1
|
He T, Lin W, Yang S, Du J, Giri B, Feng C, Gilliam FS, Zhang F, Zhang X, Zhang X. Arbuscular mycorrhizal fungi reduce soil N 2O emissions by altering root traits and soil denitrifier community composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 933:173065. [PMID: 38723969 DOI: 10.1016/j.scitotenv.2024.173065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 04/23/2024] [Accepted: 05/06/2024] [Indexed: 05/20/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) increase the ability of plants to obtain nitrogen (N) from the soil, and thus can affect emissions of nitrous oxide (N2O), a long-lived potent greenhouse gas. However, the mechanisms underlying the effects of AMF on N2O emissions are still poorly understood, particularly in agroecosystems with different forms of N fertilizer inputs. Utilizing a mesocosm experiment in field, we examined the effects of AMF on N2O emissions via their influence on maize root traits and denitrifying microorganisms under ammonia and nitrate fertilizer input using 15N isotope tracer. Here we show that the presence of AMF alone or both maize roots and AMF increased maize biomass and their 15N uptake, root length, root surface area, and root volume, but led to a reduction in N2O emissions under both N input forms. Random forest model showed that root length and surface area were the most important predictors of N2O emissions. Additionally, the presence of AMF reduced the (nirK + nirS)/nosZ ratio by increasing the relative abundance of nirS-Bradyrhizobium and Rubrivivax with ammonia input, but reducing nosZ-Azospirillum, Cupriavidus and Rhodopseudomonas under both fertilizer input. Further, N2O emissions were significantly and positively correlated with the nosZ-type Azospirillum, Cupriavidus and Rhodopseudomonas, but negatively correlated with the nirS-type Bradyrhizobium and Rubrivivax. These results indicate that AMF reduce N2O emissions by increasing root length to explore N nutrients and altering the community composition of denitrifiers, suggesting that effective management of N fertilizer forms interacting with the rhizosphere microbiome may help mitigate N2O emissions under future N input scenarios.
Collapse
Affiliation(s)
- Tangqing He
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Wei Lin
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou 350002, PR China
| | - Shuo Yang
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Jiaqi Du
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Bhoopander Giri
- Department of Botany, Swami Shraddhanand College, University of Delhi, Delhi, India
| | - Cheng Feng
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Frank S Gilliam
- Department of Earth and Environmental Sciences, University of West Florida, Pensacola FL32514, USA
| | - Fuliang Zhang
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China
| | - Xiaoquan Zhang
- College of Tobacco Science, Henan Agricultural University, Zhengzhou 450046, PR China.
| | - Xuelin Zhang
- College of Agronomy, Henan Agricultural University, Co-construction State Key, Laboratory of Wheat and Maize Crop Science, Zhengzhou 450046, PR China.
| |
Collapse
|
2
|
Park SY, Zhang Y, Kwon JS, Kwon MJ. Multi-approach assessment of groundwater biogeochemistry: Implications for the site characterization of prospective spent nuclear fuel repository sites. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171918. [PMID: 38522553 DOI: 10.1016/j.scitotenv.2024.171918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 03/10/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The disposal of spent nuclear fuel in deep subsurface repositories using multi-barrier systems is considered to be the most promising method for preventing radionuclide leakage. However, the stability of the barriers can be affected by the activities of diverse microbes in subsurface environments. Therefore, this study investigated groundwater geochemistry and microbial populations, activities, and community structures at three potential spent nuclear fuel repository construction sites. The microbial analysis involved a multi-approach including both culture-dependent, culture-independent, and sequence-based methods for a comprehensive understanding of groundwater biogeochemistry. The results from all three sites showed that geochemical properties were closely related to microbial population and activities. Total number of cells estimates were strongly correlated to high dissolved organic carbon; while the ratio of adenosine-triphosphate:total number of cells indicated substantial activities of sulfate reducing bacteria. The 16S rRNA gene sequencing revealed that the microbial communities differed across the three sites, with each featuring microbes performing distinctive functions. In addition, our multi-approach provided some intriguing findings: a site with a low relative abundance of sulfate reducing bacteria based on the 16S rRNA gene sequencing showed high populations during most probable number incubation, implying that despite their low abundance, sulfate reducing bacteria still played an important role in sulfate reduction within the groundwater. Moreover, a redundancy analysis indicated a significant correlation between uranium concentrations and microbial community compositions, which suggests a potential impact of uranium on microbial community. These findings together highlight the importance of multi-methodological assessments in better characterizing groundwater biogeochemical properties for the selection of potential spent nuclear fuel disposal sites.
Collapse
Affiliation(s)
- Su-Young Park
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Yidan Zhang
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea
| | - Jang-Soon Kwon
- Korea Atomic Energy Research Institute, Daejeon, Republic of Korea
| | - Man Jae Kwon
- Department of Earth and Environmental Sciences, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
3
|
Sui P, Tian P, Wang Z, Lian H, Yang Y, Ma Z, Jiang Y, Zheng J, Qi H. Soil properties and microbial communities of spring maize filed in response to tillage with straw incorporation and nitrogen fertilization in northeast China. PeerJ 2022; 10:e13462. [PMID: 35586128 PMCID: PMC9109688 DOI: 10.7717/peerj.13462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/28/2022] [Indexed: 01/14/2023] Open
Abstract
Soil enzymes and microorganisms are both important to maintaining good soil quality and are also sensitive to changes in agricultural management. The individual effects of tillage, straw incorporation and nitrogen (N) fertilization on soil enzymes and microflora have been widely acknowledged, but their interactive effect remains largely unknown. In a 5-year in-situ field study, effects of rotary (RTS) and plow tillage (PTS) practices with straw incorporation combined with three N fertilization levels (0 kg N ha-1, CK; 187 kg N ha-1, MN; 337 kg N ha-1, HN) on soil enzyme activities and microbial communities were assessed. Our results showed that the activities of β-glucosidase (βG), N-acetylglucosaminidase (NAG) and acid phosphatase (APH) were improved in RTS+MN. The bacterial and fungal abundances in RTS+MN and RTS+HN were 1.27-27.51 times higher than those in other treatment groups. However, the bacterial and fungal alpha diversities were enhanced in PTS+MN and PTS+CK compared with other treatments, respectively. Proteobacteria and Basidiomycota were the predominant phylum for the respective bacterial and fungal communities. Moreover, significant interactive effects were found in the fungal community composition, but only minor impacts were observed on the bacterial community composition. Soil water content and penetration resistance contributed more to the soil enzyme activity and microbial community than other soil properties investigated, whereas there was a significant positive correlation between βG and APH activities and microbial abundance. These findings can provide new insights into tillage with straw incorporation and N fertilization on maize cultivation in northeast China.
Collapse
Affiliation(s)
- Pengxiang Sui
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
- Institute of Agricultural Resources and Environments, Jilin Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Crop Ecophysiology and Farming System in Northeast China, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Ping Tian
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Zhengyu Wang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Hongli Lian
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Yadong Yang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Ziqi Ma
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Ying Jiang
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| | - Jinyu Zheng
- Institute of Agricultural Resources and Environments, Jilin Academy of Agricultural Sciences, Changchun, China
- Key Laboratory of Crop Ecophysiology and Farming System in Northeast China, Ministry of Agriculture and Rural Affairs, Changchun, China
| | - Hua Qi
- College of Agronomy, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
4
|
Cai C, Ni G, Xia J, Zhang X, Zheng Y, He B, Marcellin E, Li W, Pu J, Yuan Z, Hu S. Response of the Anaerobic Methanotrophic Archaeon Candidatus " Methanoperedens nitroreducens" to the Long-Term Ferrihydrite Amendment. Front Microbiol 2022; 13:799859. [PMID: 35509320 PMCID: PMC9058156 DOI: 10.3389/fmicb.2022.799859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 03/10/2022] [Indexed: 11/30/2022] Open
Abstract
Anaerobic methanotrophic (ANME) archaea can drive anaerobic oxidation of methane (AOM) using solid iron or manganese oxides as the electron acceptors, hypothetically via direct extracellular electron transfer (EET). This study investigated the response of Candidatus "Methanoperedens nitroreducens TS" (type strain), an ANME archaeon previously characterized to perform nitrate-dependent AOM, to an Fe(III)-amended condition over a prolonged period. Simultaneous consumption of methane and production of dissolved Fe(II) were observed for more than 500 days in the presence of Ca. "M. nitroreducens TS," indicating that this archaeon can carry out Fe(III)-dependent AOM for a long period. Ca. "M. nitroreducens TS" possesses multiple multiheme c-type cytochromes (MHCs), suggesting that it may have the capability to reduce Fe(III) via EET. Intriguingly, most of these MHCs are orthologous to those identified in Candidatus "Methanoperedens ferrireducens," an Fe(III)-reducing ANME archaeon. In contrast, the population of Ca. "M. nitroreducens TS" declined and was eventually replaced by Ca. "M. ferrireducens," implying niche differentiation between these two ANME archaea in the environment.
Collapse
Affiliation(s)
- Chen Cai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, China
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Gaofeng Ni
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Jun Xia
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Xueqin Zhang
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Yue Zheng
- State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen, China
| | - Bingqing He
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Esteban Marcellin
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Weiwei Li
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing, China
| | - Jiaoyang Pu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Zhiguo Yuan
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| | - Shihu Hu
- Australian Centre for Water and Environmental Biotechnology, The University of Queensland, St Lucia, QLD, Australia
| |
Collapse
|
5
|
Okamoto T, Shinjo R, Nishihara A, Uesaka K, Tanaka A, Sugiura D, Kondo M. Genotypic Variation of Endophytic Nitrogen-Fixing Activity and Bacterial Flora in Rice Stem Based on Sugar Content. FRONTIERS IN PLANT SCIENCE 2021; 12:719259. [PMID: 34447404 PMCID: PMC8383490 DOI: 10.3389/fpls.2021.719259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/09/2021] [Indexed: 05/14/2023]
Abstract
Enhancement of the nitrogen-fixing ability of endophytic bacteria in rice is expected to result in improved nitrogen use under low-nitrogen conditions. Endophytic nitrogen-fixing bacteria require a large amount of energy to fix atmospheric nitrogen. However, it is unknown which carbon source and bacteria would affect nitrogen-fixing activity in rice. Therefore, this study examined genotypic variations in the nitrogen-fixing ability of rice plant stem as affected by non-structural carbohydrates and endophytic bacterial flora in field-grown rice. In the field experiments, six varieties and 10 genotypes of rice were grown in 2017 and 2018 to compare the acetylene reduction activity (nitrogen-fixing activity) and non-structural carbohydrates (glucose, sucrose, and starch) concentration in their stems at the heading stage. For the bacterial flora analysis, two genes were amplified using a primer set of 16S rRNA and nitrogenase (NifH) gene-specific primers. Next, acetylene reduction activity was correlated with sugar concentration among genotypes in both years, suggesting that the levels of soluble sugars influenced stem nitrogen-fixing activity. Bacterial flora analysis also suggested the presence of common and genotype-specific bacterial flora in both 16S rRNA and nifH genes. Similarly, bacteria classified as rhizobia, such as Bradyrhizobium sp. (Alphaproteobacteria) and Paraburkholderia sp. (Betaproteobacteria), were highly abundant in all rice genotypes, suggesting that these bacteria make major contributions to the nitrogen fixation process in rice stems. Gammaproteobacteria were more abundant in CG14 as well, which showed the highest acetylene reduction activity and sugar concentration among genotypes and is also proposed to contribute to the higher amount of nitrogen-fixing activity.
Collapse
Affiliation(s)
- Takanori Okamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- *Correspondence: Takanori Okamoto
| | - Rina Shinjo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Arisa Nishihara
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Japan
| | - Kazuma Uesaka
- Center for Gene Research, Nagoya University, Nagoya, Japan
| | - Aiko Tanaka
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Daisuke Sugiura
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Motohiko Kondo
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
- Motohiko Kondo
| |
Collapse
|
6
|
Anderson E, Jang J, Venterea R, Feyereisen G, Ishii S. Isolation and characterization of denitrifiers from woodchip bioreactors for bioaugmentation application. J Appl Microbiol 2020; 129:590-600. [DOI: 10.1111/jam.14655] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/28/2020] [Accepted: 03/27/2020] [Indexed: 12/13/2022]
Affiliation(s)
- E.L. Anderson
- Department of Soil, Water, and Climate University of Minnesota St. Paul MN USA
| | - J. Jang
- BioTechnology Institute University of Minnesota St. Paul MN USA
| | - R.T. Venterea
- Department of Soil, Water, and Climate University of Minnesota St. Paul MN USA
- USDA‐ARS Soil and Water Management Research Unit St. Paul MN USA
| | - G.W. Feyereisen
- USDA‐ARS Soil and Water Management Research Unit St. Paul MN USA
| | - S. Ishii
- Department of Soil, Water, and Climate University of Minnesota St. Paul MN USA
- BioTechnology Institute University of Minnesota St. Paul MN USA
| |
Collapse
|
7
|
Wang T, Wu T, Wang H, Dong W, Zhao Y, Chu Z, Yan G, Chang Y. Comparative Study of Denitrifying-MBBRs with Different Polyethylene Carriers for Advanced Nitrogen Removal of Real Reverse Osmosis Concentrate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17082667. [PMID: 32295014 PMCID: PMC7215845 DOI: 10.3390/ijerph17082667] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 04/10/2020] [Accepted: 04/11/2020] [Indexed: 11/16/2022]
Abstract
Nitrogen (N) remains a great challenge in wastewater treatment while attempts to remove N has continuously been a research point for decades. In this study, the long-term performance of four identical-shape denitrification MBBRs (moving bed biofilm reactors) with four different configurations of cylindrical polyethylene as carriers (Φ25 × 12, Φ25 × 4, Φ15 × 15, and Φ10 × 7 mm) for advanced N removal of real reverse osmosis concentrate was investigated in great detail. The N of the real concentrate can be effectively removed by denitrification MBBRs when the pH, temperature, hydraulic retention time (HRT), C/N ratio, and filling rate are 7.50–8.10, 24~26 °C, 12 hours, 6.6, and 50%, respectively. The results showed that the MBBR with the Φ15 × 15 poly-carrier had the best removal efficiency on NO3-–N (78.0 ± 15.8%), NO2-–N (43.79 ± 9.30%), NH4+–N (55.56 ± 22.28%), and TN (68.9 ± 12.4%). The highest biomass of 2.13 mg/g-carrier was in the Φ15 × 15 poly-carrier was compared with the other three carriers, while the genes of the Φ15 × 15 poly-carrier reactor were also the most abundant. Proteobacteria was the most abundant phylum in the system followed by Bacteroidetes and then Firmicutes. The entire experiment with various parameter examination supported that Φ15 × 15 poly-carrier MBBR was a promising system for N removal in high strength concentrate. Despite the lab-scale trial, the successful treatment of high strength real reverse osmosis concentrate demonstrated the reality of the treated effluent as possible reclaimed water, thus providing a good showcase of N-rich reverse osmosis concentrate purification in practical application.
Collapse
Affiliation(s)
- Tong Wang
- School of Civil Engineering, Chang’an University, Xi’an 710061, China; (T.W.); (T.W.)
| | - Tong Wu
- School of Civil Engineering, Chang’an University, Xi’an 710061, China; (T.W.); (T.W.)
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
- Correspondence: (H.W.); (Y.Z.)
| | - Weiyang Dong
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Yaqian Zhao
- State Key Laboratory of Eco-Hydraulics in Northwest Arid Region, Xi’an University of Technology, Xi’an 710048, China
- UCD Dooge Center for Water Resources Research, School of Civil Engineering, University College Dublin, Belfield, Dublin 4, Ireland
- Correspondence: (H.W.); (Y.Z.)
| | - Zhaosheng Chu
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China;
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| | - Yang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China; (W.D.); (G.Y.); (Y.C.)
- Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, No. 8 Da Yang Fang, Anwai, Chaoyang District, Beijing 100012, China
| |
Collapse
|
8
|
Avşar C, Aras ES. Quantification of denitrifier genes population size and its relationship with environmental factors. Arch Microbiol 2020; 202:1181-1192. [PMID: 32076734 DOI: 10.1007/s00203-020-01826-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 01/28/2020] [Accepted: 01/30/2020] [Indexed: 10/25/2022]
Abstract
The objectives of this study were to use real-time PCR for culture-independent quantification of the copy numbers of 16S rRNA and denitrification functional genes, and also the relationships between gene copy numbers and soil physicochemical properties. In this study, qPCR analysis of the soil samples showed 16S rRNA, nirS, nirK, nosZI and nosZII average densities of 3.0 × 108, 2.25 × 107, 2.9 × 105, 4.0 × 106 and 1.75 × 107 copies per gram of dry soil, respectively. In addition, the abundances of (nirS + nirK), nosZI and nosZII relative to 16S rRNA genes were 1.4-34.1%, 0.06-3.95% and 1.3-39%, respectively, confirming the low proportion of denitrifiers to total bacteria in soil. This showed that the non-denitrifying nosZII-type bacteria may contribute significantly to N2O consumption in the soil. Furthermore, the shifts in abundance and diversity of the total bacteria and denitrification functional gene copy numbers correlated significantly with the various soil factors. It is the first study in Turkey about the population size of denitrification functional genes in different soil samples. It also aims to draw attention to nitrous oxide-associated global warming.
Collapse
Affiliation(s)
- Cumhur Avşar
- Department of Biology, Faculty of Arts and Sciences, Sinop University, Sinop, Turkey.
| | - E Sümer Aras
- Department of Biology, Faculty of Science, Ankara University, Ankara, Turkey
| |
Collapse
|
9
|
Fujimura R, Azegami Y, Wei W, Kakuta H, Shiratori Y, Ohte N, Senoo K, Otsuka S, Isobe K. Distinct Community Composition of Previously Uncharacterized Denitrifying Bacteria and Fungi across Different Land-Use Types. Microbes Environ 2020; 35:ME19064. [PMID: 31996500 PMCID: PMC7104279 DOI: 10.1264/jsme2.me19064] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 12/04/2019] [Indexed: 11/30/2022] Open
Abstract
Recent studies demonstrated that phylogenetically more diverse and abundant bacteria and fungi than previously considered are responsible for denitrification in terrestrial environments. We herein examined the effects of land-use types on the community composition of those denitrifying microbes based on their nitrite reductase gene (nirK and nirS) sequences. These genes can be phylogenetically grouped into several clusters. We used cluster-specific PCR primers to amplify nirK and nirS belonging to each cluster because the most widely used primers only amplify genes belonging to a single cluster. We found that the dominant taxa as well as overall community composition of denitrifying bacteria and fungi, regardless of the cluster they belonged to, differed according to the land-use type. We also identified distinguishing taxa based on individual land-use types, the distribution of which has not previously been characterized, such as denitrifying bacteria or fungi dominant in forest soils, Rhodanobacter having nirK, Penicillium having nirK, and Bradyrhizobium having nirS. These results suggest that land-use management affects the ecological constraints and consequences of denitrification in terrestrial environments through the assembly of distinct communities of denitrifiers.
Collapse
Affiliation(s)
- Reiko Fujimura
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| | - Yoichi Azegami
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| | - Wei Wei
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
- Jiangsu University, Jiangsu 212013, China
| | - Hiroko Kakuta
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| | - Yutaka Shiratori
- Niigata Agricultural Research Institute, Niigata 940–0826, Japan
| | - Nobuhito Ohte
- Graduate School of Informatics, Kyoto University, Kyoto 606–8501, Japan
| | - Keishi Senoo
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| | - Shigeto Otsuka
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo 113–8657, Japan
| | - Kazuo Isobe
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113–8657, Japan
| |
Collapse
|
10
|
Community structures and comparison of nosZ and 16S rRNA genes from culturable denitrifying bacteria. Folia Microbiol (Praha) 2019; 65:497-510. [DOI: 10.1007/s12223-019-00754-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Accepted: 10/14/2019] [Indexed: 10/25/2022]
|
11
|
Suenaga T, Hori T, Riya S, Hosomi M, Smets BF, Terada A. Enrichment, Isolation, and Characterization of High-Affinity N 2O-Reducing Bacteria in a Gas-Permeable Membrane Reactor. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:12101-12112. [PMID: 31517481 DOI: 10.1021/acs.est.9b02237] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The recent discovery of nitrous oxide (N2O)-reducing bacteria suggests a potential biological sink for the potent greenhouse gas N2O. For an application toward N2O mitigation, characterization of more isolates will be required. Here, we describe the successful enrichment and isolation of high-affinity N2O-reducing bacteria using a N2O-fed reactor (N2OFR). Two N2OFRs, where N2O was continuously and directly supplied as the sole electron acceptor to a biofilm grown on a gas-permeable membrane, were operated with acetate or a mixture of peptone-based organic substrates as an electron donor. In parallel, a NO3- -fed reactor (NO3FR), filled with a nonwoven sheet substratum, was operated using the same inoculum. We hypothesized that supplying N2O vs NO3- would enhance the dominance of distinct N2O-reducing bacteria. Clade II type nosZ bacteria became rapidly enriched over clade I type nosZ bacteria in the N2OFRs, whereas the opposite held in the NO3FR. High-throughput sequencing of 16S rRNA gene amplicons revealed the dominance of Rhodocyclaceae in the N2OFRs. Strains of the Azospira and Dechloromonas genera, canonical denitrifiers harboring clade II type nosZ, were isolated with high frequency from the N2OFRs (132 out of 152 isolates). The isolates from the N2OFR demonstrated higher N2O uptake rates (Vmax: 4.23 × 10-3-1.80 × 10-2 pmol/h/cell) and lower N2O half-saturation coefficients (Km,N2O: 1.55-2.10 μM) than a clade I type nosZ isolate from the NO3FR. Furthermore, the clade II type nosZ isolates had higher specific growth rates on N2O than nitrite as an electron acceptor. Hence, continuously and exclusively supplying N2O in an N2OFR allows the enrichment and isolation of high-affinity N2O-reducing strains, which may be used as N2O sinks in bioaugmentation efforts.
Collapse
Affiliation(s)
- Toshikazu Suenaga
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho , Koganei , Tokyo 184-8588 , Japan
- Institute of Global Innovation Research , Tokyo University of Agriculture and Technology , 3-8-1 Harumi-cho , Fuchu , Tokyo 185-8538 , Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute , National Institute of Advanced Industrial Science and Technology (AIST) , Onogawa 16-1 , Tsukuba , Ibaraki 305-8569 , Japan
| | - Shohei Riya
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho , Koganei , Tokyo 184-8588 , Japan
- Institute of Global Innovation Research , Tokyo University of Agriculture and Technology , 3-8-1 Harumi-cho , Fuchu , Tokyo 185-8538 , Japan
| | - Masaaki Hosomi
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho , Koganei , Tokyo 184-8588 , Japan
| | - Barth F Smets
- Institute of Global Innovation Research , Tokyo University of Agriculture and Technology , 3-8-1 Harumi-cho , Fuchu , Tokyo 185-8538 , Japan
- Department of Environmental Engineering , Technical University of Denmark , Miljoevej, Lyngby 2800 , Denmark
| | - Akihiko Terada
- Department of Chemical Engineering , Tokyo University of Agriculture and Technology , 2-24-16 Naka-cho , Koganei , Tokyo 184-8588 , Japan
- Institute of Global Innovation Research , Tokyo University of Agriculture and Technology , 3-8-1 Harumi-cho , Fuchu , Tokyo 185-8538 , Japan
| |
Collapse
|
12
|
Li L, Yan G, Wang H, Chu Z, Li Z, Ling Y, Wu T. Denitrification and microbial community in MBBR using A. donax as carbon source and biofilm carriers for reverse osmosis concentrate treatment. J Environ Sci (China) 2019; 84:133-143. [PMID: 31284905 DOI: 10.1016/j.jes.2019.04.030] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/30/2019] [Accepted: 04/30/2019] [Indexed: 06/09/2023]
Abstract
In this study, raw Arundo donax (A. donax) pieces were applied as carbon source and biofilm carriers for denitrification in a lab-scale moving bed biofilm reactor (MBBR) for the treatment of reverse osmosis concentrate gathered from local wastewater reuse plant. At stable phase (about 60 days), efficient denitrification performance was obtained with 73.2% ± 19.5% NO3--N average removal and 8.10 ± 3.45 g N/(m3·day) NO3--N average volumetric removal rate. Mass balance analysis showed that 4.84 g A. donax was required to remove 1 g TN. Quantitative real-time PCR analysis results showed that the copy numbers of 16S r-RNA, narG, nirS, nosZ and anammox gene of carrier biofilm and suspended activated sludge in the declination phase (BF2 and AS2) were lower than those of samples in the stable phase (BF1 and AS1), and relatively higher copy numbers of nirS and nirK genes with lower abundance of narG and nosZ genes were observed. High-throughput sequencing analysis was conducted for BF2 and AS2, and similar dominant phyla and classes with different abundance were obtained. The class Gammaproteobacteria affiliated with the phylum Proteobacteria was the most dominant microbial community in both BF2 (52.6%) and AS2 (41.7%). The PICRUSt prediction results indicated that 33 predictive specific genes were related to denitrification process, and the relative abundance of 18 predictive specific genes in BF2 were higher than those in AS2.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Guokai Yan
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Haiyan Wang
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Zhaosheng Chu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; State Environmental Protection Key Laboratory for Lake Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Zewen Li
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yu Ling
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Tong Wu
- State Key Laboratory of Environmental Criteria And Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Engineering Center for Environmental Pollution Control, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| |
Collapse
|
13
|
Altshuler I, Ronholm J, Layton A, Onstott TC, W. Greer C, Whyte LG. Denitrifiers, nitrogen-fixing bacteria and N2O soil gas flux in high Arctic ice-wedge polygon cryosols. FEMS Microbiol Ecol 2019; 95:5481522. [DOI: 10.1093/femsec/fiz049] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/24/2019] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ianina Altshuler
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Jennifer Ronholm
- Department of Food Science and Agricultural Chemistry, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
- Department of Animal Science, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| | - Alice Layton
- Center for Environmental Biotechnology, University of Tennessee – Knoxville, 676 Dabney-Buehler Hall, 1416 Circle Drive, TN 37996-1605, USA
| | - Tullis C Onstott
- Geomicrobiology, Geosciences, Princeton University, Princeton, NJ 08544, USA
| | - Charles W. Greer
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
- National Research Council of Canada, 6100 Royalmount Avenue, Montreal, QC, H4P 2R2, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, Macdonald Campus, McGill University, 21,111 Lakeshore Rd, Ste Anne-de-Bellevue, QC, H9X 3V9, Canada
| |
Collapse
|
14
|
Jang J, Anderson EL, Venterea RT, Sadowsky MJ, Rosen CJ, Feyereisen GW, Ishii S. Denitrifying Bacteria Active in Woodchip Bioreactors at Low-Temperature Conditions. Front Microbiol 2019; 10:635. [PMID: 31001220 PMCID: PMC6454037 DOI: 10.3389/fmicb.2019.00635] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/13/2019] [Indexed: 11/13/2022] Open
Abstract
Woodchip bioreactor technology removes nitrate from agricultural subsurface drainage by using denitrifying microorganisms. Although woodchip bioreactors have demonstrated success in many field locations, low water temperature can significantly limit bioreactor efficiency and performance. To improve bioreactor performance, it is important to identify the microbes responsible for nitrate removal at low temperature conditions. Therefore, in this study, we identified and characterized denitrifiers active at low-temperature conditions by using culture-independent and -dependent approaches. By comparative 16S rRNA (gene) analysis and culture isolation technique, Pseudomonas spp., Polaromonas spp., and Cellulomonas spp. were identified as being important bacteria responsible for denitrification in woodchip bioreactor microcosms at relatively low temperature conditions (15°C). Genome analysis of Cellulomonas sp. strain WB94 confirmed the presence of nitrite reductase gene nirK. Transcription levels of this nirK were significantly higher in the denitrifying microcosms than in the non-denitrifying microcosms. Strain WB94 was also capable of degrading cellulose and other complex polysaccharides. Taken together, our results suggest that Cellulomonas sp. denitrifiers could degrade woodchips to provide carbon source and electron donors to themselves and other denitrifiers in woodchip bioreactors at low-temperature conditions. By inoculating these denitrifiers (i.e., bioaugmentation), it might be possible to increase the nitrate removal rate of woodchip bioreactors at low-temperature conditions.
Collapse
Affiliation(s)
- Jeonghwan Jang
- The BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
| | - Emily L. Anderson
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| | - Rodney T. Venterea
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
- Soil and Water Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Saint Paul, MN, United States
| | - Michael J. Sadowsky
- The BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| | - Carl J. Rosen
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| | - Gary W. Feyereisen
- Soil and Water Management Research Unit, Agricultural Research Service, United States Department of Agriculture, Saint Paul, MN, United States
| | - Satoshi Ishii
- The BioTechnology Institute, University of Minnesota, Saint Paul, MN, United States
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, United States
| |
Collapse
|
15
|
Jang J, Sakai Y, Senoo K, Ishii S. Potentially Mobile Denitrification Genes Identified in Azospirillum sp. Strain TSH58. Appl Environ Microbiol 2019; 85:e02474-18. [PMID: 30413471 PMCID: PMC6328785 DOI: 10.1128/aem.02474-18] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 11/05/2018] [Indexed: 11/20/2022] Open
Abstract
Denitrification ability is sporadically distributed among diverse bacteria, archaea, and fungi. In addition, disagreement has been found between denitrification gene phylogenies and the 16S rRNA gene phylogeny. These facts have suggested potential occurrences of horizontal gene transfer (HGT) for the denitrification genes. However, evidence of HGT has not been clearly presented thus far. In this study, we identified the sequences and the localization of the nitrite reductase genes in the genomes of 41 denitrifying Azospirillum sp. strains and searched for mobile genetic elements that contain denitrification genes. All Azospirillum sp. strains examined in this study possessed multiple replicons (4 to 11 replicons), with their sizes ranging from 7 to 1,031 kbp. Among those, the nitrite reductase gene nirK was located on large replicons (549 to 941 kbp). Genome sequencing showed that Azospirillum strains that had similar nirK sequences also shared similar nir-nor gene arrangements, especially between the TSH58, Sp7T, and Sp245 strains. In addition to the high similarity between nir-nor gene clusters among the three Azospirillum strains, a composite transposon structure was identified in the genome of strain TSH58, which contains the nir-nor gene cluster and the novel IS6 family insertion sequences (ISAz581 and ISAz582). The nirK gene within the composite transposon system was actively transcribed under denitrification-inducing conditions. Although not experimentally verified in this study, the composite transposon system containing the nir-nor gene cluster could be transferred to other cells if it is moved to a prophage region and the phage becomes activated and released outside the cells. Taken together, strain TSH58 most likely acquired its denitrification ability by HGT from closely related Azospirillum sp. denitrifiers.IMPORTANCE The evolutionary history of denitrification is complex. While the occurrence of horizontal gene transfer has been suggested for denitrification genes, most studies report circumstantial evidences, such as disagreement between denitrification gene phylogenies and the 16S rRNA gene phylogeny. Based on the comparative genome analyses of Azospirillum sp. denitrifiers, we identified denitrification genes, including nirK and norCBQD, located on a mobile genetic element in the genome of Azospirillum sp. strain TSH58. The nirK was actively transcribed under denitrification-inducing conditions. Since this gene was the sole nitrite reductase gene in strain TSH58, this strain most likely benefitted by acquiring denitrification genes via horizontal gene transfer. This finding will significantly advance our scientific knowledge regarding the ecology and evolution of denitrification.
Collapse
Affiliation(s)
- Jeonghwan Jang
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
| | - Yoriko Sakai
- Institute for Agro-Environmental Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, Japan
| | - Satoshi Ishii
- BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA
- Department of Soil, Water, and Climate, University of Minnesota, St. Paul, Minnesota, USA
- Microbial and Plant Genomics Institute, University of Minnesota, St. Paul, Minnesota, USA
| |
Collapse
|
16
|
Botchkova EA, Litti YV, Novikov AA, Grouzdev DS, Bochkareva ES, Beskorovayny AV, Kuznetsov BB, Nozhevnikova AN. Description of “Candidatus Jettenia ecosi” sp. nov., a New Species of Anammox Bacteria. Microbiology (Reading) 2018. [DOI: 10.1134/s002626171806005x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
17
|
Jang J, Ashida N, Kai A, Isobe K, Nishizawa T, Otsuka S, Yokota A, Senoo K, Ishii S. Presence of Cu-Type (NirK) and cd 1-Type (NirS) Nitrite Reductase Genes in the Denitrifying Bacterium Bradyrhizobium nitroreducens sp. nov. Microbes Environ 2018; 33:326-331. [PMID: 30158366 PMCID: PMC6167111 DOI: 10.1264/jsme2.me18039] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Nitrite reductase is a key enzyme for denitrification. There are two types of nitrite reductases: copper-containing NirK and cytochrome cd1-containing NirS. Most denitrifiers possess either nirK or nirS, although a few strains been reported to possess both genes. We herein report the presence of nirK and nirS in the soil-denitrifying bacterium Bradyrhizobium sp. strain TSA1T. Both nirK and nirS were identified and actively transcribed under denitrification conditions. Based on physiological, chemotaxonomic, and genomic properties, strain TSA1T (=JCM 18858T=KCTC 62391T) represents a novel species within the genus Bradyrhizobium, for which we propose the name Bradyrhizobium nitroreducens sp. nov.
Collapse
Affiliation(s)
| | - Naoaki Ashida
- Department of Applied Biological Chemistry, The University of Tokyo
| | - Ayaaki Kai
- Department of Applied Biological Chemistry, The University of Tokyo
| | - Kazuo Isobe
- Department of Applied Biological Chemistry, The University of Tokyo
| | - Tomoyasu Nishizawa
- Department of Food and Life Sciences, Ibaraki University College of Agriculture
| | - Shigeto Otsuka
- Department of Applied Biological Chemistry, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Akira Yokota
- Collaborative Research Institute for Innovative Microbiology, The University of Tokyo.,Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Sciences, Tohoku University
| | - Keishi Senoo
- Department of Applied Biological Chemistry, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Satoshi Ishii
- Biotechnology Institute, University of Minnesota.,Department of Soil, Water, and Climate, University of Minnesota
| |
Collapse
|
18
|
Nitrogen Cycle Evaluation (NiCE) Chip for Simultaneous Analysis of Multiple N Cycle-Associated Genes. Appl Environ Microbiol 2018. [PMID: 29427421 DOI: 10.1128/aem.02615‐17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Various microorganisms play key roles in the nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR amplicon sequencing of N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible for N-transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive, especially when we analyze multiple samples and try to detect N cycle functional genes present at a relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named the nitrogen cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine the abundance and diversity of N cycle functional genes in wastewater samples. Although nonspecific amplification was detected on the NiCE chip, this can be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide a high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples.IMPORTANCE We report a novel approach, namely, the nitrogen cycle evaluation (NiCE) chip, by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess the diversities of N cycle functional genes. The NiCE chip technology is applicable to analysis of the temporal dynamics of N cycle gene transcription in wastewater treatment bioreactors. The NiCE chip can provide a high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples.
Collapse
|
19
|
Nitrogen Cycle Evaluation (NiCE) Chip for Simultaneous Analysis of Multiple N Cycle-Associated Genes. Appl Environ Microbiol 2018; 84:AEM.02615-17. [PMID: 29427421 DOI: 10.1128/aem.02615-17] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 01/28/2018] [Indexed: 01/20/2023] Open
Abstract
Various microorganisms play key roles in the nitrogen (N) cycle. Quantitative PCR (qPCR) and PCR amplicon sequencing of N cycle functional genes allow us to analyze the abundance and diversity of microbes responsible for N-transforming reactions in various environmental samples. However, analysis of multiple target genes can be cumbersome and expensive. PCR-independent analysis, such as metagenomics and metatranscriptomics, is useful but expensive, especially when we analyze multiple samples and try to detect N cycle functional genes present at a relatively low abundance. Here, we present the application of microfluidic qPCR chip technology to simultaneously quantify and prepare amplicon sequence libraries for multiple N cycle functional genes as well as taxon-specific 16S rRNA gene markers for many samples. This approach, named the nitrogen cycle evaluation (NiCE) chip, was evaluated by using DNA from pure and artificially mixed bacterial cultures and by comparing the results with those obtained by conventional qPCR and amplicon sequencing methods. Quantitative results obtained by the NiCE chip were comparable to those obtained by conventional qPCR. In addition, the NiCE chip was successfully applied to examine the abundance and diversity of N cycle functional genes in wastewater samples. Although nonspecific amplification was detected on the NiCE chip, this can be overcome by optimizing the primer sequences in the future. As the NiCE chip can provide a high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes, this tool should advance our ability to explore N cycling in various samples.IMPORTANCE We report a novel approach, namely, the nitrogen cycle evaluation (NiCE) chip, by using microfluidic qPCR chip technology. By sequencing the amplicons recovered from the NiCE chip, we can assess the diversities of N cycle functional genes. The NiCE chip technology is applicable to analysis of the temporal dynamics of N cycle gene transcription in wastewater treatment bioreactors. The NiCE chip can provide a high-throughput format to quantify and prepare sequence libraries for multiple N cycle functional genes. While there is room for future improvement, this tool should significantly advance our ability to explore the N cycle in various environmental samples.
Collapse
|
20
|
Sánchez C, Minamisawa K. Redundant roles of Bradyrhizobium oligotrophicum Cu-type (NirK) and cd1-type (NirS) nitrite reductase genes under denitrifying conditions. FEMS Microbiol Lett 2018; 365:4817536. [DOI: 10.1093/femsle/fny015] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Affiliation(s)
- Cristina Sánchez
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| | - Kiwamu Minamisawa
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan
| |
Collapse
|
21
|
Black EM, Chimenti MS, Just CL. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in upper Mississippi river sediment. PeerJ 2017; 5:e3536. [PMID: 28717594 PMCID: PMC5510576 DOI: 10.7717/peerj.3536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/13/2017] [Indexed: 01/03/2023] Open
Abstract
Targeted qPCR and non-targeted amplicon sequencing of 16S rRNA genes within sediment layers identified the anaerobic ammonium oxidation (anammox) niche and characterized microbial community changes attributable to freshwater mussels. Anammox bacteria were normally distributed (Shapiro-Wilk normality test, W-statistic =0.954, p = 0.773) between 1 and 15 cm depth and were increased by a factor of 2.2 (p < 0.001) at 3 cm below the water-sediment interface when mussels were present. Amplicon sequencing of sediment at depths relevant to mussel burrowing (3 and 5 cm) showed that mussel presence reduced observed species richness (p = 0.005), Chao1 diversity (p = 0.005), and Shannon diversity (p < 0.001), with more pronounced decreases at 5 cm depth. A non-metric, multidimensional scaling model showed that intersample microbial species diversity varied as a function of mussel presence, indicating that sediment below mussels harbored distinct microbial communities. Mussel presence corresponded with a 4-fold decrease in a majority of operational taxonomic units (OTUs) classified in the phyla Gemmatimonadetes, Actinobacteria, Acidobacteria, Plantomycetes, Chloroflexi, Firmicutes, Crenarcheota, and Verrucomicrobia. 38 OTUs in the phylum Nitrospirae were differentially abundant (p < 0.001) with mussels, resulting in an overall increase from 25% to 35%. Nitrogen (N)-cycle OTUs significantly impacted by mussels belonged to anammmox genus Candidatus Brocadia, ammonium oxidizing bacteria family Nitrosomonadaceae, ammonium oxidizing archaea genus Candidatus Nitrososphaera, nitrite oxidizing bacteria in genus Nitrospira, and nitrate- and nitrite-dependent anaerobic methane oxidizing organisms in the archaeal family “ANME-2d” and bacterial phylum “NC10”, respectively. Nitrosomonadaceae (0.9-fold (p < 0.001)) increased with mussels, while NC10 (2.1-fold (p < 0.001)), ANME-2d (1.8-fold (p < 0.001)), and Candidatus Nitrososphaera (1.5-fold (p < 0.001)) decreased with mussels. Co-occurrence of 2-fold increases in Candidatus Brocadia and Nitrospira in shallow sediments suggests that mussels may enhance microbial niches at the interface of oxic–anoxic conditions, presumably through biodeposition and burrowing. Furthermore, it is likely that the niches of Candidatus Nitrososphaera and nitrite- and nitrate-dependent anaerobic methane oxidizers were suppressed by mussel biodeposition and sediment aeration, as these phylotypes require low ammonium concentrations and anoxic conditions, respectively. As far as we know, this is the first study to characterize freshwater mussel impacts on microbial diversity and the vertical distribution of N-cycle microorganisms in upper Mississippi river sediment. These findings advance our understanding of ecosystem services provided by mussels and their impact on aquatic biogeochemical N-cycling.
Collapse
Affiliation(s)
- Ellen M Black
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, United States of America
| | - Craig L Just
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
22
|
Ishii S, Ashida N, Ohno H, Segawa T, Yabe S, Otsuka S, Yokota A, Senoo K. Noviherbaspirillum denitrificans sp. nov., a denitrifying bacterium isolated from rice paddy soil and Noviherbaspirillum autotrophicum sp. nov., a denitrifying, facultatively autotrophic bacterium isolated from rice paddy soil and proposal to reclassify Herbaspirillum massiliense as Noviherbaspirillum massiliense comb. nov. Int J Syst Evol Microbiol 2017. [DOI: 10.1099/ijsem.0.001875] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Satoshi Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
- Department of Soil, Water and Climate, BioTechnology Institute, University of Minnesota, St. Paul, MN, USA
| | - Naoaki Ashida
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Hiroki Ohno
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Takahiro Segawa
- Present address: Center for Life Science Research, University of Yamanashi, Yamanashi, Japan
- Transdisciplinary Research Integration Center, Tokyo, Japan
- National Institute of Polar Research, Tokyo, Japan
| | - Shuhei Yabe
- Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Shigeto Otsuka
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | - Akira Yokota
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Indonesia, Depok, Indonesia
- Institute for Molecular and Cellular Biosciences, University of Tokyo, Tokyo, Japan
- Division of Bioscience and Biotechnology for Future Bioindustries, Graduate School of Agricultural Sciences, Tohoku University, Sendai, Japan
| | - Keishi Senoo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Corteselli EM, Aitken MD, Singleton DR. Rugosibacter aromaticivorans gen. nov., sp. nov., a bacterium within the family Rhodocyclaceae, isolated from contaminated soil, capable of degrading aromatic compounds. Int J Syst Evol Microbiol 2017; 67:311-318. [PMID: 27902243 DOI: 10.1099/ijsem.0.001622] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A bacterial strain designated Ca6T was isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soil from the site of a former manufactured gas plant in Charlotte, NC, USA, and linked phylogenetically to the family Rhodocyclaceae of the class Betaproteobacteria. Its 16S rRNA gene sequence was highly similar to globally distributed environmental sequences, including those previously designated 'Pyrene Group 1' demonstrated to grow on the PAHs phenanthrene and pyrene by stable-isotope probing. The most closely related described relative was Sulfuritalea hydrogenivorans strain sk43HT (93.6 % 16S rRNA gene sequence identity). In addition to a limited number of organic acids, Ca6T was capable of growth on the monoaromatic compounds benzene and toluene, and the azaarene carbazole, as sole sources of carbon and energy. Growth on the PAHs phenanthrene and pyrene was also confirmed. Optimal growth was observed aerobically under mesophilic temperature, neutral pH and low salinity conditions. Major fatty acids present included summed feature 3 (C16 : 1ω7c or C16 : 1ω6c) and C16 : 0. The DNA G+C content of the single chromosome was 55.14 mol% as determined by complete genome sequencing. Due to its distinct genetic and physiological properties, strain Ca6T is proposed as a member of a novel genus and species within the family Rhodocyclaceae, for which the name Rugosibacter aromaticivorans gen. nov., sp. nov. is proposed. The type strain of the species is Ca6T (=ATCC TSD-59T=DSM 103039T).
Collapse
Affiliation(s)
- Elizabeth M Corteselli
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599-7431, USA
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599-7431, USA
| | - David R Singleton
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, NC 27599-7431, USA
| |
Collapse
|
24
|
Mac Conell EFA, Almeida PGS, Martins KEL, Araújo JC, Chernicharo CAL. Bacterial community involved in the nitrogen cycle in a down-flow sponge-based trickling filter treating UASB effluent. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2015; 72:116-122. [PMID: 26114279 DOI: 10.2166/wst.2015.154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The bacterial community composition of a down-flow sponge-based trickling filter treating upflow anaerobic sludge blanket (UASB) effluent was investigated by pyrosequencing. Bacterial community composition considerably changed along the reactor and over the operational period. The dominant phyla detected were Proteobacteria, Verrucomicrobia, and Planctomycetes. The abundance of denitrifiers decreased from the top to the bottom and it was consistent with the organic matter concentration gradients. At lower loadings (organic and nitrogen loading rates), the abundance of anammox bacteria was higher than that of the ammonium-oxidizing bacteria in the upper portion of the reactor, suggesting that aerobic and anaerobic ammonium oxidation occurred. Nitrification occurred in all the compartments, while anammox bacteria prominently appeared even in the presence of high organic carbon to ammonia ratios (around 1.0-2.0 gCOD gN(-1)). The results suggest that denitrifiers, nitrifiers, and anammox bacteria coexisted in the reactor; thus, different metabolic pathways were involved in ammonium removal in the post-UASB reactor sponge-based.
Collapse
Affiliation(s)
- E F A Mac Conell
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - P G S Almeida
- Environmental Engineering and Water Technology Department, UNESCO-IHE, Westvest 7, 2611 AX, Delft, The Netherlands
| | - K E L Martins
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - J C Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil E-mail:
| | - C A L Chernicharo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antônio Carlos 6627, 31270-901, Belo Horizonte, Minas Gerais, Brazil E-mail:
| |
Collapse
|
25
|
Ishii S, Song Y, Rathnayake L, Tumendelger A, Satoh H, Toyoda S, Yoshida N, Okabe S. Identification of key nitrous oxide production pathways in aerobic partial nitrifying granules. Environ Microbiol 2014; 16:3168-80. [PMID: 24650173 DOI: 10.1111/1462-2920.12458] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Accepted: 03/16/2014] [Indexed: 11/28/2022]
Abstract
The identification of the key nitrous oxide (N2O) production pathways is important to establish a strategy to mitigate N2O emission. In this study, we combined real-time gas-monitoring analysis, (15)N stable isotope analysis, denitrification functional gene transcriptome analysis and microscale N2O concentration measurements to identify the main N2O producers in a partial nitrification (PN) aerobic granule reactor, which was fed with ammonium and acetate. Our results suggest that heterotrophic denitrification was the main contributor to N2O production in our PN aerobic granule reactor. The heterotrophic denitrifiers were probably related to Rhodocyclales bacteria, although different types of bacteria were active in the initial and latter stages of the PN reaction cycles, most likely in response to the presence of acetate. Hydroxylamine oxidation and nitrifier denitrification occurred, but their contribution to N2O emission was relatively small (20-30%) compared with heterotrophic denitrification. Our approach can be useful to quantitatively examine the relative contributions of the three pathways (hydroxylamine oxidation, nitrifier denitrification and heterotrophic denitrification) to N2O emission in mixed microbial populations.
Collapse
Affiliation(s)
- Satoshi Ishii
- Division of Environmental Engineering, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Bellini MI, Gutiérrez L, Tarlera S, Scavino AF. Isolation and functional analysis of denitrifiers in an aquifer with high potential for denitrification. Syst Appl Microbiol 2013; 36:505-16. [DOI: 10.1016/j.syapm.2013.07.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Revised: 07/04/2013] [Accepted: 07/06/2013] [Indexed: 10/26/2022]
|
27
|
Diverse gene cassettes in class 1 integrons of facultative oligotrophic bacteria of River Mahananda,West Bengal, India. PLoS One 2013; 8:e71753. [PMID: 23951238 PMCID: PMC3739733 DOI: 10.1371/journal.pone.0071753] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Accepted: 07/02/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND In this study a large random collection (n=2188) of facultative oligotrophic bacteria, from 90 water samples gathered in three consecutive years (2007-2009) from three different sampling sites of River Mahananda in Siliguri, West Bengal, India, were investigated for the presence of class 1 integrons and sequences of the amplification products. METHODOLOGY/PRINCIPAL FINDINGS Replica plating method was employed for determining the antibiotic resistance profile of the randomly assorted facultative oligotrophic isolates. Genomic DNA from each isolate was analyzed by PCR for the presence of class 1 integron. Amplicons were cloned and sequenced. Numerical taxonomy and 16S rRNA gene sequence analyses were done to ascertain putative genera of the class 1 integron bearing isolates. Out of 2188 isolates, 1667 (76.19%) were antibiotic-resistant comprising of both single-antibiotic resistance (SAR) and multiple-antibiotic resistant (MAR), and 521 (23.81%) were sensitive to all twelve different antibiotics used in this study. Ninety out of 2188 isolates produced amplicon(s) of varying sizes from 0.15 to 3.45 KB. Chi-square (χ(2)) test revealed that the possession of class 1 integron in sensitive, SAR and MAR is not equally probable at the 1% level of significance. Diverse antibiotic-resistance gene cassettes, aadA1, aadA2, aadA4, aadA5, dfrA1, dfrA5, dfrA7, dfrA12, dfrA16, dfrA17, dfrA28, dfrA30, dfr-IIe, blaIMP-9, aacA4, Ac-6'-Ib, oxa1, oxa10 and arr2 were detected in 64 isolates. The novel cassettes encoding proteins unrelated to any known antibiotic resistance gene function were identified in 26 isolates. Antibiotic-sensitive isolates have a greater propensity to carry gene cassettes unrelated to known antibiotic-resistance genes. The integron-positive isolates under the class Betaproteobacteria comprised of only two genera, Comamonas and Acidovorax of family Comamonadaceae, while isolates under class Gammaproteobacteria fell under the families, Moraxellaceae, Pseudomonadaceae, Aeromonadaceae and Enterobacteriaceae. CONCLUSIONS Oligotrophic bacteria are good sources of novel genes as well as potential reservoirs of antibiotic resistance gene casettes.
Collapse
|
28
|
Denitrifying alphaproteobacteria from the Arabian Sea that express nosZ, the gene encoding nitrous oxide reductase, in oxic and suboxic waters. Appl Environ Microbiol 2013; 79:2670-81. [PMID: 23396348 DOI: 10.1128/aem.03705-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine ecosystems are significant sources of the powerful greenhouse gas nitrous oxide (N2O). A by-product of nitrification and an intermediate in the denitrification pathway, N2O is formed primarily in oxygen-deficient waters and sediments. We describe the isolation of a group of alphaproteobacteria from the suboxic waters of the Arabian Sea that are phylogenetically affiliated with Labrenzia spp. and other denitrifiers. Quantitative PCR assays revealed that these organisms were very broadly distributed in this semienclosed ocean basin. Their biogeographical range extended from the productive, upwelling region off the Omani shelf to the clear, oligotrophic waters that are found much further south and also included the mesotrophic waters overlying the oxygen minimum zone (OMZ) in the northeastern sector of the Arabian Sea. These organisms actively expressed NosZ (N2O reductase, the terminal step in the denitrification pathway) within the OMZ, an established region of pelagic denitrification. They were found in greatest numbers outside the OMZ, however, and nosZ mRNAs were also readily detected near the base of the upper mixed layer in nutrient-poor, oxic regions. Our findings provide firm molecular evidence of a potential sink for N2O within well-ventilated, oceanic surface waters in this biogeochemically important region. We show that the Labrenzia-like denitrifiers and their close relatives are habitual colonizers of the pseudobenthic environment provided by Trichodesmium spp. We develop the conjecture that the O2-depleted microzones that occur within the colonies of these filamentous, diazotrophic cyanobacteria might provide unexpected niches for the reduction of nitrogen oxides in tropical and subtropical surface waters.
Collapse
|
29
|
Yoshida M, Ishii S, Fujii D, Otsuka S, Senoo K. Identification of active denitrifiers in rice paddy soil by DNA- and RNA-based analyses. Microbes Environ 2012; 27:456-61. [PMID: 22972387 PMCID: PMC4103554 DOI: 10.1264/jsme2.me12076] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Denitrification occurs markedly in rice paddy fields; however, few microbes that are actively involved in denitrification in these environments have been identified. In this study, we used a laboratory soil microcosm system in which denitrification activity was enhanced. DNA and RNA were extracted from soil at six time points after enhancing denitrification activity, and quantitative PCR and clone library analyses were performed targeting the 16S rRNA gene and denitrification functional genes (nirS, nirK and nosZ) to clarify which microbes are actively involved in denitrification in rice paddy soil. Based on the quantitative PCR results, transcription levels of the functional genes agreed with the denitrification activity, although gene abundance did not change at the DNA level. Diverse denitrifiers were detected in clone library analysis, but comparative analysis suggested that only some of the putative denitrifiers, especially those belonging to the orders Neisseriales, Rhodocyclales and Burkholderiales, were actively involved in denitrification in rice paddy soil.
Collapse
Affiliation(s)
- Megumi Yoshida
- Department of Applied Biological Chemistry, The University of Tokyo, 1–1–1 Yayoi, Bunkyo-ku, Tokyo 113–8657, Japan.
| | | | | | | | | |
Collapse
|
30
|
Wang Y, Wan R, Zhang S, Xie S. Anthracene biodegradation under nitrate-reducing condition and associated microbial community changes. BIOTECHNOL BIOPROC E 2012. [DOI: 10.1007/s12257-011-0567-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
Ishikawa K, Ohmori T, Miyamoto H, Ito T, Kumagai Y, Sonoda M, Matsumoto J, Miyamoto H, Kodama H. Denitrification in soil amended with thermophile-fermented compost suppresses nitrate accumulation in plants. Appl Microbiol Biotechnol 2012; 97:1349-59. [DOI: 10.1007/s00253-012-4004-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 02/28/2012] [Accepted: 02/29/2012] [Indexed: 01/22/2023]
|
32
|
Yuan Q, Liu P, Lu Y. Differential responses of nirK- and nirS-carrying bacteria to denitrifying conditions in the anoxic rice field soil. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:113-122. [PMID: 23757237 DOI: 10.1111/j.1758-2229.2011.00311.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Denitrification occurs actively in rice field soils. In the present study, the responses of nirK and nirS denitrifier communities to nitrate addition in the anoxic rice soil were determined through molecular analyses of nitrite reductase genes nirK and nirS and 16S rRNA genes. Denitrification occurred rapidly when nitrate was added at the beginning of anoxic incubation (experiment I). The structure of nirK-type denitrifiers did not change; but their abundance as determined by quantitative (real-time) PCR increased in nitrate treatments compared with control. Both the structure and abundance of nirS denitrifiers remained unaffected in experiment I. The rate of denitrification was slowed down when nitrate was added 20 days after the onset of anoxic incubation (experiment II). The structure and abundance of nirK-type denitrifier community did not respond to nitrate addition; but the nirS community changed substantially in this experiment. The copy number of nirS genes increased by an order of magnitude in the treatments of 5 mM and 10 mM nitrate compared with control. The terminal restriction fragment length polymorphism (T-RFLP) analysis of nirS genes revealed that the 100 bp T-RF substantially increased in the nitrate treatments. Cloning and sequence analysis indicated that this T-RF had similarity of up to 90% with Herbaspirillum sp. T-RFLP profiles of the bacterial 16S rRNA genes also showed that Herbaspirillum sp. increased after nitrate amendments. Collectively, the nirK-type denitrifiers were probably active at the beginning of anaerobic incubation, while the nirS denitrifiers, especially those related with Herbaspirillum sp. probably were more active when anaerobic condition was fully developed.
Collapse
Affiliation(s)
- Quan Yuan
- College of Resources and Environmental Sciences, China Agricultural University, 100193 Beijing, China
| | | | | |
Collapse
|
33
|
Maeda K, Hanajima D, Toyoda S, Yoshida N, Morioka R, Osada T. Microbiology of nitrogen cycle in animal manure compost. Microb Biotechnol 2011; 4:700-9. [PMID: 21375720 PMCID: PMC3815407 DOI: 10.1111/j.1751-7915.2010.00236.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Accepted: 10/17/2010] [Indexed: 11/29/2022] Open
Abstract
Composting is the major technology in the treatment of animal manure and is a source of nitrous oxide, a greenhouse gas. Although the microbiological processes of both nitrification and denitrification are involved in composting, the key players in these pathways have not been well identified. Recent molecular microbiological methodologies have revealed the presence of dominant Bacillus species in the degradation of organic material or betaproteobacterial ammonia-oxidizing bacteria on nitrification on the surface, and have also revealed the mechanism of nitrous oxide emission in this complicated process to some extent. Some bacteria, archaea or fungi still would be considered potential key players, and the contribution of some pathways, such as nitrifier denitrification or heterotrophic nitrification, might be involved in composting. This review article discusses these potential microbial players in nitrification-denitrification within the composting pile and highlights the relevant unknowns through recent activities that focus on the nitrogen cycle within the animal manure composting process.
Collapse
Affiliation(s)
- Koki Maeda
- Hokkaido Research Subteam for Waste Recycling System, National Agricultural Research Center for Hokkaido Region, National Agricultural and Food Research Organization, 1 Hitsujigaoka, Sapporo 062-8555, Japan.
| | | | | | | | | | | |
Collapse
|
34
|
Ishii S, Ikeda S, Minamisawa K, Senoo K. Nitrogen cycling in rice paddy environments: past achievements and future challenges. Microbes Environ 2011; 26:282-92. [PMID: 22008507 DOI: 10.1264/jsme2.me11293] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Nitrogen is generally the most limiting nutrient for rice production. In rice paddy soils, various biochemical processes can occur regarding N cycling, including nitrification, denitrification, and nitrogen fixation. Since its discovery in the 1930s, the nitrification-denitrification process has been extensively studied in Japan. It may cause N loss from rice paddy soils, while it can also reduce environmental pollutions such as nitrate leaching and emission of nitrous oxide (N(2)O). In this review article, we first summarize the early and important findings regarding nitrification-denitrification in rice paddy soils, and then update recent findings regarding key players in denitrification and N(2)O reduction. In addition, we also discuss the potential occurrence of other newly found reactions in the N cycle, such as archaeal ammonia oxidization, fungal denitrification, anaerobic methane oxidation coupled with denitrification, and anaerobic ammonium oxidation.
Collapse
Affiliation(s)
- Satoshi Ishii
- Division of Environmental Engineering, Hokkaido University, Sapporo, Japan.
| | | | | | | |
Collapse
|
35
|
Ishii S, Ohno H, Tsuboi M, Otsuka S, Senoo K. Identification and isolation of active N2O reducers in rice paddy soil. ISME JOURNAL 2011; 5:1936-45. [PMID: 21677691 DOI: 10.1038/ismej.2011.69] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Dissolved N(2)O is occasionally detected in surface and ground water in rice paddy fields, whereas little or no N(2)O is emitted to the atmosphere above these fields. This indicates the occurrence of N(2)O reduction in rice paddy fields; however, identity of the N(2)O reducers is largely unknown. In this study, we employed both culture-dependent and culture-independent approaches to identify N(2)O reducers in rice paddy soil. In a soil microcosm, N(2)O and succinate were added as the electron acceptor and donor, respectively, for N(2)O reduction. For the stable isotope probing (SIP) experiment, (13)C-labeled succinate was used to identify succinate-assimilating microbes under N(2)O-reducing conditions. DNA was extracted 24 h after incubation, and heavy and light DNA fractions were separated by density gradient ultracentrifugation. Denaturing gradient gel electrophoresis and clone library analysis targeting the 16S rRNA and the N(2)O reductase gene were performed. For culture-dependent analysis, the microbes that elongated under N(2)O-reducing conditions in the presence of cell-division inhibitors were individually captured by a micromanipulator and transferred to a low-nutrient medium. The N(2)O-reducing ability of these strains was examined by gas chromatography/mass spectrometry. Results of the SIP analysis suggested that Burkholderiales and Rhodospirillales bacteria dominated the population under N(2)O-reducing conditions, in contrast to the control sample (soil incubated with only (13)C-succinate). Results of the single-cell isolation technique also indicated that the majority of the N(2)O-reducing strains belonged to the genera Herbaspirillum (Burkholderiales) and Azospirillum (Rhodospirillales). In addition, Herbaspirillum strains reduced N(2)O faster than Azospirillum strains. These results suggest that Herbaspirillum spp. may have an important role in N(2)O reduction in rice paddy soils.
Collapse
Affiliation(s)
- Satoshi Ishii
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan.
| | | | | | | | | |
Collapse
|