1
|
Ruzickova M, Palkovicova J, Papousek I, Cummins ML, Djordjevic SP, Dolejska M. The presence of multiple variants of IncF plasmid alleles in a single genome sequence can hinder accurate replicon sequence typing using in silico pMLST tools. mSystems 2025; 10:e0101024. [PMID: 40197103 PMCID: PMC12090814 DOI: 10.1128/msystems.01010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
IncF plasmids are mobile genetic elements found in bacteria from the Enterobacteriaceae family and often carry critical antibiotic and virulence gene cargo. The classification of IncF plasmids using the plasmid Multi-Locus Sequence Typing (pMLST) tool from the Center for Genomic Epidemiology (CGE; https://www.genomicepidemiology.org/) compares the sequences of IncF alleles against a database to create a plasmid sequence type (ST). Accurate identification of plasmid STs is useful as it enables an assessment of IncF plasmid lineages associated with pandemic enterobacterial STs. Our initial observations showed discrepancies in IncF allele variants reported by pMLST in a collection of 898 Escherichia coli ST131 genomes. To evaluate the limitations of the pMLST tool, we interrogated an in-house and public repository of 70,324 E. coli genomes of various STs and other Enterobacteriaceae genomes (n = 1247). All short-read assemblies and representatives selected for long-read sequencing were used to assess pMLST allele variants and to compare the output of pMLST tool versions. When multiple allele variants occurred in a single bacterial genome, the Python and web versions of the tool randomly selected one allele to report, leading to limited and inaccurate ST identification. Discrepancies were detected in 5,804 of 72,469 genomes (8.01%). Long-read sequencing of 27 genomes confirmed multiple IncF allele variants on one plasmid or two separate IncF plasmids in a single bacterial cell. The pMLST tool was unable to accurately distinguish allele variants and their location on replicons using short-read genome assemblies, or long-read genome assemblies if the same allele variant was present more than once. IMPORTANCE Plasmid sequence type is crucial for describing IncF plasmids due to their capacity to carry important antibiotic and virulence gene cargo and consequently due to their association with disease-causing enterobacterial lineages exhibiting resistance to clinically relevant antibiotics in humans and food-producing animals. As a result, precise reporting of IncF allele variants in IncF plasmids is necessary. Comparison of the FAB formulae generated by the pMLST tool with annotated long-read genome assemblies identified inconsistencies, including examples where multiple IncF allele variants were present on the same plasmid but missing in the FAB formula, or in cases where two IncF plasmids were detected in one bacterial cell, and the pMLST output provided information only about one plasmid. Such inconsistencies may cloud interpretation of IncF plasmid replicon type in specific bacterial lineages or inaccurate assumptions of host strain clonality.
Collapse
Affiliation(s)
- Michaela Ruzickova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, South Moravian Region, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, South Moravian Region, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Jana Palkovicova
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, South Moravian Region, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
| | - Ivo Papousek
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, South Moravian Region, Czechia
| | - Max L. Cummins
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Steven P. Djordjevic
- Australian Institute for Microbiology and Infection, University of Technology Sydney, Sydney, New South Wales, Australia
- The Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Monika Dolejska
- Central European Institute of Technology, University of Veterinary Sciences Brno, Brno, South Moravian Region, Czechia
- Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences Brno, Brno, South Moravian Region, Czechia
- Department of Microbiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czechia
- Division of Clinical Microbiology and Immunology, Department of Laboratory Medicine, The University Hospital Brno, Brno, South Moravian Region, Czechia
- Department of Chemistry and Biochemistry, Faculty of AgriSciences, Mendel University in Brno, Brno, South Moravian Region, Czechia
| |
Collapse
|
2
|
Rodriguez-Garcia C, Wall H, Ottesen E, Grainy J. Characterization of extended-spectrum beta-lactamase-producing Enterobacteriaceae from recreational water in Athens, GA, using an undergraduate laboratory module. JOURNAL OF MICROBIOLOGY & BIOLOGY EDUCATION 2025; 26:e0005624. [PMID: 39878482 PMCID: PMC12020811 DOI: 10.1128/jmbe.00056-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/19/2024] [Indexed: 01/31/2025]
Abstract
We present a laboratory module that uses isolation of antibiotic-resistant bacteria from locally collected stream water samples to introduce undergraduate students to basic microbiological culture-based and molecular techniques. This module also educates them on the global public health threat of antibiotic-resistant organisms. Through eight laboratory sessions, students are involved in quality testing of water sources from their neighborhoods, followed by isolation of extended-spectrum beta-lactamase-producing Enterobacteriaceae. By the end of the module, students should be able to isolate Enterobacteriaceae from the environment using selective and differential media, identify isolates using biochemical tests, characterize antibiotic resistance phenotypes using Kirby Bauer and MIC tests, and evaluate the presence of select beta-lactamase genes of interest using PCR. To complement laboratory sessions, students participated in a weekly flipped classroom session with collaborative peer discussions and activities to reinforce concepts applied in the laboratory. Learning outcomes were measured over four semesters with concept checks, in-lecture activities, exams, and laboratory reports. We hypothesized that more than 50% of the student population would achieve each learning objective through the implementation of this authentic research laboratory module. Here, we highlight specific questions used to assess learning objective comprehension and demonstrate that each learning objective was achieved by 65%-100% of the student population. We present a ready-to-adapt module with flexible resources that can be implemented in courses across disciplines in biology, microbiology, environmental sciences, and public health.
Collapse
Affiliation(s)
- Coralis Rodriguez-Garcia
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, USA
| | - Helen Wall
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA
- Cherokee Federal, Tulsa, Oklahoma, USA
| | - Elizabeth Ottesen
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Julie Grainy
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
3
|
Wang M, Ma M, Yu L, He K, Zhang T, Feng Y, Hu G, He D, Pan Y, Zhai Y. Characterization of IS26-bracketed bla CTX-M-65 resistance module on IncI1 and IncX1 plasmids in Escherichia coli ST224 isolated from a chicken in China. Vet Microbiol 2025; 303:110443. [PMID: 40022824 DOI: 10.1016/j.vetmic.2025.110443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/04/2025]
Abstract
Antimicrobial resistance (AMR) poses a significant global health threat, particularly due to increasing bacterial resistance to β-lactam and aminoglycoside antibiotics, primarily mediated by extended-spectrum β-lactamases (ESBLs) and 16S rRNA methylases in Enterobacteriaceae. In this study, a multidrug resistant (MDR) E. coli strain HN257 isolated from chicken belonging to ST224 and serotype O88:H23 was characterized. SNP-based phylogenetic analysis revealed two distinct clades among poultry-associated E. coli ST224 in this study and others from Genbank, with strain HN257 closely related to chicken-derived E. coli YH17148 (serotype O78:H23), from China. The E. coli HN257 harbored four plasmids with 16 resistance determinants. Two blaCTX-M-65 genes were located on different plasmids with an IS26-bracketed resistance module IS26-traI-fip-∆ISEcp1-blaCTX-M-65-IS903D-iroN-IS26. The plasmid pHN257-2 belonged to the IncI1 ST71 epidemic lineage and carried blaCTX-M-65, blaTEM-1b, rmtB, fosA3, floR, aac(3)-IV and oqxAB, while plasmid pHN257-4 belonged to the non-conjugative IncX1 and carried blaCTX-M-65 and fosA3. Under experimental conditions, a rmtB-positive conjugative helper IncI1 ST136 plasmid could fuse with the non-conjugative pHN257-4 carrying blaCTX-M-65, resulting in the formation of a cointegrate pHN257-F mediated by IS26. Importantly, both single and fused plasmids in transconjugants showed minimal impact on bacterial growth. This study highlights the first identification of a non-conjugative IncX1 plasmid carrying blaCTX-M-65 and fosA3 in MDR E. coli ST224 from poultry, offering critical insights into the presence and transmission dynamics of blaCTX-M-65.
Collapse
Affiliation(s)
- Mengtao Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Mengjuan Ma
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Lijie Yu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Kun He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Tengli Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Yiming Feng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Gongzheng Hu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| | - Dandan He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yushan Pan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China.
| | - Yajun Zhai
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
4
|
Runcharoon K, Favro ME, Logue CM. The pathogenicity traits of avian pathogenic Escherichia coli O25-ST131 associated with avian colibacillosis in Georgia poultry and their genotypic and phenotypic overlap with other extraintestinal pathogenic E. coli. J Appl Microbiol 2025; 136:lxaf015. [PMID: 39814575 DOI: 10.1093/jambio/lxaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 01/18/2025]
Abstract
AIMS To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry-a "global high-risk" clonal strain. METHODS AND RESULTS Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n = 87) and healthy chicks (n = 11) in Georgia, USA. Eighty-eight isolates were classified as sequence type ST131 clade b and 56% (n = 49) belong to the phylogenetic group B2. Overall, 17% were identified as uropathogenic E. coli (UPEC)-like and 94% of the isolates formed strong to moderate biofilms. The extended-spectrum β-lactamases encoding genes, blaCTX M-15 (24%), carbapenemases encoding genes, and blaOXA48 (16%) were also detected. The isolates harbored FIB (88%), FIC (28%), A/C (14%), and FIIA (6%) plasmid replicons. Interestingly, 78% of the isolates were found to be resistant to chicken serum and 92% showed capabilities for growth in human urine. The isolates showed phenotypic resistance to several antibiotics including chloramphenicol (63%), ciprofloxacin (57%), trimethoprim-sulfamethoxazole (28%), streptomycin (17%), and cefoxitin and meropenem (14%) using the national antimicrobial resistance monitoring system panel. CONCLUSIONS Overall, our study provides evidence of the virulence of these global "high-risk" clones in Georgia poultry with some isolates showing genotypic overlap between APEC and UPEC. Also, this clone harbored several virulence genes, antimicrobial-resistant genes, and plasmids. Interestingly, the majority of APEC O25-ST131 isolates can survive and grow in both chicken serum and human urine and warrant further investigation of their potential pathogenicity for both chickens and humans.
Collapse
Affiliation(s)
- Klao Runcharoon
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Margaret E Favro
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, 501 D.W. Brooks Drive, Athens, GA 30602, USA
| |
Collapse
|
5
|
Zhang S, Shu Y, Yang Z, Zhong Z, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Ou X, Sun D, Tian B, Wu Z, He Y, Cheng A. Decoding the enigma: unveiling the transmission characteristics of waterfowl-associated bla NDM-5-positive Escherichia coli in select regions of China. Front Microbiol 2024; 15:1501594. [PMID: 39717269 PMCID: PMC11663885 DOI: 10.3389/fmicb.2024.1501594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/18/2024] [Indexed: 12/25/2024] Open
Abstract
Escherichia coli (E. coli) serves as a critical indicator microorganism for assessing the prevalence and dissemination of antibiotic resistance, notably harboring various antibiotic-resistant genes (ARGs). Among these, the emergence of the bla NDM gene represents a significant threat to public health, especially since carbapenem antibiotics are vital for treating severe infections caused by Gram-negative bacteria. This study aimed to characterize the antibiotic resistance features of bla NDM-5-positive E. coli strains isolated from waterfowl in several regions of China and elucidate the dissemination patterns of the bla NDM-5 gene. We successfully isolated 103 bla NDM-5-positive E. coli strains from 431 intestinal fecal samples obtained from waterfowl across five provincial-level units in China, with all strains exhibiting multidrug resistance (MDR). Notably, the bla NDM-5 gene was identified on plasmids, which facilitate efficient and stable horizontal gene transfer (HGT). Our adaptability assays indicated that while the bla NDM-5-positive plasmid imposed a fitness cost on the host bacteria, the NDM-5 protein was successfully induced and purified, exhibiting significant enzymatic activity. One strain, designated DY51, exhibited a minimum inhibitory concentration (MIC) for imipenem of 4 mg/L, which escalated to 512 mg/L following exposure to increasing imipenem doses. This altered strain demonstrated stable resistance to imipenem alongside improved adaptability, correlating with elevated relative expression levels of the bla NDM-5 and overexpression of efflux pumps. Collectively, this study highlights the horizontal dissemination of the bla NDM-5 plasmid among E. coli strains, confirms the associated fitness costs, and provides insights into the mechanisms underlying the stable increase in antibiotic resistance to imipenem. These findings offer a theoretical framework for understanding the dissemination dynamics of bla NDM-5 in E. coli, which is essential for developing effective strategies to combat carbapenem antibiotic resistance.
Collapse
Affiliation(s)
- Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yanxi Shu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhechen Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Xumin Ou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Di Sun
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Zhen Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Yu He
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, China
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the P.R. China, Chengdu, China
| |
Collapse
|
6
|
Walker GK, Suyemoto MM, Jacob ME, Thakur S, Borst LB. Canine uropathogenic and avian pathogenic Escherichia coli harboring conjugative plasmids exhibit augmented growth and exopolysaccharide production in response to Enterococcus faecalis. PLoS One 2024; 19:e0312732. [PMID: 39602363 PMCID: PMC11602052 DOI: 10.1371/journal.pone.0312732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024] Open
Abstract
Uropathogenic Escherichia coli (UPEC) and avian pathogenic Escherichia coli (APEC) are extraintestinal pathogenic Escherichia coli (ExPEC) that infect dogs and poultry. These agents occur both as single-species infections and, commonly, in co-infection with Enterococcus faecalis (EF); however, it is unclear how EF co-infections modulate ExPEC virulence. Genetic drivers of interspecies interactions affecting virulence were identified using macrocolony co-culture, chicken embryo co-infection experiments, and whole-genome sequence analysis of ExPEC and EF clinical isolates. Ten of 11 UPEC strains originally co-isolated with EF exhibited a growth advantage when co-cultured with EF on iron-limited, semi-solid media in contrast to growing alone (P < 0.01). Phylogenetic analyses of these UPEC and 18 previously screened APEC indicated the growth-response phenotype was conserved in ExPEC despite strain diversity. When genomes of EF-responsive ExPEC were compared to non-responsive ExPEC genomes, EF-induced growth was associated with siderophore, exopolysaccharide (EPS), and plasmid conjugative transfer genes. Two matched pairs of EF-responsive and non-responsive ExPEC were selected for further characterization by macrocolony proximity and chicken embryo lethality assays. EF-responsive ExPEC produced 5 to 16 times more EPS in proximity to EF and were more lethal to embryos alone and during co-infection with EF compared to non-responsive ExPEC (P < 0.05). A responsive APEC strain cured of its conjugative plasmid lost the enhanced growth and EPS production response to EF. These data demonstrate that ExPEC growth augmentation by EF occurs in UPEC and APEC strains and is linked to conjugative virulence plasmids and EPS production, which are widely conserved ExPEC virulence determinants.
Collapse
Affiliation(s)
- Grayson K. Walker
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - M. Mitsu Suyemoto
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Megan E. Jacob
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| | - Luke B. Borst
- Department of Population Health and Pathobiology, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, United States of America
| |
Collapse
|
7
|
Torkan A, Askari Badouei M. Investigating the virulence-associated genes and antimicrobial resistance of Escherichia fergusonii Isolated from diseased ostrich chicks. Comp Immunol Microbiol Infect Dis 2024; 112:102226. [PMID: 39168034 DOI: 10.1016/j.cimid.2024.102226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/31/2024] [Accepted: 08/07/2024] [Indexed: 08/23/2024]
Abstract
This study investigates the presence of virulence-associated genes and antimicrobial resistance (AMR) in Escherichia fergusonii isolates obtained from ostrich chicks. A total of 287 isolates were recovered from 106 fecal samples from ostrich chicks suffering from diarrhea and subjected to molecular identification and biochemical characterization. E. fergusonii was detected in 10 samples (9.4 %) using two PCR-detection protocols. Notably, the isolates lacked various virulence genes commonly associated with pathogenic E. coli including elt, est, stx, eae, ehly, cdt, iss, iutA, iroN, hlyA, ompT, except for one isolate harboring the astA gene. Antimicrobial susceptibility testing revealed that all isolates were susceptible to ciprofloxacin, while high resistance was observed against amoxicillin clavulanate (AMC), trimethoprim-sulfamethoxazole (SXT), and doxycycline (D). Moreover, eight isolates displayed multidrug resistance (MDR) and four exhibited resistance to 9-11 antimicrobials. The most frequent resistance gene was sul2, which was present in all isolates; the other resistance genes detected consisted of int1 (4/10), int2 (3/10), blaCMY (2/10), and qnrS, blaTEM, blaCMY, blaCTX-M, and flo each were detected only in one E. fergusonii Isolate. Plasmid replicon typing identified the presence of I1 (7/10), N (5/10), and Y (1/10). This study provides valuable insights into the virulence and antimicrobial resistance of E. fergusonii isolates from ostrich chicks, highlighting the complexity of antimicrobial resistance mechanisms exhibited by these bacteria. Further research is essential to understand the transmission dynamics and clinical implications of these findings in veterinary and public health settings.
Collapse
Affiliation(s)
- Afagh Torkan
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Mahdi Askari Badouei
- Department of Pathobiology, School of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran.
| |
Collapse
|
8
|
Wybraniec C, Cournoyer B, Moussard C, Beaupère M, Lusurier L, Leriche F, Fayolle K, Sertillanges N, Haudin CS, Houot S, Patureau D, Gagne G, Galia W. Occurrence of 40 sanitary indicators in French digestates derived from different anaerobic digestion processes and raw organic wastes from agricultural and urban origin. Front Microbiol 2024; 15:1346715. [PMID: 39165575 PMCID: PMC11333366 DOI: 10.3389/fmicb.2024.1346715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/22/2024] [Indexed: 08/22/2024] Open
Abstract
This study investigated the sanitary quality of digestates resulting from the mesophilic anaerobic digestion (AD) of urban and agricultural organic wastes (OWs). 40 sanitary indicators, including pathogenic bacteria, antimicrobial resistance genes, virulence factor genes, and mobile genetic elements were evaluated using real-time PCR and/or droplet digital PCR. 13 polycyclic aromatic hydrocarbons (PAHs) and 13 pharmaceutical products (PHPs) were also measured. We assessed agricultural OWs from three treatment plants to study the effect of different AD processes (feeding mode, number of stages, pH), and used three laboratory-scale reactors to study the effect of different feed-supplies (inputs). The lab-scale reactors included: Lab1 fed with 97% activated sludge (urban waste) and 3% cow manure; Lab2 fed with 85% sludge-manure mixture supplemented with 15% wheat straw (WS); and Lab3 fed with 81% sludge-manure mixture, 15% WS, and 4% zeolite powder. Activated sludge favored the survival of the food-borne pathogens Clostridium perfringens and Bacillus cereus, carrying the toxin-encoding genes cpe and ces, respectively. Globally, the reactors fed with fecal matter supplemented with straw (Lab2) or with straw and zeolite (Lab3) had a higher hygienization efficiency than the reactor fed uniquely with fecal matter (Lab1). Three pathogenic bacteria (Enterococcus faecalis, Enterococcus faecium, and Mycobacterium tuberculosis complex), a beta-lactam resistance gene (bla TEM), and three mobile genetic elements (intI1, intI2, and IS26) were significantly decreased in Lab2 and Lab3. Moreover, the concentrations of 11 PAHs and 11 PHPs were significantly lower in Lab2 and Lab3 samples than in Lab1 samples. The high concentrations of micropollutants, such as triclosan, found in Lab1, could explain the lower hygienization efficiency of this reactor. Furthermore, the batch-fed reactor had a more efficient hygienization effect than the semi-continuous reactors, with complete removal of the ybtA gene, which is involved in the production of the siderophore yersiniabactin, and significant reduction of intI2 and tetO. These data suggest that it is essential to control the level of chemical pollutants in raw OWs to optimize the sanitary quality of digestates, and that adding co-substrate, such as WS, may overcome the harmful effect of pollutants.
Collapse
Affiliation(s)
- Caroline Wybraniec
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Benoit Cournoyer
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Cécile Moussard
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Marion Beaupère
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Léa Lusurier
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| | - Françoise Leriche
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Karine Fayolle
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | | | - Claire-Sophie Haudin
- UMR ECOSYS, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| | - Sabine Houot
- UMR ECOSYS, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| | | | - Geneviève Gagne
- UMRF, Université Clermont Auvergne, INRAE, VetAgro Sup, Aurillac, France
| | - Wessam Galia
- Laboratoire d'Ecologie Microbienne, Research Group Bacterial Opportunistic Pathogens and Environment, Universite Claude Bernard Lyon, Villeurbanne, France
| |
Collapse
|
9
|
Algarni S, Gudeta DD, Han J, Nayak R, Foley SL. Genotypic analyses of IncHI2 plasmids from enteric bacteria. Sci Rep 2024; 14:9802. [PMID: 38684834 PMCID: PMC11058233 DOI: 10.1038/s41598-024-59870-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/15/2024] [Indexed: 05/02/2024] Open
Abstract
Incompatibility (Inc) HI2 plasmids are large (typically > 200 kb), transmissible plasmids that encode antimicrobial resistance (AMR), heavy metal resistance (HMR) and disinfectants/biocide resistance (DBR). To better understand the distribution and diversity of resistance-encoding genes among IncHI2 plasmids, computational approaches were used to evaluate resistance and transfer-associated genes among the plasmids. Complete IncHI2 plasmid (N = 667) sequences were extracted from GenBank and analyzed using AMRFinderPlus, IntegronFinder and Plasmid Transfer Factor database. The most common IncHI2-carrying genera included Enterobacter (N = 209), Escherichia (N = 208), and Salmonella (N = 204). Resistance genes distribution was diverse, with plasmids from Escherichia and Salmonella showing general similarity in comparison to Enterobacter and other taxa, which grouped together. Plasmids from Enterobacter and other taxa had a higher prevalence of multiple mercury resistance genes and arsenic resistance gene, arsC, compared to Escherichia and Salmonella. For sulfonamide resistance, sul1 was more common among Enterobacter and other taxa, compared to sul2 and sul3 for Escherichia and Salmonella. Similar gene diversity trends were also observed for tetracyclines, quinolones, β-lactams, and colistin. Over 99% of plasmids carried at least 25 IncHI2-associated conjugal transfer genes. These findings highlight the diversity and dissemination potential for resistance across different enteric bacteria and value of computational-based approaches for the resistance-gene assessment.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| | - Dereje D Gudeta
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Rajesh Nayak
- Office of Regulatory Compliance and Risk Management, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA
| | - Steven L Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, 3900 NCTR Rd, Jefferson, AR, 72079, USA.
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, 72701, USA.
| |
Collapse
|
10
|
Crippen TL, Sullivan JP, Anderson RC. Bacterial proximity effects on the transfer of antibiotic resistance genes within the alimentary tract of yellow mealworm larvae. JOURNAL OF ECONOMIC ENTOMOLOGY 2024; 117:417-426. [PMID: 38412361 DOI: 10.1093/jee/toae019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/04/2024] [Accepted: 01/29/2024] [Indexed: 02/29/2024]
Abstract
The arthropod intestinal tract and other anatomical parts naturally carry microorganisms. Some of which are pathogens, secrete toxins, or carry transferable antibiotic-resistance genes. The risks associated with the production and consumption of edible arthropods are dependent on indigenous microbes, as well as microbes introduced during the processes of rearing. This mass arthropod production puts individual arthropods in close proximity, which increases the possibility of their exposure to antibiotic-resistant bacteria carried by bacteria from fellow insects, industry workers, or rearing hardware and substrates. The purpose of this study was to determine if the alimentary tract of the yellow mealworm provided an environment permitting horizontal gene transfer between bacteria. The effect of the concentration of bacterial exposure was also assessed. Antibiotic resistance gene transfer between marker Salmonella Lignières (Enterobacterales: Enterobacteriaceae) and Escherichia coli (Migula) (Enterobacterales: Enterobacteriaceae) introduced into the larval gut demonstrated that the nutrient-rich environment of the yellow mealworm gut provided favorable conditions for the transfer of antibiotic resistance genes. Conjugation frequencies were similar across inoculum concentrations; however, transconjugant production correlated positively to increased exposure concentration. The lowest concentration of bacterial exposure required enrichment to detect and thus may have been approaching a threshold level for the 2 bacteria to colocate within the expanse of the larval gut. While many factors can affect this transfer, the simple factor of the proximity of donor and recipient bacteria, as defined by the concentration of bacteria within the volume of the insect gut, likely primarily contributed to the efficiency of antibiotic gene transfer.
Collapse
Affiliation(s)
- Tawni L Crippen
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F and B Road, College Station, TX 77845, USA
| | - John P Sullivan
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F and B Road, College Station, TX 77845, USA
| | - Robin C Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, 2881 F and B Road, College Station, TX 77845, USA
| |
Collapse
|
11
|
Tomeh R, Nemati A, Hashemi Tabar G, Tozzoli R, Badouei MA. Antimicrobial resistance, β-lactamase genotypes, and plasmid replicon types of Shiga toxin-producing Escherichia coli isolated from different animal hosts. J Appl Microbiol 2024; 135:lxae059. [PMID: 38467395 DOI: 10.1093/jambio/lxae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/11/2024] [Accepted: 03/10/2024] [Indexed: 03/13/2024]
Abstract
AIMS The primary objective of this study was to analyze antimicrobial resistance (AMR), with a particular focus on β-lactamase genotypes and plasmid replicon types of Shiga toxin-producing Escherichia coli (STEC) strains originating from various animal hosts. METHODS AND RESULTS A total of 84 STEC strains were isolated from cattle (n = 32), sheep/goats (n = 26), pigeons (n = 20), and wild animals (n = 6) between 2010 and 2018 in various regions of Iran. The Kirby-Bauer susceptibility test and multiple polymerase chain reaction (PCR) panels were employed to elucidate the correlation between AMR and plasmid replicon types in STEC isolates. The predominant replicon types were IncFIC and IncFIB in cattle (46.8%), IncFIC in sheep/goats (46.1%), IncA/C in pigeons (90%), and IncP in wild animals (50%). STEC of serogroups O113, O26, and O111 harbored the IncFIB (100%), IncI1 (80%), and IncFIC + IncA/C (100%) plasmids, respectively. A remarkable AMR association was found between ciprofloxacin (100%), neomycin (68.7%), and tetracycline (61.7%) resistance with IncFIC; amoxicillin + clavulanic acid (88.8%) and tetracycline (61.7%) with IncA/C; ciprofloxacin (100%) with IncFIB; fosfomycin (85.7%) and sulfamethoxazole + trimethoprim (80%) with IncI1. IncI1 appeared in 83.3%, 50%, and 100% of the isolates harboring blaCTX-M, blaTEM, and blaOXA β-lactamase genes, respectively. CONCLUSIONS The emergence of O26/IncI1/blaCTX-M STEC in cattle farms poses a potential risk to public health.
Collapse
Affiliation(s)
- Rwida Tomeh
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Ali Nemati
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Gholamreza Hashemi Tabar
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Rosangela Tozzoli
- European Union Reference Laboratory for Escherichia coli, Department of Veterinary Public Health and Food Safety, Istituto Superiore di Sanità, Rome 00161, Italy
| | - Mahdi Askari Badouei
- Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| |
Collapse
|
12
|
Saini P, Bandsode V, Singh A, Mendem SK, Semmler T, Alam M, Ahmed N. Genomic insights into virulence, antimicrobial resistance, and adaptation acumen of Escherichia coli isolated from an urban environment. mBio 2024; 15:e0354523. [PMID: 38376265 PMCID: PMC10936179 DOI: 10.1128/mbio.03545-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Populations of common commensal bacteria such as Escherichia coli undergo genetic changes by the acquisition of certain virulence and antimicrobial resistance (AMR) encoding genetic elements leading to the emergence of pathogenic strains capable of surviving in the previously uninhabited or protected niches. These bacteria are also reported to be prevalent in the environment where they survive by adopting various recombination strategies to counter microflora of the soil and water, under constant selection pressure(s). In this study, we performed molecular characterization, phenotypic AMR analysis, and whole genome sequencing (WGS) of E. coli (n = 37) isolated from soil and surface water representing the urban and peri-urban areas. The primary aim of this study was to understand the genetic architecture and pathogenic acumen exhibited by environmental E. coli. WGS-based analysis entailing resistome and virulome profiling indicated the presence of various virulence (adherence, iron uptake, and toxins) and AMR encoding genes, including blaNDM-5 in the environmental isolates. A majority of our isolates belonged to phylogroup B1 (73%). A few isolates in our collection were of sequence type(s) (ST) 58 and 224 that could have emerged recently as clonal lineages and might pose risk of infection/transmission. Mobile genetic elements (MGEs) such as plasmids (predominantly) of the IncF family, prophages, pipolins, and insertion elements such as IS1 and IS5 were also observed to exist, which may presumably aid in the propagation of genes encoding resistance against antimicrobial drugs. The observed high prevalence of MGEs associated with multidrug resistance in pathogenic E. coli isolates belonging to the phylogroup B1 underscores the need for extended surveillance to keep track of and prevent the transmission of the bacterium to certain vulnerable human and animal populations. IMPORTANCE Evolutionary patterns of E. coli bacteria convey that they evolve into highly pathogenic forms by acquiring fitness advantages, such as AMR, and various virulence factors through the horizontal gene transfer (HGT)-mediated acquisition of MGEs. However, limited research on the genetic profiles of environmental E. coli, particularly from India, hinders our understanding of their transition to pathogenic forms and impedes the adoption of a comprehensive approach to address the connection between environmentally dwelling E. coli populations and human and veterinary public health. This study focuses on high-resolution genomic analysis of the environmental E. coli isolates aiming to understand the genetic similarities and differences among isolates from different environmental niches and uncover the survival strategies employed by these bacteria to thrive in their surroundings. Our approach involved molecular characterization of environmental samples using PCR-based DNA fingerprinting and subsequent WGS analysis. This multidisciplinary approach is likely to provide valuable insights into the understanding of any potential spill-over to human and animal populations and locales. Investigating these environmental isolates has significant potential for developing epidemiological strategies against transmission and understanding niche-specific evolutionary patterns.
Collapse
Affiliation(s)
- Poorvi Saini
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Viraj Bandsode
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Anuradha Singh
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | - Suresh Kumar Mendem
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| | | | - Munirul Alam
- International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Niyaz Ahmed
- Department of Biotechnology and Bioinformatics, Pathogen Biology Laboratory, University of Hyderabad, Hyderabad, Telangana State, India
| |
Collapse
|
13
|
Silva-Sánchez J, Duran-Bedolla J, Lozano L, Reyna-Flores F, Barrios-Camacho H. Molecular characterization of Escherichia coli producing extended-spectrum β-lactamase CTX-M-14 and CTX-M-28 in Mexico. Braz J Microbiol 2024; 55:309-314. [PMID: 37978118 PMCID: PMC10920525 DOI: 10.1007/s42770-023-01183-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
The spread of ESBL-producing Escherichia coli has constantly increased in both clinical and community infections. Actually, the main ESBL reported is the CTX-M family, which is widely disseminated between the Enterobacteriaceae family. The epidemiology of the CTX-M family shows the CTX-M-15 variant dominating worldwide, followed by CTX-M-14 and CTX-M-27. The specific ESBL-producing E. coli clones included mainly the sequence types ST131, ST405, and ST648. In this report, we present the molecular characterization of ESBL-producing E. coli clinical isolates from eight hospitals in Mexico. From a collection of 66 isolates, 39 (59%) were identified as blaCTX-M-14 and blaCTX-M-27 belonging to the group CTX-M-9. We identified 25 (38%) isolates, producing blaCTX-M-28 belonging to the group CTX-M-1. blaCTX-M-2 and blaTEM-55 were identified in one isolate, respectively. Fourteen isolates (21%) were positive for blaCTX-M-14 (13%) and blaCTX-M-28 (7.3%) that were selected for further analyses; the antimicrobial susceptibility showed resistance to ampicillin (> 256 µg/mL), cefotaxime (> 256 µg/mL), cefepime (> 64 µg/mL), and ceftazidime (16 µg/mL). The ResFinder analysis showed the presence of the antimicrobial resistance genes aacA4, aadA5, aac(3)lla, sul1, dfrA17, tet(A), cmlA1, and blaTEM-1B. PlasmidFinder analysis identified in all the isolates the replicons IncFIB, which were confirmed by PCR replicon typing. The MLST analysis identified isolates belonging to ST131, ST167, ST405, and ST648. The ISEcp1B genetic element was found at 250 pb upstream of blaCTX-M-14 and flanked by the IS903 genetic element at 35 pb downstream. The IS1380-like element ISEc9 family transposase was identified at 250 pb upstream of blaCTX-M-14 and flanked downstream by the IS5/IS1182 at 80 pb. Our study highlights the significant prevalence of CTX-M-14 and CTX-M-28 enzymes as the second-most common ESBL-producing E. coli among isolates in Mexican hospitals. The identification of specific sequence types in different regions provides valuable insights into the correlation between ESBL and E. coli strains. This contribution to understanding their epidemiology and potential transmission routes is crucial for developing effective strategies to mitigate the spread of ESBL-producing E. coli in healthcare settings.
Collapse
Affiliation(s)
- Jesús Silva-Sánchez
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Josefina Duran-Bedolla
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Luis Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Fernando Reyna-Flores
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico
| | - Humberto Barrios-Camacho
- Departamento de Diagnóstico Epidemiológico, Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Instituto Nacional de Salud Pública (INSP), Cuernavaca, Morelos, Mexico.
| |
Collapse
|
14
|
Garcia CR, Norfolk WA, Howard AK, Glatter AL, Beaudry MS, Mallis NA, Welton M, Glenn TC, Lipp EK, Ottesen EA. Long-term gut colonization with ESBL-producing Escherichia coli in participants without known risk factors from the southeastern United States. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.03.24302254. [PMID: 38370669 PMCID: PMC10871458 DOI: 10.1101/2024.02.03.24302254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
We evaluated gut carriage of extended spectrum beta lactamase producing Enterobacteriaceae (ESBL-E) in southeastern U.S. residents without recent in-patient healthcare exposure. Study enrollment was January 2021-February 2022 in Athens, Georgia, U.S. and included a diverse population of 505 adults plus 50 child participants (age 0-5). Based on culture-based screening of stool samples, 4.5% of 555 participants carried ESBL-Es. This is slightly higher than reported in studies conducted 2012-2015, which found carriage rates of 2.5-3.9% in healthy U.S. residents. All ESBL-E confirmed isolates (n=25) were identified as Escherichia coli. Isolates belonged to 11 sequence types, with 48% classified as ST131. Ninety six percent of ESBL-E isolates carried a blaCTX-M gene. Isolated ESBL-Es frequently carried virulence genes as well as multiple classes of antibiotic resistance genes. Long-term colonization was common, with 64% of ESBL-E positive participants testing positive when rescreened three months later. One participant yielded isolates belonging to two different E. coli sequence types that carried blaCTX-M-1 genes on near-identical plasmids, suggesting intra-gut plasmid transfer. Isolation of E. coli on media without antibiotics revealed that ESBL-E. coli typically made up a minor fraction of the overall gut E. coli population, although in some cases they were the dominant strain. ESBL-E carriage was not associated with a significantly different stool microbiome composition. However, some microbial taxa were differentially abundant in ESBL-E carriers. Together, these results suggest that a small subpopulation of US residents are long-term, asymptomatic carriers of ESBL-Es, and may serve as an important reservoir for community spread of these ESBL genes.
Collapse
Affiliation(s)
| | - William A. Norfolk
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Center for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Amanda K. Howard
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - Amanda L. Glatter
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Megan S. Beaudry
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
- Daicel Arbor Biosciences, Ann Arbor, MI, USA
| | - Nicholas A. Mallis
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Michael Welton
- Department of Epidemiology and Biostatistics, University of Georgia, Athens, GA, USA
| | - Travis C. Glenn
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | - Erin K. Lipp
- Department of Environmental Health Sciences, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
15
|
Gelalcha BD, Mohammed RI, Gelgie AE, Kerro Dego O. Molecular epidemiology and pathogenomics of extended-spectrum beta-lactamase producing- Escherichia coli and - Klebsiella pneumoniae isolates from bulk tank milk in Tennessee, USA. Front Microbiol 2023; 14:1283165. [PMID: 38029210 PMCID: PMC10658008 DOI: 10.3389/fmicb.2023.1283165] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/09/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction The rise in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in dairy cattle farms poses a risk to human health as they can spread to humans through the food chain, including raw milk. This study was designed to determine the status, antimicrobial resistance, and pathogenic potential of ESBL-producing -E. coli and -Klebsiella spp. isolates from bulk tank milk (BTM). Methods Thirty-three BTM samples were collected from 17 dairy farms and screened for ESBL-E. coli and -Klebsiella spp. on CHROMagar ESBL plates. All isolates were confirmed by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) and subjected to antimicrobial susceptibility testing and whole genome sequencing (WGS). Results Ten presumptive ESBL-producing bacteria, eight E. coli, and two K. pneumoniae were isolated. The prevalence of ESBL-E. coli and -K. pneumoniae in BTM was 21.2% and 6.1%, respectively. ESBL-E. coli were detected in 41.2% of the study farms. Seven of the ESBL-E. coli isolates were multidrug resistant (MDR). The two ESBL-producing K. pneumoniae isolates were resistant to ceftriaxone. Seven ESBL-E. coli strains carry the blaCTX-M gene, and five of them co-harbored blaTEM-1. ESBL-E. coli co-harbored blaCTX-M with other resistance genes, including qnrB19, tet(A), aadA1, aph(3'')-Ib, aph(6)-Id), floR, sul2, and chromosomal mutations (gyrA, gyrB, parC, parE, and pmrB). Most E. coli resistance genes were associated with mobile genetic elements, mainly plasmids. Six sequence types (STs) of E. coli were detected. All ESBL-E. coli were predicted to be pathogenic to humans. Four STs (three ST10 and ST69) were high-risk clones of E. coli. Up to 40 virulence markers were detected in all E. coli isolates. One of the K. pneumoniae was ST867; the other was novel strain. K. pneumoniae isolates carried three types of beta-lactamase genes (blaCTX-M, blaTEM-1 and blaSHV). The novel K. pneumoniae ST also carried a novel IncFII(K) plasmid ST. Conclusion Detection of high-risk clones of MDR ESBL-E. coli and ESBL-K. pneumoniae in BTM indicates that raw milk could be a reservoir of potentially zoonotic ESBL-E. coli and -K. pneumoniae.
Collapse
Affiliation(s)
- Benti D. Gelalcha
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Ruwaa I. Mohammed
- Department of Genome Science and Technology, The University of Tennessee, Knoxville, TN, United States
| | - Aga E. Gelgie
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| | - Oudessa Kerro Dego
- Department of Animal Science, The University of Tennessee, Knoxville, TN, United States
| |
Collapse
|
16
|
Seo KW, Do KH, Jung CM, Lee SW, Lee YJ, Lim SK, Lee WK. Comparative genetic characterisation of third-generation cephalosporin-resistant Escherichia coli isolated from integrated and conventional pig farm in Korea. J Glob Antimicrob Resist 2023; 34:74-82. [PMID: 37394034 DOI: 10.1016/j.jgar.2023.06.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/09/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
OBJECTIVES Pig-farming systems consist of integrated or conventional farms, and many antimicrobials are used to treat bacterial infections. The objective of this study was to compare characteristics of third-generation cephalosporin resistance and extended-spectrum β-lactamase (ESBL)/pAmpC β-lactamase-producing Escherichia coli between integrated and conventional farms. METHODS Third-generation cephalosporin-resistant E. coli was collected from integrated and conventional pig farms from 2021 to 2022. Polymerase chain reaction and DNA sequencing were performed for the detection of β-lactamase-encoding genes, molecular analysis, and identification of genetic relationships. To determine the transferability of β-lactamase genes, conjugation assays were conducted. RESULTS Antimicrobial resistance rates were higher in conventional farms than in integrated farms; ESBL- and pAmpC-lactamase-producing E. coli rates were higher in conventional farms (9.8%) than in integrated farms (3.4%). Fifty-two (6.5%) isolates produced ESBL/pAmpC β-lactamase genes. Isolates from integrated farms harboured CTX-15 (3 isolates), CTX-55 (9 isolates), CTX-229 (1 isolate), or CMY-2 (1 isolate) genes; isolates from conventional farms harboured CTX-1 (1 isolate), CTX-14 (6 isolates), CTX-15 (2 isolates), CTX-27 (3 isolates), CTX-55 (14 isolates), CTX-229 (1 isolate), and CMY-2 (11 isolates) genes. Of the 52 ESBL/pAmpC β-lactamase-producing E. coli isolates, class 1 integrons with 11 different gene cassette arrangements were detected in 39 (75.0%) isolates, and class 2 integrons were detected in 3 isolates. The most common sequence type in both integrated and conventional farms was ST5229, followed by ST101, and then ST10. CONCLUSION Third-generation cephalosporin-resistant patterns and molecular characteristics differed between integrated and conventional farms. Our findings suggest that continuous monitoring of third-generation cephalosporin resistance on pig farms is necessary to prevent the dissemination of resistant isolates.
Collapse
Affiliation(s)
- Kwang Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Kyung-Hyo Do
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea
| | - Chang Min Jung
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Onnuri Animals Hospital, Cheonan, Korea
| | - Seong Won Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; Boehringer Ingelheim Animal Health Korea Ltd., Seoul, Korea
| | - Young Ju Lee
- College of Veterinary Medicine & Zoonoses Research Institute, Kyungpook National University, Daegu, Korea
| | - Suk-Kyung Lim
- Animal and Plant Quarantine Agency, Ministry of Agriculture, Food and Rural Affairs, Gimcheon, Korea
| | - Wan-Kyu Lee
- College of Veterinary Medicine, Chungbuk National University, Cheongju, Korea; GutBiomeTech, Cheongju, Korea.
| |
Collapse
|
17
|
Boonyasiri A, Brinkac LM, Jauneikaite E, White RC, Greco C, Seenama C, Tangkoskul T, Nguyen K, Fouts DE, Thamlikitkul V. Characteristics and genomic epidemiology of colistin-resistant Enterobacterales from farmers, swine, and hospitalized patients in Thailand, 2014-2017. BMC Infect Dis 2023; 23:556. [PMID: 37641085 PMCID: PMC10464208 DOI: 10.1186/s12879-023-08539-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Colistin is one of the last resort therapeutic options for treating carbapenemase-producing Enterobacterales, which are resistant to a broad range of beta-lactam antibiotics. However, the increased use of colistin in clinical and livestock farming settings in Thailand and China, has led to the inevitable emergence of colistin resistance. To better understand the rise of colistin-resistant strains in each of these settings, we characterized colistin-resistant Enterobacterales isolated from farmers, swine, and hospitalized patients in Thailand. METHODS Enterobacterales were isolated from 149 stool samples or rectal swabs collected from farmers, pigs, and hospitalized patients in Thailand between November 2014-December 2017. Confirmed colistin-resistant isolates were sequenced. Genomic analyses included species identification, multilocus sequence typing, and detection of antimicrobial resistance determinants and plasmids. RESULTS The overall colistin-resistant Enterobacterales colonization rate was 26.2% (n = 39/149). The plasmid-mediated colistin-resistance gene (mcr) was detected in all 25 Escherichia coli isolates and 9 of 14 (64.3%) Klebsiella spp. isolates. Five novel mcr allelic variants were also identified: mcr-2.3, mcr-3.21, mcr-3.22, mcr-3.23, and mcr-3.24, that were only detected in E. coli and Klebsiella spp. isolates from farmed pigs. CONCLUSION Our data confirmed the presence of colistin-resistance genes in combination with extended spectrum beta-lactamase genes in bacterial isolates from farmers, swine, and patients in Thailand. Differences between the colistin-resistance mechanisms of Escherichia coli and Klebsiella pneumoniae in hospitalized patients were observed, as expected. Additionally, we identified mobile colistin-resistance mcr-1.1 genes from swine and patient isolates belonging to plasmids of the same incompatibility group. This supported the possibility that horizontal transmission of bacterial strains or plasmid-mediated colistin-resistance genes occurs between humans and swine.
Collapse
Affiliation(s)
- Adhiratha Boonyasiri
- Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
| | - Lauren M Brinkac
- J. Craig Venter Institute, Rockville, MD, 20850, USA
- Noblis, Reston, VA, 20191, USA
| | - Elita Jauneikaite
- NIHR Health Protection Research Unit in Healthcare Associated Infections and Antimicrobial Resistance, Imperial College London, London, UK
- Department of Infectious Disease Epidemiology, School of Public Health, Imperial College, London, UK
| | | | - Chris Greco
- J. Craig Venter Institute, Rockville, MD, 20850, USA
| | | | | | - Kevin Nguyen
- J. Craig Venter Institute, Rockville, MD, 20850, USA
| | | | - Visanu Thamlikitkul
- Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand.
- Division of Infectious Diseases and Tropical Medicine, Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
18
|
Whelan S, Lucey B, Finn K. Uropathogenic Escherichia coli (UPEC)-Associated Urinary Tract Infections: The Molecular Basis for Challenges to Effective Treatment. Microorganisms 2023; 11:2169. [PMID: 37764013 PMCID: PMC10537683 DOI: 10.3390/microorganisms11092169] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections, especially among women and older adults, leading to a significant global healthcare cost burden. Uropathogenic Escherichia coli (UPEC) are the most common cause and accounts for the majority of community-acquired UTIs. Infection by UPEC can cause discomfort, polyuria, and fever. More serious clinical consequences can result in urosepsis, kidney damage, and death. UPEC is a highly adaptive pathogen which presents significant treatment challenges rooted in a complex interplay of molecular factors that allow UPEC to evade host defences, persist within the urinary tract, and resist antibiotic therapy. This review discusses these factors, which include the key genes responsible for adhesion, toxin production, and iron acquisition. Additionally, it addresses antibiotic resistance mechanisms, including chromosomal gene mutations, antibiotic deactivating enzymes, drug efflux, and the role of mobile genetic elements in their dissemination. Furthermore, we provide a forward-looking analysis of emerging alternative therapies, such as phage therapy, nano-formulations, and interventions based on nanomaterials, as well as vaccines and strategies for immunomodulation. This review underscores the continued need for research into the molecular basis of pathogenesis and antimicrobial resistance in the treatment of UPEC, as well as the need for clinically guided treatment of UTIs, particularly in light of the rapid spread of multidrug resistance.
Collapse
Affiliation(s)
- Shane Whelan
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Brigid Lucey
- Department of Biological Sciences, Munster Technological University, Bishopstown, T12 P928 Cork, Ireland;
| | - Karen Finn
- Department of Analytical, Biopharmaceutical and Medical Sciences, Atlantic Technological University Galway City, Dublin Road, H91 T8NW Galway, Ireland
| |
Collapse
|
19
|
Campos-Madueno EI, Aldeia C, Sendi P, Endimiani A. Escherichia ruysiae May Serve as a Reservoir of Antibiotic Resistance Genes across Multiple Settings and Regions. Microbiol Spectr 2023; 11:e0175323. [PMID: 37318364 PMCID: PMC10434276 DOI: 10.1128/spectrum.01753-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 05/30/2023] [Indexed: 06/16/2023] Open
Abstract
Gut colonization with multidrug-resistant Enterobacterales (MDR-Ent) has reached worrisome levels worldwide. In this context, Escherichia ruysiae is a recently described species mostly found in animals. However, its spread and impact on humans is poorly understood. A stool sample from a healthy individual living in India was screened for the presence of MDR-Ent using culture-based methods. Colonies were routinely identified using matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) and phenotypically characterized by broth microdilution. Illumina and Nanopore whole-genome sequencing (WGS) platforms were implemented to generate a complete assembly. E. ruysiae genomes deposited in international databases were used for a core genome phylogenetic analysis. An extended-spectrum β-lactamase (ESBL)-producing E. coli strain (S1-IND-07-A) was isolated from the stool. WGS confirmed that S1-IND-07-A was indeed E. ruysiae, belonged to sequence type 5792 (ST5792), core genome (cg) ST89059, serotype O13/O129-:H56-like, clade IV phylogroup, and possessed five virulence factors. A copy of blaCTX-M-15 and five other antimicrobial resistance genes (ARGs) were detected in a conjugative IncB/O/K/Z plasmid. A database search identified 70 further E. ruysiae strains from 16 countries (44, 15, and 11 strains isolated from animals, the environment, and humans, respectively). The core genome phylogeny revealed five major STs: ST6467, ST8084, ST2371, ST9287, and ST5792. Three out of the seventy strains possessed important ARGs: OTP1704 (blaCTX-M-14; ST6467), SN1013-18 (blaCTX-M-15; ST5792), and CE1758 (blaCMY-2; ST7531). These strains were of human, environmental, and wild animal origin, respectively. E. ruysiae may acquire clinically important ARGs and transmit them to other species. Due to its zoonotic potential, further efforts are needed to improve routine detection and surveillance across One Health settings. IMPORTANCE Escherichia ruysiae is a recently described species of the cryptic clades III and IV of the genus Escherichia and is commonly found in animals and the environment. This work highlights the zoonotic potential of E. ruysiae, as it has been shown to colonize the human intestinal tract. Importantly, E. ruysiae may be associated with conjugative plasmids carrying clinically relevant antibiotic resistance genes. Therefore, it is important to closely monitor this species. Overall, this study highlights the need for improved identification of Escherichia species and continued surveillance of zoonotic pathogens in One Health settings.
Collapse
Affiliation(s)
- Edgar I. Campos-Madueno
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
- Graduate School of Cellular and Biomedical Sciences, University of Bern, Bern, Switzerland
| | - Claudia Aldeia
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Parham Sendi
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| | - Andrea Endimiani
- Institute for Infectious Diseases (IFIK), University of Bern, Bern, Switzerland
| |
Collapse
|
20
|
Delago J, Miller EA, Flores-Figueroa C, Munoz-Aguayo J, Cardona C, Smith AH, Johnson TJ. Survey of clinical and commensal Escherichia coli from commercial broilers and turkeys, with emphasis on high-risk clones using APECTyper. Poult Sci 2023; 102:102712. [PMID: 37156077 DOI: 10.1016/j.psj.2023.102712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/09/2023] [Indexed: 05/10/2023] Open
Abstract
Molecular characterization of avian pathogenic Escherichia coli (APEC) is challenging due to the complex nature of its associated disease, colibacillosis, in poultry. Numerous efforts have been made toward defining APEC, and it is becoming clear that certain clonal backgrounds are predictive of an avian E. coli isolate's virulence potential. Thus, APEC can be further differentiated as high-risk APEC based upon their clonal background's virulence potential. However, less clear is the degree of overlap between clinical isolates of differing bird type, and between clinical and gastrointestinal isolates. This study aimed to determine genomic similarities and differences between such populations, comparing commercial broiler vs. turkey isolates, and clinical vs. gastrointestinal isolates. Differences were observed in Clermont phylogenetic groups between isolate populations, with B2 as the dominant group in turkey clinical isolates and G as the dominant group in broiler clinical isolates. Nearly all clinical isolates were classified as APEC using a traditional gene-based typing scheme, whereas 53.4% and 44.1% of broiler and turkey gastrointestinal isolates were classified as APEC, respectively. High-risk APEC were identified among 31.0% and 46.9% of broiler and turkey clinical isolates, compared with 5.7% and 2.9% of broiler and turkey gastrointestinal isolates. As found in previous studies, no specific known virulence or fitness gene sets were identified which universally differentiate between clinical and gastrointestinal isolates. This study further demonstrates the utility of a hybrid APEC typing approach, considering both plasmid content and clonal background, for the identification of dominant and highly virulent APEC clones in poultry production.
Collapse
Affiliation(s)
- Jodi Delago
- Arm and Hammer Animal and Food Production, Waukesha, WI, 53186, USA
| | - Elizabeth A Miller
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | | | - Carol Cardona
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA
| | | | - Timothy J Johnson
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN, USA; Mid-Central Research and Outreach Center, University of Minnesota, Willmar, MN, USA.
| |
Collapse
|
21
|
Al-Trad EI, Che Hamzah AM, Puah SM, Chua KH, Hanifah MZ, Ayub Q, Palittapongarnpim P, Kwong SM, Chew CH, Yeo CC. Complete Genome Sequence and Analysis of a ST573 Multidrug-Resistant Methicillin-Resistant Staphylococcus aureus SauR3 Clinical Isolate from Terengganu, Malaysia. Pathogens 2023; 12:pathogens12030502. [PMID: 36986424 PMCID: PMC10053073 DOI: 10.3390/pathogens12030502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/17/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a World Health Organization-listed priority pathogen. Scarce genomic data are available for MRSA isolates from Malaysia. Here, we present the complete genome sequence of a multidrug-resistant MRSA strain SauR3, isolated from the blood of a 6-year-old patient hospitalized in Terengganu, Malaysia, in 2016. S. aureus SauR3 was resistant to five antimicrobial classes comprising nine antibiotics. The genome was sequenced on the Illumina and Oxford Nanopore platforms and hybrid assembly was performed to obtain its complete genome sequence. The SauR3 genome consists of a circular chromosome of 2,800,017 bp and three plasmids designated pSauR3-1 (42,928 bp), pSauR3-2 (3011 bp), and pSauR3-3 (2473 bp). SauR3 belongs to sequence type 573 (ST573), a rarely reported sequence type of the staphylococcal clonal complex 1 (CC1) lineage, and harbors a variant of the staphylococcal cassette chromosome mec (SCCmec) type V (5C2&5) element which also contains the aac(6')-aph(2″) aminoglycoside-resistance genes. pSauR3-1 harbors several antibiotic resistance genes in a 14,095 bp genomic island (GI), previously reported in the chromosome of other staphylococci. pSauR3-2 is cryptic, whereas pSauR3-3 encodes the ermC gene that mediates inducible resistance to macrolide-lincosamide-streptogramin B (iMLSB). The SauR3 genome can potentially be used as a reference genome for other ST573 isolates.
Collapse
Affiliation(s)
- Esra'a I Al-Trad
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| | | | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Muhamad Zarul Hanifah
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Qasim Ayub
- Monash University Malaysia Genomics Facility, School of Science, Monash University, Bandar Sunway 47500, Malaysia
| | - Prasit Palittapongarnpim
- Pornchai Matangkasombut Center for Microbial Genomics (CENMIG), Mahidol University, Bangkok 10400, Thailand
| | - Stephen M Kwong
- Infectious Diseases & Microbiology, School of Medicine, Western Sydney University, Campbelltown 2560, Australia
| | - Ching Hoong Chew
- Faculty of Health Sciences, Universiti Sultan Zainal Abidin, Kuala Nerus 21300, Malaysia
| | - Chew Chieng Yeo
- Centre for Research in Infectious Diseases and Biotechnology (CeRIDB), Faculty of Medicine, Universiti Sultan Zainal Abidin, Kuala Terengganu 20400, Malaysia
| |
Collapse
|
22
|
Carbapenem Resistance in Gram-Negative Bacteria: A Hospital-Based Study in Egypt. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59020285. [PMID: 36837486 PMCID: PMC9961035 DOI: 10.3390/medicina59020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/23/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023]
Abstract
Background and Objectives: The global spread of carbapenem resistance and the resulting increase in mortality forced the World Health Organization (WHO) to claim carbapenem-resistant enterobacteriaceae (CRE) as global priority pathogens. Our study aimed to determine the prevalence of carbapenemase-encoding genes and major plasmid incompatibility groups among Gram-negative hospital-based isolates in Egypt. Material and Methods: This cross-sectional study was carried out at Mansoura University Hospitals over 12 months, from January to December 2019. All the isolates were tested for carbapenem resistance. The selected isolates were screened by conventional polymerase chain reaction (PCR) for the presence of carbapenemase genes, namely blaKPC, blaIMP, blaVIM, and blaNDM-1. PCR-based plasmid replicon typing was performed using the commercial PBRT kit. Results: Out of 150 isolates, only 30 (20.0%) demonstrated carbapenem resistance. Klebsiella pneumoniae was the most resistant of all isolated bacteria, and blaNDM was the predominant carbapenemases gene, while the most prevalent plasmid replicons were the F replicon combination (FIA, FIB, and FII) and A/C. Plasmids were detected only in Klebsiella pneumoniae, Escherichia coli, Enterobacter cloacae, and Pseudomonas aeruginosa. Remarkably, we found a statistically significant association between carbapenemase genes and plasmid replicons, including blaNDM, IncA/C, and IncX. Conclusions: Our study demonstrated an alarming rise of plasmid-mediated carbapenem-resistant bacteria in our locality. The coexistence of resistance genes and plasmids highlights the importance of a targeted antibiotic surveillance program and the development of alternative therapeutic options at the local and international levels. Based on our results, we suggest a large-scale study with more Enterobacteriaceae isolates, testing other carbapenemase-encoding genes, and comparing the replicon typing method with other plasmid detection methods. We also recommend a national action plan to control the irrational use of antibiotics in Egypt.
Collapse
|
23
|
Wagner TM, Howden BP, Sundsfjord A, Hegstad K. Transiently silent acquired antimicrobial resistance: an emerging challenge in susceptibility testing. J Antimicrob Chemother 2023; 78:586-598. [PMID: 36719135 PMCID: PMC9978586 DOI: 10.1093/jac/dkad024] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Acquisition and expression of antimicrobial resistance (AMR) mechanisms in bacteria are often associated with a fitness cost. Thus, evolutionary adaptation and fitness cost compensation may support the advance of subpopulations with a silent resistance phenotype when the antibiotic selection pressure is absent. However, reports are emerging on the transient nature of silent acquired AMR, describing genetic alterations that can change the expression of these determinants to a clinically relevant level of resistance, and the association with breakthrough infections causing treatment failures. This phenomenon of transiently silent acquired AMR (tsaAMR) is likely to increase, considering the overall expansion of acquired AMR in bacterial pathogens. Moreover, the augmented use of genotypic methods in combination with conventional phenotypic antimicrobial susceptibility testing (AST) will increasingly enable the detection of genotype and phenotype discrepancy. This review defines tsaAMR as acquired antimicrobial resistance genes with a corresponding phenotype within the wild-type distribution or below the clinical breakpoint for susceptibility for which genetic alterations can mediate expression to a clinically relevant level of resistance. References to in vivo resistance development and therapeutic failures caused by selected resistant subpopulations of tsaAMR in Gram-positive and Gram-negative pathogens are given. We also describe the underlying molecular mechanisms, including alterations in the expression, reading frame or copy number of AMR determinants, and discuss the clinical relevance concerning challenges for conventional AST.
Collapse
Affiliation(s)
- Theresa Maria Wagner
- Research Group for Host-Microbe Interactions, Department of Medical Biology, Faculty of Health Sciences, UiT the Arctic University of Norway, Tromsø, Norway
| | - Benjamin Peter Howden
- Microbiological Diagnostic Unit Public Health Laboratory, The Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | | | | |
Collapse
|
24
|
Algarni S, Han J, Gudeta DD, Khajanchi BK, Ricke SC, Kwon YM, Rhoads DD, Foley SL. In silico analyses of diversity and dissemination of antimicrobial resistance genes and mobile genetics elements, for plasmids of enteric pathogens. Front Microbiol 2023; 13:1095128. [PMID: 36777021 PMCID: PMC9908598 DOI: 10.3389/fmicb.2022.1095128] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/22/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction The antimicrobial resistance (AMR) mobilome plays a key role in the dissemination of resistance genes encoded by mobile genetics elements (MGEs) including plasmids, transposons (Tns), and insertion sequences (ISs). These MGEs contribute to the dissemination of multidrug resistance (MDR) in enteric bacterial pathogens which have been considered as a global public health risk. Methods To further understand the diversity and distribution of AMR genes and MGEs across different plasmid types, we utilized multiple sequence-based computational approaches to evaluate AMR-associated plasmid genetics. A collection of 1,309 complete plasmid sequences from Gammaproteobacterial species, including 100 plasmids from each of the following 14 incompatibility (Inc) types: A/C, BO, FIA, FIB, FIC, FIIA, HI1, HI2, I1, K, M, N, P except W, where only 9 sequences were available, was extracted from the National Center for Biotechnology Information (NCBI) GenBank database using BLAST tools. The extracted FASTA files were analyzed using the AMRFinderPlus web-based tools to detect antimicrobial, disinfectant, biocide, and heavy metal resistance genes and ISFinder to identify IS/Tn MGEs within the plasmid sequences. Results and Discussion In silico prediction based on plasmid replicon types showed that the resistance genes were diverse among plasmids, yet multiple genes were widely distributed across the plasmids from enteric bacterial species. These findings provide insights into the diversity of resistance genes and that MGEs mediate potential transmission of these genes across multiple plasmid replicon types. This notion was supported by the observation that many IS/Tn MGEs and resistance genes known to be associated with them were common across multiple different plasmid types. Our results provide critical insights about how the diverse population of resistance genes that are carried by the different plasmid types can allow for the dissemination of AMR across enteric bacteria. The results also highlight the value of computational-based approaches and in silico analyses for the assessment of AMR and MGEs, which are important elements of molecular epidemiology and public health outcomes.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Dereje D. Gudeta
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Bijay K. Khajanchi
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
| | - Steven C. Ricke
- Meat Science & Animal Biologics Discovery Program and Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Young Min Kwon
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Douglas D. Rhoads
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven L. Foley
- Division of Microbiology, National Center for Toxicological Research, Food and Drug Administration, Jefferson, AR, United States
- Cell and Molecular Biology Program, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
25
|
Seo KW, Do KH, Shin MK, Lee WK, Lee WK. Comparative genetic characterization of CMY-2-type beta-lactamase producing pathogenic Escherichia coli isolated from humans and pigs suffering from diarrhea in Korea. Ann Clin Microbiol Antimicrob 2023; 22:7. [PMID: 36658572 PMCID: PMC9854124 DOI: 10.1186/s12941-023-00559-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Pathogenic Escherichia coli are an important cause of bacterial infections in both humans and pigs and many of antimicrobials are used for the treatment of E. coli infection. The objective of this study was to investigate the characteristics and relationship between humans and pigs regarding third-generation cephalosporin resistance and CMY-2-producing E. coli in Korea. RESULTS All 103 third-generation cephalosporin-resistant E. coli isolates showed multidrug resistance. Also, except for β-lactam/β-lactamase inhibitor combinations, all antimicrobials resistant rates were higher in pigs than in humans. A total of 36 isolates (humans: five isolates; pigs: 31 isolates) were positive for the CMY-2-encoding genes and thirty-two (88.9%) isolates detected class 1 integrons with 10 different gene cassette arrangements, and only 1 isolate detected a class 2 integron. The most common virulence genes in pigs were LT (71.0%), F18 (51.6%), and STb (51.6%), while stx2 (80.0%) was the most frequently detected gene in humans. Stx2 gene was also detected in pigs (6.5%). Interestingly, 36 CMY-2-producing E. coli isolates showed a high diversity of sequence types (ST), and ST88 was present in E. coli from both pigs (11 isolates) and humans (one isolate). CONCLUSION Our findings suggest that a critical need for comprehensive surveillance of third-generation cephalosporin resistance is necessary to preserve the usefulness of third-generation cephalosporins in both humans and pigs.
Collapse
Affiliation(s)
- Kwang-Won Seo
- College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Kyung-Hyo Do
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Wan-Kyu Lee
- Laboratory of Veterinary Bacteriology and Infectious Diseases, College of Veterinary Medicine, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
26
|
Tohmaz M, Askari Badouei M, Kalateh Rahmani H, Hashemi Tabar G. Antimicrobial resistance, virulence associated genes and phylogenetic background versus plasmid replicon types: the possible associations in avian pathogenic Escherichia coli (APEC). BMC Vet Res 2022; 18:421. [PMID: 36447231 PMCID: PMC9710092 DOI: 10.1186/s12917-022-03496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 10/27/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in bacterial isolates from food producing animals not only challenges the preventive and therapeutic strategies in veterinary medicine, but also threatens public health. Genetic elements placed on both chromosome and plasmids could be involved in AMR. In the present study, the associations of genomic backbone and plasmids with AMR were evaluated. We also provided some primary evidences that which genetic lineages potentially host certain groups of plasmids. RESULTS In the current study, 72 avian pathogenic Escherichia coli (APEC) strains were examined. Isolates resistant to tetracycline and trimethoprim-sulfamethoxazole (87.5%; each), and harboring blaTEM (61.1%) were dominant. Moreover, phylogroup D was the most prevalent phylogroup in total (23.6%), and among multidrug-resistant (MDR) isolates (14/63). The most prevalent Inc-types were also defined as follows: IncP (65.2%), IncI1 (58.3%), and IncF group (54.1%). Significant associations among phylogroups and AMR were observed such as group C to neomycin (p = 0.002), gentamicin (p = 0.017) and florfenicol (p = 0.036). Furthermore, group D was associated with blaCTX. In terms of associations among Inc-types and AMR, resistance to aminoglycoside antibiotics was considerably linked with IncP (p = 0.012), IncI1 (p = 0.038) and IncA/C (p = 0.005). The blaTEM and blaCTX genes presence were connected with IncI1 (p = 0.003) and IncFIC (p = 0.013), respectively. It was also shown that members of the D phylogroup frequently occured in replicon types FIC (8/20), P (13/47), I1 (13/42), HI2 (5/14) and L/M (3/3). CONCLUSIONS Accorging to the results, it seems that group D strains have a great potential to host a variety of plasmids (Inc-types) carrying different AMR genes. Thus, based on the results of the current study, phyogroup D could be a potential challenge in dealing with AMR in poultry. There were more strong correlations among Inc-types and AMR compared to phylotypes and AMR. It is suggested that in epidemiological studies on AMR both genomic backbone and major plasmid types should be investigated.
Collapse
Affiliation(s)
- Maad Tohmaz
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Mahdi Askari Badouei
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hamideh Kalateh Rahmani
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Gholamreza Hashemi Tabar
- grid.411301.60000 0001 0666 1211Department of Pathobiology, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| |
Collapse
|
27
|
Seo K, Do KH, Lee WK. Molecular characteristics of fluoroquinolone-resistant Escherichia coli isolated from suckling piglets with colibacillosis. BMC Microbiol 2022; 22:216. [PMID: 36109712 PMCID: PMC9476276 DOI: 10.1186/s12866-022-02632-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/06/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Objectives
Colibacillosis is a frequent enteric disease in the pig industry that causes significant economic losses. The objective of this study was to investigate the molecular characteristics of fluoroquinolone (FQ)-resistant E. coli isolates from suckling piglets with colibacillosis.
Results
A total of 43 FQ-resistant E. coli isolates were tested in this study and all isolates showed multi-drug resistance (MDR) and mutations in quinolone resistance determining regions (gyrA or parC). Especially, FQ-resistant E. coli isolates with double mutations in both gyrA and parC were shown a high FQs minimum inhibitory concentration (≥ 64 mg/L for ciprofloxacin, ≥ 128 mg/L for enrofloxacin, and ≥ 256 mg/L for norfloxacin). Among 43 FQ-resistant E. coli isolates, 12 (27.9%) were showed plasmid-mediated quinolone resistance (PMQR) positive E. coli. Prevalence of PMQR gene, aac(6’)-Ib-cr, qnrS, and qepA, were identified in 7, 3, and 2 E. coli isolates, respectively. We identified the following in PMQR-positive E. coli isolates: the tetracycline resistance genes tetD (12 isolates, 100.0%), tetE (12 isolates, 100.0%), tetA (11 isolates, 91.7%), and tetB (1 isolate, 8.3%); β-lactamases–encoding blaCMY-2 (10 isolates, 83.3%), blaTEM-1 (7 isolates, 58.3%), blaOXA-1 (7 isolates, 58.3%), blaSHV-1 (3 isolates, 16.7%), and blaAAC-2 (1 isolate, 8.3%); and the chloramphenicol resistance genes (10 isolates, 83.3%); the sulfonamide resistance genes sul1 (9 isolates, 75.0%) and sul2 (10 isolates, 83.3%); the aminoglycoside modifying enzyme gene aac(3)-II (2 isolates, 16.7%). The F4 (7 isolates, 58.3%), LT:STb:EAST1 (5 isolates, 41.7%), and paa (3 isolates, 25.0%) were most common fimbrial antigen, combinations of toxin genes, and non-fimbrial adhesins genes, respectively. All PMQR-positive E. coli carried class I integrons but only 4 isolates carried the gene cassette. The most prevalent plasmid replicon was FIB (9 isolates, 75.0%), followed by FIC, HI1, and N (7 isolates, 58.3%), respectively.
Conclusions
Because FQ-resistant E. coli can serve as a reservoir of FQ resistant genetic determinants that can be transferred to pathogenic bacteria in humans or pigs, this represents a public health hazard.
Collapse
|
28
|
Gil‐Molino M, Gonçalves P, Risco D, Martín‐Cano FE, García A, Rey J, Fernández‐Llario P, Quesada A. Dissemination of antimicrobial-resistant isolates of Salmonella spp. in wild boars and its relationship with management practices. Transbound Emerg Dis 2022; 69:e1488-e1502. [PMID: 35182450 PMCID: PMC9790216 DOI: 10.1111/tbed.14480] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 02/08/2022] [Accepted: 02/10/2022] [Indexed: 12/30/2022]
Abstract
Antimicrobial resistance (AMR) is a global concern and controlling its spread is critical for the effectiveness of antibiotics. Members of the genus Salmonella are broadly distributed, and wild boar may play an important role in its circulation between peri-urban areas and the environment, due to its frequent interactions both with livestock or human garbage. As the population of these animals is rising due to management on certain hunting estates or the absence of natural predators, the aim of the present work is to identify the mechanisms of AMR present and/or expressed in Salmonella spp. from wild boar populations and to determine the possible role of management-related factors applied to different game estates located in central Spain. The detection of Salmonella spp. was carried out in 121 dead wild boar from 24 game estates, and antimicrobial resistance traits were determined by antibiotic susceptibility testing and screening for their genetic determinants. The effects of feeding supplementation, the proximity of livestock, the existence of a surrounding fence and the density of wild boar on the AMR of the isolates were evaluated. The predominant subspecies and serovar found were S. enterica subsp. enterica (n = 69) and S. choleraesuis (n = 33), respectively. The other subspecies found were S. enterica subsp. diarizonae, S. enterica subsp. salamae and S. enterica subsp. houtenae. AMR was common among isolates (75.2%) and 15.7% showed multi drug resistance (MDR). Resistance to sulphonamides was the most frequent (85.7%), as well as sul1 which was the AMR determinant most commonly found. Plasmids appeared in 38.8% of the isolates, with IncHI1 being the replicon detected with the highest prevalence. The AMR of the isolates increased when the animals were raised with feeding supplementation and enclosed by fences around the estates.
Collapse
Affiliation(s)
- María Gil‐Molino
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | - Pilar Gonçalves
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
| | - David Risco
- Innovación en Gestión y Conservación de Ingulados S.L. CáceresCáceresSpain
- Neobeitar S.L. CáceresCáceresSpain
| | | | | | - Joaquín Rey
- Facultad de Veterinaria, Unidad de Patología InfecciosaUniversidad de ExtremaduraCáceresSpain
| | | | - Alberto Quesada
- Facultad de Veterinaria, Departamento de BioquímicaBiología Molecular y Genética, Universidad de ExtremaduraCáceresSpain
- INBIO G+CUniversidad de ExtremaduraCáceresSpain
| |
Collapse
|
29
|
Harbaoui S, Ferjani S, Abbassi M, Saidani M, Gargueh T, Ferjani M, Hammi Y, Boutiba‐Ben Boubaker I. Genetic heterogeneity and predominance of
bla
CTX‐M
‐15
in cefotaxime‐resistant
Enterobacteriaceae
isolates colonizing hospitalized children in Tunisia. Lett Appl Microbiol 2022; 75:1460-1474. [DOI: 10.1111/lam.13812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/25/2022] [Accepted: 08/08/2022] [Indexed: 11/28/2022]
Affiliation(s)
- S. Harbaoui
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
| | - S. Ferjani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
| | - M.S. Abbassi
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- Université de Tunis El Manar, Institut de la recherche vétérinaire de Tunisie Tunis Tunisie
| | - M. Saidani
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- CHU Charles Nicolle Service de Microbiologie 1006 Tunis Tunisie
| | - T. Gargueh
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - M. Ferjani
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - Y. Hammi
- CHU Charles Nicolle Service de Pédiatrie 1006 Tunis Tunisie
| | - I. Boutiba‐Ben Boubaker
- Université de Tunis El Manar, Faculté de Médecine de Tunis, LR99ES09 Laboratoire de recherche « Résistance aux antimicrobiens » 1006 Tunis Tunisie
- CHU Charles Nicolle Service de Microbiologie 1006 Tunis Tunisie
| |
Collapse
|
30
|
Tate H, Hsu CH, Chen JC, Han J, Foley SL, Folster JP, Francois Watkins LK, Reynolds J, Tillman GE, Nyirabahizi E, Zhao S. Genomic Diversity, Antimicrobial Resistance, and Virulence Gene Profiles of Salmonella Serovar Kentucky Isolated from Humans, Food, and Animal Ceca Content Sources in the United States. Foodborne Pathog Dis 2022; 19:509-521. [PMID: 35960531 DOI: 10.1089/fpd.2022.0005] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Salmonella serovar Kentucky is frequently isolated from chickens and dairy cattle, but recovery from humans is comparatively low based on the U.S. National Antimicrobial Resistance Monitoring System (NARMS) reports. We aimed to better describe the genetic diversity, antimicrobial resistance, and virulence determinants of Salmonella Kentucky isolates from humans, food animal ceca, retail meat and poultry products, imported foods and food products, and other samples. We analyzed the genomes of 774 Salmonella Kentucky isolates and found that 63% (54/86) of human isolates were sequence type (ST)198, 33% (29/86) were ST152, and 3.5% (3/86) were ST314. Ninety-one percent (570/629) of cecal isolates and retail meat and poultry isolates were ST152 or ST152-like (one allele difference), and 9.2% (58/629) were ST198. Isolates from imported food were mostly ST198 (60%, 22/37) and ST314 (29.7%, 11/37). ST198 isolates clustered into two main lineages. Clade ST198.2 comprised almost entirely isolates from humans and imported foods, all containing triple mutations in the quinolone resistance-determining region (QRDR) that confer resistance to fluoroquinolones. Clade ST198.1 contained isolates from humans, ceca, retail meat and poultry products, and imported foods that largely lacked QRDR mutations. ST152 isolates from cattle had a lineage (Clade 2) distinct from ST152 isolates from chicken (Clade 4), and half of ST152 human isolates clustered within two other clades (Clades 1 and 3), largely distinct from Clades 2 and 4. Although clinical illness associated with Salmonella Kentucky is low, ST198 appears to account for most human infections in the Unites States but is uncommon among ceca of domestic food animals and retail meat and poultry products. These findings, combined with human exposure data, suggest that fluoroquinolone-resistant ST198 infections may be linked to the consumption of food products that are imported or consumed while traveling. We also found unique differences in the composition of virulence genes and antimicrobial resistance genes among the clades, which may provide clues to the host specificity and pathogenicity of Salmonella Kentucky lineages.
Collapse
Affiliation(s)
- Heather Tate
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Jessica C Chen
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jing Han
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Steven L Foley
- National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas, USA
| | - Jason P Folster
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Louise K Francois Watkins
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jared Reynolds
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Glenn E Tillman
- Food Safety and Inspection Service, U.S. Department of Agriculture, Athens, Georgia, USA
| | - Epiphanie Nyirabahizi
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| | - Shaohua Zhao
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, Maryland, USA
| |
Collapse
|
31
|
Spread and Molecular Characteristics of
Enterobacteriaceae
Carrying
fosA
-Like Genes from Farms in China. Microbiol Spectr 2022; 10:e0054522. [PMID: 35852324 PMCID: PMC9431306 DOI: 10.1128/spectrum.00545-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the widespread and complex genetic environments of
fosA
-like genes in animal-derived strains in China. The
fosA7.5
gene was identified in this study and was found to confer resistance to fosfomycin.
Collapse
|
32
|
Johnson TJ, Miller EA, Flores-Figueroa C, Munoz-Aguayo J, Cardona C, Fransen K, Lighty M, Gonder E, Nezworski J, Haag A, Behl M, Kromm M, Wileman B, Studniski M, Singer RS. Refining the definition of the avian pathogenic Escherichia coli (APEC) pathotype through inclusion of high-risk clonal groups. Poult Sci 2022; 101:102009. [PMID: 35952599 PMCID: PMC9385700 DOI: 10.1016/j.psj.2022.102009] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/30/2022] Open
Affiliation(s)
- Timothy J Johnson
- University of Minnesota, Mid-Central Research and Outreach Center, Willmar, MN, USA; University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA.
| | - Elizabeth A Miller
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA
| | | | | | - Carol Cardona
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA
| | | | | | | | | | - Adam Haag
- Pilgrims Pride, Sauk Rapids, MN, USA
| | | | | | | | | | - Randall S Singer
- University of Minnesota, Department of Veterinary and Biomedical Sciences, Saint Paul, MN, USA
| |
Collapse
|
33
|
Tewari R, Ganaie F, Venugopal N, Mitra S, Shome R, Shome BR. Occurrence and characterization of genetic determinants of β-lactam-resistance in Escherichia coli clinical isolates. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2022; 100:105257. [PMID: 35219866 DOI: 10.1016/j.meegid.2022.105257] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/15/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
β-lactamase mediated resistance in Escherichia coli is a significant problem that requires immediate attention. Herein, we aim to characterize and understand the dynamics of the genetic determinants of β-lactam resistance (i.e. ESBL, AmpC, and MBL) in E. coli. Out of 203 E. coli isolates, genetic determinants of β-lactam resistance were identified in 50% (n = 101) of isolates. ESBL, AmpC, and MBL resistance determinants were detected in 78%, 40%, and 18% of isolates, respectively with blaCTX-M group 4 (48%), blaCMY (40%), and blaSIM (33%) as the most prevalent β-lactam resistance genes. Among these isolates, 45% harbored plasmid replicon types, with L/M (40%) and Y (33%) as the most dominant replicon types. Integrons were detected in 40% of such isolates, with Class-1 and Class-3 representing 62% and 55%, respectively. Overall, we observed high rate of genetic determinants of β-lactam-resistance in E. coli isolates recovered from patients in clinical settings. The co-occurrence of antimicrobial resistance genes and mobile genetic elements in a high percentage of isolates is a major concern and relates to complex resistance mechanisms. To combat the serious threat of antimicrobial resistance, it is imperative to develop strategies for robust surveillance and understand the molecular basis of resistance acquisition and transmission.
Collapse
Affiliation(s)
- Rituparna Tewari
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India; Department of Microbiology, Jain University, Bangalore, India.
| | - Feroze Ganaie
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India; Department of Medicine, Division of Pulmonary/ Allergy/Critical Care, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nimita Venugopal
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India; Department of Microbiology, Jain University, Bangalore, India
| | - Susweta Mitra
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India; School of Basic and Applied Sciences, Dayananda Sagar University, Bangalore, India
| | - Rajeswari Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India
| | - Bibek R Shome
- ICAR-National Institute of Veterinary Epidemiology and Disease Informatics, Bangalore, India.
| |
Collapse
|
34
|
Ji X, Liu J, Liang B, Sun S, Zhu L, Zhou W, Guo X, Sun Y. Molecular Characteristics of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli Strains Isolated from Diseased Captive Giant Pandas ( Ailuropoda melanoleuca) in China. Microb Drug Resist 2022; 28:750-757. [PMID: 35639420 DOI: 10.1089/mdr.2021.0298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Objectives: To characterize the antimicrobial resistance and virulence of pathogenic Escherichia coli isolated from diseased captive giant pandas. Methods: Antimicrobial susceptibility and minimum inhibitory concentration (MIC) were determined by the broth dilution method. Whole-genome sequencing was used to characterize the phylogeny, serotype, virulence, resistome, plasmids, and genetic structures of the cefotaxime (CTX)-M genes. Results: Four extended-spectrum beta-lactamase (ESBL)-producing E. coli strains were identified and the MICs against 11 antibiotics in vitro were determined. All ESBL-producing E. coli strains were resistant to more than eight antibiotics and carried the blaCTX-M-55 or blaCTX-M-105 gene in different sizes of replicon-type plasmids (pAMSH1-IncHI2, 257 kb; pAMPD2-IncFII, 89 kb; pAMPD02-IncFIB, 129 kb; and pAMSC4-IncN, 47 kb). Distinct insertional sequences and transposases were identified up-/downstream of blaCTX-Ms, including IS26, ISEcp1, ISKpn72, IS903B, and Tn2. These strains also possessed at least three virulence genes of pathogenic E. coli and originated in four different evolutionary branches. One strain carried the complete locus of the enterocyte effacement pathogenicity island, but lacked the virulence genes stx and bfpA, indicating atypical enteropathogenic E. coli, whereas the other strains were considered to be extraintestinal pathogenic E. coli. Conclusions: The emergence of ESBL-producing pathogenic E. coli strains from diseased captive giant pandas warrants greater attention. The findings of this study will help to prevent the spread of these strains among captive giant pandas as well as from wild animals to humans.
Collapse
Affiliation(s)
- Xue Ji
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Jun Liu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Bing Liang
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Shiwen Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Lingwei Zhu
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Wei Zhou
- Animal Disease Control Center of Erdos, Erdos, China
| | - Xuejun Guo
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| | - Yang Sun
- Changchun Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Changchun, China.,Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun, China
| |
Collapse
|
35
|
Awawdeh L, Turni C, Mollinger JL, Henning J, Cobbold RN, Trott DJ, Gibson JS. Antimicrobial susceptibility, plasmid replicon typing, phylogenetic grouping, and virulence potential of avian pathogenic and faecal Escherichia coli isolated from meat chickens in Australia. Avian Pathol 2022; 51:349-360. [PMID: 35417283 DOI: 10.1080/03079457.2022.2065969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Globally, avian colibacillosis is a leading cause of morbidity and mortality in poultry, associated with economic losses and welfare problems. Here, clinical avian pathogenic E. coli isolates (CEC; n=50) and faecal E. coli isolates from healthy (FEC; n=187) Australian meat chickens collected between 2006 and 2014 were subjected to antimicrobial susceptibility testing, phylogenetic grouping, plasmid replicon (PR) typing, multilocus sequence typing, and virulence gene (VG) profiling. Extended-spectrum cephalosporin (ESC)- and fluoroquinolone (FQ)-resistant E. coli isolates underwent further genetic characterisation. Significant proportions of CEC and FEC were respectively susceptible (13/50 [26%]; 48/187 [26%],) or MDR (9/50 [18%]; 26/187 [14%]) to 20 tested antimicrobials. Phylogenetic groups A and C, and PR types IncFIB and IncFrep were most commonly represented. Five tested CEC-associated VGs were more prevalent in CEC (≥90%) compared to FEC isolates (≤58%). Some isolates (CEC n=3; FEC n=7) were resistant to ESCs and/or FQs and possessed signature mutations in chromosomal FQ target genes and plasmid-mediated qnrS, blaCMY-2, and blaDHA-1 genes. Sequence type 354 (n=4), associated with extraintestinal infections in a broad range of hosts, was prevalent among the ESC- and/or FQ-resistant FEC.This study confirmed the existence of a small reservoir of ESC- and FQ-resistant E. coli in Australian commercial meat chickens despite the absence of use in the industry of these drug classes. Otherwise, a diversity of VGs and PR types in both faecal and clinical E. coli populations were identified. It's hypothesised that the source of ESC- and FQ-resistant E. coli may be external to poultry production facilities.Highlights1. Low-level resistance to older and newer generation antimicrobial drugs detected2. The most common sequence type (ST) associated with FQ resistance was ST354 (4/10)3. A small proportion of CEC (n=3) and FEC (n=7) were resistant to ESCs and/or FQs.
Collapse
Affiliation(s)
- L Awawdeh
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia.,Eastern Institute of Technology, Hawke's Bay, 501 Gloucester Street, Taradale, Napier 4112, New Zealand
| | - C Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, Queensland 4102, Austalia
| | - J L Mollinger
- Department of Agriculture and Fisheries, Health & Food Science Precinct, Coopers Plains, Queensland 4108, Australia
| | - J Henning
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - R N Cobbold
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - D J Trott
- Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, 5371, Australia
| | - J S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
36
|
Lee KY, Atwill ER, Pitesky M, Huang A, Lavelle K, Rickard M, Shafii M, Hung-Fan M, Li X. Antimicrobial Resistance Profiles of Non-typhoidal Salmonella From Retail Meat Products in California, 2018. Front Microbiol 2022; 13:835699. [PMID: 35369434 PMCID: PMC8966841 DOI: 10.3389/fmicb.2022.835699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Non-typhoidal Salmonella remains a leading cause of foodborne illness in the United States, with food animal products serving as a key conduit for transmission. The emergence of antimicrobial resistance (AMR) poses an additional public health concern warranting better understanding of its epidemiology. In this study, 958 retail meat samples collected from January to December 2018 in California were tested for Salmonella. From multivariable logistic regression, there was a 6.47 (90% CI 2.29–18.27), 3.81 (90% CI 1.29–11.27), and 3.12 (90% CI 1.03–9.45) higher odds of contamination in samples purchased in the fall, spring, and summer than in winter months, respectively, and a 3.70 (90% CI 1.05–13.07) higher odds in ground turkey compared to pork samples. Fourteen distinct serotypes and 17 multilocus sequence types were identified among the 43 isolates recovered, with S. Kentucky (25.58%), S. Reading (18.60%), S. Infantis (11.63%), and S. Typhimurium (9.30%) comprising the top serotypes. High prevalence of resistance was observed in retail chicken isolates for streptomycin (12/23, 52.17%) and tetracycline (12/23, 52.17%), in ground turkey isolates for ampicillin (8/15, 53.34%), and in ground beef isolates for nalidixic acid (2/3, 66.67%). Fourteen (32.56%) were susceptible to all antimicrobials tested, 11 (25.58%) were resistant to one drug, and 12 (27.91%) were resistant to two drugs. The remaining six isolates (13.95%) were multidrug-resistant (MDR, ≥3 drug classes) S. Infantis (n = 4), S. Reading (n = 1), and S. Kentucky (n = 1). Whole-genome sequencing (WGS) identified 16 AMR genes and 17 plasmid replicons, including blaCTX–M–65 encoding ceftriaxone resistance and a D87Y mutation in gyrA conferring resistance to nalidixic acid and reduced susceptibility to ciprofloxacin. The IncFIB(pN55391) replicon previously identified in connection to the worldwide dissemination of pESI-like mega plasmid carriage in an emerged S. Infantis clone was detected in four of the six MDR isolates. Genotypes from WGS showed high concordance with phenotype with overall sensitivity and specificity of 95.31% and 100%, respectively. This study provides insight into the AMR profiles of a diversity of Salmonella serotypes isolated from retail meat products in California and highlights the value of routine retail food surveillance for the detection and characterization of AMR in foodborne pathogens.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Maribel Rickard
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Marzieh Shafii
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Melody Hung-Fan
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| |
Collapse
|
37
|
Amin MB, Hoque KI, Roy S, Saha SR, Islam MR, Julian TR, Islam MA. Identifying the Sources of Intestinal Colonization With Extended-Spectrum β-Lactamase-Producing Escherichia coli in Healthy Infants in the Community. Front Microbiol 2022; 13:803043. [PMID: 35432268 PMCID: PMC9008759 DOI: 10.3389/fmicb.2022.803043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
The prevalence of fecal colonization with extended-spectrum β-lactamase-producing Escherichia coli (ESBL-Ec) among children in low- and middle-income countries is alarmingly high. This study aimed to identify the sources of ESBL-Ec colonization in children < 1 year old through comparative analysis of E. coli isolates from child stool, child’s mother stool, and point-of-use drinking water from 46 rural households in Bangladesh. The pairwise similarity in antibiotic susceptibility of E. coli from all three sources was evaluated, followed by phylogenetic clustering using enterobacterial repetitive intergenic consensus polymerase chain reaction and whole-genome sequence analysis of the isolates. Matching antibiotic susceptibility and enterobacterial repetitive intergenic consensus polymerase chain reaction patterns were found among ESBL-Ec isolates from child–mother dyads of 24 and 11 households, respectively, from child–water dyads of 5 and 4 households, respectively, and from child–mother–water triads of 3 and 4 households, respectively. Whole-genome sequence analysis of 30 isolates from 10 households revealed that ESBL-Ec from children in five households (50%) was clonally related to ESBL-Ec either from their mothers (2 households), drinking water sources (2 households), or both mother and drinking-water sources (1 household) based on serotype, phylogroup, sequence type, antibiotic resistance genes, mobile genetic elements, core single-nucleotide polymorphisms, and whole-genome multilocus sequence typing. Overall, this study provides empirical evidence that ESBL-Ec colonization in children is linked to the colonization status of mothers and exposure to the household environments contaminated with ESBL-Ec. Interventions such as improved hygiene practices and a safe drinking water supply may help reduce the transmission of ESBL-Ec at the household level.
Collapse
Affiliation(s)
- Mohammed Badrul Amin
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- *Correspondence: Mohammed Badrul Amin,
| | - Kazi Injamamul Hoque
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Subarna Roy
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Sumita Rani Saha
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Md. Rayhanul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
| | - Timothy R. Julian
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
- Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Mohammad Aminul Islam
- Laboratory of Food Safety and One Health, Laboratory Sciences and Services Division, International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), Dhaka, Bangladesh
- Paul G. Allen School for Global Health, Washington State University, Pullman, DC, United States
- Mohammad Aminul Islam,
| |
Collapse
|
38
|
Kimura J, Kudo H, Fukuda A, Yamada M, Makita K, Oka K, Takahashi M, Tamura Y, Usui M. Decreasing the abundance of tetracycline-resistant Escherichia coli in pig feces during nursery using flavophospholipol as a pig feed additive. Vet Anim Sci 2022; 15:100236. [PMID: 35146180 PMCID: PMC8818586 DOI: 10.1016/j.vas.2022.100236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 11/30/2022] Open
Abstract
Tetracyclines (TCs) are widely used for livestock, and the high prevalence of TC-resistant Escherichia coli in livestock has become a serious concern worldwide. In Japan, the National Action Plan on Antimicrobial Resistance in 2016 aimed to reduce the TC resistance rate in E. coli derived from livestock. Flavophospholipol (FPL), used as a feed additive, has an inhibitory effect on the spread of plasmid-mediated antimicrobial resistance. The number of TC-resistant E. coli was determined in pigs administered TCs and/or FPL to clarify the effect of FPL on reducing the number of TC-resistant E. coli in pigs. TC-resistant E. coli and their plasmids were then analyzed. The pigs were divided into four groups: control, doxycycline (DOXY; a TC), FPL, and a DOXY-FPL combination. Their feces were collected from the nursing period to the day before being transported to the slaughterhouse, followed by estimation of TC-resistant E. coli (colony-forming units [CFU]/g). The number of TC-resistant E. coli increased with the use of DOXY, suggesting that DOXY administration provides a selective pressure for TC-resistant E. coli. Supplementation with FPL as a feed additive significantly suppressed the increase in the number of TC-resistant E. coli, especially during the DOXY administration period. Transfer and growth inhibition analyses were performed for TC-resistant isolates. FPL inhibited the conjugational transfer and growth of a few TC-resistant E. coli isolates. These results suggest that FPL is effective against the spread of TC-resistant E. coli.
Collapse
Affiliation(s)
- Junichiro Kimura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Hayami Kudo
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Akira Fukuda
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Michi Yamada
- Department of Sustainable Agriculture, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kohei Makita
- Laboratory of Veterinary Epidemiology, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Kentaro Oka
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Motomichi Takahashi
- Tokyo R&D Center, Miyarisan Pharmaceutical Co., Ltd., Saitama-shi, Saitama, Japan
| | - Yutaka Tamura
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
| | - Masaru Usui
- Laboratory of Food Microbiology and Food Safety, School of Veterinary Medicine, Rakuno Gakuen University, Ebetsu, Hokkaido, Japan
- Corresponding author: Laboratory of Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| |
Collapse
|
39
|
Plasmid Replicon Diversity of Clinical Uropathogenic Escherichia coli Isolates from Riyadh, Saudi Arabia. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2022. [DOI: 10.22207/jpam.16.1.51] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this study was to identify and compare the plasmid replicons of clinical uropathogenic Escherichia coli (UPEC) isolates, involving extended spectrum β-lactamase (ESBL)-positive and ESBL-negative, E. coli ST131 and non-ST131 and various ST131 subclones. Plasmid replicon typing on 24 clinical UPEC isolates was carried out using polymerase chain reaction-based replicon typing. A statistical analysis was performed to assess the associations between plasmid replicon types and ESBL carriage, and to evaluate the link between ST131 isolates and high replicon carriage. Eight replicons, I1α, N2, Iγ, X1, FIIS, K, FIA, and FII were detected. The FII was the most common replicon identified here. ESBL-positive E. coli isolates were highly associated with I1α, N2, Iγ, X1, and FIIS replicons, while FIA was present only in ESBL-negative group. ST131 isolates were highly associated with I1α and N2 replicons compared to non-ST131. No link was found between replicon carriage and the number or type of ESBLs in E. coli isolates. The diversity observed in replicon patterns of our clinical E. coli isolates indicates that they might be originated from different sources. The presence of replicons reported previously in animal sources suggests a possible transfer of antimicrobial resistance between animal and human bacterial isolates.
Collapse
|
40
|
Fine-Scale Reconstruction of the Evolution of FII-33 Multidrug Resistance Plasmids Enables High-Resolution Genomic Surveillance. mSystems 2022; 7:e0083121. [PMID: 35040701 PMCID: PMC8765060 DOI: 10.1128/msystems.00831-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We examined 185 complete, publicly available FII-33 plasmid sequences, characterizing their backbone and various insertions. The variable characteristic insertions facilitated evolutionary reconstruction for this plasmid group, beginning with the acquisition of a primary resistance region (PRR) over 10 years ago. FII-33 plasmids have evolved by acquiring additional resistance genes in the PRR via translocatable elements and by forming cointegrates with plasmids of other types. In all cases, IS26 is suspected to have mediated cointegration. Plasmid cointegration has contributed to the accumulation of resistance genes and may have increased the transmissibility, stability, and host range of the original FII-33 lineage. A particularly important sublineage was formed by a replicative IS26 cointegration event that fused an FII-33 plasmid with a blaKPC-2-containing R-type plasmid, interrupting the FII-33 traI gene encoding the conjugative relaxase. The FII-33:R cointegrate arose in the Klebsiella pneumoniae ST11 clone and remains largely confined there due to the abolition of transfer ability by the FII-33:R cointegration event. However, in some cases FII-33:R cointegrates have fused with additional plasmids and acquired complete transfer regions or oriT sequences that might restore their ability to transfer horizontally. Cointegration events across FII-33 plasmid sublineages have involved plasmids of at least 15 different types. This suggests that plasmid cointegration occurs readily and is more common than previously appreciated, raising questions about the effects of cointegrate formation on plasmid host range, stability, and capacity for horizontal transfer. Resources are provided for detecting and characterizing FII-33 plasmid sublineages from complete or draft genome sequences. IMPORTANCE Effective genomic surveillance of antibiotic-resistant bacterial pathogens must consider plasmids, which are frequently implicated in the accumulation and transfer of resistance genes between bacterial strains or species. However, the evolution of plasmids is complex, and simple typing or comparison tools cannot accurately determine whether plasmids belong to the same sublineages. This precludes precise tracking of plasmid movement in bacterial populations. We have examined the FII-33 group, which has been associated with multidrug resistance and particularly carbapenem resistance in clinically significant members of the Enterobacterales in China. Our analysis has provided insight into the evolution of this important plasmid group, allowing us to develop resources for rapidly typing them to the sublineage level in complete or draft genome sequences. Our approach will improve detection and characterization of FII-33 plasmids and facilitate surveillance within and outside China. The approach can serve as a model for similar studies of other plasmid types.
Collapse
|
41
|
Bhattacharyya D, Banerjee J, Habib M, Thapa G, Samanta I, Nanda PK, Dutt T, Sarkar K, Bandyopadhyay S. Elucidating the resistance repertoire, biofilm production, and phylogenetic characteristics of multidrug-resistant Escherichia coli isolated from community ponds: A study from West Bengal, India. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 94:e1678. [PMID: 34907618 DOI: 10.1002/wer.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
This study details about the phenotypic and molecular characteristics of multidrug-resistant (MDR) Escherichia coli in the fresh community pond water (n = 257) collected from three districts of West Bengal, India. In total, 57 isolates were MDR of which 38 emerged as extended spectrum and 7 as AmpC-type β-lactamase producers in phenotypic assay. Among β-lactamase genes, blaCTXM-1was predominant (87.71%) followed by blaAmpC (77.2%) and blaTEM-1 (22.8%). Six MDR strains carried metallo-β-lactamase (MBL, blaNDM-1) gene. Tissue culture plate assay confirmed strong biofilm (SP) production in four MDR and one non-MDR isolates. In PCR-based replicon typing (PBRT), multiple plasmids of diverse replicon types (Frep, FIB, I1, FIA, K/B, HI1, and Y) were identified. The enterobacterial repetitive intergenic consensus-polymerase chain reaction (ERIC-PCR)-based phylogenetic analysis revealed a high degree of genetic divergence among the MDR isolates. Multiplex PCR-based phylogrouping categorized 11 isolates as virulent (B2/D/F), which carried blaCTXM-1 gene and three had blaNDM-1 gene. Relative transcriptional activity of AcrAB efflux pump was significantly elevated among the SP and MBL producers. The presence of MDR E. coli isolates, particularly those resistant to carbapenem, in pond water used for daily domestic and household work, is a cause of concern as these pathogens may sneak into human food chain causing life-threatening infections. PRACTITIONER POINTS: Multidrug-resistant biofilm producing E. coli isolated from community pond water. A few of them were carbapenem-resistant and belonged to virulent (B2/D) types. Expression of AcrAB efflux pumps was found significantly elevated among biofilm producers and carbapenem-resistant population.
Collapse
Affiliation(s)
- Debaraj Bhattacharyya
- ICAR-Indian Veterinary Research Institute, Kolkata, India
- Department of Microbiology, University of Kalyani, Kalyani, India
| | | | - Md Habib
- ICAR-Indian Veterinary Research Institute, Kolkata, India
| | | | - Indranil Samanta
- Department of Veterinary Microbiology, Faculty of Veterinary and Animal Sciences, West Bengal University of Animal & Fishery Sciences, Kolkata, India
| | | | - Triveni Dutt
- Division of Livestock Production and Management, ICAR-Indian Veterinary Research Institute, Izatnagar, India
| | - Keka Sarkar
- Department of Microbiology, University of Kalyani, Kalyani, India
| | | |
Collapse
|
42
|
Abbott CN, Felix M, Foley SL, Khajanchi BK. Expression of Genes Located on the Incompatibility Group FIB Plasmids at Transcription and Protein Levels in Iron-Modified Growth Conditions. Front Microbiol 2021; 12:729275. [PMID: 34803945 PMCID: PMC8602916 DOI: 10.3389/fmicb.2021.729275] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/13/2021] [Indexed: 11/25/2022] Open
Abstract
Salmonella enterica strains often harbor plasmids representing several incompatibility groups (Inc) including IncFIB, which have been previously associated with carrying antimicrobial resistance and virulence associated genes. To better understand the distribution of virulence genes on IncFIB plasmids, we analyzed 37 complete whole genome and plasmid sequences of different S. enterica isolates from multiple serovars. Many of the sequences analyzed carried multiple virulence-associated genes, including those associated with iron acquisition systems; thus we aimed to determine how iron-rich (IR) and various iron-depleted (ID) conditions affected the transcription of iron acquisition and virulence genes including sitA, iutA, iucA, and enolase at different time intervals. sitA, iutA, and enolase from S. enterica that were grown in Luria-Bertani broth (LB) ID (LBID) conditions were substantially upregulated when compared to LBIR conditions. For both S. enterica strains that were grown at various LBID conditions, addition of 200 μM bipyridyl in the growth medium yielded the highest transcription for all four genes, followed by the 100 μM concentration. An antibody using a peptide targeting aerobactin receptor gene iutA encoded by IncFIB was generated and used to examine the protein expression in the wild-type, recipient, and transconjugant strain in LB, LBID, and LBIR growth conditions using Western blot analyses. A 70 KDa protein band was detected in the wild-type and transconjugant that carried the IncFIB plasmid, while this band was not detected in the recipient strain that lacked this plasmid.
Collapse
Affiliation(s)
- Carter N Abbott
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Monique Felix
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Steven L Foley
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| | - Bijay K Khajanchi
- Division of Microbiology, U.S. Food and Drug Administration, National Center for Toxicological Research, Jefferson, AR, United States
| |
Collapse
|
43
|
Metaplasmidome-encoded functions of Siberian low-centered polygonal tundra soils. THE ISME JOURNAL 2021; 15:3258-3270. [PMID: 34012103 PMCID: PMC8528913 DOI: 10.1038/s41396-021-01003-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/26/2021] [Accepted: 04/30/2021] [Indexed: 02/04/2023]
Abstract
Plasmids have the potential to transfer genetic traits within bacterial communities and thereby serve as a crucial tool for the rapid adaptation of bacteria in response to changing environmental conditions. Our knowledge of the environmental pool of plasmids (the metaplasmidome) and encoded functions is still limited due to a lack of sufficient extraction methods and tools for identifying and assembling plasmids from metagenomic datasets. Here, we present the first insights into the functional potential of the metaplasmidome of permafrost-affected active-layer soil-an environment with a relatively low biomass and seasonal freeze-thaw cycles that is strongly affected by global warming. The obtained results were compared with plasmid-derived sequences extracted from polar metagenomes. Metaplasmidomes from the Siberian active layer were enriched via cultivation, which resulted in a longer contig length as compared with plasmids that had been directly retrieved from the metagenomes of polar environments. The predicted hosts of plasmids belonged to Moraxellaceae, Pseudomonadaceae, Enterobacteriaceae, Pectobacteriaceae, Burkholderiaceae, and Firmicutes. Analysis of their genetic content revealed the presence of stress-response genes, including antibiotic and metal resistance determinants, as well as genes encoding protectants against the cold.
Collapse
|
44
|
Minja CA, Shirima G, Mshana SE. Conjugative Plasmids Disseminating CTX-M-15 among Human, Animals and the Environment in Mwanza Tanzania: A Need to Intensify One Health Approach. Antibiotics (Basel) 2021; 10:antibiotics10070836. [PMID: 34356757 PMCID: PMC8300620 DOI: 10.3390/antibiotics10070836] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 06/30/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Background: Globally, blaCTX-M-15 beta-lactamases are the most popular extended spectrum beta-lactamase alleles that are widely distributed due its mobilisation by mobile genetic elements in several compartments. We aimed to determine the conjugation frequencies and replicon types associated with plasmids carrying blaCTX-M-15 gene from Extended Spectrum Beta-lactamase producing isolates in order to understand the dissemination of resistance genes in different compartments. Material and methods: A total of 51 archived isolates carrying blaCTX-M-15 beta-lactamases were used as donors in this study. Antibiotic susceptibility tests were performed as previously described for both donors and transconjugants. Conjugation experiment was performed by a modified protocol of the plate mating experiment, and plasmid replicon types were screened among donor and transconjugant isolates by multiplex Polymerase Chain Reaction in a set of three primer panels. Results: The conjugation efficiency of plasmids carrying blaCTX-M-15 was 88.2% (45/51) with conjugation frequencies in the order of 10−1 to 10−9 and a 100% transfer efficiency observed among E. coli of animal origin. Majority of donors (n = 21) and transconjugants (n = 14) plasmids were typed as either Inc FIA or Inc FIB. Resistance to non-beta-lactam antibiotics was transferrable in 34/45 (75.6%) of events. Ciprofloxacin, tetracycline and sulphamethoxazole-trimethoprim resistance was co-transferred in 29/34 (85.3%) such events. Gentamicin resistance was transferred in 17/34 (50%) of events. Conclusions: Majority of plasmids carrying blaCTX-M-15 were conjugatively transferred by IncF plasmids along with non-beta lactam resistance. There is a need for more research on plasmids to understand how plasmids especially multi replicon plasmids interact and the effect of such interaction on conjugation. One Health approach is to be intensified to address antimicrobial resistance which is a public health threat.
Collapse
Affiliation(s)
- Caroline A. Minja
- School of Life Sciences, Department of Global Health and Biomedical Sciences, Nelson Mandela African Institution of Science and Technology, Arusha 23306, Tanzania;
- Correspondence:
| | - Gabriel Shirima
- School of Life Sciences, Department of Global Health and Biomedical Sciences, Nelson Mandela African Institution of Science and Technology, Arusha 23306, Tanzania;
| | - Stephen E. Mshana
- Department of Microbiology and Immunology, Catholic University of Health and Allied Sciences, Mwanza 33109, Tanzania;
| |
Collapse
|
45
|
Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poult Sci 2021; 100:101370. [PMID: 34332223 PMCID: PMC8339308 DOI: 10.1016/j.psj.2021.101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
The extended-spectrum cephalosporin resistant E. coli from food animals transferring to community settings of humans causes a serious threat to public health. Unlike phylogroup B2 E. coli strains, the clinical significance of isolates in phylogroup F is not well revealed. Here, we report on a collection (n = 563) of phylogroup F E. coli isolates recovered from chicken colibacillosis tissues and retail raw chicken meat samples in Eastern China. There was an overlapped distribution of MLST types between chicken colibacillosis-origin and meat-source phylogroup F E. coli, including dominant STs (ST648, ST405, ST457, ST393, ST1158, etc). This study further investigated the presence of extended-spectrum β-lactamase (ESBL/pAmpC) producers in these chicken-source phylogroup F E. coli strains. The prevalence of extended-spectrum cephalosporin resistant strains in phylogroup F E. coli from chicken colibacillosis and raw meat separately accounted for 66.1 and 71.2%. The resistance genotypes and plasmid replicon types of chicken-source phylogroup F E. coli isolates were characterized by multiplex PCR. Our results revealed β-lactamase CTX-M, OXA, CMY and TEM genes were widespread in chicken-source phylogroup F E. coli, and blaCTX-M was the most predominant ESBL gene. Moreover, there was a high prevalence of non-lactamase resistance genes in these β-lactam-resistant isolates. The replicons IncB/O/K/Z, IncI1, IncN, IncFIC, IncQ1, IncX4, IncY, and p0111, associated with antibiotic-resistant large plasmids, were widespread in chicken-source phylogroup F E. coli. There was no obvious difference for the populations, resistance spectrums, and resistance genotypes between phylogroup F E. coli from chicken colibacillosis tissues and retail meats. This detail assessment of the population and resistance genotype showed chicken-source phylogroup F E. coli might hold zoonotic risk and contribute the spread of multidrug-resistant E. coli to humans.
Collapse
|
46
|
VinodhKumar OR, Karikalan M, Ilayaraja S, Sha AA, Singh BR, Sinha DK, Chandra Mohan S, Pruthvishree BS, Pawde AM, Sharma AK. Multi-drug resistant (MDR), extended spectrum beta-lactamase (ESBL) producing and carbapenem resistant Escherichia coli in rescued Sloth bears (Melursus ursinus), India. Vet Res Commun 2021; 45:163-170. [PMID: 34041662 DOI: 10.1007/s11259-021-09794-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/23/2021] [Indexed: 11/28/2022]
Abstract
The study reports the multi-drug resistant (MDR), extended spectrum beta-lactamase (ESBL) producing and carbapenem resistant Escherichia coli (CRE) isolated from rescued sloth bear (Melursus ursinus), India. Non-duplicate faecal samples from 21 adult rescued sloth bears were collected at once during 2015-2016 and processed for isolation of E. coli and antibacterial susceptibility pattern. From 21 samples, 45 E. coli were isolated and on phenotypic screening, 23 were MDR, 17 were ESBL producers, and five were carbapenem-resistant (CR). Three E. coli isolates (6.67%, 3/45) showed no resistance, however 42 isolates (93.33%, 42/45) exhibited resistant to at least one antibiotics. The MDR isolates carried beta-lactamase, chloramphenicol, aminoglycosides, tetracycline, fluroquinolone, and sulphadimidine resistance genes. All the phenotypic ESBL producing isolates harbored blaCTX-M genes. On genotypic screening, three CRE (60.0%, 3/5) were positive for blaNDM carbapenemase gene and efflux pump-mediated carbapenem resistance was detected in two CRE isolates (40.0%, 2/5) which were negative for carbapenemase genes. The CRE isolates (n = 5) also co-harbored AMR genes like blaTEM-1, blaAmpC, qnrA, qnrB, qnrS, tetA, tetB and sulI. Virulence screening of the resistant isolates detected the presence of Stx1(n = 1), Stx2 (n = 3), eaeA (n = 4) and hlyA (n = 3) genes. Plasmid incompatibility (Inc) typing revealed that two isolates harboured blaNDM-5 gene on Incl1 and one isolate on IncF plasmid. Apart from the NDM gene, the plasmids also carried tetracycline, beta-lactamase and quinolone resistance genes. The plasmid multilocus sequence typing (pMLST) of the E. coli Incl1 plasmid showed the Sequence Type (ST) 297. This appears to be the first report of MDR, ESBL producing and blaNDM-5 genes on Incl1 and IncF plasmids from rescued sloth bear.
Collapse
Affiliation(s)
- O R VinodhKumar
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India.
| | - M Karikalan
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S Ilayaraja
- Agra Bear Rescue Centre, Wildlife SOS, Keetham, Agra, Uttar Pradesh, India
| | - Arun A Sha
- Research &Veterinary Operations, Bannerghatta Bear Rescue Centre, Wildlife SOS, Bengaluru, India
| | - B R Singh
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - D K Sinha
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - S Chandra Mohan
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - B S Pruthvishree
- Division of Epidemiology, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - A M Pawde
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| | - A K Sharma
- Centre for Wildlife, ICAR- Indian Veterinary Research Institute, Bareilly, Uttar Pradesh, 243122, India
| |
Collapse
|
47
|
Molecular characterization of fluoroquinolone-resistant Escherichia coli from broiler breeder farms. Poult Sci 2021; 100:101250. [PMID: 34182220 PMCID: PMC8250447 DOI: 10.1016/j.psj.2021.101250] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/01/2021] [Accepted: 05/03/2021] [Indexed: 11/21/2022] Open
Abstract
Fluoroquinolones (FQs) have been used effectively antimicrobial agents of choice for treatment of various infections caused by E. coli and FQs-resistance of E. coli from broiler breeders has been implicated in its vertical transmission to their offspring. The objective of this study investigated the phenotypic and genotypic characteristics of FQ-resistant E. coli isolates from broiler breeder farms in Korea. A total of 106 FQ-resistant E. coli isolates were tested in this study and all isolates had mutations in quinolone resistance determining regions; all (100%) had mutations in gyrA, 89 (84.0%) had mutations in parE, 8 (7.5%) isolates showed the mutations with parC and parE, and none had mutations in gyrB. The predominant mutation type was double mutation in gyrA (S83L and D87N), and all FQ-resistant E. coli isolates that had mutations in parC or parE also had double mutations in gyrA. Especially, FQ-resistant E. coli isolates which possessed double mutations in gyrA in combination with double mutations in parC or single mutations in both parC and parE were shown high levels of minimum inhibitory concentrations rage. Of the 23 plasmid-mediated quinolone resistance (PMQR)-positive E. coli isolates, qnrS was detected in 10 (9.4%) isolates, and followed by qnrA (7 isolates, 6.6%), qnrB (4 isolates, 3.8%), and aac(6′)-Ib-cr (2 isolates, 1.9%). Sixteen (69.6%) of the 23 PMQR-positive E. coli isolates harbored class 1 integrons with four different gene cassette arrangements and total of 9 plasmid replicon types were also identified in 23 PMQR-positive E. coli isolates. This is the first study to investigate the prevalence and characteristics of FQ-resistant and PMQR-positive E. coli isolated from the broiler breeder in Korea; it supports that constant monitoring and studies at the broiler breeder level are required to prevent the pyramidal transmission of FQ-resistant E. coli.
Collapse
|
48
|
Newman DM, Barbieri NL, de Oliveira AL, Willis D, Nolan LK, Logue CM. Characterizing avian pathogenic Escherichia coli (APEC) from colibacillosis cases, 2018. PeerJ 2021; 9:e11025. [PMID: 33717713 PMCID: PMC7937341 DOI: 10.7717/peerj.11025] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Colibacillosis caused by avian pathogenic Escherichia coli (APEC) is a devastating disease of poultry that results in multi-million-dollar losses annually to the poultry industry. Disease syndromes associated with APEC includes colisepticemia, cellulitis, air sac disease, peritonitis, salpingitis, omphalitis, and osteomyelitis among others. A total of 61 APEC isolates collected during the Fall of 2018 (Aug-Dec) from submitted diagnostic cases of poultry diagnosed with colibacillosis were assessed for the presence of 44 virulence-associated genes, 24 antimicrobial resistance genes and 17 plasmid replicon types. Each isolate was also screened for its ability to form biofilm using the crystal violet assay and antimicrobial susceptibility to 14 antimicrobials using the NARMS panel. Overall, the prevalence of virulence genes ranged from 1.6% to >90% with almost all strains harboring genes that are associated with the ColV plasmid-the defining trait of the APEC pathotype. Overall, 58 strains were able to form biofilms and only three strains formed negligible biofilms. Forty isolates displayed resistance to antimicrobials of the NARMS panel ranging from one to nine agents. This study highlights that current APEC causing disease in poultry possess virulence and resistance traits and form biofilms which could potentially lead to challenges in colibacillosis control.
Collapse
Affiliation(s)
- Darby M Newman
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Nicolle L Barbieri
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Aline L de Oliveira
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Dajour Willis
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Lisa K Nolan
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Catherine M Logue
- Department of Population Health, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| |
Collapse
|
49
|
Mageiros L, Méric G, Bayliss SC, Pensar J, Pascoe B, Mourkas E, Calland JK, Yahara K, Murray S, Wilkinson TS, Williams LK, Hitchings MD, Porter J, Kemmett K, Feil EJ, Jolley KA, Williams NJ, Corander J, Sheppard SK. Genome evolution and the emergence of pathogenicity in avian Escherichia coli. Nat Commun 2021; 12:765. [PMID: 33536414 PMCID: PMC7858641 DOI: 10.1038/s41467-021-20988-w] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 01/04/2021] [Indexed: 01/30/2023] Open
Abstract
Chickens are the most common birds on Earth and colibacillosis is among the most common diseases affecting them. This major threat to animal welfare and safe sustainable food production is difficult to combat because the etiological agent, avian pathogenic Escherichia coli (APEC), emerges from ubiquitous commensal gut bacteria, with no single virulence gene present in all disease-causing isolates. Here, we address the underlying evolutionary mechanisms of extraintestinal spread and systemic infection in poultry. Combining population scale comparative genomics and pangenome-wide association studies, we compare E. coli from commensal carriage and systemic infections. We identify phylogroup-specific and species-wide genetic elements that are enriched in APEC, including pathogenicity-associated variation in 143 genes that have diverse functions, including genes involved in metabolism, lipopolysaccharide synthesis, heat shock response, antimicrobial resistance and toxicity. We find that horizontal gene transfer spreads pathogenicity elements, allowing divergent clones to cause infection. Finally, a Random Forest model prediction of disease status (carriage vs. disease) identifies pathogenic strains in the emergent ST-117 poultry-associated lineage with 73% accuracy, demonstrating the potential for early identification of emergent APEC in healthy flocks.
Collapse
Affiliation(s)
- Leonardos Mageiros
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Sion C Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK
| | - Johan Pensar
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
| | - Ben Pascoe
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Evangelos Mourkas
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Jessica K Calland
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Koji Yahara
- Antimicrobial Resistance Research Centre, National Institute of Infectious Diseases, Tokyo, Japan
| | - Susan Murray
- Uppsala University, Department for medical biochemistry and microbiology, Uppsala University, Uppsala, Sweden
| | - Thomas S Wilkinson
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Lisa K Williams
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Matthew D Hitchings
- Swansea University Medical School, Institute of Life Science, Swansea, SA2 8PP, UK
| | - Jonathan Porter
- National Laboratory Service, Environment Agency, Starcross, UK
| | - Kirsty Kemmett
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Edward J Feil
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK
| | - Keith A Jolley
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK
| | - Nicola J Williams
- Department of Epidemiology and Population Health, Institute of Infection & Global Health, University of Liverpool, Leahurst Campus, Wirral, UK
| | - Jukka Corander
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, Helsinki Institute for Information Technology, University of Helsinki, Helsinki, Finland
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - Samuel K Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, UK.
- MRC Cloud Infrastructure for Microbial Bioinformatics (CLIMB) Consortium, London, UK.
- Department of Zoology, University of Oxford, South Parks Road, Oxford, OX1 3PS, UK.
| |
Collapse
|
50
|
Christensen H, Bachmeier J, Bisgaard M. New strategies to prevent and control avian pathogenic Escherichia coli (APEC). Avian Pathol 2021; 50:370-381. [PMID: 33146543 DOI: 10.1080/03079457.2020.1845300] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Avian pathogenic Escherichia coli (APEC) infections are associated with major economical losses and decreased animal welfare. In broiler production, APEC infections have traditionally been controlled by antibiotics, resulting in an increased prevalence of antibiotic-resistant E. coli. Concerns have been raised that transfer of antibiotic-resistant APEC via the food chain may result in risks for extra-intestinal infection of humans related to zoonotic transfer and increased difficulties in the treatment of human infections caused APEC-related E. coli types. In this review, the risks associated with APEC are presented based on new knowledge on transmission, virulence and antibiotic resistance of APEC. A major new change in our understanding of APEC is the high degree of genuine vertical transfer of APEC from parents to offspring. A new strategy for controlling APEC, including control of antibiotic-resistant APEC, has to focus on limiting vertical transfer from parents to offspring, and subsequent horizontal transmission within and between flocks and farms, by using all-in-all-out production systems and implementing a high level of biosecurity. Vaccination and the use of competitive exclusion are important tools to be considered. A specific reduction of antibiotic-resistant APEC can be obtained by implementing culling strategies, only allowing the use of antibiotics in cases where animal welfare is threatened. Strategies to reduce APEC, including antibiotic-resistant APEC, need to be implemented in the whole production pyramid, but it has to start at the very top of the production pyramid.
Collapse
Affiliation(s)
- Henrik Christensen
- Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
| | | | | |
Collapse
|