Kinabalu, Sabah, Malaysia.
| |
Collapse
|
5
|
Gambhir N, Kodati S, Adesemoye AO, Everhart SE. Fungicide Sensitivity and Nontarget Site Resistance in Rhizoctonia zeae Isolates Collected from Corn and Soybean Fields in Nebraska. PLANT DISEASE 2025; 109:217-227. [PMID: 39254848 DOI: 10.1094/pdis-02-24-0352-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Rhizoctonia zeae was recently identified as the major Rhizoctonia species in corn and soybean fields in Nebraska and was shown to be pathogenic on corn and soybean seedlings. Fungicide seed treatments commonly used to manage seedling diseases include prothioconazole (demethylation inhibitor), fludioxonil (phenylpyrrole), sedaxane (succinate dehydrogenase inhibitor), and azoxystrobin (quinone outside inhibitor [QoI]). To establish the sensitivity of R. zeae to these fungicides, we isolated this pathogen from corn and soybean fields in Nebraska during 2015 to 2017 and estimated the relative effective concentration for 50% inhibition (EC50) of a total of 91 R. zeae isolates from Nebraska and Illinois. Average EC50 for prothioconazole, fludioxonil, sedaxane, and azoxystrobin was 0.219, 0.099, 0.078, and >100 µg ml-1, respectively. In planta assays showed that azoxystrobin did not significantly reduce the disease severity on soybean (P > 0.05). The cytochrome b gene of R. zeae did not harbor any mutation known to confer QoI resistance and had a type I intron directly after codon 143, suggesting that a G143A mutation is unlikely to evolve in this pathogen. For prothioconazole, fludioxonil, and sedaxane, the EC50 of the isolates did not differ significantly among the years of collection (P > 0.05), and their single discriminatory concentrations were identified as 0.1 µg ml-1. This is the first study to establish nontarget site resistance of R. zeae to azoxystrobin and the sensitivity of R. zeae to commonly used seed treatment fungicides in Nebraska. This information will help to guide strategies for chemical control of R. zeae and monitor sensitivity shifts in the future.
Collapse
Affiliation(s)
- Nikita Gambhir
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| | - Srikanth Kodati
- West Central Research, Education and Extension Center, University of Nebraska, North Platte, NE 69101, U.S.A
| | - Anthony O Adesemoye
- West Central Research, Education and Extension Center, University of Nebraska, North Platte, NE 69101, U.S.A
| | - Sydney E Everhart
- Department of Plant Pathology, University of Nebraska, Lincoln, NE 68583, U.S.A
| |
Collapse
|
6
|
Meng FZ, Wei WK, Cai MZ, Wang ZQ, Yin LF, Yin WX, Schnabel G, Luo CX. The Mediator complex subunit MoMed15 plays an important role in conferring sensitivity to isoprothiolane by modulating xenobiotic metabolism in M. oryzae. mBio 2024; 15:e0177824. [PMID: 39530687 PMCID: PMC11633134 DOI: 10.1128/mbio.01778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/13/2024] [Indexed: 11/16/2024] Open
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most economically important rice diseases. Fungicides such as isoprothiolane (IPT) have been used extensively for rice blast control, but resistance to IPT in M. oryzae is an emerging threat. In this study, molecular mechanisms of resistance in IPT-resistant mutants were identified. Through whole-genome sequencing and genetic transformation, we identified the gene MoMed15, encoding a transcriptional glutamine-rich co-activator Mediator complex subunit, in which mutations or deletion resulted in moderate IPT resistance. Further research found that MoMed15 physically interacted with the IPT resistance regulatory factor MoIRR to simultaneously regulate both MoIRR expression and the expression of multiple xenobiotic-metabolizing enzymes in response to IPT stress. We hypothesize that some xenobiotic-metabolizing enzymes enhance IPT toxicity by modifying the IPT structure. Variation of MoMed15 affected the recruitment of the transcriptional Mediator complex and decreased the expression of these xenobiotic-metabolizing enzymes, resulting in moderate IPT resistance. We also found that MoPGR1, encoding a protein that activates cytochrome P450 enzymes, was essential to confer IPT sensitivity, and its expression was directly regulated by MoIRR.IMPORTANCEIsoprothiolane (IPT) has been used extensively for the management of rice blast disease and IPT-resistant subpopulations have emerged in Chinese rice fields. The emergence of resistant pathogen populations has led to a steep increase in fungicide use, increasing pesticide risk for the applicator and the environment. The molecular mechanisms of IPT resistance in M. oryzae remain elusive. In this study, we demonstrated that transcriptional co-activator MoMed15 interacts with IPT resistance regulator MoIRR to recruit the Mediator complex, which promotes the expression of xenobiotic-metabolizing enzymes, leading to exacerbated IPT toxicity. The MoMed15 could be used for IPT resistance detection in rice fields.
Collapse
Affiliation(s)
- Fan-Zhu Meng
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wen-Kai Wei
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Zheng Cai
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zuo-Qian Wang
- Institute of Plant Protection and Soil Science, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Liang-Fen Yin
- Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, South Carolina, USA
| | - Chao-Xi Luo
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Experimental Teaching Center of Crop Science, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
7
|
Dutra PSS, Carraro TA, Nesi CN, Amorim L, May De Mio LL. Comparative Fitness of Monilinia fructicola Isolates with Multiple Fungicide-Resistant Phenotypes. PLANT DISEASE 2024; 108:3300-3310. [PMID: 38971961 DOI: 10.1094/pdis-12-23-2549-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
This study characterized 52 isolates of Monilinia fructicola from peach and nectarine orchards for their multiresistance patterns to thiophanate-methyl (TF), tebuconazole (TEB), and azoxystrobin (AZO) using in vitro sensitivity assays and molecular analysis. The radial growth of M. fructicola isolates was measured on media amended with a single discriminatory dose of 1 μg/ml for TF and AZO and 0.3 μg/ml for TEB. Cyt b, CYP51, and β-tubulin were tested for point mutations that confer resistance to quinone outside inhibitors (QoIs), demethylation inhibitors (DMIs), and methyl benzimidazole carbamates (MBCs), respectively. Eight phenotypes were identified, including isolates with single, double, and triple in vitro resistance to QoI, MBC, and DMI fungicides. All resistant phenotypes to TF and TEB presented the H6Y mutation in β-tubulin and the G641S mutation in CYP51. None of the point mutations typically linked to QoI resistance were present in the Monilinia isolates examined. Moreover, fitness of the M. fructicola phenotypes was examined in vitro and in detached fruit assays. Phenotypes with single resistance displayed equal fitness in vitro and in fruit assays compared with the wild type. In contrast, the dual- and triple-resistance phenotypes suffered fitness penalties based on osmotic sensitivity and aggressiveness on peach fruit. In this study, multiple resistance to MBC, DMI, and QoI fungicide groups was confirmed in M. fructicola. Results suggest that Monilinia populations with multiple resistance phenotypes are likely to be less competitive in the field than those with single resistance, thereby impeding their establishment over time and facilitating disease management.
Collapse
Affiliation(s)
- Pamela S S Dutra
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Thiago A Carraro
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Cristiano N Nesi
- Research Center for Family Agriculture - EPAGRI, Chapecó, Santa Catarina, Brazil
| | - Lilian Amorim
- Department of Plant Pathology, ESALQ, University of São Paulo, Piracicaba, São Paulo, Brazil
| | - Louise L May De Mio
- Department of Plant Science and Plant Protection, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
8
|
Wesche J, Zeng Z, Luo CX, Schnabel G. Pseudomonas chlororaphis Metabolites Reduce MfCYP51 Expression and Yield Synergistic Efficacy in Mixture with Reduced Rates of Propiconazole Against DMI-Resistant Monilinia fructicola Isolates. PLANT DISEASE 2024; 108:3311-3318. [PMID: 38956959 DOI: 10.1094/pdis-04-24-0869-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Brown rot caused by Monilinia fructicola is one of the most important diseases affecting peach production in the southeastern United States. Management often involves the use of demethylation inhibitor (DMI) fungicides, but efficacy can be compromised because of overexpression of the MfCYP51 gene encoding the 14α-demethylase of the ergosterol biosynthesis pathway. This study aimed to investigate the influence of the biorational fungicide Howler EVO containing Pseudomonas chlororaphis ASF009 metabolites on the expression of MfCYP51 in M. fructicola and associated synergy with a DMI fungicide for control of DMI-resistant strains. Mycelia from two DMI-sensitive and three DMI-resistant M. fructicola isolates were exposed or not to propiconazole (0.3 μg/ml), Howler (88.1 μg/ml), or the combination propiconazole + Howler for 6 h prior to RNA extraction. Real-time PCR indicated that Howler reduced the constitutive expression of MfCYP51 in DMI-sensitive and two of three DMI-resistant isolates. Propiconazole-induced expression of the DMI target gene was significantly reduced by Howler and by the mixture of Howler plus propiconazole in all isolates. Detached fruit studies on apple revealed that the combination of Howler plus a reduced label rate of Mentor (50 μg/ml propiconazole) was synergistic against brown rot caused by a DMI-resistant isolate in high and low inoculum spore concentration experiments (synergy values of 40.1 and 4.9, respectively). We hypothesize that the synergistic effects against M. fructicola resistant to DMI fungicides based on MfCYP51 gene overexpression can be attributed to reduced 14α demethylase production due to transcription inhibition, which may necessitate fewer DMI fungicide molecules to arrest fungal growth. The use of Howler/DMI mixtures for brown rot control warrants further investigation because such mixtures could potentially allow for reduced DMI fungicide use rates in the field without compromising yield or increased resistance selection.
Collapse
Affiliation(s)
- Johanna Wesche
- Department of Plant and Environmental Science, Clemson University, Clemson, SC 29634, U.S.A
| | - Zhezheng Zeng
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Guido Schnabel
- Department of Plant and Environmental Science, Clemson University, Clemson, SC 29634, U.S.A
| |
Collapse
|
9
|
Liu D, Luo M, Zhu YX, Zeng ZZ, Hu JJ, Cai MZ, Wang J, Yin WX, Schnabel G, Luo CX. Visual detection of fungicide resistance by combining RPA and CRISPR/Cas12a in peach Brown rot fungus Monilinia fructicola. PEST MANAGEMENT SCIENCE 2024; 80:5974-5982. [PMID: 39096082 DOI: 10.1002/ps.8330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Peach brown rot caused by Monilinia fructicola severely affects the quality and yield of peach, resulting in large economic losses worldwide. Methyl benzimidazole carbamate (MBC) fungicides and sterol demethylation inhibitor (DMI) fungicides are among the most applied chemical classes used to control the disease but resistance in the target pathogen has made them risky choices. Timely monitoring of resistance to these fungicides in orchards could prevent control failure in practice. RESULTS In the current study, we developed methods based on recombinase polymerase amplification (RPA) and CRISPR/Cas12a systems to detect MBC and DMI resistance based on the E198A mutation in the β-tubulin (MfTub2) gene and the presence of the Mona element in the upstream region of the MfCYP51, respectively. For MBC resistance, RPA primers were designed that artificially incorporated PAM sites to facilitate the CRISPR/Cas12a reaction. Subsequently, specific tcrRNAs were designed based on the E198A mutation site. For the detection of the Mona element, we designed RPA primers M-DMI-F2/M-DMI-R1 that in combination with crRNA1 detected 'Mona' and distinguished resistant from sensitive strains. CONCLUSION Both methods exhibited high sensitivity and specificity, requiring only a simple isothermal device to obtain results within 1 h at 37 °C. The FQ-reporter enabled visualization with a handheld UV or white light flashlight. This method was successfully used with purified DNA from lab cultures and crude DNA from symptomatic fruit tissue, highlighting its potential for on-site detection of resistant strains in orchards. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Duo Liu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Mei Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yong-Xu Zhu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhe-Zheng Zeng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jia-Jie Hu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Min-Zheng Cai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Wei-Xiao Yin
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Chao-Xi Luo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, China
- Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Huang Y, Shan X, Zhang C, Duan Y. Pseudomonas protegens volatile organic compounds inhibited brown rot of postharvest peach fruit by repressing the pathogenesis-related genes in Monilinia fructicola. Food Microbiol 2024; 122:104551. [PMID: 38839219 DOI: 10.1016/j.fm.2024.104551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Brown rot, caused by Monilinia fructicola, is considered one of the devasting diseases of pre-harvest and post-harvest peach fruits, restricting the yield and quality of peach fruits and causing great economic losses to the peach industry every year. Presently, the management of the disease relies heavily on chemical control. In the study, we demonstrated that the volatile organic compounds (VOCs) of endophyte bacterial Pseudomonas protegens QNF1 inhibited the mycelial growth of M. fructicola by 95.35% compared to the control, thereby reducing the brown rot on postharvest fruits by 98.76%. Additionally, QNF1 VOCs severely damaged the mycelia of M. fructicola. RNA-seq analysis revealed that QNF1 VOCs significantly repressed the expressions of most of the genes related to pathogenesis (GO:0009405) and integral component of plasma membrane (GO:0005887), and further analysis revealed that QNF1 VOCs significantly altered the expressions of the genes involved in various metabolism pathways including Amino acid metabolism, Carbohydrate metabolism, and Lipid metabolism. The findings of the study indicated that QNF1 VOCs displayed substantial control efficacy by disrupting the mycelial morphology of M. fructicola, weakening its pathogenesis, and causing its metabolic disorders. The study provided a potential way and theoretical support for the management of the brown rot of peach fruits.
Collapse
Affiliation(s)
- Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China.
| | - Xiaoying Shan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Cuifang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yanxin Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China; Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China; National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China; Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China.
| |
Collapse
|
11
|
Wesche J, Wu P, Luo CX, Faust JE, Schnabel G. Bioproducts of Pseudomonas chlororaphis Suppress DMI Fungicide-Induced CsCYP51A and CsCYP51B Gene Expression in Colletotrichum siamense and Generate Synergistic Effects with Metconazole and Propiconazole. PHYTOPATHOLOGY 2024; 114:2064-2070. [PMID: 38857059 DOI: 10.1094/phyto-03-24-0090-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Mixtures of fungicides with different modes of action are commonly used as disease and resistance management tools, but little is known of mixtures of natural and synthetic products. In this study, mixtures of metabolites from the rhizobacterium Pseudomonas chlororaphis strain ASF009 formulated as Howler EVO with below-label rates (50 µg/ml) of conventional sterol demethylation inhibitor (DMI) fungicides were investigated for control of anthracnose of cherry (Prunus avium) caused by Colletotrichum siamense. Howler mixed with metconazole or propiconazole synergistically reduced disease severity through lesion growth. Real-time PCR showed that difenoconazole, flutriafol, metconazole, and propiconazole induced the expression of DMI target genes CsCYP51A and CsCYP51B in C. siamense. The addition of Howler completely suppressed the DMI fungicide-induced expression of both CYP51 genes. We hypothesize that the downregulation of DMI fungicide-induced expression of the DMI target genes may, at least in part, explain the synergism observed in detached fruit assays.
Collapse
Affiliation(s)
- Johanna Wesche
- Department of Plant and Environmental Science, Clemson University, 105 Collings Street, Clemson, SC 29634, U.S.A
| | - Peishan Wu
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Hubei Key Lab of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - James E Faust
- Department of Plant and Environmental Science, Clemson University, 105 Collings Street, Clemson, SC 29634, U.S.A
| | - Guido Schnabel
- Department of Plant and Environmental Science, Clemson University, 105 Collings Street, Clemson, SC 29634, U.S.A
| |
Collapse
|
12
|
Yu YH, Cho YT, Xu YC, Wong ZJ, Tsai YC, Ariyawansa HA. Identifying and Controlling Anthracnose Caused by Colletotrichum Taxa of Welsh Onion in Sanxing, Taiwan. PHYTOPATHOLOGY 2024; 114:1263-1275. [PMID: 38105219 DOI: 10.1094/phyto-08-23-0301-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Leaves of Welsh onion (Allium fistulosum) are subject to various fungal diseases such as anthracnose (Colletotrichum species) and Stemphylium leaf blight (Stemphylium vesicarium). These diseases are the main biotic limitations to Welsh onion production in northern Taiwan. From 2018 to 2020, anthracnose symptoms were observed throughout Welsh onion fields in northern Taiwan, mainly the Sanxing area. In total, 33 strains of Colletotrichum species were isolated from diseased leaves, and major causative agents were identified based on a multilocus phylogenetic analysis using four genomic regions (act, tub2, gapdh, and internal transcribed spacer). Based on this phylogeny, Colletotrichum species causing anthracnose of Welsh onion were identified as C. spaethianum (C. spaethianum species complex) and C. circinans (C. dematium species complex) in the Sanxing area, northern Taiwan. To determine and compare the pathogenicity of each species, representative fungal strains of each species were inoculated on the cultivar 'Siao-Lyu' by spraying spore suspension onto the leaf surface. Welsh onion plants were susceptible to both species, but disease incidence and severity were higher in C. spaethianum. In total, 31 fungicides were tested to determine their efficacy in reducing mycelial growth and conidial germination of representative strains of C. spaethianum and C. circinans under laboratory conditions. Five fungicides-fluazinam, metiram, mancozeb, thiram, and dithianon-effectively reduced mycelial growth and spore germination in both C. spaethianum and C. circinans. In contrast, difenoconazole and trifloxystrobin + tebuconazole, which are commonly used in Welsh onion production in northern Taiwan, mainly the Sanxing area, were ineffective. These results serve as valuable insights for growers, enabling them to identify and address the emergence of anthracnose caused by C. spaethianum and C. circinans of Welsh onion, employing fungicides with diverse modes of action. The findings of this study support sustainable management of anthracnose in Sanxing, northern Taiwan, although further field tests of the fungicides are warranted.
Collapse
Affiliation(s)
- Yu-Hsiang Yu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
- Institute of Genetics, Faculty of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yi-Tun Cho
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Yuan-Cheng Xu
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| | - Zhang-Jian Wong
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei, Taiwan
| | - Yi-Chen Tsai
- Hualien District Agricultural Research and Extension Station, Hualien, Taiwan
| | - Hiran A Ariyawansa
- Department of Plant Pathology and Microbiology, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
13
|
Chen L, Sun BX, Zhao Y, Miao ZY. Molecular Mechanisms and Biological Characteristics of Botrytis cinerea Field Isolate Resistance to Pyrisoxazole in Liaoning Province. PLANT DISEASE 2024; 108:866-876. [PMID: 37682225 DOI: 10.1094/pdis-04-23-0743-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Botrytis cinerea is a broad-host-range necrotrophic phytopathogen responsible for serious diseases in leading crops worldwide. The novel sterol 14α-demethylase inhibitor (DMI) pyrisoxazole was recently registered for the control of tomato gray mold caused by B. cinerea in China. One hundred fifty-seven isolates of B. cinerea were collected from tomato greenhouses in 14 cities of Liaoning Province from 2016 to 2021 and examined for sensitivity to pyrisoxazole, with a mean EC50 value of 0.151 μg/ml. Three highly resistant isolates, XD-5, DG-4, and GQ-3, were screened, and the EC50 values were 0.734, 0.606, and 0.639 μg/ml with corresponding resistance factors of 12.88, 10.63, and 11.21, respectively. Compared with field-sensitive strains, the highly resistant isolate XD-5 exhibited fitness defects in traits, including mycelial growth, conidial production, and pathogenicity, but DG-4 and GQ-3 did not experience fitness costs. Positive cross-resistance was observed only between pyrisoxazole and the DMIs tebuconazole and prochloraz but not between pyrisoxazole and the non-DMIs iprodione, procymidone, pyrimethanil, fludioxonil, fluazinam, and fluopyram. Sequence alignment of the CYP51 gene indicated that three point mutations were observed in the highly resistant mutant, namely, V24I in XD-5, G461S in GQ-3, and R464K in DG-4. When exposed to pyrisoxazole, the induced expression levels of the ABC transporter AtrD and MFS transporter Mfs1 increased in the resistant isolates compared with those in the sensitive isolates, whereas the expression level of the CYP51 gene did not change significantly. Molecular docking suggested that the G461S and R464K mutations both led to a decrease in the binding energy between CYP51 and pyrisoxazole, whereas no change was found with the V24I mutation. Thus, two point mutations in the CYP51 protein combined with induced expression of the Mfs1 and AtrD genes appeared to mediate the pyrisoxazole resistance of the highly resistant mutants DG-4 and GQ-3, while the overexpression of the Mfs1 and AtrD genes was responsible for the highly resistant mutant XD-5.
Collapse
Affiliation(s)
- Le Chen
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110866, People's Republic of China
| | - Bai-Xin Sun
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110866, People's Republic of China
| | - Yang Zhao
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110866, People's Republic of China
| | - Ze-Yan Miao
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang 110866, People's Republic of China
| |
Collapse
|
14
|
Li G, Zhang L, Wang H, Li X, Cheng F, Miao J, Peng Q, Liu X. Resistance to the DMI fungicide mefentrifluconazole in Monilinia fructicola: risk assessment and resistance basis analysis. PEST MANAGEMENT SCIENCE 2024; 80:1802-1811. [PMID: 38029343 DOI: 10.1002/ps.7909] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/24/2023] [Accepted: 11/30/2023] [Indexed: 12/01/2023]
Abstract
BACKGROUND Brown rot disease, caused by Monilinia fructicola, poses a significant challenge to peach production in China. The efficacy of mefentrifluconazole, a new triazole fungicide, in controlling brown rot in peaches has been remarkable. However, the resistance risk and mechanism associated with this fungicide remain unclear. This study was designed to assess the resistance risk of M. fructicola to mefentrifluconazole and reveal the potential resistance mechanism. RESULTS The mean median effective concentration (EC50 ) of 101 M. fructicola isolates to mefentrifluconazole was 0.003 μg mL-1 , and the sensitivity exhibited a unimodal distribution. Seven mefentrifluconazole-resistant mutants were generated from three parental isolates in the laboratory through fungicide adaption. The biological characteristics of the resistant mutants revealed that three of them exhibited enhanced survival fitness compared to the parental isolates, whereas the remaining four mutants displayed reduced survival fitness. Mefentrifluconazole showed strong positive cross-resistance with fenbuconazole, whereas no cross-resistance was observed with pyrimethanil, procymidone or pydiflumetofen. No overexpression of MfCYP51 gene was detected in the resistant mutants. Multiple sequence alignment revealed that three resistant mutants (MXSB2-2, Mf12-1 and Mf12-2) had a point mutation (G461S) in MfCYP51 protein. Molecular docking techniques confirmed the contribution of this point mutation to mefentrifluconazole resistance. CONCLUSION The risk of M. fructicola developing resistance to mefentrifluconazole is relatively low-to-medium and point mutation G461S in MfCYP51 could confer mefentrifluconazole resistance in M. fructicola. This study provided essential data for monitoring the emergence of resistance and developing resistance management strategies for mefentrifluconazole. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Guixiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Ling Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Huakai Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xiuhuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Fei Cheng
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Jianqiang Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Qin Peng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling, China
- Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
15
|
Lee SI, Lee HJ, Kwak YS. Genetic Variation of Monilinia fructicola Population in Korea. THE PLANT PATHOLOGY JOURNAL 2024; 40:205-217. [PMID: 38606449 PMCID: PMC11016551 DOI: 10.5423/ppj.oa.01.2024.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 03/04/2024] [Accepted: 03/08/2024] [Indexed: 04/13/2024]
Abstract
Brown rot disease, caused by Monilinia spp., poses a significant threat to pome and stone fruit crops globally, resulting in substantial economic losses during pre- and post-harvest stages. Monilinia fructigena, M. laxa, and M. fructicola are identified as the key agents responsible for brown rot disease. In this study, we employed the amplified fragment length polymorphism (AFLP) method to assess the genetic diversity of 86 strains of Monilinia spp. isolated from major stone fruit cultivation regions in South Korea. Specifically, strains were collected from Chungcheong, Gangwon, Gyeonggi, Gyeongsang, and Jeolla provinces (-do). A comparative analysis of strain characteristics, such as isolation locations, host plants, and responses to chemical fungicides, was conducted. AFLP phylogenetic classification using 20 primer pairs revealed the presence of three distinct groups, with strains from Jeolla province consistently forming a separate group at a high frequency. Furthermore, M. fructicola was divided into three groups by the AFLP pattern. Principal coordinate analysis and PERMANOVA were applied to compare strain information, such as origin, host, and fungicide sensitivity, revealing significant partition patterns for AFLP according to geographic origin and host plants. This study represents the utilization of AFLP methodology to investigate the genetic variability among M. fructicol isolates, highlighting the importance of continuous monitoring and management of variations in the brown rot pathogen.
Collapse
Affiliation(s)
- Su In Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Hwa-Jung Lee
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea
| | - Youn-Sig Kwak
- Division of Applied Life Science (BK21Plus), Gyeongsang National University, Jinju 52828, Korea
- Department of Plant Medicine and Research Institute of Life Science, Gyeongsang National University, Jinju 52828, Korea
| |
Collapse
|
16
|
Gura WP, Gelain J, Sikora EJ, Vinson EL, Brannen PM, Schnabel G. Reevaluation of Sensitivity of Monilinia fructicola Isolates to the DMI Fungicide Propiconazole in the Southeastern United States and Investigation of the Genetic Element Mona. PLANT DISEASE 2024; 108:375-381. [PMID: 37578371 DOI: 10.1094/pdis-04-23-0778-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Sterol demethylation inhibitor (DMI) fungicides continue to be essential components for the control of brown rot of peach caused by Monilinia fructicola in the United States and worldwide. In the southeastern United States, resistance to DMIs had been associated with overexpression of the cytochrome P450 14α-demethylase gene MfCYP51 as well as the genetic element Mona, a 65 bp in length nucleotide sequence located upstream of MfCYP51 in resistant isolates. About 20 years after the first survey, we reevaluated sensitivity of M. fructicola from South Carolina and Georgia to propiconazole and also evaluated isolates from Alabama for the first time. A total of 238 M. fructicola isolates were collected from various commercial and two experimental orchards, and sensitivity to propiconazole was determined based on a discriminatory dose of 0.3 μg/ml. Results indicated 16.2, 89.2, and 72.4% of isolates from Alabama, Georgia, and South Carolina, respectively, were resistant to propiconazole. The detection of resistance in Alabama is the first report for the state. All resistant isolates contained Mona, but it was absent from most sensitive isolates. It was unclear if the resistance frequency had increased in South Carolina and Georgia. However, the resistance levels (as assessed by the isolate frequency in discriminatory dose-based relative growth categories) did not change notably, and no evidence of other resistance genotypes was found. Analysis of the upstream MfCYP51 gene region in the resistant isolate CF010 revealed an insertion sequence described for the first time in this report. Our study suggests that current fungicide spray programs have been effective against increasing resistance levels in populations of M. fructicola and suppressing development of new resistant genotypes of the pathogen.
Collapse
Affiliation(s)
- William P Gura
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Jhulia Gelain
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| | - Edward J Sikora
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL 36849
| | - Edgar L Vinson
- Department of Horticulture, Chilton Research and Extension Center, Auburn University, Clanton, AL 35045
| | - Phillip M Brannen
- Department of Plant Pathology, University of Georgia, Athens, GA 30602
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634
| |
Collapse
|
17
|
Peng Q, Li X, Li G, Hao X, Liu X. Resistance risk assessment of mefentrifluconazole in Corynespora cassiicola and the control of cucumber target spot by a two-way mixture of mefentrifluconazole and prochloraz. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105719. [PMID: 38225065 DOI: 10.1016/j.pestbp.2023.105719] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/28/2023] [Accepted: 11/29/2023] [Indexed: 01/17/2024]
Abstract
The cucumber target spot, caused by Corynespora cassiicola, is a major cucumber disease in China. Mefentrifluconazole, a new triazole fungicide, exhibits remarkable efficacy in controlling cucumber target spot. However, the resistance risk and mechanism remain unclear. In this study, the inhibitory activity of mefentrifluconazole against 101 C. cassiicola isolates was determined, and the results indicated that the EC50 values ranged between 0.15 and 12.85 μg/mL, with a mean of 4.76 μg/mL. Fourteen mefentrifluconazole-resistant mutants of C. cassiicola were generated from six parental isolates in the laboratory through fungicide adaptation or UV irradiation. The resistance was relatively stable after ten consecutive transfers on a fungicide-free medium. No cross-resistance was observed between mefentrifluconazole and pyraclostrobin, fluopyram, prochloraz, mancozeb, or difenoconazole. Investigations into the biological characteristics of the resistant mutants revealed that six resistant mutants exhibited an enhanced compound fitness index (CFI) compared to the parental isolates, while others displayed a reduced or comparable CFI. The overexpression of CcCYP51A and CcCYP51B was detected in the resistant mutants, regardless of the presence or absence of mefentrifluconazole. Additionally, a two-way mixture of mefentrifluconazole and prochloraz at a concentration of 7:3 demonstrated superior control efficacy against the cucumber target spot, achieving a protection rate of 80%. In conclusion, this study suggests that the risk of C. cassiicola developing resistance to mefentrifluconazole is medium, and the overexpression of CcCYP51A and CcCYP51B might be associated with mefentrifluconazole resistance in C. cassiicola. The mefentrifluconazole and prochloraz two-way mixture presented promising control efficacy against the cucumber target spot.
Collapse
Affiliation(s)
- Qin Peng
- Key Laboratory of Plant Protection Resources and Pest Management of Ministry of Education, Key Laboratory of Integrated Pest Management on the Loess Plateau of Ministry of Agriculture and Rural Affairs, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xiuhuan Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Guixiang Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xinchang Hao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Xili Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Plant Protection, Northwest A&F University, Yangling 712100, Shaanxi, China; Department of Plant Pathology, College of Plant Protection, China Agricultural University, 2 Yuanmingyuanxi Road, Beijing 100193, China.
| |
Collapse
|
18
|
Dorigan AF, Moreira SI, da Silva Costa Guimarães S, Cruz-Magalhães V, Alves E. Target and non-target site mechanisms of fungicide resistance and their implications for the management of crop pathogens. PEST MANAGEMENT SCIENCE 2023; 79:4731-4753. [PMID: 37592727 DOI: 10.1002/ps.7726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/14/2023] [Accepted: 08/18/2023] [Indexed: 08/19/2023]
Abstract
Fungicides are indispensable for high-quality crops, but the rapid emergence and evolution of fungicide resistance have become the most important issues in modern agriculture. Hence, the sustainability and profitability of agricultural production have been challenged due to the limited number of fungicide chemical classes. Resistance to site-specific fungicides has principally been linked to target and non-target site mechanisms. These mechanisms change the structure or expression level, affecting fungicide efficacy and resulting in different and varying resistance levels. This review provides background information about fungicide resistance mechanisms and their implications for developing anti-resistance strategies in plant pathogens. Here, our purpose was to review changes at the target and non-target sites of quinone outside inhibitor (QoI) fungicides, methyl-benzimidazole carbamate (MBC) fungicides, demethylation inhibitor (DMI) fungicides, and succinate dehydrogenase inhibitor (SDHI) fungicides and to evaluate if they may also be associated with a fitness cost on crop pathogen populations. The current knowledge suggests that understanding fungicide resistance mechanisms can facilitate resistance monitoring and assist in developing anti-resistance strategies and new fungicide molecules to help solve this issue. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | | | - Eduardo Alves
- Department of Plant Pathology, Federal University of Lavras, Lavras, Brazil
| |
Collapse
|
19
|
Heaven T, Armitage AD, Xu X, Goddard MR, Cockerton HM. Dose-Dependent Genetic Resistance to Azole Fungicides Found in the Apple Scab Pathogen. J Fungi (Basel) 2023; 9:1136. [PMID: 38132737 PMCID: PMC10744243 DOI: 10.3390/jof9121136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
The evolution of azole resistance in fungal pathogens presents a major challenge in both crop production and human health. Apple orchards across the world are faced with the emergence of azole fungicide resistance in the apple scab pathogen Venturia inaequalis. Target site point mutations observed in this fungus to date cannot fully explain the reduction in sensitivity to azole fungicides. Here, polygenic resistance to tebuconazole was studied across a population of V. inaequalis. Genotyping by sequencing allowed Quantitative Trait Loci (QTLs) mapping to identify the genetic components controlling this fungicide resistance. Dose-dependent genetic resistance was identified, with distinct genetic components contributing to fungicide resistance at different exposure levels. A QTL within linkage group seven explained 65% of the variation in the effective dose required to reduce growth by 50% (ED50). This locus was also involved in resistance at lower fungicide doses (ED10). A second QTL in linkage group one was associated with dose-dependent resistance, explaining 34% of variation at low fungicide doses (ED10), but did not contribute to resistance at higher doses (ED50 and ED90). Within QTL regions, non-synonymous mutations were observed in several ATP-Binding Cassette and Major Facilitator SuperFamily transporter genes. These findings provide insight into the mechanisms of fungicide resistance that have evolved in horticultural pathogens. Identification of resistance gene candidates supports the development of molecular diagnostics to inform management practices.
Collapse
Affiliation(s)
- Thomas Heaven
- National Institute of Agricultural Botany, New Road, East Malling, West Malling, Kent ME19 6BJ, UK;
- The School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
- John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | - Xiangming Xu
- National Institute of Agricultural Botany, New Road, East Malling, West Malling, Kent ME19 6BJ, UK;
| | - Matthew R. Goddard
- The School of Life and Environmental Sciences, University of Lincoln, Lincoln LN6 7DL, UK;
| | | |
Collapse
|
20
|
Fang A, Zhang R, Qiao W, Peng T, Qin Y, Wang J, Tian B, Yu Y, Sun W, Yang Y, Bi C. Sensitivity Baselines, Resistance Monitoring, and Molecular Mechanisms of the Rice False Smut Pathogen Ustilaginoidea virens to Prochloraz and Azoxystrobin in Four Regions of Southern China. J Fungi (Basel) 2023; 9:832. [PMID: 37623603 PMCID: PMC10456073 DOI: 10.3390/jof9080832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/25/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
Rice false smut caused by Ustilaginoidea virens is one of the most devastating fungal diseases of rice (Oryza sativa) worldwide. Prochloraz and azoxystrobin belong to the groups of demethylation inhibitors and quinone outside inhibitors, respectively, and are commonly used for controlling this disease. In this study, we analyzed the sensitivities of 100 U. virens isolates from Yunnan, Sichuan, Chongqing, and Zhejiang in Southern China to prochloraz and azoxystrobin. The ranges of EC50 for prochloraz and azoxystrobin were 0.004-0.536 and 0.020-0.510 μg/mL, with means and standard errors of 0.062 ± 0.008 and 0.120 ± 0.007 μg/mL, respectively. However, the sensitivity frequency distributions of U. virens to prochloraz and azoxystrobin indicated the emergence of subpopulations with decreased sensitivity. Therefore, the mean EC50 values of 74% and 68% of the isolates at the main peak, 0.031 ± 0.001 and 0.078 ± 0.004 μg/mL, were used as the sensitivity baselines of U. virens to prochloraz and azoxystrobin, respectively. We found significant sensitivity differences to azoxystrobin among different geographical populations and no correlation between the sensitivities of U. virens to prochloraz and azoxystrobin. Among 887 U. virens isolates, the isolate 5-3-1 from Zhejiang showed moderate resistance to prochloraz, with a resistance factor of 22.45, while no nucleotide variation in the 1986-bp upstream or 1827-bp gene regions of CYP51 from 5-3-1 was detected. Overexpression of CYP51 is probably responsible for its resistance to prochloraz. Finally, artificial inoculation showed that 5-3-1 was highly pathogenic to rice, suggesting that the resistance of U. virens to prochloraz must be monitored and managed in Zhejiang.
Collapse
Affiliation(s)
- Anfei Fang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Ruixuan Zhang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Wei Qiao
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Tao Peng
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Yubao Qin
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Jing Wang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Binnian Tian
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Yang Yu
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Wenxian Sun
- College of Plant Protection, Jilin Agricultural University, Changchun 130118, China;
| | - Yuheng Yang
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| | - Chaowei Bi
- College of Plant Protection, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China; (A.F.); (R.Z.); (W.Q.); (T.P.); (Y.Q.); (J.W.); (B.T.); (Y.Y.)
| |
Collapse
|
21
|
Kaur H, Gelain J, Calidonio J, Muñoz M, Faust JE, Schnabel G. Efficacy of calcium propionate against fungicide-resistant fungal plant pathogens and suppression of botrytis blight of ornamental flowers. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105472. [PMID: 37532311 DOI: 10.1016/j.pestbp.2023.105472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 05/13/2023] [Accepted: 05/17/2023] [Indexed: 08/04/2023]
Abstract
Conventional fungicides are used in IPM programs to manage fungal plant pathogens, but there are concerns about resistance development in target organisms, environmental contamination, and human health risks. This study explored the potential of calcium propionate (CaP), a common food preservative generally recognized as safe (GRAS) to control fungicide-resistant plant pathogens, mainly Botrytis cinerea, and botrytis blight in ornamentals. In-vitro experiments using mycelium growth inhibition indicated a mean EC50 value for CaP (pH 6.0) of 527 mg/L for six isolates of Botrytis cinerea as well as 618, 1354, and 1310 mg/L for six isolates each of Monilinia fructicola, Alternaria alternata, and Colletotrichum acutatum. In vitro efficacy tests indicated CaP equally inhibited mycelium growth of fungal isolates sensitive and resistant to FRAC codes 1, 2, 3, 7, 9, 11, 12, and 17 fungicides. CaP at 0.1% (pH 6.0-6.5) reduced infection cushion (IC) formation in vitro, botrytis blight on petunia flowers, and botrytis blight of cut flower roses with little to no visible phytotoxicity. Although higher concentrations strongly inhibited infection cushion formation, they did not improve efficacy and exhibited phytotoxicity. We hypothesize that high concentrations may create tissue damage that facilitates direct fungal penetration without the need for infection cushion and subsequent appressoria formation. This study indicates the potential usefulness of CaP for blossom blight disease management in ornamentals if applied at concentrations low enough to avoid phytotoxicity.
Collapse
Affiliation(s)
- Harleen Kaur
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America
| | - Jhulia Gelain
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America
| | - Josselyn Calidonio
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America
| | - Melissa Muñoz
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America
| | - James E Faust
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, United States of America.
| |
Collapse
|
22
|
Wang C, Xu L, Liang X, Zhang Y, Zheng H, Chen J, Yang Y. Biochemical and Molecular Characterization of Prochloraz Resistance in Lasiodiplodia theobromae Field Isolates. PLANT DISEASE 2023; 107:177-187. [PMID: 35640950 DOI: 10.1094/pdis-10-21-2316-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Stem-end rot (SER), caused by Lasiodiplodia theobromae, is one of the most critical diseases of mango in China. The demethylation inhibitor fungicide prochloraz has been widely used in China to control mango diseases. Isolates (n = 139) of L. theobromae were collected in 2019 from six mango-producing regions in Hainan Province, China. The fungicide sensitivity of L. theobromae isolates to prochloraz revealed that the EC50 (50% effective concentration) values ranged from 0.0006 to 16.4131 µg/ml. In total, 21 of the 139 isolates were categorized as resistant to prochloraz. The resistant isolates sprayed with prochloraz could not be effectively controlled in detached fruit. The mycelial growth, conidia germination, and ability to grow at temperatures ranging from 12 to 35°C of resistant isolates decreased, suggesting fitness penalties. The experiment showed that, after treatment with prochloraz at 10 µg/ml, the content of ergosterol in the mycelia of the sensitive isolate decreased by 80.23%, whereas the resistant strain decreased by only 57.52%. The damage to membranes in the sensitive isolates was more serious than for resistant isolates. The target gene CYP51 and the ATP-binding cassette (ABC) subfamily ABCG gene were cloned but no mutation was found. When treated with prochloraz, the expression of CYP51 and ABCG in resistant isolates was significantly higher than in the sensitive isolates. Thus, induced expression of its target gene combined with the induction of expression drug efflux transporters appeared to mediate the prochloraz resistance of L. theobromae.
Collapse
Affiliation(s)
- Chenguang Wang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Luxi Xu
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Xiaoyu Liang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Yu Zhang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - HuiYing Zheng
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - JunLiu Chen
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| | - Ye Yang
- College of Plant Protection, Hainan University/Key Laboratory of Green Prevention and Control of Tropical Plant Diseases and Pests (Hainan University), Ministry of Education, Haikou 570228, China
| |
Collapse
|
23
|
The Transcription Factor CsAtf1 Negatively Regulates the Cytochrome P450 Gene CsCyp51G1 to Increase Fludioxonil Sensitivity in Colletotrichum siamense. J Fungi (Basel) 2022; 8:jof8101032. [PMID: 36294597 PMCID: PMC9605597 DOI: 10.3390/jof8101032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/30/2022] Open
Abstract
Previous studies have shown that the high-osmolarity glycerol mitogen-activated protein kinase (HOG MAPK) signaling pathway and its downstream transcription factor CsAtf1 are involved in the regulation of fludioxonil sensitivity in C. siamense. However, the downstream target genes of CsAtf1 related to the fludioxonil stress response remain unclear. Here, we performed chromatin immunoprecipitation sequencing (ChIP-Seq) and high-throughput RNA-sequencing (RNA-Seq) to identify genome-wide potential CsAtf1 target genes. A total of 3809 significantly differentially expressed genes were predicted to be directly regulated by CsAtf1, including 24 cytochrome oxidase-related genes. Among them, a cytochrome P450-encoding gene, designated CsCyp51G1, was confirmed to be a target gene, and its transcriptional expression was negatively regulated by CsAtf1, as determined using an electrophoretic mobility shift assay (EMSA), a yeast one-hybrid (Y1H) assay, and quantitative real-time PCR (qRT-PCR). Moreover, the overexpression mutant CsCYP51G1 of C. siamense exhibited increased fludioxonil tolerance, and the CsCYP51G1 deletion mutant exhibited decreased fludioxonil resistance, which revealed that CsCyp51G1 is involved in fludioxonil sensitivity regulation in C. siamense. However, the cellular ergosterol content of the mutants was not consistent with the phenotype of fludioxonil sensitivity, which indicated that CsCyp51G1 regulates fludioxonil sensitivity by affecting factors other than the ergosterol level in C. siamense. In conclusion, our data indicate that the transcription factor CsAtf1 negatively regulates the cytochrome P450 gene CsCyp51G1 to increase fludioxonil sensitivity in C. siamense.
Collapse
|
24
|
Bastos RW, Rossato L, Goldman GH, Santos DA. Fungicide effects on human fungal pathogens: Cross-resistance to medical drugs and beyond. PLoS Pathog 2021; 17:e1010073. [PMID: 34882756 PMCID: PMC8659312 DOI: 10.1371/journal.ppat.1010073] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fungal infections are underestimated threats that affect over 1 billion people, and Candida spp., Cryptococcus spp., and Aspergillus spp. are the 3 most fatal fungi. The treatment of these infections is performed with a limited arsenal of antifungal drugs, and the class of the azoles is the most used. Although these drugs present low toxicity for the host, there is an emergence of therapeutic failure due to azole resistance. Drug resistance normally develops in patients undergoing azole long-term therapy, when the fungus in contact with the drug can adapt and survive. Conversely, several reports have been showing that resistant isolates are also recovered from patients with no prior history of azole therapy, suggesting that other routes might be driving antifungal resistance. Intriguingly, antifungal resistance also happens in the environment since resistant strains have been isolated from plant materials, soil, decomposing matter, and compost, where important human fungal pathogens live. As the resistant fungi can be isolated from the environment, in places where agrochemicals are extensively used in agriculture and wood industry, the hypothesis that fungicides could be driving and selecting resistance mechanism in nature, before the contact of the fungus with the host, has gained more attention. The effects of fungicide exposure on fungal resistance have been extensively studied in Aspergillus fumigatus and less investigated in other human fungal pathogens. Here, we discuss not only classic and recent studies showing that environmental azole exposure selects cross-resistance to medical azoles in A. fumigatus, but also how this phenomenon affects Candida and Cryptococcus, other 2 important human fungal pathogens found in the environment. We also examine data showing that fungicide exposure can select relevant changes in the morphophysiology and virulence of those pathogens, suggesting that its effect goes beyond the cross-resistance.
Collapse
Affiliation(s)
- Rafael W. Bastos
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Luana Rossato
- Federal University of Grande Dourados, Dourados-MS, Brazil
| | - Gustavo H. Goldman
- Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto-SP, Brazil
| | - Daniel A. Santos
- Laboratory of Mycology, Federal University of Minas Gerais, Belo Horizonte-MG, Brazil
| |
Collapse
|
25
|
Chen W, Wei L, Li X, Ma H, Lou T, Zhang P, Zheng H, Zhu X, Zhang Y, Liu F, Chen C, Yang G. Point Mutations in FgSdhC2 or in the 5' Untranslated Region of FgSdhC1 Confer Resistance to a Novel Succinate Dehydrogenase Inhibitor Flubeneteram in Fusarium graminearum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13006-13019. [PMID: 34723519 DOI: 10.1021/acs.jafc.1c04363] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fusarium graminearum is one of the phytopathogenic fungi causing cereal fusarium head blight worldwide. Flubeneteram (Flu) is a novel succinate dehydrogenase inhibitor (SDHI) which exhibits strong fungicidal activity against F. graminearum. In this study, four Flu-resistant (FluR) mutants were generated by fungicide domestication from the wildtype strain PH-1. Sequencing alignment results of FgSdh from PH-1 and FluR mutants showed that all the mutations could be categorized into three resistant genotypes. Genotype I had an A-to-T mutation at the -57 bp of the 5' untranslated region (5'UTR) of FgSdhC1, while genotypes II and III carried nonsynonymous mutations conferring T77I or R86C in FgSdhC2, respectively. All the mutations conferring the Flu resistance and causing fitness penalty were validated. The genotype I mutant showed high Flu-resistance, while genotype II and III mutants exhibited low Flu resistance. Additionally, all the FluR genotypes showed distinct cross-resistance patterns among the five SDHIs.
Collapse
Affiliation(s)
- Wenchan Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095 Jiangsu, China
| | - Lingling Wei
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Xiujuan Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Hongyu Ma
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Tiancheng Lou
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Pengcheng Zhang
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Huanhuan Zheng
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Xiaolei Zhu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 Hubei, China
| | - Yu Zhang
- College of Advanced Agricultural Sciences, Zhejiang A & F University, Hangzhou 311300, China
| | - Fengquan Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095 Jiangsu, China
| | - Changjun Chen
- College of Plant Protection, Nanjing Agricultural University, Nanjing 210095 Jiangsu, China
| | - Guangfu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079 Hubei, China
| |
Collapse
|
26
|
Usman HM, Tan Q, Karim MM, Adnan M, Yin WX, Zhu FX, Luo CX. Sensitivity of Colletotrichum fructicola and Colletotrichum siamense of Peach in China to Multiple Classes of Fungicides and Characterization of Pyraclostrobin-Resistant Isolates. PLANT DISEASE 2021; 105:3459-3465. [PMID: 34132595 DOI: 10.1094/pdis-04-21-0693-re] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Anthracnose, mainly caused by Colletotrichum gloeosporioides species complex including Colletotrichum fructicola and Colletotrichum siamense, is a devastating disease of peach. Chemical control has been widely used for years, but management failures have increased with the commonly used fungicides. Therefore, screening of sensitivity of Colletotrichum spp. to fungicides with different modes of action is needed to make proper management strategies for peach anthracnose. In this study, the sensitivity of 80 isolates of C. fructicola and C. siamense was screened for pyraclostrobin, procymidone, prochloraz, and fludioxonil based on mycelial growth inhibition at discriminatory doses. Results showed that C. fructicola and C. siamense isolates were highly resistant to procymidone and fludioxonil with 100% resistance frequencies to both fungicides, but sensitive to prochloraz, i.e., no resistant isolates were found. For pyraclostrobin, 74% of C. fructicola isolates showed high resistance, 26% showed low resistance, and all of the C. siamense isolates showed low resistance. No positive cross-resistance was observed between pyraclostrobin and azoxystrobin even when they are members of the same quinone outside inhibitor (QoI) fungicide group or between pyraclostrobin and non-QoIs. Resistant isolates to QoI fungicides were evaluated for the fitness penalty. Results showed that no significant differences except for the mycelial growth rates that were detected between high- and low-resistance isolates of C. fructicola. Molecular characterization of the Cyt b gene revealed that the G143A point mutation was the determinant of the high resistance in C. fructicola. This study demonstrated the resistance status of C. fructicola and C. siamense to different fungicides and briefly discussed implications of that resistance. Demethylation inhibitor fungicides were found to be the best option among the different chemicals studied here, to control peach anthracnose in China.
Collapse
Affiliation(s)
- Hafiz Muhammad Usman
- Key Laboratory of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qin Tan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Mohammad Mazharul Karim
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
- Plant Pathology Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Muhammad Adnan
- Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510642, China
| | - Wei-Xiao Yin
- Hubei Key Laboratory of Plant Pathology and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Fu-Xing Zhu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Chao-Xi Luo
- Key Laboratory of Horticultural Plant Biology, Ministry of Education and College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
27
|
Dahanayaka BA, Vaghefi N, Knight NL, Bakonyi J, Prins R, Seress D, Snyman L, Martin A. Population Structure of Pyrenophora teres f. teres Barley Pathogens from Different Continents. PHYTOPATHOLOGY 2021; 111:2118-2129. [PMID: 33926197 DOI: 10.1094/phyto-09-20-0390-r] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Net form net blotch disease, caused by Pyrenophora teres f. teres, results in significant yield losses to barley industries. Up-to-date knowledge of the genetic diversity and structure of pathogen populations is critical for elucidating the disease epidemiology and unraveling pathogen survival and dispersal mechanisms. Thus, this study investigated long-distance dispersal and adaptation by analyzing the genetic structure of 250 P. teres f. teres isolates collected from Australia, Canada, Hungary, and Republic of South Africa (RSA), and historical isolates from Canada, Denmark, Japan, and Sweden. The population genetic structure detected by discriminant analysis of principal components, with the use of 5,890 Diversity Arrays Technology markers, revealed the presence of four clusters. Two of these contained isolates from all regions, and all isolates from RSA were grouped in these two. Australia and Hungary showed three clusters each. One of the Australian clusters contained only Australian isolates. One of the Hungarian clusters contained only Hungarian isolates and one Danish isolate. STRUCTURE analysis indicated that some isolates from Australia and Hungary shared recent ancestry with RSA, Canada, and historical isolates and were thus admixed. Subdivisions of the neighbor joining network indicated that isolates from distinct countries were closely related, suggesting that multiple introduction events conferred genetic heterogeneity in these countries. Through a neighbor joining analysis and amplification with form-specific DNA markers, we detected two hybrid isolates, CBS 281.31 from Japan and H-919 from Hungary, collected in 1931 and 2018, respectively. These results provide a foundation for exploring improved management of disease incursions and pathogen control through strategic deployment of resistance.
Collapse
Affiliation(s)
- Buddhika A Dahanayaka
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Niloofar Vaghefi
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - Noel L Knight
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| | - József Bakonyi
- Plant Protection Institute, Centre for Agricultural Research, Budapest, 1022, Hungary
| | - Renée Prins
- CenGen (Pty) Ltd, Worcester, 6850, South Africa
- Stellenbosch University, Department of Genetics, Matieland, Stellenbosch, 7602, South Africa
| | - Diána Seress
- Plant Protection Institute, Centre for Agricultural Research, Budapest, 1022, Hungary
| | - Lislé Snyman
- Department of Agriculture and Fisheries Queensland, Hermitage Research Facility, Warwick, QLD, 4370, Australia
| | - Anke Martin
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, 4350, Australia
| |
Collapse
|
28
|
Santos RF, Amorim L, Wood AKM, Bibiano LBJ, Fraaije BA. Lack of an Intron in Cytochrome b and Overexpression of Sterol 14α-Demethylase Indicate a Potential Risk for QoI and DMI Resistance Development in Neophysopella spp. on Grapes. PHYTOPATHOLOGY 2021; 111:1726-1734. [PMID: 33703921 DOI: 10.1094/phyto-11-20-0514-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Asian grapevine leaf rust, caused by Neophysopella meliosmae-myrianthae and N. tropicalis, is often controlled by quinone outside inhibitor (QoI) and demethylation inhibitor (DMI) fungicides in Brazil. Here, we evaluated the sensitivity of 55 Neophysopella spp. isolates to pyraclostrobin (QoI) and tebuconazole (DMI). To elucidate the resistance mechanisms, we analyzed the sequences of the cytochrome b (CYTB) and cytochrome P450 sterol 14α-demethylase (CYP51) target proteins of QoI and DMI fungicides, respectively. The CYP51 expression levels were also determined in a selection of isolates. In leaf disc assays, the mean 50% effective concentration (EC50) value for pyraclostrobin was about 0.040 µg/ml for both species. CYTB sequences were identical among all 55 isolates, which did not contain an intron immediately after codon 143. No amino acid substitution was identified at codons 129, 137, and 143. The mean EC50 value for tebuconazole was 0.62 µg/ml for N. tropicalis and 0.46 µg/ml for N. meliosmae-myrianthae, and no CYP51 sequence variation was identified among isolates of the same species. However, five N. meliosmae-myrianthae isolates grew on leaf discs treated at 10 µg/ml tebuconazole, and these were further exposed to tebuconazole selection pressure. Tebuconazole-adapted laboratory isolates of N. meliosmae-myrianthae showed an eight- to 25-fold increase in resistance after four rounds of selection that was not associated with CYP51 target alterations. In comparison with sensitive isolates, CYP51 expression was induced in the presence of tebuconazole in three out of four tebuconazole-adapted isolates tested. These results suggest a potential risk for QoI and DMI resistance development in Neophysopella spp.
Collapse
Affiliation(s)
- Ricardo F Santos
- Department of Plant Pathology and Nematology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - Lilian Amorim
- Department of Plant Pathology and Nematology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - Ana K M Wood
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
| | - Líllian B J Bibiano
- Department of Plant Pathology and Nematology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, São Paulo, 13418-900, Brazil
| | - Bart A Fraaije
- Biointeractions and Crop Protection Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, United Kingdom
- National Institute of Agricultural Botany, Cambridge, Cambridgeshire, CB3 0LE, United Kingdom
| |
Collapse
|
29
|
Du Y, Shi N, Ruan H, Miao J, Yan H, Shi C, Chen F, Liu X. Analysis of the prochloraz-Mn resistance risk and its molecular basis in Mycogone rosea from Agaricus bisporus. PEST MANAGEMENT SCIENCE 2021; 77:4680-4690. [PMID: 34132039 DOI: 10.1002/ps.6509] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 06/16/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Wet bubble disease (WBD), caused by Mycogone rosea, is one of the most serious diseases of white button mushroom (Agaricus bisporus) in China. Prochloraz-Mn is the main fungicide used in the management of WBD. To provide essential references for early warning of prochloraz-Mn resistance and management of WBD, this study was performed to assess the resistance risk to prochloraz-Mn in M. rosea, as well as its underlying resistance mechanism. RESULTS Eight stable prochloraz-Mn-resistant mutants with a mutation frequency of 1.3 × 10-4 were generated and resistance factors ranged from 2.57 to 7.80 after 10 successive culture transfers. All eight resistant mutants exhibited fitness penalties in decreased sporulation and pathogenicity. Positive cross-resistance was observed between prochloraz-Mn and prochloraz or imazalil, but not between prochloraz-Mn and diniconazole, fenbuconazole, thiabendazole or picoxystrobin. The point mutation F511I in MrCYP51 protein was found in six mutants and the point mutation G464S occurred only in the SDW2-2-1M mutant. The up-regulated expression of MrCYP51 in all mutants was less than that in their parental isolates when exposed to prochloraz-Mn. Without prochloraz-Mn treatment, MrCYP51 expression was up-regulated in GX203-3-1M and FJ58-2-1M mutants, whereas it was down-regulated in other mutants compared to their respective parental isolates. CONCLUSION Genotypes with two separate point mutations, F511I and G464S in MrCYP51, may be associated with resistance to prochloraz-Mn in M. rosea. The resistance risk of M. rosea to prochloraz-Mn is likely to be low to moderate, indicating that prochloraz-Mn can still be used reasonably to control WBD. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yixin Du
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Niuniu Shi
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Hongchun Ruan
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Jianqiang Miao
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
| | - He Yan
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Chunxi Shi
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| | - Furu Chen
- Fujian Academy of Agricultural Sciences, Institute of Plant Protection, Fuzhou, China
- Fujian Key Laboratory for Monitoring and Integrated Management of Crop Pests, Fuzhou, China
| | - Xili Liu
- Northwest Agriculture and Forestry University, College of Plant Protection, Yangling, China
- Key Laboratory of Northwestern Loess Plateau Crops Pest Management of Ministry of Agriculture of China, Yangling, China
| |
Collapse
|
30
|
Molecular Mechanisms Underlying Fungicide Resistance in Citrus Postharvest Green Mold. J Fungi (Basel) 2021; 7:jof7090783. [PMID: 34575821 PMCID: PMC8471628 DOI: 10.3390/jof7090783] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 11/17/2022] Open
Abstract
The necrotrophic fungus Penicillium digitatum (Pd) is responsible for the green mold disease that occurs during postharvest of citrus and causes enormous economic losses around the world. Fungicides remain the main method used to control postharvest green mold in citrus fruit storage despite numerous occurrences of resistance to them. Hence, it is necessary to find new and more effective strategies to control this type of disease. This involves delving into the molecular mechanisms underlying the appearance of resistance to fungicides during the plant–pathogen interaction. Although mechanisms involved in resistance to fungicides have been studied for many years, there have now been great advances in the molecular aspects that drive fungicide resistance, which facilitates the design of new means to control green mold. A wide review allows the mechanisms underlying fungicide resistance in Pd to be unveiled, taking into account not only the chemical nature of the compounds and their target of action but also the general mechanism that could contribute to resistance to others compounds to generate what we call multidrug resistance (MDR) phenotypes. In this context, fungal transporters seem to play a relevant role, and their mode of action may be controlled along with other processes of interest, such as oxidative stress and fungal pathogenicity. Thus, the mechanisms for acquisition of resistance to fungicides seem to be part of a complex framework involving aspects of response to stress and processes of fungal virulence.
Collapse
|
31
|
Hudson O, Waliullah S, Ji P, Ali ME. Molecular Characterization of Laboratory Mutants of Fusarium oxysporum f. sp. niveum Resistant to Prothioconazole, a Demethylation Inhibitor (DMI) Fungicide. J Fungi (Basel) 2021; 7:jof7090704. [PMID: 34575742 PMCID: PMC8466437 DOI: 10.3390/jof7090704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 12/26/2022] Open
Abstract
Fusarium oxysporum f. sp. niveum (FON) is the causal agent of Fusarium wilt in watermelon, an international growth-limiting pathogen of watermelon cultivation. A single demethylation inhibitor (DMI) fungicide, prothioconazole, is registered to control this pathogen, so the risk of resistance arising in the field is high. To determine and predict the mechanism by which FON could develop resistance to prothioconazole, FON isolates were mutagenized using UV irradiation and subsequent fungicide exposure to create artificially resistant mutants. Isolates were then put into three groups based on the EC50 values: sensitive, intermediately resistant, and highly resistant. The mean EC50 values were 4.98 µg/mL for the sensitive, 31.77 µg/mL for the intermediately resistant, and 108.33 µg/mL for the highly resistant isolates. Isolates were then sequenced and analyzed for differences in both the coding and promoter regions. Two mutations were found that conferred amino acid changes in the target gene, CYP51A, in both intermediately and highly resistant mutants. An expression analysis for the gene CYP51A also showed a significant increase in the expression of the highly resistant mutants compared to the sensitive controls. In this study, we were able to identify two potential mechanisms of resistance to the DMI fungicide prothioconazole in FON isolates: gene overexpression and multiple point mutations. This research should expedite growers’ and researchers’ ability to detect and manage fungicide-resistant phytopathogens.
Collapse
|
32
|
Stravoravdis S, Marra RE, LeBlanc NR, Crouch JA, Hulvey JP. Evidence for the Role of CYP51A and Xenobiotic Detoxification in Differential Sensitivity to Azole Fungicides in Boxwood Blight Pathogens. Int J Mol Sci 2021; 22:ijms22179255. [PMID: 34502161 PMCID: PMC8430531 DOI: 10.3390/ijms22179255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/09/2021] [Accepted: 08/24/2021] [Indexed: 12/13/2022] Open
Abstract
Boxwood blight, a fungal disease of ornamental plants (Buxus spp.), is caused by two sister species, Calonectria pseudonaviculata (Cps) and C. henricotiae (Che). Compared to Cps, Che is documented to display reduced sensitivity to fungicides, including the azole class of antifungals, which block synthesis of a key fungal membrane component, ergosterol. A previous study reported an ergosterol biosynthesis gene in Cps, CYP51A, to be a pseudogene, and RNA-Seq data confirm that a functional CYP51A is expressed only in Che. The lack of additional ergosterol biosynthesis genes showing significant differential expression suggests that the functional CYP51A in Che could contribute to reduced azole sensitivity when compared to Cps. RNA-Seq and bioinformatic analyses found that following azole treatment, 55 genes in Cps, belonging to diverse pathways, displayed a significant decrease in expression. Putative xenobiotic detoxification genes overexpressed in tetraconazole-treated Che encoded predicted monooxygenase and oxidoreductase enzymes. In summary, expression of a functional CYP51A gene and overexpression of predicted xenobiotic detoxification genes appear likely to contribute to differential fungicide sensitivity in these two sister taxa.
Collapse
Affiliation(s)
- Stefanos Stravoravdis
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003, USA;
- Biology Department, Eastern Connecticut State University, Willimantic, CT 06226, USA
| | - Robert E. Marra
- Department of Plant Pathology and Ecology, The Connecticut Agricultural Experiment Station, New Haven, CT 06504, USA;
| | - Nicholas R. LeBlanc
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (N.R.L.); (J.A.C.)
- ARS Research Participation Program, Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831-0117, USA
| | - Jo Anne Crouch
- Mycology and Nematology Genetic Diversity and Biology Laboratory, United States Department of Agriculture, Agricultural Research Service, Beltsville, MD 20705, USA; (N.R.L.); (J.A.C.)
| | - Jonathan P. Hulvey
- Biology Department, Eastern Connecticut State University, Willimantic, CT 06226, USA
- Correspondence:
| |
Collapse
|
33
|
D'Ávila LS, De Filippi MCC, Café-Filho AC. Sensitivity of Pyricularia oryzae Populations to Fungicides Over a 26-Year Time Frame in Brazil. PLANT DISEASE 2021; 105:1771-1780. [PMID: 33135989 DOI: 10.1094/pdis-08-20-1806-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The long-term dynamics of fungicide resistance of the rice blast fungus Pyricularia oryzae was monitored by examining the reaction of the fungal field isolates, collected over a period of 26 years, to the active ingredients of commercially relevant fungicides. The in vitro sensitivity of all isolates was measured against quinone outside inhibitors (QoI), melanin biosynthesis inhibitors, and sterol demethylation inhibitor (DMI) fungicides, namely azoxystrobin (as a QoI), tricyclazole (as a melanin biosynthesis inhibitor), tebuconazole (as a DMI), and trifloxystrobin + tebuconazole (QoI + DMI). Over the 26-year collection period, a gradual rise in the EC50 estimates for mycelial growth sensitivity was observed for all fungicides, but most strikingly for azoxystrobin. A rise in conidial germination and appressorium formation was also noted, most markedly for azoxystrobin. Consistently, the earlier isolates were much more sensitive to the active ingredients than the more contemporary isolates. The sequencing of the amplified cyt b fragment distinguished two haplotypes, H1 and H2. Haplotype H1 (six isolates) contained the G to C transversion at codon 143 (resulting in change G143A), linked to the resistant phenotype QoI-R. Haplotype H2 (40 isolates), gathered the isolates sensitive to QoI. This work documents the gradual rise in the frequency of fungicide-resistant isolates in P. oryzae rice populations on a long-term basis.
Collapse
Affiliation(s)
- Leilane S D'Ávila
- Graduate Program in Plant Pathology, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| | - Marta C Corsi De Filippi
- Graduate Program in Plant Pathology, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
- Embrapa Rice and Beans, 75375-000, Santo Antônio de Goiás, GO, Brazil
| | - Adalberto C Café-Filho
- Graduate Program in Plant Pathology, Universidade de Brasília, 70910-900, Brasília, DF, Brazil
| |
Collapse
|
34
|
Lesniak KE, Peng J, Proffer TJ, Outwater CA, Eldred LI, Rothwell NL, Sundin GW. Survey and Genetic Analysis of Demethylation Inhibitor Fungicide Resistance in Monilinia fructicola From Michigan Orchards. PLANT DISEASE 2021; 105:958-964. [PMID: 32886041 DOI: 10.1094/pdis-07-20-1561-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Resistance to sterol demethylation inhibitor (DMI) fungicides in Monilinia fructicola, causal agent of brown rot of stone fruit, has been reported in the southeastern and eastern United States and in Brazil. DMI resistance of some M. fructicola isolates, in particular those recovered from the southeastern United States, is associated with a sequence element termed "Mona" that causes overexpression of the cytochrome demethylase target gene MfCYP51. In this study, we conducted statewide surveys of Michigan stone fruit orchards from 2009 to 2011 and in 2019, and we determined the sensitivity to propiconazole of a total of 813 isolates of M. fructicola. A total of 80.7% of Michigan isolates were characterized as resistant to propiconazole by relative growth assays, but the Mona insert was not uniformly detected and was present in some isolates that were not characterized as DMI resistant. Gene expression assays indicated that elevated expression of MfCYP51 was only weakly correlated with DMI resistance in M. fructicola isolates from Michigan, and there was no obvious correlation between the presence of the Mona element and elevated expression of MfCYP51. However, sequence analysis of MfCYP51 from 25 DMI-resistant isolates did not reveal any point mutations that could be correlated with resistance. Amplification and sequencing upstream of MfCYP51 resulted in detection of DNA insertions in a wide range of isolates typed by DMI phenotype and the presence of Mona or other unique sequences. The function of these unique sequences or their presence upstream of MfCYP51 cannot be correlated to a DMI-resistant genotype at this time. Our results indicate that DMI resistance was established in Michigan populations of M. fructicola by 2009 to 2011, and that relative resistance levels have continued to increase to the point that practical resistance is present in most orchards. In addition, the presence of the Mona insert is not a marker for identifying DMI-resistant isolates of M. fructicola in Michigan.
Collapse
Affiliation(s)
- Kimberley E Lesniak
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Jingyu Peng
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Tyre J Proffer
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Cory A Outwater
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Lauren I Eldred
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| | - Nikki L Rothwell
- Northwest Michigan Horticultural Research Center, Traverse City, MI 49684
| | - George W Sundin
- Department of Plant, Soil, and Microbial Sciences, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
35
|
Hu M, Chen S. Non-Target Site Mechanisms of Fungicide Resistance in Crop Pathogens: A Review. Microorganisms 2021; 9:microorganisms9030502. [PMID: 33673517 PMCID: PMC7997439 DOI: 10.3390/microorganisms9030502] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/18/2021] [Accepted: 02/23/2021] [Indexed: 01/15/2023] Open
Abstract
The rapid emergence of resistance in plant pathogens to the limited number of chemical classes of fungicides challenges sustainability and profitability of crop production worldwide. Understanding mechanisms underlying fungicide resistance facilitates monitoring of resistant populations at large-scale, and can guide and accelerate the development of novel fungicides. A majority of modern fungicides act to disrupt a biochemical function via binding a specific target protein in the pathway. While target-site based mechanisms such as alternation and overexpression of target genes have been commonly found to confer resistance across many fungal species, it is not uncommon to encounter resistant phenotypes without altered or overexpressed target sites. However, such non-target site mechanisms are relatively understudied, due in part to the complexity of the fungal genome network. This type of resistance can oftentimes be transient and noninheritable, further hindering research efforts. In this review, we focused on crop pathogens and summarized reported mechanisms of resistance that are otherwise related to target-sites, including increased activity of efflux pumps, metabolic circumvention, detoxification, standing genetic variations, regulation of stress response pathways, and single nucleotide polymorphisms (SNPs) or mutations. In addition, novel mechanisms of drug resistance recently characterized in human pathogens are reviewed in the context of nontarget-directed resistance.
Collapse
Affiliation(s)
- Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Correspondence: (M.H.); (S.C.)
| | - Shuning Chen
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
- Correspondence: (M.H.); (S.C.)
| |
Collapse
|
36
|
Cai M, Miao J, Chen F, Li B, Liu X. Survival Cost and Diverse Molecular Mechanisms of Magnaporthe oryzae Isolate Resistance to Epoxiconazole. PLANT DISEASE 2021; 105:473-480. [PMID: 33349002 DOI: 10.1094/pdis-02-20-0393-re] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Rice blast caused by Magnaporthe oryzae is one of the most destructive diseases on rice worldwide. Epoxiconazole is a 14α-demethylation inhibitor (DMI) with excellent control on rice blast; to date, no resistant isolates have been observed in the field. Four mutants resistant to epoxiconazole were generated from three parental isolates via fungicide adaptation. Resistance was stable after 10 weekly consecutive transfers on fungicide-free medium. Three parameters, including growth rate, sporulation in vitro, and aggressiveness, were significantly lower for mutants compared with their parental isolates, with the exception of the low-resistance isolate. Sporulation and aggressiveness were negatively correlated with effective concentration values for 50% inhibition of mycelial growth for parental isolates and mutants (P < 0.05). Cross-resistance was found between epoxiconazole and prochloraz (ρ = 0.863, P = 0.000) or difenoconazole (ρ = 0.861, P = 0.000). The resistance factor for mutants was positively correlated with the relative expression of MoCYP51A in epoxiconazole treatment (r = 0.977, P = 0.02). In addition, two putative amino acid substitutions in MoCYP51A were found in two resistant mutants: Y126F in the high-resistance mutant and I125L in the low-resistance mutant. Mutation Y126F reduced the affinity of MoCYP51A with epoxiconazole, whereas I125L was not in the binding pocket of epoxiconazole. No amino acid change or overexpression in MoCYP51B was found in any of the mutants studied. To our knowledge, this is the first study to report DMI resistance observed in M. oryzae. The survival cost of M. oryzae resistance to epoxiconazole might be the reason why DMI resistance has not yet emerged in field populations worldwide.
Collapse
Affiliation(s)
- Meng Cai
- Key Laboratory of Pesticide and Chemical Biology of the Ministry of Education, College of Chemistry, Central China Normal University, Wuhan, China
| | - Jianqiang Miao
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, China
| | - Fengping Chen
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Botao Li
- College of Plant Protection, China Agricultural University, Beijing, China
| | - Xili Liu
- College of Plant Protection, Northwest Agriculture and Forestry University, Yangling, China
- College of Plant Protection, China Agricultural University, Beijing, China
| |
Collapse
|
37
|
Ishii H, Bryson PK, Kayamori M, Miyamoto T, Yamaoka Y, Schnabel G. Cross-resistance to the new fungicide mefentrifluconazole in DMI-resistant fungal pathogens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104737. [PMID: 33357559 DOI: 10.1016/j.pestbp.2020.104737] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/15/2020] [Accepted: 10/16/2020] [Indexed: 06/12/2023]
Abstract
In the European Union (EU), regulation of sterol demethylation inhibiting (DMI) fungicides is tightened due to their suspected endocrine disrupting properties. However, the new DMI fungicide mefentrifluconazole was reported to have high fungicidal activity with minimal adverse side effects. In addition, some evidence suggests inconsistent cross resistance between mefentrifluconazole and other azoles. In this study, mefentrifluconazole and other triazoles were examined for activity to select pathogens sensitive or resistant to DMIs using mycelial growth tests on fungicide-treated culture medium or spray trials using cucumber plants. Cross-resistance was confirmed for all of the fungal species tested but activity levels varied. The sensitivity of Monilinia fructicola from peach to mefentrifluconazole was higher compared to other DMIs. In contrast, the inhibitory activity of mefentrifluconazole was equal or slightly inferior compared to difenoconazole, tebuconazole, propiconazole in Colletotrichum spp., Alternaria alternaria sp. complex and Cercospora beticola isolated from peach and sugar beet, respectively. Similar tendencies (i.e. equal or slightly inferior activity and cross-resistance) were observed for cucumber powdery mildew (Podosphaera xanthii) resistant to triflumizole, myclobutanil, and difenoconazole. Despite cross-resistance to other DMIs, mefentrifluconazole is a promising fungicide for fungal disease control on peach and other crops, with a reportedly more favorable toxicity profile.
Collapse
Affiliation(s)
- Hideo Ishii
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan; Clemson University, 105 Collings St., Clemson, SC 29634, USA.
| | | | - Miyuki Kayamori
- Tokachi Agricultural Experiment Station, Hokkaido Research Organization, Memuro, Kasai, Hokkaido 082-0081, Japan
| | - Takuya Miyamoto
- Horticultural Research Institute, Ibaraki Agricultural Centre, 3165-1 Ago, Kasama, Ibaraki 312-0292, Japan
| | - Yuichi Yamaoka
- University of Tsukuba, Tennodai 1-1-1, Tsukuba, Ibaraki 305-8572, Japan
| | - Guido Schnabel
- Clemson University, 105 Collings St., Clemson, SC 29634, USA.
| |
Collapse
|
38
|
Wang Y, Jiang L, Wang MM, Feng JT. Baseline sensitivity and action mechanism of the sterol demethylation inhibitor flusilazole to Valsa mali. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104722. [PMID: 33357544 DOI: 10.1016/j.pestbp.2020.104722] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/03/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
The apple Valsa canker caused by Valsa mali is a devastating branch disease that has seriously threatened the development of the apple industry worldwide. In current study, a total of 115 V. mali strains collected from different apple orchards in Shaanxi Province of China during 2016 and 2017 were tested for their sensitivity to flusilazole. The average EC50 (effective concentrations causing 50% mycelial growth inhibition) value of all tested strains for flusilazole was 0.0892 (±0.0036) μg/mL and the frequency distribution of the EC50 values was unimodal. Flusilazole exhibited both excellent protective and curative activity on detached apple branches, which was significantly better than the commonly used fungicide thiophanate-methyl. After flusilazole treatment, mycelia twisted with offshoot of top increased, the V. mali strains lost the ability of fruiting body production, and cell membrane permeability of the mycelia increased while ergosterol content and pectinase activity decreased. The expression of pectinase genes involved in virulence down-regulated after flusilazole treatment. This study is the first report on the baseline sensitivity of V. mali to flusilazole. These results indicated that flusilazole has a great potential to play an important role in the management of Valsa canker.
Collapse
Affiliation(s)
- Yong Wang
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lin Jiang
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Miao-Miao Wang
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jun-Tao Feng
- College of plant protection, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
39
|
Zhang C, Meng D, Wang W, Dai T, Wang J, Guan A, Liu C, Liu X. Overexpression of three P450 genes is responsible for resistance to novel pyrimidine amines in Magnaporthe oryzae. PEST MANAGEMENT SCIENCE 2020; 76:4268-4277. [PMID: 32638503 DOI: 10.1002/ps.5991] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 06/23/2020] [Accepted: 07/07/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND A series of pyrimidine amine derivatives has been synthesized by modifying the pyrimidine ring group of diflumetorim-a mitochondrial complex I inhibiting fungicide. One derivative, code number SYP-34773, is investigated in this study involving Magnaporthe oryzae, the causal agent of rice blast, which is the most devastating disease in rice. The response, resistance profile and mechanism of M. oryzae to SYP-34773 were investigated, which provides or provide?? important data for the registration and rational use of pyrimidine amines. RESULTS SYP-34773 showed greater control efficacy than fungicide isoprothiolane in the field. The baseline sensitivity was established at a mean 50% effective concentration (EC50 ) of 0.08 μg ml-1 . Four stable SYP-34773-resistant isolates with reduced sensitivity were generated from one (S118) of ten sensitive isolates with a resistance factor of EC50 ranging from 7.00 to 15.00. Conidia production and pathogenicity were similar to that of S118, although there was a significant decrease in mycelial growth and conidial germination in resistant isolates. Positive cross-resistance was observed between SYP-34773 and diflumetorim; and the SYP-34773-resistant isolates were still sensitive to isoprothiolane, carbendazim, fluazinam, azoxystrobin, or prochloraz. RNA-Seq analyses revealed three cytochrome P450 genes were upregulated in the resistant isolate under the treatment with SYP-34773, as confirmed by quantitative real-time PCR. The SYP-34773 content was significantly reduced in the resistant isolate when compared with the parental isolate. CONCLUSION The study demonstrated that SYP-34773 exhibits high activity against M. oryzae. Overexpression of three cytochrome P450 genes has an important role in the resistance of M. oryzae to novel pyrimidine amines. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Can Zhang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Dehao Meng
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Weizhen Wang
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Tan Dai
- Department of Plant Pathology, China Agricultural University, Beijing, China
| | - Junfeng Wang
- State Key Laboratory of Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Aiying Guan
- State Key Laboratory of Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Changling Liu
- State Key Laboratory of Discovery and Development of Novel Pesticide, Shenyang Sinochem Agrochemicals R&D Co., Ltd., Shenyang, China
| | - Xili Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Northwest A&F University, Yangling, China
| |
Collapse
|
40
|
Mair WJ, Thomas GJ, Dodhia K, Hills AL, Jayasena KW, Ellwood SR, Oliver RP, Lopez-Ruiz FJ. Parallel evolution of multiple mechanisms for demethylase inhibitor fungicide resistance in the barley pathogen Pyrenophora teres f. sp. maculata. Fungal Genet Biol 2020; 145:103475. [DOI: 10.1016/j.fgb.2020.103475] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/11/2020] [Accepted: 09/25/2020] [Indexed: 10/23/2022]
|
41
|
Dutra PSS, Lichtemberg PSF, Martinez MB, Michailides TJ, May De Mio LL. Cross-Resistance Among Demethylation Inhibitor Fungicides With Brazilian Monilinia fructicola Isolates as a Foundation to Discuss Brown Rot Control in Stone Fruit. PLANT DISEASE 2020; 104:2843-2850. [PMID: 32955405 DOI: 10.1094/pdis-04-20-0714-re] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite the resistance problems in Monilinia fructicola, demethylation inhibitor fungicides (DMIs) are still effective for the disease management of brown rot in commercial stone fruit orchards in Brazil. This study aims to investigate the sensitivity of M. fructicola isolates and efficiency of DMIs to reduce brown rot. A set of 93 isolates collected from Brazilian commercial orchards were tested for their sensitivities to tebuconazole, propiconazole, prothioconazole, and myclobutanil. The isolates were analyzed separately according to the presence or absence of the G461S mutation in MfCYP51 gene, determined by allele-specific test. The mean EC50 values for G461S mutants and wild-type isolates were respectively 8.443 and 1.13 µg/ml for myclobutanil, 0.236 and 0.026 µg/ml for propiconazole, 0.115 and 0.002 µg/ml for prothioconazole, and 1.482 and 0.096 µg/ml for tebuconazole. The density distribution curves of DMI sensitivity for both genotypes showed that myclobutanil and prothioconazole curves were mostly shifted toward resistance and sensitivity, respectively. Incomplete cross-resistance was detected among propiconazole and tebuconazole in both wild-type (r = 0.45) and G461S (r = 0.38) populations. No cross-sensitivity was observed among wild-type isolates to prothioconazole and the others DMIs tested. Fungicide treatments on detached fruit inoculated with M. fructicola genotypes showed significant DMI efficacy differences when fruit were inoculated with wild-type and G461S isolates. Protective applications with prothioconazole were more effective for control of both G461S and wild-type isolates compared with tebuconazole. Curative applications with tebuconazole were most effective in reducing the incidence and lesion size of G461S isolates. Sporulation occurred only for G461S isolates treated with tebuconazole under curative and preventative treatments. The differences found among the performance of triazoles against M. fructicola isolates will form the basis for recommendations of rational DMI usage to control brown rot in Brazil.
Collapse
Affiliation(s)
| | - Paulo S F Lichtemberg
- University of California - Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | - Maria Bernat Martinez
- Institute of Agrifood Research and Technology (IRTA), Torre Marimon, 08140 Caldes de Montbui, Barcelona, Spain
| | - Themis J Michailides
- University of California - Davis, Kearney Agricultural Research and Extension Center, Parlier, CA 93648, U.S.A
| | | |
Collapse
|
42
|
Zhang Y, Zhou Q, Tian P, Li Y, Duan G, Li D, Zhan J, Chen F. Induced expression of CYP51 associated with difenoconazole resistance in the pathogenic Alternaria sect. on potato in China. PEST MANAGEMENT SCIENCE 2020; 76:1751-1760. [PMID: 31785067 DOI: 10.1002/ps.5699] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Early blight caused by Alternaria spp. is amongst the most important diseases in potato. Demethylation inhibitor (DMI) fungicides are widely used to control the disease but long-term use may decrease its control efficacy due to fungicide resistance. This study investigated the occurrence of difenoconazole resistance in Alternaria spp. and molecular resistant mechanisms. RESULTS EC50 values of 160 isolates to difenoconazole ranged from 0.026 μg mL-1 to 15.506 μg mL-1 and the frequency of difenoconazole sensitivity formed a non-normal distribution curve with a major and a minor peak. Isolates with EC50 values of 4.121 and 5.461 μg mL-1 were not controlled effectively at fungicide doses of 50 and 100 μg mL-1 . Cross-resistance was observed between DMI fungicides difenoconazole and propiconazole, but not between difenoconazole and other fungicide groups, including boscalid, iprodione, or carbendazim. The CYP51gene was 1673 bp encoding 525 amino acids in length and contained two introns. All sensitive and resistant isolates had the identical amino acid sequence of CYP51, with the exception of one resistant isolate carrying a mutation of R511W. A 6 bp insertion in the upstream region was observed in half of the resistant isolates. In the absence of propiconazole, the relative expression of CYP51 was not significantly different in sensitive and resistant isolates. In the presence of difenoconazole, expression of CYP51 gene was induced significantly in the DMI-resistant isolates but not in the sensitive ones. CONCLUSION Induced expression of CYP51 in resistant isolates exposed to difenoconazole is an important determinant for DMI resistance in potato pathogens Alternaria sect. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yue Zhang
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qian Zhou
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peiyu Tian
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Guohua Duan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dongliang Li
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiasui Zhan
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Fengping Chen
- Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
43
|
de Ramón-Carbonell M, Sánchez-Torres P. Significance of 195 bp-enhancer of PdCYP51B in the acquisition of Penicillium digitatum DMI resistance and increase of fungal virulence. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2020; 165:104522. [PMID: 32359549 DOI: 10.1016/j.pestbp.2020.01.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/09/2020] [Accepted: 01/12/2020] [Indexed: 06/11/2023]
Abstract
Two sterol 14α-demethylase genes from Penicillium digitatum, PdCYP51A and PdCYP51B, were evaluated and revealed that 95% of Imazalil (IMZ)-resistant isolates carried a 195-bp insertion in the PdCYP51B promoter. We functionally characterized both sterol 14α-demethylases by overexpression. Molecular analysis of overexpression mutants showed that the introduction of PdCYP51B insertion is more stable than the five-tandem repeat PdCYP51A sequence previously described that confers DMI fungicide resistance. The both enhancers can coexist in P. digitatum isolates that initially contained the 195-bp PdCYP51B insertion but the introduction of 195-bp PdCYP51B enhancer promoted the loss of the five-tandem repeat of PdCYP51A. The incorporation of 195-bp PdCYP51B resulted in an increase of DMI fungicide resistance in mutants from already resistant isolates and confers resistance to DMIs in mutants from sensitive isolates. Transcription evaluation of the both genes showed noticeable induction in all overexpression mutants, except for those coming from the five-tandem repeat PdCYP51A sequence, whereas PdCYP51A expression dropped dramatically. Only PdCYP51B exhibited up-regulation during citrus infection compared to axenic growth, and the role of PdCYP51B in fungal virulence was further reinforced since strains with low virulence showed increased infectivity in overexpression mutants. This study suggested the predominant role of the PdCYP51B enhancer in the acquisition of DMI resistance and fungal virulence, by replacing homologues genes with same putative function.
Collapse
Affiliation(s)
- Marta de Ramón-Carbonell
- Valencian Institute for Agricultural Research (IVIA), Plant Protection and Biotechnology Research Center, 46113 Moncada, Valencia, Spain
| | - Paloma Sánchez-Torres
- Valencian Institute for Agricultural Research (IVIA), Plant Protection and Biotechnology Research Center, 46113 Moncada, Valencia, Spain; Department of Food Biotechnology. Institute of Agrochemistry and Food Technology, Spanish National Research Council (IATA-CSIC), Calle Catedrático Agustín Escardino 7, 46980 Paterna, Valencia, Spain.
| |
Collapse
|
44
|
Li Y, Tsuji SS, Hu M, Câmara MPS, Michereff SJ, Schnabel G, Chen F. Characterization of difenoconazole resistance in Lasiodiplodia theobromae from papaya in Brazil. PEST MANAGEMENT SCIENCE 2020; 76:1344-1352. [PMID: 31605502 DOI: 10.1002/ps.5645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 10/06/2019] [Accepted: 10/06/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Stem-end rot caused by Lasiodiplodia theobromae is one of the most important diseases of papaya in northeastern Brazil. It can be controlled effectively by demethylation inhibitor (DMI) fungicides, but the occurrence of DMI resistance may decrease fungicide efficacy. RESULTS Detached fruit studies revealed that isolates with EC50 values of 6.07 and 6.28 μg mL-1 were not controlled effectively, but reduced virulence and ability to grow at temperatures ranging from 12 to 32 °C suggesting fitness penalties were observed. Cross-resistance was observed only between difenoconazole and propiconazole. The entire cytochrome P450 sterol 14α-demethylase (LtCYP51) gene and its flanking regions were cloned. The gene was 1746 bp in length and contained three introns. The predicted protein contained 525 amino acids. Phylogenetic tree analysis showed that the LtCYP51 belongs to the CYP51B clade. No amino acid variation was found between sensitive and resistant isolates; however, the gene was constitutively more highly expressed in resistant isolates. CONCLUSION Resistance to DMI fungicides in L. theobromae is based on LtCYP51 gene overexpression and fitness penalties may be present in difenoconazole-resistant isolates. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuan Li
- Department of Plant Pathology, Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Susan Satie Tsuji
- Departamento de Agronomia, Universidade Federal Rural de Pernambuco, Recife, PE, Brazil
| | - Mengjun Hu
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | | | - Sami Jorge Michereff
- Centro de Ciências Agrárias e da Biodiversidade, Universidade Federal do Cariri, Crato, CE, Brazil
| | - Guido Schnabel
- Plant & Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Fengping Chen
- Department of Plant Pathology, Fujian Key Laboratory of Plant Virology, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
45
|
Wei LL, Chen WC, Zhao WC, Wang J, Wang BR, Li FJ, Wei MD, Guo J, Chen CJ, Zheng JQ, Wang K. Mutations and Overexpression of CYP51 Associated with DMI-Resistance in Colletotrichum gloeosporioides from Chili. PLANT DISEASE 2020; 104:668-676. [PMID: 31951509 DOI: 10.1094/pdis-08-19-1628-re] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chili anthracnose caused by Colletotrichum spp. is an annual production concern for growers in China. Sterol C14-demethylation inhibitors (DMIs, such as tebuconazole) have been widely used to control this disease for more than three decades. In the current study, of 48 isolates collected from commercial chili farms in Jiangsu Province of China during 2018 and 2019, 8 single-spore isolates were identified as Colletotrichum gloeosporioides and the rest were identified as C. acutatum. To determine whether the DMI resistance of isolates develops in the field, mycelial growth of the 48 isolates was measured in culture medium with and without tebuconazole. In all, 6 of the 8 C. gloeosporioides isolates were resistant to tebuconazole, but all 40 of the C. acutatum isolates were sensitive to tebuconazole. The fitness cost of resistance was low based on a comparison of fitness parameters between the sensitive and resistant isolates of C. gloeosporioides. Positive cross-resistance was observed between tebuconazole and difenconazole or propiconazole, but not prochloraz. Alignment results of the CgCYP51 amino acid sequences from the sensitive and resistant isolates indicated that mutations can be divided into three genotypes. Genotype I possessed four substitutions (V18F, L58V, S175P, and P341A) at the CgCYP51A gene but no substitutions at CgCYP51B, while genotype II had five substitutions (L58V, S175P, A340S, T379A, and N476T) at CgCYP51A, concomitant with three substitutions (D121N, T132A, and F391Y) at CgCYP51B. In addition, genotype III contained two substitutions (L58V and S175P) at CgCYP51A, concomitant with one substitution (T262A) at CgCYP51B. Molecular docking models illustrated that the affinity of tebuconazole to the binding site of the CgCYP51 protein from the resistant isolates was decreased when compared with binding site affinity of the sensitive isolates. Our findings provide not only novel insights into understanding the resistance mechanism to DMIs, but also some important references for resistance management of C. gloeosporioides on chili.
Collapse
Affiliation(s)
- Ling-Ling Wei
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Wen-Chan Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Wei-Cheng Zhao
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Jin Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Bing-Ran Wang
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Feng-Jie Li
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Meng-di Wei
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Jun Guo
- Agricultural Science Institute of Yancheng, Jiangsu Province, Yancheng 224000, China
| | - Chang-Jun Chen
- College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Pesticide, Jiangsu Province, Nanjing 210095, China
| | - Jia-Qiu Zheng
- Agricultural Science Institute of Yancheng, Jiangsu Province, Yancheng 224000, China
| | - Kai Wang
- Agricultural Science Institute of Yancheng, Jiangsu Province, Yancheng 224000, China
| |
Collapse
|
46
|
Three-Locus Sequence Identification and Differential Tebuconazole Sensitivity Suggest Novel Fusarium equiseti Haplotype from Trinidad. Pathogens 2020; 9:pathogens9030175. [PMID: 32121520 PMCID: PMC7157627 DOI: 10.3390/pathogens9030175] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/14/2022] Open
Abstract
The Fusarium incarnatum-equiseti species complex (FIESC) consists of 33 phylogenetic species according to multi-locus sequence typing (MLST) and Genealogical Concordance Phylogenetic Species Recognition (GCPSR). A multi-locus dataset consisting of nucleotide sequences of the translation elongation factor (EF-1α), calmodulin (CAM), partial RNA polymerase largest subunit (RPB1), and partial RNA polymerase second largest subunit (RPB2), was generated to distinguish among phylogenetic species within the FIESC isolates infecting bell pepper in Trinidad. Three phylogenetic species belonged to the Incarnatum clade (FIESC-15, FIESC-16, and FIESC-26), and one species belonged to the Equiseti clade (FIESC-14). Specific MLST types were sensitive to 10 µg/mL of tebuconazole fungicide as a discriminatory dose. The EC50 values were significantly different among the four MLST groups, which were separated into two homogeneous groups: FIESC-26a and FIESC-14a, demonstrating the “sensitive” azole phenotype and FIESC-15a and FIESC-16a as the “less sensitive” azole phenotype. CYP51C sequences of the Trinidad isolates, although under positive selection, were without any signatures of recombination, were highly conserved, and were not correlated with these azole phenotypes. CYP51C sequences were unable to resolve the FIESC isolates as phylogenetic inference indicated polytomic branching for these sequences. This data is important to different research communities, including those studying Fusarium phytopathology, mycotoxins, and public health impacts.
Collapse
|
47
|
Lichtner FJ, Jurick WM, Ayer KM, Gaskins VL, Villani SM, Cox KD. A Genome Resource for Several North American Venturia inaequalis Isolates with Multiple Fungicide Resistance Phenotypes. PHYTOPATHOLOGY 2020; 110:544-546. [PMID: 31729927 DOI: 10.1094/phyto-06-19-0222-a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The apple scab pathogen, Venturia inaequalis, is among the most economically important fungal pathogens that affects apples. Fungicide applications are an essential part of disease management. Implementation of cultural practices and genetic sources of resistance in the host are vital components of scab management. This is the first presentation of multiple, high quality, well-annotated genomes of four North American V. inaequalis isolates having both sensitive and multiple fungicide resistance phenotypes. We envision that these isolates will enable investigations into fungicide resistance mechanisms, exploring fungal virulence factors and delineating phylogenomic relationships among apple scab isolates from around the world.
Collapse
Affiliation(s)
- Franz J Lichtner
- Oak Ridge Institute for Science and Education, Oak Ridge, TN 37831
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Wayne M Jurick
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Katrin M Ayer
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| | - Verneta L Gaskins
- Food Quality Laboratory, U.S. Department of Agriculture-Agriculture Research Service, Beltsville Agricultural Research Center, Beltsville, MD 20705
| | - Sara M Villani
- Department of Entomology and Plant Pathology, Mountain Horticulture and Crops Research & Extension Center, North Carolina State University, Mills River, NC 28759
| | - Kerik D Cox
- Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, New York State Agricultural Experiment Station, Cornell University, Geneva, NY 14456
| |
Collapse
|
48
|
Hu MJ, Cosseboom S, Schnabel G. atrB-Associated Fludioxonil Resistance in Botrytis fragariae Not Linked to Mutations in Transcription Factor mrr1. PHYTOPATHOLOGY 2019; 109:839-846. [PMID: 30543488 DOI: 10.1094/phyto-09-18-0341-r] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Resistance to fludioxonil in Botrytis cinerea and B. fragariae was previously found to be linked to either overexpression of the drug efflux pump atrB activated by mutations in transcription factor mrr1 or to mutations in the osmoregulation gene os1. In the present study, isolates of B. cinerea, Botrytis group S, or B. fragariae collected from strawberry fields in the United States were resistant to fludioxonil with half-maximal effective concentration values ranging from 0.04 to 0.43 µg/ml for B. cinerea, 0.03 to 1.03 µg/ml for Botrytis group S, and 0.28 to 3.48 µg/ml for B. fragariae. Analyses of mrr1 sequences revealed various mutations linked to fludioxonil resistance in B. cinerea and Botrytis group S isolates. However, no mutations in mrr1 correlated with atrB overexpression-mediated resistance in B. fragariae isolates. Neither nucleotide variations in the 1,370-bp upstream region of atrB nor increased atrB copy numbers could explain the atrB overexpression in these B. fragariae isolates. Mutations in os1 conferred resistance to iprodione in B. cinerea and Botrytis group S isolates; none correlated with resistance to fludioxonil in B. fragariae. In contrast to European isolates, U.S. B. fragariae isolates contained a 3-bp insertion in the coding region of os1. These isolates were more sensitive to osmotic stress but it is unclear whether the insertion is responsible for this phenotype. Our findings suggest that atrB overexpression-associated fludioxonil resistance is an across-species mechanism of resistance to fludioxonil that can be induced by mutations in mrr1 and other, still-unknown mechanisms.
Collapse
Affiliation(s)
- Meng-Jun Hu
- 1 Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD; and
| | - Scott Cosseboom
- 1 Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD; and
| | - Guido Schnabel
- 2 Department of Agricultural and Environmental Sciences, Clemson University, Clemson, SC
| |
Collapse
|
49
|
Chen S, Schnabel G, Yuan H, Luo C. LAMP detection of the genetic element 'Mona' associated with DMI resistance in Monilinia fructicola. PEST MANAGEMENT SCIENCE 2019; 75:779-786. [PMID: 30125043 DOI: 10.1002/ps.5178] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 07/13/2018] [Accepted: 08/13/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The increasing use of demethylation inhibitor (DMI) fungicides for the control of peach brown rot has resulted in resistance in Monilinia fructicola. Resistance in the southeastern USA is caused by overexpression of the MfCYP51 gene due to the presence of a 65-bp inserted element 'Mona' located in the upstream regulatory region of MfCYP51. A rapid diagnostic assay would be useful to detect the presence and monitor further spread of this resistance mechanism. RESULTS A loop-mediated isothermal amplification (LAMP) method was developed for rapid detection of 'Mona'-based DMI resistance. The assay was optimized for specificity and sensitivity, and was shown to detect the presence of 10 fg of purified target DNA per reaction within 85 min. Only DNA isolated from DMI-resistant isolates containing 'Mona' resulted in a fluorescent signal after LAMP assay amplification. DNA from sensitive isolates from China and the USA and six other common fungal species of peach did not yield a signal. The method also positively identified 'Mona' from crude DNA extracts (using Lyse and Go reagents heated to 100 °C for 10 min) obtained from the mycelium and conidia of symptomatic fruit. CONCLUSION Considering its specificity, stability and repeatability, the LAMP assay could be a valuable tool for rapid on-site diagnosis of M. fructicola isolates resistant to DMI fungicides in the southeastern USA. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shuning Chen
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Guido Schnabel
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Huizhu Yuan
- Key Laboratory of Integrated Pest Management in Crops, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chaoxi Luo
- Key Lab of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- Department of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
50
|
Zhou Y, Yu J, Pan X, Yu M, Du Y, Qi Z, Zhang R, Song T, Yin X, Liu Y. Characterization of propiconazole field-resistant isolates of Ustilaginoidea virens. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 153:144-151. [PMID: 30744888 DOI: 10.1016/j.pestbp.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 11/08/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
The plant-pathogenic fungus Ustilaginoidea virens (Cooke) Takah causes rice false smut (RFS), which is responsible for significant quantitative and qualitative losses in rice industry. Propiconazole is a triazole fungicide which belongs to Demethylation inhibitors (DMIs). It is used to control RFS in China. We previously screened 158 isolates of U. virens collected in the fields in 2015 in Jiangsu province of China, and found two of them were highly resistant to propiconazole (named 82 and 88, respectively). In this study, we have analyzed the physiological and biochemical characters of six field-sensitive isolates and the two field-resistant isolates, including mycelial growth and cell wall integrity. We found there was cross-resistance between different DMIs fungicides, but was no cross-resistance between DMIs and QoIs fungicides. We also analyzed the fitness, and found the pathogenicity in 88 was stronger than the field-sensitive isolates, but was completely lost in 82. Sequence analyses of CYP51 and the 1000-bp upstream of CYP51 coding region showed no mutation in 82 compared to the field-sensitive strains, but two more bases CC were identified at 154-bp upstream of the coding region in the field-resistant isolate 88. Moreover, the expression of CYP51 gene in all tested isolates was significantly induced by propiconazole. However, the up-regulation expression level in both 82 and 88 was much higher than that in the field-sensitive isolates. We also found propiconazole could inhibit the ergosterol biosynthesis in the field-sensitive isolates, but stimulated it in both field-resistant isolates 82 and 88. Given the high level of U. virens developing propiconazole resistance and the good fitness of the field-resistant isolate 88, the resistance of U. virens to DMIs must be monitored and managed in rice fields.
Collapse
Affiliation(s)
- Yuxin Zhou
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Junjie Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Xiayan Pan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Mina Yu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yan Du
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Zhongqiang Qi
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Rongsheng Zhang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Tianqiang Song
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Xiaole Yin
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China
| | - Yongfeng Liu
- Institute of Plant Protection, Jiangsu Academy of Agricultural Science, Nanjing 210014, China; Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|