1
|
Mathieu E, Léjard V, Ezzine C, Govindin P, Morat A, Giat M, Lapaque N, Doré J, Blottière HM. An Insight into Functional Metagenomics: A High-Throughput Approach to Decipher Food-Microbiota-Host Interactions in the Human Gut. Int J Mol Sci 2023; 24:17630. [PMID: 38139456 PMCID: PMC10744307 DOI: 10.3390/ijms242417630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023] Open
Abstract
Our understanding of the symbiotic relationship between the microbiota and its host has constantly evolved since our understanding that the "self" was not only defined by our genetic patrimony but also by the genomes of bugs living in us. The first culture-based methods highlighted the important functions of the microbiota. However, these methods had strong limitations and did not allow for a full understanding of the complex relationships that occur at the interface between the microbiota and the host. The recent development of metagenomic approaches has been a groundbreaking step towards this understanding. Its use has provided new insights and perspectives. In the present chapter, we will describe the advances of functional metagenomics to decipher food-microbiota and host-microbiota interactions. This powerful high-throughput approach allows for the assessment of the microbiota as a whole (including non-cultured bacteria) and enabled the discovery of new signaling pathways and functions involved in the crosstalk between food, the gut microbiota and its host. We will present the pipeline and highlight the most important studies that helped to develop the field. To conclude, we will emphasize the most recent developments and hot topics in functional metagenomics.
Collapse
Affiliation(s)
- Elliot Mathieu
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Véronique Léjard
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Chaima Ezzine
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Pauline Govindin
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Aurélien Morat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Margot Giat
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
| | - Nicolas Lapaque
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Joël Doré
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, 78350 Jouy-en-Josas, France;
| | - Hervé M. Blottière
- Université Paris-Saclay, INRAE, MGP Metagenopolis, 78350 Jouy-en-Josas, France; (E.M.); (V.L.); (C.E.); (P.G.); (A.M.); (M.G.); (J.D.)
- Nantes Université, INRAE, UMR 1280, PhAN, 44000 Nantes, France
| |
Collapse
|
2
|
Akhtar A, Lata M, Sunsunwal S, Yadav A, Lnu K, Subramanian S, Ramya TNC. New carbohydrate binding domains identified by phage display based functional metagenomic screens of human gut microbiota. Commun Biol 2023; 6:371. [PMID: 37019943 PMCID: PMC10076258 DOI: 10.1038/s42003-023-04718-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Accepted: 03/16/2023] [Indexed: 04/07/2023] Open
Abstract
Uncultured microbes represent a huge untapped biological resource of novel genes and gene products. Although recent genomic and metagenomic sequencing efforts have led to the identification of numerous genes that are homologous to existing annotated genes, there remains, yet, an enormous pool of unannotated genes that do not find significant sequence homology to existing annotated genes. Functional metagenomics offers a way to identify and annotate novel gene products. Here, we use functional metagenomics to mine novel carbohydrate binding domains that might aid human gut commensals in adherence, gut colonization, and metabolism of complex carbohydrates. We report the construction and functional screening of a metagenomic phage display library from healthy human fecal samples against dietary, microbial and host polysaccharides/glycoconjugates. We identify several protein sequences that do not find a hit to any known protein domain but are predicted to contain carbohydrate binding module-like folds. We heterologously express, purify and biochemically characterize some of these protein domains and demonstrate their carbohydrate-binding function. Our study reveals several previously unannotated carbohydrate-binding domains, including a levan binding domain and four complex N-glycan binding domains that might be useful for the labeling, visualization, and isolation of these glycans.
Collapse
Affiliation(s)
- Akil Akhtar
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
| | - Madhu Lata
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Sonali Sunsunwal
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
| | - Amit Yadav
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Kajal Lnu
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Srikrishna Subramanian
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - T N C Ramya
- CSIR- Institute of Microbial Technology, Sector 39-A, Chandigarh, 160036, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
3
|
Michire A, Anghel R, Draghia PM, Burlacu MG, Georgescu TF, Georgescu DE, Balcangiu-Stroescu AE, Vacaroiu IA, Barbu M, Gaube A. The Microbiota and the Relationship with Colorectal Cancer: Surgical Complications—A Review. GASTROINTESTINAL DISORDERS 2022; 4:66-76. [DOI: 10.3390/gidisord4020008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers and represents a major global health burden. While genetics are implicated in a portion of CRC patients, most cases are sporadic. A new possibility of tumor initiation and promotion might be microbiome composition. It was recently shown that bacteria from the gut microbiome might be used as biomarkers for CRC detection, especially Fusobacterium nucleatum, Peptostreoptococcus stomatis, Parvimonas mica, Solobacterium moorei, and Peptostreptococcus anaerobius. Conversely, the healthy gut microbiome is mostly colonized by Bacterioides (Bacterioides fragilis, vulgatus, uniformis), Firmicutes (Clostridium spp., Ruminococcus faecis, Enterococcus faecium), and Actinobacteria (Bifidobacterium bifidum). Some strains of gut bacteria favor tumor promotion through DNA and RNA damage (directly or through interaction with other known food carcinogens) and through local immune inhibition. It is possible that bacteria (e.g., Bacillus polyfermenticus, Alistipes shahii, Lactobacillus casei) exist with protective functions against tumor promotion. Despite current advances in colorectal cancer treatment, especially in the medical oncology and radiotherapy domains, surgery remains the mainstay of curative treatment for colorectal cancer patients, even in the oligometastatic setting. Surgical complications like anastomotic leakage, excessive blood loss, abscess, and abdominal sepsis can reduce 1-year and 5-year overall survival and increase the recurrence rates for these patients; therefore, we reviewed currently published data focusing on the relationship between gut microbiota and postoperative complications for colorectal cancer patients.
Collapse
Affiliation(s)
- Alexandru Michire
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Rodica Anghel
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Petruta Maria Draghia
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Mihnea Gabriel Burlacu
- Radiation Therapy Department, “Prof. Dr. Al. Trestioreanu” Oncology Institute, Sos. Fundeni No. 252, 022328 Bucharest, Romania
| | - Teodor Florin Georgescu
- Department 10—General Surgery, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Dragos Eugen Georgescu
- Department 10—General Surgery, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Andra-Elena Balcangiu-Stroescu
- Department 3—Physiology, Faculty of Dental Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Ileana Adela Vacaroiu
- Department 3—Nephrology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Maria Barbu
- Department 8—Radiology, Oncology, Hematology, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, Bulevardul Eroii Sanitari 8, 050474 Bucharest, Romania
| | - Alexandra Gaube
- National Institute of Infectious Diseases “Prof. Dr. Matei Bals”, 021105 Bucharest, Romania
| |
Collapse
|
4
|
Abstract
Despite identification of numerous associations between microbiomes and diseases, the complexity of the human microbiome has hindered identification of individual species and strains that are causative in host phenotype or disease. Uncovering causative microbes is vital to fully understand disease processes and to harness the potential therapeutic benefits of microbiota manipulation. Developments in sequencing technology, animal models, and bacterial culturing have facilitated the discovery of specific microbes that impact the host and are beginning to advance the characterization of host-microbiome interaction mechanisms. We summarize the historical and contemporary experimental approaches taken to uncover microbes from the microbiota that affect host biology and describe examples of commensals that have specific effects on the immune system, inflammation, and metabolism. There is still much to learn, and we lay out challenges faced by the field and suggest potential remedies for common pitfalls encountered in the hunt for causative commensal microbes. Expected final online publication date for the Annual Review of Microbiology, Volume 75 is October 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Graham J Britton
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jeremiah J Faith
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; .,Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
5
|
Vidmar B, Vodovnik M. Microbial Keratinases: Enzymes with Promising Biotechnological Applications. Food Technol Biotechnol 2018; 56:312-328. [PMID: 30510475 PMCID: PMC6233012 DOI: 10.17113/ftb.56.03.18.5658] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Keratin is a complex and structurally stable protein found in human and animal hard tissues, such as feathers, wool, hair, hoof and nails. Some of these, like feathers and wool, represent one of the main sources of protein-rich waste with significant potential to be transformed into value-added products such as feed, fertilizers or bioenergy. A major limitation impeding valorization of keratinous substrates is their recalcitrant structure and resistance to hydrolysis by common proteases. However, specialized keratinolytic enzymes produced by some microorganisms can efficiently degrade these substrates. Keratinases have already found a purpose in pharmaceutical, textile and leather industries. However, their wider implementation in other processes, such as cost-effective (pre)treatment of poultry waste, still requires optimization of production and performance of the available enzymes. Here we present a comprehensive review covering molecular properties and characteristics of keratinases, their classification, traditional and novel approaches in discovery of novel enzymes, production, characterization, improvement and biotechnological applications.
Collapse
Affiliation(s)
- Beti Vidmar
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| | - Maša Vodovnik
- Chair of Microbiology and Microbial Biotechnology, Department of Animal Science, Biotechnical Faculty, University of Ljubljana, Groblje 3,
SI-1230 Domžale, Slovenia
| |
Collapse
|
6
|
Doré J, Multon MC, Béhier JM, Affagard H, Andremont A, Barthélémy P, Batista R, Bonneville M, Bonny C, Boyaval G, Chamaillard M, Chevalier MP, Cordaillat-Simmons M, Cournarie F, Diaz I, Guillaume E, Guyard C, Jouvin-Marche E, Martin FP, Petiteau D. Microbiote intestinal : qu’en attendre au plan physiologique et thérapeutique ? Therapie 2017; 72:1-19. [PMID: 28214070 DOI: 10.1016/j.therap.2017.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/29/2022]
Affiliation(s)
- Joël Doré
- INRA, Metagenopolis, 78350 Jouy-en-Josas, France
| | | | | | | | | | - Antoine Andremont
- Hôpital Bichat, université Paris Diderot, AP-HP, 92240 Malakoff, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Doré J, Multon MC, Béhier JM. The human gut microbiome as source of innovation for health: Which physiological and therapeutic outcomes could we expect? Therapie 2017; 72:21-38. [PMID: 28131442 DOI: 10.1016/j.therap.2016.12.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022]
Abstract
From the moment of birth, each human being builds a microbe-host symbiosis which is key for the preservation of its health and well-being. This personal symbiotic coexistence is the result of progressive enrichments in microorganism diversity through external supplies. This diversity is nowadays massively overthrown by drastic changes related to clinical practice in birth management, environmental exposure, nutrition and healthcare behaviors. The last two generations have been the frame of massive modifications in life and food habits, with people being more and more sedentary, overfed and permeated with drugs and pollutants. We are now able to measure the impact of these changes on the gut microbiota diversity. Concomitantly, these modifications of lifestyle were associated with a dramatic increase in incidence of immune-mediated diseases including metabolic, allergic and inflammatory diseases and most likely neurodegenerative and psychiatric disorders. Microbiota is becoming a hot topic in the scientific community and in the mainstream media. The number of scientific publications increased by up to a factor three over the last five years, with gastrointestinal and metabolic diseases being the most productive areas. In the intellectual property landscape, the patent families on microbiota have more than doubled in the meantime. In parallel, funding either from National Institutes (e.g. from NIH which funds research mainly in the field of allergies, infections, cancer and cardiovascular diseases, from the White House which launched the national microbiome initiative) or by pharmaceutical companies follow the same trend, showing a boost and a strong support in the research field on microbiota. All major health players are investing in microbiome research as shown by the number of deals signed and by funding during 2015. The Giens round table addressed how the medicine of tomorrow, considering human beings as a human-microbe symbiotic supraorganism, could leverage microbiome knowledge and tools. The rationale for our working group has been structured around four domains of innovation that could derive from ongoing efforts in deciphering the interactions between human cells and intestinal microbiome as a central component of human health, namely: (1) development of stratification and monitoring tools; (2) identification of new target and drug discovery, as a part of our supra-genome; (4) exploitation of microbiota as a therapeutic target that can be modulated; (4) and finally as a source of live biotherapeutics and adjuvants. These four streams will exemplify how microbiota has changed the way we consider a wide range of chronic and incurable diseases and the consequences of long-lasting dysbiosis. In-depth microbiota analysis is opening one of the broadest fields of investigation for improving human and animal health and will be a source of major therapeutic innovations for tackling today's medical unmet needs. We thus propose a range of recommendations for basic researchers, care givers as well as for health authorities to gain reliability in microbiome analysis and accelerate discovery processes and their translation into applications for the benefits of the people. Finally, les Ateliers de Giens round table on microbiota benefited from the richness of the French ecosystem. France represents a center of excellence in the microbiota research field, with French institutions as Institut national de la recherche agronomique (INRA [Metagenopolis, Micalis]), Centre national de la recherché scientifique (CNRS), Unité de recherche sur les maladies infectieuses et tropicales émergentes (URMITE), Institut of Cardiometabolism and Nutrition (ICAN), Institut des maladies métaboliques et cardiovasculaires (I2MC), Institut national de la santé et de la recherche médicale (Inserm), Pasteur Institute and Gustave-Roussy being top-players for the number of publications.
Collapse
Affiliation(s)
- Joël Doré
- Institut national de la recherche agronomique (INRA), Metagenopolis, 78350 Jouy-en-Josas, France
| | - Marie-Christine Multon
- Sanofi R&D, unité sciences translationnelles, 13, quai Jules-Guesde, 94403 Vitry sur Seine, France.
| | | | | |
Collapse
|
8
|
Yoon SS, Kim EK, Lee WJ. Functional genomic and metagenomic approaches to understanding gut microbiota-animal mutualism. Curr Opin Microbiol 2015; 24:38-46. [PMID: 25625313 DOI: 10.1016/j.mib.2015.01.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/26/2014] [Accepted: 01/10/2015] [Indexed: 12/21/2022]
Abstract
Accumulating data sets of gut microbiome by next-generation sequencing allow us to gain a comprehensive view of the functional diversity of the gut-associated metagenome. However, many microbiome functions are unknown and/or have only been predicted, and may not necessarily reflect the in vivo function within a gut niche. Functional genomic and metagenomic approaches have been successfully applied to broaden the understanding of invertebrate and vertebrate gut microbiome involved in diverse functions, including colonization ability, nutritional processing, antibiotic resistance, microbial physiology and metabolism, and the modulation of the host physiology. In this review, we discuss the recent knowledge obtained from the study of functional genomics and metagenomics of the animal intestine and its potential values for understanding gut microbiota-animal mutualism.
Collapse
Affiliation(s)
- Sang Sun Yoon
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul 120-752, South Korea
| | - Eun-Kyoung Kim
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea; Seoul National University, National Creative Research Initiative Center for Symbiosystem, Seoul 151-742, South Korea
| | - Won-Jae Lee
- School of Biological Science and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, South Korea; Seoul National University, National Creative Research Initiative Center for Symbiosystem, Seoul 151-742, South Korea.
| |
Collapse
|
9
|
Wang WL, Xu SY, Ren ZG, Tao L, Jiang JW, Zheng SS. Application of metagenomics in the human gut microbiome. World J Gastroenterol 2015; 21:803-814. [PMID: 25624713 PMCID: PMC4299332 DOI: 10.3748/wjg.v21.i3.803] [Citation(s) in RCA: 233] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 09/30/2014] [Accepted: 11/07/2014] [Indexed: 02/06/2023] Open
Abstract
There are more than 1000 microbial species living in the complex human intestine. The gut microbial community plays an important role in protecting the host against pathogenic microbes, modulating immunity, regulating metabolic processes, and is even regarded as an endocrine organ. However, traditional culture methods are very limited for identifying microbes. With the application of molecular biologic technology in the field of the intestinal microbiome, especially metagenomic sequencing of the next-generation sequencing technology, progress has been made in the study of the human intestinal microbiome. Metagenomics can be used to study intestinal microbiome diversity and dysbiosis, as well as its relationship to health and disease. Moreover, functional metagenomics can identify novel functional genes, microbial pathways, antibiotic resistance genes, functional dysbiosis of the intestinal microbiome, and determine interactions and co-evolution between microbiota and host, though there are still some limitations. Metatranscriptomics, metaproteomics and metabolomics represent enormous complements to the understanding of the human gut microbiome. This review aims to demonstrate that metagenomics can be a powerful tool in studying the human gut microbiome with encouraging prospects. The limitations of metagenomics to be overcome are also discussed. Metatranscriptomics, metaproteomics and metabolomics in relation to the study of the human gut microbiome are also briefly discussed.
Collapse
|
10
|
Abstract
The recent developments of metagenomics permit an extremely high-resolution molecular scan of the intestinal microbiota giving new insights and opening perspectives for clinical applications. Beyond the unprecedented vision of the intestinal microbiota given by large-scale quantitative metagenomics studies, such as the EU MetaHIT project, functional metagenomics tools allow the exploration of fine interactions between food constituents, microbiota and host, leading to the identification of signals and intimate mechanisms of crosstalk, especially between bacteria and human cells. Cloning of large genome fragments, either from complex intestinal communities or from selected bacteria, allows the screening of these biological resources for bioactivity towards complex plant polymers or functional food such as prebiotics. This permitted identification of novel carbohydrate-active enzyme families involved in dietary fibre and host glycan breakdown, and highlighted unsuspected bacterial players at the top of the intestinal microbial food chain. Similarly, exposure of fractions from genomic and metagenomic clones onto human cells engineered with reporter systems to track modulation of immune response, cell proliferation or cell metabolism has allowed the identification of bioactive clones modulating key cell signalling pathways or the induction of specific genes. This opens the possibility to decipher mechanisms by which commensal bacteria or candidate probiotics can modulate the activity of cells in the intestinal epithelium or even in distal organs such as the liver, adipose tissue or the brain. Hence, in spite of our inability to culture many of the dominant microbes of the human intestine, functional metagenomics open a new window for the exploration of food–microbe–host crosstalk.
Collapse
|
11
|
Fouhy F, Ogilvie LA, Jones BV, Ross RP, Ryan AC, Dempsey EM, Fitzgerald GF, Stanton C, Cotter PD. Identification of aminoglycoside and β-lactam resistance genes from within an infant gut functional metagenomic library. PLoS One 2014; 9:e108016. [PMID: 25247417 PMCID: PMC4172600 DOI: 10.1371/journal.pone.0108016] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 08/21/2014] [Indexed: 12/22/2022] Open
Abstract
The infant gut microbiota develops rapidly during the first 2 years of life, acquiring microorganisms from diverse sources. During this time, significant opportunities exist for the infant to acquire antibiotic resistant bacteria, which can become established and constitute the infant gut resistome. With increased antibiotic resistance limiting our ability to treat bacterial infections, investigations into resistance reservoirs are highly pertinent. This study aimed to explore the nascent resistome in antibiotically-naïve infant gut microbiomes, using a combination of metagenomic approaches. Faecal samples from 22 six-month-old infants without previous antibiotic exposure were used to construct a pooled metagenomic library, which was functionally screened for ampicillin and gentamicin resistance. Our library of ∼220Mb contained 0.45 ampicillin resistant hits/Mb and 0.059 gentamicin resistant hits/Mb. PCR-based analysis of fosmid clones and uncloned metagenomic DNA, revealed a diverse and abundant aminoglycoside and β-lactam resistance reservoir within the infant gut, with resistance determinants exhibiting homology to those found in common gut inhabitants, including Escherichia coli, Enterococcus sp., and Clostridium difficile, as well as to genes from cryptic environmental bacteria. Notably, the genes identified differed from those revealed when a sequence-driven PCR-based screen of metagenomic DNA was employed. Carriage of these antibiotic resistance determinants conferred substantial, but varied (2–512x), increases in antibiotic resistance to their bacterial host. These data provide insights into the infant gut resistome, revealing the presence of a varied aminoglycoside and β-lactam resistance reservoir even in the absence of selective pressure, confirming the infant resistome establishes early in life, perhaps even at birth.
Collapse
Affiliation(s)
- Fiona Fouhy
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Lesley A. Ogilvie
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, East Sussex, United Kingdom
| | - Brian V. Jones
- School of Pharmacy and Biomolecular Sciences, University of Brighton, Brighton, East Sussex, United Kingdom
- Queen Victoria Hospital NHS Foundation Trust, East Grinstead, West Sussex, United Kingdom
| | - R. Paul Ross
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Anthony C. Ryan
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
| | - Eugene M. Dempsey
- Department of Paediatrics and Child Health, University College Cork, Cork, Ireland
- Department of Neonatology, Cork University Maternity Hospital, Cork, Ireland
| | - Gerald F. Fitzgerald
- School of Microbiology, University College Cork, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Catherine Stanton
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, Ireland
- Alimentary Pharmabiotic Centre, Cork, Ireland
- * E-mail:
| |
Collapse
|
12
|
de Wouters T, Ledue F, Nepelska M, Doré J, Blottière HM, Lapaque N. A robust and adaptable high throughput screening method to study host-microbiota interactions in the human intestine. PLoS One 2014; 9:e105598. [PMID: 25141006 PMCID: PMC4139392 DOI: 10.1371/journal.pone.0105598] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 07/24/2014] [Indexed: 12/21/2022] Open
Abstract
The intestinal microbiota has many beneficial roles for its host. However, the precise mechanisms developed by the microbiota to influence the host intestinal cell responses are only partially known. The complexity of the ecosystem and our inability to culture most of these micro-organisms have led to the development of molecular approaches such as functional metagenomics, i.e. the heterologous expression of a metagenome in order to identify functions. This elegant strategy coupled to high throughput screening allowed to identify novel enzymes from different ecosystems where culture methods have not yet been adapted to isolate the candidate microorganisms. We have proposed to use this functional metagenomic approach in order to model the microbiota's interaction with the host by combining this heterologous expression with intestinal reporter cell lines. The addition of the cellular component to this functional metagenomic approach introduced a second important source of variability resulting in a novel challenge for high throughput screening. First attempts of high throughput screening with various reporter cell-lines showed a high distribution of the response and consequent difficulties to reproduce the response, impairing an easy and clear identification of confirmed hits. In this study, we developed a robust and reproducible methodology to combine these two biological systems for high throughput application. We optimized experimental setups and completed them by appropriate statistical analysis tools allowing the use this innovative approach in a high throughput manner and on a broad range of reporter assays. We herewith present a methodology allowing a high throughput screening combining two biological systems. Therefore ideal conditions for homogeneity, sensitivity and reproducibility of both metagenomic clones as well as reporter cell lines have been identified and validated. We believe that this innovative method will allow the identification of new bioactive microbial molecules and, subsequently, will promote understanding of host-microbiota interactions.
Collapse
Affiliation(s)
- Tomas de Wouters
- INRA, UMR 1319 MICALIS, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Florence Ledue
- INRA, UMR 1319 MICALIS, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Malgorzata Nepelska
- INRA, UMR 1319 MICALIS, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| | - Joël Doré
- INRA, UMR 1319 MICALIS, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA, US 1367 MetaGenoPoliS, Jouy-en-Josas, France
| | - Hervé M. Blottière
- INRA, UMR 1319 MICALIS, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
- INRA, US 1367 MetaGenoPoliS, Jouy-en-Josas, France
| | - Nicolas Lapaque
- INRA, UMR 1319 MICALIS, Domaine de Vilvert, Jouy-en-Josas, France
- AgroParisTech, UMR Micalis, Jouy-en-Josas, France
| |
Collapse
|
13
|
Food Omics Validation: Towards Understanding Key Features for Gut Microbiota, Probiotics and Human Health. FOOD ANAL METHOD 2014. [DOI: 10.1007/s12161-014-9923-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
14
|
Smith MI, Turpin W, Tyler AD, Silverberg MS, Croitoru K. Microbiome analysis - from technical advances to biological relevance. F1000PRIME REPORTS 2014; 6:51. [PMID: 25184041 PMCID: PMC4108955 DOI: 10.12703/p6-51] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The development of culture-independent techniques and next-generation sequencing has led to a staggering rise in the number of microbiome studies over the last decade. Although it remains important to identify the taxa of microbes present in a variety of environmental samples, including the gut microbiomes of healthy and diseased individuals, the next stage of microbiome research will need to focus on uncovering the role of the microbiome rather than its mere composition. Here, we introduce techniques that go beyond identifying the taxa present within a sample and examine the biological function of the microbiome or the host-microbiome interaction.
Collapse
Affiliation(s)
- Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital 600 University Avenue, Room 437, Toronto, ON Canada, M5G 1X5
| | - Williams Turpin
- Zane Cohen Centre for Digestive Diseases, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital 600 University Avenue, Room 437, Toronto, ON Canada, M5G 1X5 ; Institute of Medical Science, Department of Medicine University of Toronto, Toronto, ON Canada, M5S 1A8
| | - Andrea D Tyler
- Zane Cohen Centre for Digestive Diseases, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital 600 University Avenue, Room 437, Toronto, ON Canada, M5G 1X5
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital 600 University Avenue, Room 437, Toronto, ON Canada, M5G 1X5 ; Institute of Medical Science, Department of Medicine University of Toronto, Toronto, ON Canada, M5S 1A8
| | - Kenneth Croitoru
- Zane Cohen Centre for Digestive Diseases, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital 600 University Avenue, Room 437, Toronto, ON Canada, M5G 1X5 ; Institute of Medical Science, Department of Medicine University of Toronto, Toronto, ON Canada, M5S 1A8
| |
Collapse
|
15
|
Kimura N. Metagenomic approaches to understanding phylogenetic diversity in quorum sensing. Virulence 2014; 5:433-42. [PMID: 24429899 DOI: 10.4161/viru.27850] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Quorum sensing, a form of cell-cell communication among bacteria, allows bacteria to synchronize their behaviors at the population level in order to control behaviors such as luminescence, biofilm formation, signal turnover, pigment production, antibiotics production, swarming, and virulence. A better understanding of quorum-sensing systems will provide us with greater insight into the complex interaction mechanisms used widely in the Bacteria and even the Archaea domain in the environment. Metagenomics, the use of culture-independent sequencing to study the genomic material of microorganisms, has the potential to provide direct information about the quorum-sensing systems in uncultured bacteria. This article provides an overview of the current knowledge of quorum sensing focused on phylogenetic diversity, and presents examples of studies that have used metagenomic techniques. Future technologies potentially related to quorum-sensing systems are also discussed.
Collapse
Affiliation(s)
- Nobutada Kimura
- Bioproduction Research Institute; National Institute of Advanced Industrial Science and Technology (AIST); Tsukuba, Ibaraki Japan
| |
Collapse
|
16
|
Omics approaches to study host-microbiota interactions. Curr Opin Microbiol 2013; 16:270-7. [PMID: 23891019 DOI: 10.1016/j.mib.2013.07.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 06/25/2013] [Accepted: 07/01/2013] [Indexed: 02/08/2023]
Abstract
The intestinal microbiota has profound effects on our physiology and immune system and disturbances in the equilibrium between microbiota and host have been observed in many disorders. Here we discuss the possibilities to further our understanding of how microbiota impacts on human health and disease through the use of large-scale quantifiable tools such as transcriptomics, metagenomics and metabolomics. Reductionist models, including gnotobiotic mouse models have their place in testing hypotheses and elucidating mechanisms by which specific communities or individual species impact on host biology. Network biology approaches can be combined with studies in animal models and cell lines to create iterative cycle of hypotheses and testing, possibly leading to testing in clinical and nutritional intervention studies.
Collapse
|
17
|
Preparation of Fosmid Libraries and Functional Metagenomic Analysis of Microbial Community DNA. Methods Enzymol 2013; 531:123-42. [DOI: 10.1016/b978-0-12-407863-5.00007-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 2011; 10:66-78. [PMID: 22101918 DOI: 10.1038/nrmicro2690] [Citation(s) in RCA: 443] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Probiotic bacteria can modulate immune responses in the host gastrointestinal tract to promote health. The genomics era has provided novel opportunities for the discovery and characterization of bacterial probiotic effector molecules that elicit specific responses in the intestinal system. Furthermore, nutrigenomic analyses of the response to probiotics have unravelled the signalling and immune response pathways which are modulated by probiotic bacteria. Together, these genomic approaches and nutrigenomic analyses have identified several bacterial factors that are involved in modulation of the immune system and the mucosal barrier, and have revealed that a molecular 'bandwidth of human health' could represent a key determinant in an individual's physiological responsiveness to probiotics. These approaches may lead to improved stratification of consumers and to subpopulation-level probiotic supplementation to maintain or improve health, or to reduce the risk of disease.
Collapse
Affiliation(s)
- Peter A Bron
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | | | | |
Collapse
|
19
|
Moore AM, Munck C, Sommer MOA, Dantas G. Functional metagenomic investigations of the human intestinal microbiota. Front Microbiol 2011; 2:188. [PMID: 22022321 PMCID: PMC3195301 DOI: 10.3389/fmicb.2011.00188] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 08/23/2011] [Indexed: 12/15/2022] Open
Abstract
The human intestinal microbiota encode multiple critical functions impacting human health, including metabolism of dietary substrate, prevention of pathogen invasion, immune system modulation, and provision of a reservoir of antibiotic resistance genes accessible to pathogens. The complexity of this microbial community, its recalcitrance to standard cultivation, and the immense diversity of its encoded genes has necessitated the development of novel molecular, microbiological, and genomic tools. Functional metagenomics is one such culture-independent technique, used for decades to study environmental microorganisms, but relatively recently applied to the study of the human commensal microbiota. Metagenomic functional screens characterize the functional capacity of a microbial community, independent of identity to known genes, by subjecting the metagenome to functional assays in a genetically tractable host. Here we highlight recent work applying this technique to study the functional diversity of the intestinal microbiota, and discuss how an approach combining high-throughput sequencing, cultivation, and metagenomic functional screens can improve our understanding of interactions between this complex community and its human host.
Collapse
Affiliation(s)
- Aimee M Moore
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine St. Louis, MO, USA
| | | | | | | |
Collapse
|
20
|
Kaul P, Asano Y. Strategies for discovery and improvement of enzyme function: state of the art and opportunities. Microb Biotechnol 2011; 5:18-33. [PMID: 21883976 PMCID: PMC3815269 DOI: 10.1111/j.1751-7915.2011.00280.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Developments in biocatalysis have been largely fuelled by consumer demands for new products, industrial attempts to improving existing process and minimizing waste, coupled with governmental measures to regulate consumer safety along with scientific advancements. One of the major hurdles to application of biocatalysis to chemical synthesis is unavailability of the desired enzyme to catalyse the reaction to allow for a viable process development. Even when the desired enzyme is available it often forces the process engineers to alter process parameters due to inadequacies of the enzyme, such as instability, inhibition, low yield or selectivity, etc. Developments in the field of enzyme or reaction engineering have allowed access to means to achieve the ends, such as directed evolution, de novo protein design, use of non‐conventional media, using new substrates for old enzymes, active‐site imprinting, altering temperature, etc. Utilization of enzyme discovery and improvement tools therefore provides a feasible means to overcome this problem. Judicious employment of these tools has resulted in significant advancements that have leveraged the research from laboratory to market thus impacting economic growth; however, there are further opportunities that have not yet been explored. The present review attempts to highlight some of these achievements and potential opportunities.
Collapse
Affiliation(s)
- Praveen Kaul
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Hauz Khas, New Delhi - 110 016, India
| | | |
Collapse
|
21
|
Kennedy J, O'Leary ND, Kiran GS, Morrissey JP, O'Gara F, Selvin J, Dobson ADW. Functional metagenomic strategies for the discovery of novel enzymes and biosurfactants with biotechnological applications from marine ecosystems. J Appl Microbiol 2011; 111:787-99. [PMID: 21777355 DOI: 10.1111/j.1365-2672.2011.05106.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Marine ecosystems are home to bacteria which are exposed to a wide variety of environmental conditions, such as extremes in temperature, salinity, nutrient availability and pressure. Survival under these conditions must have necessitated the adaptation and the development of unique cellular biochemistry and metabolism by these microbes. Thus, enzymes isolated from these microbes have the potential to possess quite unique physiological and biochemical properties. This review outlines a number of function-based metagenomic approaches which are available to screen metagenomic libraries constructed from marine ecosystems to facilitate the exploitation of some of these potentially novel biocatalysts. Functional screens to isolate novel cellulases, lipases and esterases, proteases, laccases, oxidoreductases and biosurfactants are described, together with approaches which can be employed to help overcome some of the typical problems encountered with functional metagenomic-based screens.
Collapse
Affiliation(s)
- J Kennedy
- Marine Biotechnology Centre, Environmental Research Institute, University College Cork, Cork, Ireland
| | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
This article summarizes general design principles for functional metagenomics. The focus is on Escherichia coli as an expression host, although alternative host-vector systems are discussed in relation to optimizing gene recovery in activity-based screens. Examples of DNA isolation and enrichment approaches, library construction and phenotypic read-out are described with special emphasis on the use of high throughput technologies for rapid isolation of environmental clones encoding phenotypic traits of interest.
Collapse
Affiliation(s)
- Marcus Taupp
- Department of Microbiology & Immunology, University of British Columbia, Canada
| | | | | |
Collapse
|
23
|
Lakhdari O, Cultrone A, Tap J, Gloux K, Bernard F, Ehrlich SD, Lefèvre F, Doré J, Blottière HM. Functional metagenomics: a high throughput screening method to decipher microbiota-driven NF-κB modulation in the human gut. PLoS One 2010; 5. [PMID: 20927194 PMCID: PMC2948039 DOI: 10.1371/journal.pone.0013092] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2010] [Accepted: 09/09/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIM The human intestinal microbiota plays an important role in modulation of mucosal immune responses. To study interactions between intestinal epithelial cells (IECs) and commensal bacteria, a functional metagenomic approach was developed. One interest of metagenomics is to provide access to genomes of uncultured microbes. We aimed at identifying bacterial genes involved in regulation of NF-κB signaling in IECs. A high throughput cell-based screening assay allowing rapid detection of NF-κB modulation in IECs was established using the reporter-gene strategy to screen metagenomic libraries issued from the human intestinal microbiota. METHODS A plasmid containing the secreted alkaline phosphatase (SEAP) gene under the control of NF-κB binding elements was stably transfected in HT-29 cells. The reporter clone HT-29/kb-seap-25 was selected and characterized. Then, a first screening of a metagenomic library from Crohn's disease patients was performed to identify NF-κB modulating clones. Furthermore, genes potentially involved in the effect of one stimulatory metagenomic clone were determined by sequence analysis associated to mutagenesis by transposition. RESULTS The two proinflammatory cytokines, TNF-α and IL-1β, were able to activate the reporter system, translating the activation of the NF-κB signaling pathway and NF-κB inhibitors, BAY 11-7082, caffeic acid phenethyl ester and MG132 were efficient. A screening of 2640 metagenomic clones led to the identification of 171 modulating clones. Among them, one stimulatory metagenomic clone, 52B7, was further characterized. Sequence analysis revealed that its metagenomic DNA insert might belong to a new Bacteroides strain and we identified 2 loci encoding an ABC transport system and a putative lipoprotein potentially involved in 52B7 effect on NF-κB. CONCLUSIONS We have established a robust high throughput screening assay for metagenomic libraries derived from the human intestinal microbiota to study bacteria-driven NF-κB regulation. This opens a strategic path toward the identification of bacterial strains and molecular patterns presenting a potential therapeutic interest.
Collapse
|
24
|
|
25
|
Corthier G, Doré J. A new era in gut research concerning interactions between microbiota and human health. ACTA ACUST UNITED AC 2010; 34 Suppl 1:S1-6. [DOI: 10.1016/s0399-8320(10)70014-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
26
|
Rajendhran J, Gunasekaran P. Human microbiomics. Indian J Microbiol 2010; 50:109-12. [PMID: 23100817 DOI: 10.1007/s12088-010-0034-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Accepted: 05/20/2009] [Indexed: 01/10/2023] Open
Abstract
The sequencing of the human genome has driven the study of human biology in a significant way and enabled the genome-wide study to elucidate the molecular basis of complex human diseases. Recently, the role of microbiota on human physiology and health has received much attention. The influence of gut microbiome (the collective genomes of the gut microbiota) in obesity has been demonstrated, which may pave the way for new prophylactic and therapeutic strategies such as bacteriotherapy. The significance and recent understandings in the area of "human microbiomics" are discussed here.
Collapse
Affiliation(s)
- J Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625 021 India
| | | |
Collapse
|
27
|
Jankovic I, Sybesma W, Phothirath P, Ananta E, Mercenier A. Application of probiotics in food products—challenges and new approaches. Curr Opin Biotechnol 2010; 21:175-81. [DOI: 10.1016/j.copbio.2010.03.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Accepted: 03/10/2010] [Indexed: 12/18/2022]
|
28
|
Functional metagenomics for enzyme discovery: challenges to efficient screening. Curr Opin Biotechnol 2009; 20:616-22. [DOI: 10.1016/j.copbio.2009.09.010] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 09/18/2009] [Accepted: 09/25/2009] [Indexed: 11/17/2022]
|
29
|
Drugs from hidden bugs: their discovery via untapped resources. Res Microbiol 2008; 159:153-61. [DOI: 10.1016/j.resmic.2007.12.011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 12/07/2007] [Accepted: 12/11/2007] [Indexed: 01/01/2023]
|
30
|
Abstract
PURPOSE OF REVIEW Long neglected and considered a difficult ecosystem to study, several developments have recently converged to renew interest in studying the normal gut microbiota. These include molecular methods of studying the microbiota, improved understanding of host-microbe interactions in health and disease, and the potential for therapeutic manipulation of the microbiota. This review focuses on the most recent work in these areas. RECENT FINDINGS Host-microbe signaling in the gut is critical for normal development and homeostasis of the gastrointestinal mucosa. The molecular basis of these interactions promises new therapeutic strategies for various disorders. Particularly noteworthy has been the emergence of evidence for the role of enteric bacterial metabolism in the pathogenesis of disorders ranging from functional and inflammatory bowel diseases to human obesity. Metagenomic and metabolomic profiling of the microbiota, although at an early stage, has demonstrated the range and complexity of the gut ecosystem and cast insights into several diseases. The molecular basis of host-microbe dialogue and the mechanisms by which the host contains enteric bacteria within the lumen has immediate relevance to infectious and chronic inflammatory bowel disease. SUMMARY Improved understanding of the normal gut microbiota has made the therapeutic manipulation of the gut ecosystem a valid and realistic future prospect.
Collapse
Affiliation(s)
- Julian Marchesi
- Alimentary Pharmabiotic Centre, Departments of Microbiology and Medicine, University College Cork, National University of Ireland, Cork, Ireland
| | | |
Collapse
|