1
|
Chen CC, Chen YP, Yang HT, Chen YL, Wu CW, Gong HY, Ho YS, Ho YN. Temperature-dependent shifts in gut microbiota and metabolome of olive flounder (Paralichthys olivaceus): implications for cold-water aquaculture expansion and probiotic applications. Anim Microbiome 2025; 7:49. [PMID: 40369686 PMCID: PMC12079817 DOI: 10.1186/s42523-025-00417-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 04/27/2025] [Indexed: 05/16/2025] Open
Abstract
BACKGROUND In recent years, rising temperatures due to climate change have become significant stressors in aquatic environments, impacting disease incidence, growth, and gut microbiota in fish. Cold-water species, such as the olive flounder (Paralichthys olivaceus), are particularly vulnerable to increasing water temperatures. Despite its economic importance as a species farmed in East Asia, research on temperature-dependent shifts in the gut microbiota and metabolome of olive flounder remains limited. This study investigates the effects of water temperature on the gut microbiota and metabolome of olive flounder using full-length 16 S rRNA sequencing with Oxford Nanopore Technologies and metabolomics analysis with high-resolution liquid chromatography-mass spectrometry (LC-MS). The analysis compares individuals exposed to three water temperatures (18 °C, 22 °C, and 26 °C). RESULTS Temperature significantly influenced the composition of gut microbiota, with an increase in Gammaproteobacteria abundance at higher temperatures. Potential pathogens such as Vibrio and Photobacterium increased from 22 °C to 26 °C, while Pseudomonas declined, suggesting an elevated risk of pathogen infection at 26 °C. Functional predictions revealed that gut bacteria regulated host metabolism, particularly carbohydrate, amino acid, and lipid pathways. Metabolomic analysis showed reduced levels of polyunsaturated fatty acids (PUFAs) and phosphatidylcholine (PC)-related metabolites at higher temperatures. Notably, the umami flavor-related compound aspartic acid decreased, while the bitter flavor-related compound phenylalanine increased. Correlation analysis identified significant associations between bacterial genera, such as Comamonas,Pseudomonas,Sphingomonas, and Stentotrophomonas (positive correlation), and Legionella and Phaeobacter (negative correlation), with shifts in PUFAs and PC metabolites. CONCLUSIONS This study demonstrates that environmental temperature significantly affects the gut microbiota and muscle metabolites of olive flounder. Higher temperatures diversified gut bacterial communities and altered metabolite profiles, with reductions in PUFAs and PC-related compounds linked to specific bacterial genera. These findings highlight the potential of these bacterial genera as biomarkers or probiotics for improving aquaculture practices and environmental adaptation strategies. By establishing a strong correlation between gut microbiota and muscle metabolites, this research provides insights that could contribute to sustainable flounder farming and enhance resilience to climate change.
Collapse
Affiliation(s)
- Che-Chun Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ping Chen
- Eastern Fishery Research Center, Fisheries Research Institute, Ministry of Agriculture, Taitung, Taiwan
| | - Hsiao-Tsu Yang
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Yu-Ling Chen
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Chen-Wei Wu
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan
| | - Hong-Yi Gong
- Department of Aquaculture, National Taiwan Ocean University, Keelung, Taiwan
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan
| | - Yuan-Shing Ho
- Eastern Fishery Research Center, Fisheries Research Institute, Ministry of Agriculture, Taitung, Taiwan
| | - Ying-Ning Ho
- Institute of Marine Biology, National Taiwan Ocean University, Keelung, Taiwan.
- Taiwan Ocean Genome Center, National Taiwan Ocean University, Keelung, Taiwan.
- Center of Excellence for the Oceans, National Taiwan Ocean University, Keelung, Taiwan.
| |
Collapse
|
2
|
Tao Y, Sun Y, Chai Y, Duma L, Rossez Y. Fatty acid desaturases in non-photosynthetic bacteria: classification, regulation, and roles in plasma membrane function and cellular homeostasis. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159630. [PMID: 40368272 DOI: 10.1016/j.bbalip.2025.159630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/25/2025] [Accepted: 05/11/2025] [Indexed: 05/16/2025]
Abstract
Fatty acid desaturases are key enzymes that catalyze the desaturation of acyl lipid chains by regioselectively introducing double bonds into saturated or pre-existing alkene fatty acids to produce unsaturated fatty acids. While extensive studies have focused on desaturases in higher organisms, research on these enzymes in non-photosynthetic bacteria remains limited, largely due to insufficient structural and functional data. This review aims to summarize the current knowledge on the structural features and catalytic mechanisms of desaturases in non-photosynthetic bacteria, shedding light on the sophisticated regulatory strategies underlying unsaturated fatty acid biosynthesis. In addition, factors influencing desaturase activity are presented and analyzed. This comprehensive review provides insights into bacterial homeostatic adaptation to environmental changes and highlights potential applications in nutraceutical development and therapeutic target identification.
Collapse
Affiliation(s)
- Ye Tao
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yilin Sun
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Yidan Chai
- School of Food and Pharmacy, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Luminita Duma
- Université de Reims Champagne-Ardenne, CNRS, ICMR UMR 7312, 51097 Reims, France.
| | - Yannick Rossez
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France.
| |
Collapse
|
3
|
François RMM, Massicard JM, Weissman KJ. The chemical ecology and physiological functions of type I polyketide natural products: the emerging picture. Nat Prod Rep 2025; 42:324-358. [PMID: 39555733 DOI: 10.1039/d4np00046c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Covering: up to 2024.For many years, the value of complex polyketides lay in their medical properties, including their antibiotic and antifungal activities, with little consideration paid to their native functions. However, more recent evidence gathered from the study of inter-organismal interactions has revealed the influence of these metabolites upon the ecological adaptation and distribution of their hosts, as well as their modes of communication. The increasing number of sequenced genomes and associated transcriptomes has also unveiled the widespread occurrence of the underlying biosynthetic enzymes across all kingdoms of life, and the important contributions they make to physiological events specific to each organism. This review depicts the diversity of roles fulfilled by type I polyketides, particularly in light of studies carried out during the last decade, providing an initial overall picture of their diverse functions.
Collapse
|
4
|
Parrish CC. Production, Transport, Fate and Effects of Lipids in the Marine Environment. Mar Drugs 2025; 23:52. [PMID: 39997176 PMCID: PMC11857299 DOI: 10.3390/md23020052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/26/2025] Open
Abstract
Lipids form energy storage depots, cellular barriers and signaling molecules. They are generated and metabolized by enzymes under the influence of biotic and abiotic factors, and some-the long-chain polyunsaturated ω3 and ω6 fatty acids and cholesterol-are essential for optimal health in marine organisms. In addition, lipids have direct and indirect roles in the control of buoyancy in marine fauna ranging from copepods to whales. Phytoplankton account for about half of the planet's carbon fixation, and about half of that carbon goes into lipids. Lipids are an important component of the ocean's ability to sequester carbon away from the atmosphere through sinking and especially after transfer to zooplankton. Phytoplankton are the main suppliers of ω3 polyunsaturated fatty acids (PUFAs) in the marine environment. They also supply cholesterol and many phytosterols to ocean ecosystems; however, genomics is indicating that members of the Cnidaria, Rotifera, Annelida, and Mollusca phyla also have the endogenous capacity for the de novo synthesis of ω3 PUFAs as well as phytosterols. It has been predicted that ω3 long-chain PUFAs will decrease in marine organisms with climate change, with implications for human consumption and for carbon sequestration; however, the responses of ω3 PUFA supply to future conditions are likely to be quite diverse.
Collapse
|
5
|
Ramachandran V, Gopakumar ST, Ramachandra KSS, Chandrasekar S, Tejpal CS, Nair AV, Pootholathil S, Sreenath KR, Nithyashree JK, Achamveetil G. Insights into the methodological perspectives for screening polyunsaturated fatty acids-containing bacteria. Arch Microbiol 2024; 206:429. [PMID: 39382591 DOI: 10.1007/s00203-024-04155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/26/2024] [Accepted: 10/01/2024] [Indexed: 10/10/2024]
Abstract
Polyunsaturated fatty acids (PUFA) are vital molecules in the pharmaceutical, medical, and nutritional industries. Exploration of bacterial strains capable of producing significant amounts of PUFAs offers a promising avenue for biotechnological applications and industrial-scale production. However, an extensive screening of several samples from diverse sources is highly needed to identify a potential strain. The present study provides the results of the evaluation of 15 different screening methodologies (including changes in existing protocols in terms of reagent concentration, incubation temperature and time) for identifying PUFA-producing bacteria in comparison to the gold standard method (Gas chromatography-mass spectrometry), for the first time. The results determined the most effective techniques for each critical PUFA, leading to an optimized screening process that saves time and resources. The H2O2 plate assay using 0.5% or 1% H2O2 for 72 & 96 h of incubation at 15 °C consistently outperformed others for finding bacteria containing total nutritionally important long chain-PUFA (LC-PUFA), linoleic acid, and arachidonic acid. Whereas the 2,3,5-triphenyl tetrazolium chloride broth assay at 10-15 °C was the most effective and semiquantitative screening methodology for eicosapentaenoic acid (EPA) and alpha-linolenic acid-containing bacteria. Apart from the methodological perspectives, the study also revealed certain potential strains to be targeted in the ongoing research on PUFA-containing bacteria. Further, the manuscript forms the first report on the presence of docosahexaenoic acid (DHA) in Shewanella decolorationis, EPA in Psychrobacter maritimus and Micrococcus aloeverae, and both EPA and DHA in Arthrobacter rhombi. Altogether, the paper generates several thought-provoking insights on the methodological perspectives and identifies potential PUFA-containing bacteria with practical applications in future bacteria-based PUFA research.
Collapse
Affiliation(s)
- Vishnu Ramachandran
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India
- Cochin University of Science and Technology, Cochin, Kerala, India
| | - Sumithra Thangalazhy Gopakumar
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India.
| | - Krupesha Sharma Sulumane Ramachandra
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India
| | - S Chandrasekar
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India
| | - C S Tejpal
- Biochemistry and Nutrition Division, ICAR-CIFT, Willingdon Island Matsyapuri P.O., Cochin, Kerala, 682029, India
| | - Anusree Velappan Nair
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India
| | - Sayooj Pootholathil
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India
| | - K R Sreenath
- Marine Diversity and Environment Division, ICAR-CMFRI, Post Box No. 1603, Kochi, 682018, India
| | - J K Nithyashree
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India
| | - Gopalakrishnan Achamveetil
- Marine Biotechnology, Fish Nutrition, and Health Division, ICAR-Central Marine Fisheries Research Institute (ICAR-CMFRI), Post Box No. 1603, Ernakulam North P.O., Kochi, 682018, India
| |
Collapse
|
6
|
Sun K, Meesapyodsuk D, Qiu X. Biosynthetic mechanisms of omega-3 polyunsaturated fatty acids in microalgae. J Biol Chem 2024; 300:107699. [PMID: 39173949 PMCID: PMC11418110 DOI: 10.1016/j.jbc.2024.107699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/08/2024] [Accepted: 08/12/2024] [Indexed: 08/24/2024] Open
Abstract
Marine microalgae are the primary producers of ω3 polyunsaturated fatty acids (PUFAs), such as octadecapentaenoic acid (OPA, 18:5n-3) and docosahexaenoic acid (DHA, 22:6n-3) for food chains. However, the biosynthetic mechanisms of these PUFAs in the algae remain elusive. To study how these fatty acids are synthesized in microalgae, a series of radiolabeled precursors were used to trace the biosynthetic process of PUFAs in Emiliania huxleyi. Feeding the alga with 14C-labeled acetic acid in a time course showed that OPA was solely found in glycoglycerolipids such as monogalactosyldiacylglycerol (MGDG) and digalactosyldiacylglycerol (DGDG) synthesized plastidically by sequential desaturations while DHA was exclusively found in phospholipids synthesized extraplastidically. Feeding the alga with 14C-labeled α-linolenic acid (ALA), linoleic acid (LA), and oleic acid (OA) showed that DHA was synthesized extraplastidically from fed ALA and LA, but not from OA, implying that the aerobic pathway of DHA biosynthesis is incomplete with missing a Δ12 desaturation step. The in vitro enzymatic assays with 14C-labeled malonyl-CoA showed that DHA was synthesized from acetic acid by a PUFA synthase. These results provide the first and conclusive biochemistry evidence that OPA is synthesized by a plastidic aerobic pathway through sequential desaturations with the last step of Δ3 desaturation, while DHA is synthesized by an extraplastidic anaerobic pathway catalyzed by a PUFA synthase in the microalga.
Collapse
Affiliation(s)
- Kaiwen Sun
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | | | - Xiao Qiu
- Department of Food & Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| |
Collapse
|
7
|
Song Y, Yang X, Li S, Luo Y, Chang JS, Hu Z. Thraustochytrids as a promising source of fatty acids, carotenoids, and sterols: bioactive compound biosynthesis, and modern biotechnology. Crit Rev Biotechnol 2024; 44:618-640. [PMID: 37158096 DOI: 10.1080/07388551.2023.2196373] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 02/20/2023] [Indexed: 05/10/2023]
Abstract
Thraustochytrids are eukaryotes and obligate marine protists. They are increasingly considered to be a promising feed additive because of their superior and sustainable application in the production of health-benefiting bioactive compounds, such as fatty acids, carotenoids, and sterols. Moreover, the increasing demand makes it critical to rationally design the targeted products by engineering industrial strains. In this review, bioactive compounds accumulated in thraustochytrids were comprehensively evaluated according to their chemical structure, properties, and physiological function. Metabolic networks and biosynthetic pathways of fatty acids, carotenoids, and sterols were methodically summarized. Further, stress-based strategies used in thraustochytrids were reviewed to explore the potential methodologies for enhancing specific product yields. There are internal relationships between the biosynthesis of fatty acids, carotenoids, and sterols in thraustochytrids since they share some branches of the synthetic routes with some intermediate substrates in common. Although there are classic synthesis pathways presented in the previous research, the metabolic flow of how these compounds are being synthesized in thraustochytrids still remains uncovered. Further, combined with omics technologies to deeply understand the mechanism and effects of different stresses is necessary, which could provide guidance for genetic engineering. While gene-editing technology has allowed targeted gene knock-in and knock-outs in thraustochytrids, efficient gene editing is still required. This critical review will provide comprehensive information to benefit boosting the commercial productivity of specific bioactive substances by thraustochytrids.
Collapse
Affiliation(s)
- Yingjie Song
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Xuewei Yang
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Shuangfei Li
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Yanqing Luo
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung, Taiwan
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, Taiwan
- Department of Chemical Engineering, National Cheng Kung University, Tainan, Taiwan
| | - Zhangli Hu
- Guangdong Technology Research Center for Marine Algal Bioengineering, Guangdong Key Laboratory of Plant Epigenetics, Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Longhua Innovation Institute for Biotechnology, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
- Shenzhen Key Laboratory of Marine Biological Resources and Ecology Environment, Shenzhen Key Laboratory of Microbial Genetic Engineering, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, P.R. China
| |
Collapse
|
8
|
Pereira RFS, Ferreira MJ, Oliveira MC, Serra MC, de Carvalho CCCR. Isolation and Characterization of a Serratia rubidaea from a Shallow Water Hydrothermal Vent. Mar Drugs 2023; 21:599. [PMID: 38132920 PMCID: PMC10745058 DOI: 10.3390/md21120599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/23/2023] Open
Abstract
Microbial life present in the marine environment has to be able to adapt to rapidly changing and often extreme conditions. This makes these organisms a putative source of commercially interesting compounds since adaptation provides different biochemical routes from those found in their terrestrial counterparts. In this work, the goal was the identification of a marine bacterium isolated from a sample taken at a shallow water hydrothermal vent and of its red product. Genomic, lipidomic, and biochemical approaches were used simultaneously, and the bacterium was identified as Serratia rubidaea. A high-throughput screening strategy was used to assess the best physico-chemical conditions permitting both cell growth and production of the red product. The fatty acid composition of the microbial cells was studied to assess adaptation at the lipid level under stressful conditions, whilst several state-of-the-art techniques, such as DSC, FTIR, NMR, and Ultra-High Resolution Qq-Time-of-Flight mass spectrometry, were used to characterize the structure of the pigment. We hypothesize that the pigment, which could be produced by the cells up to 62 °C, is prodigiosin linked to an aliphatic compound that acts as an anchor to keep it close to the cells in the marine environment.
Collapse
Affiliation(s)
- Ricardo F. S. Pereira
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria J. Ferreira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.J.F.); (M.C.O.)
| | - M. Conceição Oliveira
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal; (M.J.F.); (M.C.O.)
| | - Maria C. Serra
- Área Departamental de Engenharia Química, Instituto Superior de Engenharia de Lisboa (ISEL), Rua Conselheiro Emídio Navarro, 1, 1959-007 Lisboa, Portugal;
| | - Carla C. C. R. de Carvalho
- Department of Bioengineering, iBB—Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal;
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
9
|
Seyler LM, Kraus EA, McLean C, Spear JR, Templeton AS, Schrenk MO. An untargeted exometabolomics approach to characterize dissolved organic matter in groundwater of the Samail Ophiolite. Front Microbiol 2023; 14:1093372. [PMID: 36970670 PMCID: PMC10033605 DOI: 10.3389/fmicb.2023.1093372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/23/2023] [Indexed: 03/11/2023] Open
Abstract
The process of serpentinization supports life on Earth and gives rise to the habitability of other worlds in our Solar System. While numerous studies have provided clues to the survival strategies of microbial communities in serpentinizing environments on the modern Earth, characterizing microbial activity in such environments remains challenging due to low biomass and extreme conditions. Here, we used an untargeted metabolomics approach to characterize dissolved organic matter in groundwater in the Samail Ophiolite, the largest and best characterized example of actively serpentinizing uplifted ocean crust and mantle. We found that dissolved organic matter composition is strongly correlated with both fluid type and microbial community composition, and that the fluids that were most influenced by serpentinization contained the greatest number of unique compounds, none of which could be identified using the current metabolite databases. Using metabolomics in conjunction with metagenomic data, we detected numerous products and intermediates of microbial metabolic processes and identified potential biosignatures of microbial activity, including pigments, porphyrins, quinones, fatty acids, and metabolites involved in methanogenesis. Metabolomics techniques like the ones used in this study may be used to further our understanding of life in serpentinizing environments, and aid in the identification of biosignatures that can be used to search for life in serpentinizing systems on other worlds.
Collapse
Affiliation(s)
- Lauren M. Seyler
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
- Biology Program, School of Natural Sciences and Mathematics, Stockton University, Galloway, NJ, United States
- Blue Marble Space Institute of Science, Seattle, WA, United States
- *Correspondence: Lauren M. Seyler,
| | - Emily A. Kraus
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
- Department of Environmental Engineering, University of Colorado, Boulder, Boulder, CO, United States
| | - Craig McLean
- Massachusetts Institute of Technology, Cambridge, MA, United States
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States
| | - Alexis S. Templeton
- Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO, United States
| | - Matthew O. Schrenk
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, United States
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
10
|
Cultivable bacteria in the supraglacial lake formed after a glacial lake outburst flood in northern Pakistan. Int Microbiol 2022; 26:309-325. [PMID: 36484912 DOI: 10.1007/s10123-022-00306-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 11/29/2022] [Indexed: 12/14/2022]
Abstract
Recently, a supraglacial lake formed as a result of a glacial lake outburst flood (GLOF) in the Dook Pal Glacier. Lake debris and meltwater samples were collected from the supraglacial lake to determine bacterial diversity. Geochemical analyses of samples showed free amino acids (FAAs), anions, cations, and heavy metals. Comparable viable bacterial counts were observed in meltwater and debris samples. Using R2A media, a total of 52 bacterial isolates were identified: 40 from debris and 12 from meltwater. The relative abundance of Gram-positive (80.8%) bacteria was greater than Gram-negative (19.2%). Molecular identification of these isolates revealed that meltwater was dominated by Firmicutes (41.6%) and Proteobacteria (41.6%), while lake debris was dominated by Firmicutes (65.0%). The isolates belonged to 14 genera with the greatest relative abundance in Bacillus. Tolerance level of isolates to salts was high. Most of the Gram-positive bacteria were eurypsychrophiles, while most of the Gram-negative bacteria were stenopsychrophiles. Gram-negative bacteria displayed a higher minimum inhibitory concentration of selected heavy metals and antibiotics than Gram-positive. This first-ever study of culturable bacteria from a freshly formed supraglacial lake improves our understanding of the bacterial diversity and antibiotic resistance released from the glaciers as a result of GLOF.
Collapse
|
11
|
Chen B, Wang F, Xie X, Liu H, Liu D, Ma L, Xiao G, Wang Q. Functional analysis of the dehydratase domains of the PUFA synthase from Emiliania huxleyi in Escherichia coli and Arabidopsis thaliana. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:123. [PMID: 36380342 PMCID: PMC9667614 DOI: 10.1186/s13068-022-02223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Polyunsaturated fatty acid (PUFA) synthase is a multi-domain mega-enzyme that effectively synthesizes a series of PUFAs in marine microorganisms. The dehydratase (DH) domain of a PUFA synthase plays a crucial role in double bond positioning in fatty acids. Sequencing results of the coccolithophore Emiliania huxleyi (E. huxleyi, Eh) indicated that this species contains a PUFA synthase with multiple DH domains. Therefore, the current study, sought to define the functions of these DH domains (EhDHs), by cloning and overexpressing the genes encoding FabA-like EhDHs in Escherichia coli (E. coli) and Arabidopsis thaliana (A. thaliana). RESULTS A complementation test showed that the two FabA-like DH domains could restore DH function in a temperature-sensitive (Ts) mutant. Meanwhile, overexpression of FabA-like EhDH1 and EhDH2 domains increased the production of unsaturated fatty acids (UFAs) in recombinant E. coli by 43.5-32.9%, respectively. Site-directed mutagenesis analysis confirmed the authenticity of active-site residues in these domains. Moreover, the expression of tandem EhDH1-DH2 in A. thaliana altered the fatty acids content, seed weight, and germination rate. CONCLUSIONS The two FabA-like DH domains in the E. huxleyi PUFA synthase function as 3-hydroxyacyl-acyl carrier protein dehydratase in E. coli. The expression of these domains in E. coli and A. thaliana can alter the fatty acid profile in E. coli and increase the seed lipid content and germination rate in A. thaliana. Hence, introduction of DH domains controlling the dehydration process of fatty acid biosynthesis in plants might offer a new strategy to increase oil production in oilseed plants.
Collapse
Affiliation(s)
- Bihan Chen
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Feng Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Xi Xie
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China.
| | - Huifan Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Dongjie Liu
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Lukai Ma
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Gengsheng Xiao
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Qin Wang
- Guangdong Provincial Key Laboratory of Lingnan Specialty Food Science and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
12
|
Ugwuodo CJ, Colosimo F, Adhikari J, Shen Y, Badireddy AR, Mouser PJ. Salinity and hydraulic retention time induce membrane phospholipid acyl chain remodeling in Halanaerobium congolense WG10 and mixed cultures from hydraulically fractured shale wells. Front Microbiol 2022; 13:1023575. [PMID: 36439785 PMCID: PMC9687094 DOI: 10.3389/fmicb.2022.1023575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/17/2022] [Indexed: 12/14/2023] Open
Abstract
Bacteria remodel their plasma membrane lipidome to maintain key biophysical attributes in response to ecological disturbances. For Halanaerobium and other anaerobic halotolerant taxa that persist in hydraulically fractured deep subsurface shale reservoirs, salinity, and hydraulic retention time (HRT) are important perturbants of cell membrane structure, yet their effects remain poorly understood. Membrane-linked activities underlie in situ microbial growth kinetics and physiologies which drive biogeochemical reactions in engineered subsurface systems. Hence, we used gas chromatography-mass spectrometry (GC-MS) to investigate the effects of salinity and HRT on the phospholipid fatty acid composition of H. congolense WG10 and mixed enrichment cultures from hydraulically fractured shale wells. We also coupled acyl chain remodeling to membrane mechanics by measuring bilayer elasticity using atomic force microscopy (AFM). For these experiments, cultures were grown in a chemostat vessel operated in continuous flow mode under strict anoxia and constant stirring. Our findings show that salinity and HRT induce significant changes in membrane fatty acid chemistry of H. congolense WG10 in distinct and complementary ways. Notably, under nonoptimal salt concentrations (7% and 20% NaCl), H. congolense WG10 elevates the portion of polyunsaturated fatty acids (PUFAs) in its membrane, and this results in an apparent increase in fluidity (homeoviscous adaptation principle) and thickness. Double bond index (DBI) and mean chain length (MCL) were used as proxies for membrane fluidity and thickness, respectively. These results provide new insight into our understanding of how environmental and engineered factors might disrupt the physical and biogeochemical equilibria of fractured shale by inducing physiologically relevant changes in the membrane fatty acid chemistry of persistent microbial taxa. GRAPHICAL ABSTRACTSalinity significantly alters membrane bilayer fluidity and thickness in Halanaerobium congolense WG10.
Collapse
Affiliation(s)
- Chika Jude Ugwuodo
- Natural Resources and Earth Systems Science, University of New Hampshire, Durham, NH, United States
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| | | | - Jishnu Adhikari
- Sanborn, Head and Associates, Inc., Concord, NH, United States
| | - Yuxiang Shen
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, University of Vermont, Burlington, VT, United States
| | - Paula J. Mouser
- Department of Civil and Environmental Engineering, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
13
|
Shuib S, Nazir MYM, Ibrahim I, Song Y, Ratledge C, Hamid AA. Co-existence of type I fatty acid synthase and polyketide synthase metabolons in Aurantiochytrium SW1 and their implications for lipid biosynthesis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159224. [PMID: 36007759 DOI: 10.1016/j.bbalip.2022.159224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/16/2022] [Accepted: 08/16/2022] [Indexed: 11/26/2022]
Abstract
The key enzymes of lipid biosynthesis in oleaginous filamentous fungi exist as metabolons. However, the existence of a similar organization in other groups of oleaginous microorganisms is still unknown. In this study, we confirmed the occurrence of two separate and distinct lipogenic metabolons in a thraustochytrid, Aurantiochytrium SW1. These involve the Type I Fatty Acid Synthase (FAS) pathway, consisting of six enzymes: fatty acid synthase, malic enzyme (ME), ATP: citrate lyase (ACL), acetyl-CoA carboxylase (ACC), malate dehydrogenase (MD) and pyruvate carboxylase (PC), and the Polyketide Synthase-like (PKS) pathway, consisting of PKS subunits a, b, c, glucose-6-phosphate dehydrogenase (G6PDH) 6-phosphogluconate dehydrogenase (6PGDH), ACL and ACC. This suggests that the NADPH requirement for the FAS pathway is primarily generated and channelled by ME whereas G6PDH and 6PGDH fulfil this role for the PKS pathway. Diminished biosynthesis of palmitic acid (16:0), docosahexaenoic acid (22:6 n-3, DHA) and docosapentaenoic acid (22:5 n-6, DPA) correlated with the dissociation of their respective metabolons thereby suggesting that regulation of the pathways is achieved through the formation and dissociation of the metabolons.
Collapse
Affiliation(s)
- Shuwahida Shuib
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Autoimmune Unit, Allergy and Immunology Research Centre, Institute for Medical Research (IMR), National Institute of Health (NIH) Malaysia, No. 1, Jalan Setia Murni U13/52, Bandar Setia Alam, 40170 Shah Alam, Selangor, Malaysia
| | - Mohamed Yusuf Mohamed Nazir
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia; Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Izyanti Ibrahim
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, 266 Xincun Rd., Zibo, Shandong, PR China
| | - Colin Ratledge
- Department of Biological Sciences, University of Hull, Kingston upon Hull HU6 7RX, United Kingdom
| | - Aidil Abdul Hamid
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia.
| |
Collapse
|
14
|
Mesnage R, Calatayud M, Duysburgh C, Marzorati M, Antoniou MN. Alterations in infant gut microbiome composition and metabolism after exposure to glyphosate and Roundup and/or a spore-based formulation using the SHIME technology. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e6. [PMID: 39295780 PMCID: PMC11406414 DOI: 10.1017/gmb.2022.5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/04/2022] [Accepted: 07/05/2022] [Indexed: 09/21/2024]
Abstract
Despite extensive research into the toxicology of the herbicide glyphosate, there are still major unknowns regarding its effects on the human gut microbiome. We describe the effects of glyphosate and a Roundup glyphosate-based herbicide on infant gut microbiota using SHIME technology. SHIME microbiota culture was undertaken in the presence of a concentration of 100-mg/L glyphosate and the same glyphosate equivalent concentration of Roundup. Roundup and to a lesser extent glyphosate caused an increase in fermentation activity, resulting in acidification of the microbial environment. This was also reflected by an increase in lactate and acetate production concomitant to a decrease in the levels of propionate, valerate, caproate and butyrate. Ammonium production reflecting proteolytic activities was increased by Roundup exposure. Global metabolomics revealed large-scale disturbances, including an increased abundance of long-chain polyunsaturated fatty acids. Changes in bacterial composition measured by qPCR and 16S rRNA suggested that lactobacilli had their growth stimulated as a result of microenvironment acidification. Co-treatment with the spore-based probiotic formulation MegaSporeBiotic reverted some of the changes in short-chain fatty acid levels. Altogether, our results suggest that glyphosate can exert effects on human gut microbiota.
Collapse
Affiliation(s)
- Robin Mesnage
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| | | | | | - Massimo Marzorati
- ProDigest BV, Ghent, Belgium
- Center for Microbial Ecology and Technology, Faculty of Bioscience Engineering, Department of Biotechnology, Ghent University, Ghent, Belgium
| | - Michael N Antoniou
- Gene Expression and Therapy Group, King's College London, Faculty of Life Sciences & Medicine, Department of Medical and Molecular Genetics, Guy's Hospital, London, SE1 9RT, UK
| |
Collapse
|
15
|
Kaku M, Ishidaira M, Satoh S, Ozaki M, Kohari D, Chohnan S. Fatty Acid Production by Enhanced Malonyl-CoA Supply in Escherichia coli. Curr Microbiol 2022; 79:269. [PMID: 35881256 DOI: 10.1007/s00284-022-02969-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/07/2022] [Indexed: 11/24/2022]
Abstract
The expression of exogenous genes encoding acetyl-CoA carboxylase (Acc) and pantothenate kinase (CoaA) in Escherichia coli enable highly effective fatty acid production. Acc-only strains grown at 37 °C or 23 °C produced an approximately twofold increase in fatty acid content, and additional expression of CoaA achieved a further twofold accumulation. In the presence of pantothenate, which is the starting material for the CoA biosynthetic pathway, the size of the intracellular CoA pool at 23 °C was comparable to that at 30 °C during cultivation, and more than 500 mg/L of culture containing cellular fatty acids was produced, even at 23 °C. However, the highest yield of cellular fatty acids (1100 mg/L of culture) was produced in cells possessing the gene encoding type I bacterial fatty acid synthase (FasA) along with the acc and coaA, when the transformant was cultivated at 30 °C in M9 minimal salt medium without pantothenate or IPTG. This E. coli transformant contained 141 mg/L of oleic acid attributed to FasA under noninducible conditions. The increased fatty acid content was brought about by a greatly improved specific productivity of 289 mg/g of dry cell weight. Thus, the effectiveness of the foreign acc and coaA in fatty acid production was unambiguously confirmed at culture temperatures of 23 °C to 37 °C. Cofactor engineering in E. coli using the exogenous coaA and acc genes resulted in fatty acid production over 1 g/L of culture and could effectively function at 23 °C.
Collapse
Affiliation(s)
- Moena Kaku
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Mei Ishidaira
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shusaku Satoh
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Miho Ozaki
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Daisuke Kohari
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan
| | - Shigeru Chohnan
- Department of Food and Life Sciences, Ibaraki University College of Agriculture, 3-21-1 Chuo, Ami, Ibaraki, 300-0393, Japan.
| |
Collapse
|
16
|
An JS, Lim HJ, Lee JY, Jang YJ, Nam SJ, Lee SK, Oh DC. Hamuramicin C, a Cytotoxic Bicyclic Macrolide Isolated from a Wasp Gut Bacterium. JOURNAL OF NATURAL PRODUCTS 2022; 85:936-942. [PMID: 35362983 DOI: 10.1021/acs.jnatprod.1c01075] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new bicyclic macrolide, hamuramicin C (1), was isolated from Streptomyces sp. MBP16, a gut bacterial strain of the wasp Vespa crabro flavofasciata. Its 22-membered macrocyclic lactone structure was determined by NMR and mass spectrometry. The relative configurations of hamuramicin C (1) were assigned by J-based configuration analysis utilizing 1H rotating frame Overhauser effect spectroscopy and heteronuclear long-range coupling NMR spectroscopy. Genomic and bioinformatic analyses of the bacterial strain enabled identification of the type-I polyketide synthase pathway, which employs a trans-acyltransferase system. The absolute configurations of 1 were proposed based on the analysis of the sequences of ketoreductases in the modular gene cluster. Moreover, hamuramicin C (1) demonstrated significant inhibitory activity against diverse human cancer cell lines (HCT116, A549, SNU-638, SK-HEP-1, and MDA-MB-231).
Collapse
Affiliation(s)
- Joon Soo An
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyung-Ju Lim
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Ji Yun Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Joon Jang
- Natura Center of Life and Environment, Seoul 08826, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Sang Kook Lee
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
17
|
Genomic Insights into Omega-3 Polyunsaturated Fatty Acid Producing Shewanella sp. N2AIL from Fish Gut. BIOLOGY 2022; 11:biology11050632. [PMID: 35625360 PMCID: PMC9138089 DOI: 10.3390/biology11050632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/09/2022] [Accepted: 04/12/2022] [Indexed: 11/16/2022]
Abstract
The genus Shewanella is widely distributed in niches ranging from an aquatic environment to spoiled fish and is loaded with various ecologically and commercially important metabolites. Bacterial species under this genus find application in bioelectricity generation and bioremediation due to their capability to use pollutants as the terminal electron acceptor and could produce health-beneficial omega-3 fatty acids, particularly eicosapentaenoic acid (EPA). Here, the genome sequence of an EPA-producing bacterium, Shewanella sp. N2AIL, isolated from the gastrointestinal tract of Tilapia fish, is reported. The genome size of the strain was 4.8 Mb with a GC content of 46.3% containing 4385 protein-coding genes. Taxonogenomic analysis assigned this strain to the genus Shewanella on the basis of average nucleotide identity (ANI) and in silico DNA-DNA hybridization (DDH), phylogenetically most closely related with S. baltica NCTC 10735T. The comparative genome analysis with the type strain of S. baltica revealed 693 unique genes in the strain N2AIL, highlighting the variation at the strain level. The genes associated with stress adaptation, secondary metabolite production, antibiotic resistance, and metal reduction were identified in the genome suggesting the potential of the bacterium to be explored as an industrially important strain. PUFA synthase gene cluster of size ~20.5 kb comprising all the essential domains for EPA biosynthesis arranged in five ORFs was also identified in the strain N2AIL. The study provides genomic insights into the diverse genes of Shewanella sp. N2AIL, which is particularly involved in adaptation strategies and prospecting secondary metabolite potential, specifically the biosynthesis of omega-3 polyunsaturated fatty acids.
Collapse
|
18
|
Mohammad GA, Taha Daod S. Impact of Tween 80 on Fatty Acid Composition in Two Bacterial Species. ARCHIVES OF RAZI INSTITUTE 2021; 76:1617-1627. [PMID: 35546975 PMCID: PMC9083855 DOI: 10.22092/ari.2021.356359.1826] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 10/21/2021] [Indexed: 06/15/2023]
Abstract
Tween 80 is a well-known non-ionic emulsifier which is used in pharmaceutical and food industries. Due to its widespread applications it is needed to understand how it affects bacteria. The current study aimed to investigate the effect of Tween 80 on the fatty acid content of bacteria. Three bacterial isolates were used in this study: two isolates of Serratia marcescens and one isolate of Acinetobacter baumannii. The analysis of fatty acid components of bacterial lipids was performed, followed by the assessment of the effect of Tween 80 on fatty acid content by adding it to the culture medium in three concentrations: 0.1%, 0.5% , and 1.0 % .The results indicated that the Tween 80 has the ability to change the fatty acid content present in these bacteria by the appearance and disappearance of three fatty acids, including Elaidic acid 18.1 trance 9, Oleic acid 18.1 cis 9, and erucic acid 22.1, which belong to Mono-Unsaturated Fatty Acids (MUFA), in the presence of different concentrations of Tween 80. The results also demonstrated that the p-value was significant in two situations, the first belonged to S. marcescens at 0.5 % concentration for all groups of FAs (Saturated fatty acids, Monounsaturated fatty acids, and polyunsaturated fatty acids), and the second was for S. marcescens just in MUFA in all concentrations of Tween 80.
Collapse
Affiliation(s)
- G A Mohammad
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| | - S Taha Daod
- Department of Biology, College of Science, University of Mosul, Mosul, Iraq
| |
Collapse
|
19
|
Schnorr SL, Berry D. Lipid synthesis at the trophic base as the source for energy management to build complex structures. Curr Opin Biotechnol 2021; 73:364-373. [PMID: 34735986 DOI: 10.1016/j.copbio.2021.09.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/20/2021] [Accepted: 09/29/2021] [Indexed: 11/26/2022]
Abstract
The review explores the ecological basis for bacterial lipid metabolism in marine and terrestrial ecosystems. We discuss ecosystem stressors that provoked early organisms to modify their lipid membrane structures, and where these stressors are found across a variety of environments. A major role of lipid membranes is to manage cellular energy utility, including how energy is used for signal propagation. As different environments are imbued with properties that necessitate variation in energy regulation, bacterial lipid synthesis has undergone incalculable permutations of functional trial and error. This may hold clues for how biotechnology can improvise a short-hand version of the evolutionary gauntlet to stimulate latent functional competences for the synthesis of rare lipids. Reducing human reliance on marine resources and deriving solutions for production of essential nutrients is a pressing problem in sustainable agriculture and aquaculture, as well as timely considering the increasing fragility of human health in an aging population.
Collapse
Affiliation(s)
- Stephanie L Schnorr
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria; Konrad Lorenz Institute for Evolution and Cognition Research, Klosterneuburg, Austria
| | - David Berry
- Centre for Microbiology and Environmental Systems Science, Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, University of Vienna, Vienna, Austria.
| |
Collapse
|
20
|
Genetic Suppression of Lethal Mutations in Fatty Acid Biosynthesis Mediated by a Secondary Lipid Synthase. Appl Environ Microbiol 2021; 87:e0003521. [PMID: 33837011 PMCID: PMC8174602 DOI: 10.1128/aem.00035-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The biosynthesis and incorporation of polyunsaturated fatty acids into phospholipid membranes are unique features of certain marine Gammaproteobacteria inhabiting high-pressure and/or low-temperature environments. In these bacteria, monounsaturated and saturated fatty acids are produced via the classical dissociated type II fatty acid synthase mechanism, while omega-3 polyunsaturated fatty acids such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3) are produced by a hybrid polyketide/fatty acid synthase—encoded by the pfa genes—also referred to as the secondary lipid synthase mechanism. In this work, phenotypes associated with partial or complete loss of monounsaturated biosynthesis are shown to be compensated for by severalfold increased production of polyunsaturated fatty acids in the model marine bacterium Photobacterium profundum SS9. One route to suppression of these phenotypes could be achieved by transposition of insertion sequences within or upstream of the fabD coding sequence, which encodes malonyl coenzyme A (malonyl-CoA) acyl carrier protein transacylase. Genetic experiments in this strain indicated that fabD is not an essential gene, yet mutations in fabD and pfaA are synthetically lethal. Based on these results, we speculated that the malonyl-CoA transacylase domain within PfaA compensates for loss of FabD activity. Heterologous expression of either pfaABCD from P. profundum SS9 or pfaABCDE from Shewanella pealeana in Escherichia coli complemented the loss of the chromosomal copy of fabD in vivo. The co-occurrence of independent, yet compensatory, fatty acid biosynthetic pathways in selected marine bacteria may provide genetic redundancy to optimize fitness under extreme conditions. IMPORTANCE A defining trait among many cultured piezophilic and/or psychrophilic marine Gammaproteobacteria is the incorporation of both monounsaturated and polyunsaturated fatty acids into membrane phospholipids. The biosynthesis of these different classes of fatty acid molecules is linked to two genetically distinct co-occurring pathways that utilize the same pool of intracellular precursors. Using a genetic approach, new insights into the interactions between these two biosynthetic pathways have been gained. Specifically, core fatty acid biosynthesis genes previously thought to be essential were found to be nonessential in strains harboring both pathways due to functional overlap between the two pathways. These results provide new routes to genetically optimize long-chain omega-3 polyunsaturated fatty acid biosynthesis in bacteria and reveal a possible ecological role for maintaining multiple pathways for lipid synthesis in a single bacterium.
Collapse
|
21
|
Zhang M, Zhang H, Li Q, Gao Y, Guo L, He L, Zang S, Guo X, Huang J, Li L. Structural Insights into the Trans-Acting Enoyl Reductase in the Biosynthesis of Long-Chain Polyunsaturated Fatty Acids in Shewanella piezotolerans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2316-2324. [PMID: 33587627 DOI: 10.1021/acs.jafc.0c07386] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two long-chain polyunsaturated fatty acids (LC-PUFAs), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), play vital roles in human health. Similarly, two biosynthetic pathways, based on desaturase/elongase and polyketide synthase, have been implicated in the synthesis of microbial LC-PUFA. Up to now, only several microalgae, no bacteria, have been used in the commercial production of oils rich in DHA and/or EPA. Fully understanding the enzymatic mechanism in the biosynthesis of LC-PUFA would contribute significantly to produce EPA and/or DHA by the bacteria. In this study, we report a 1.998 Å-resolution crystal structure of trans-acting enoyl reductase (ER), SpPfaD, from Shewanella piezotolerans. The SpPfaD model consists of one homodimer in the asymmetric unit, and each subunit contains three domains. These include an N-terminal, a central domain forming a classic TIM barrel with a single FMN cofactor molecule bound atop the barrel, and a C-terminal domain with a lid above the TIM barrel. Furthermore, we docked oxidized nicotinamide adenine dinucleotide phosphate (NADP) and an inhibitor 2-(4-(2-((3-(5-(pyridin-2-ylthio)thiazol-2-yl)ureido)methyl)-1H-imidazole-4-yl)phenoxy)acetic acid (TUI) molecule into the active site and analyzed the inhibition and catalytic mechanisms of the enoyl reductase SpPfaD. To the best of our knowledge, this is the first crystal structure of trans-ER in the biosynthesis of bacterial polyketides.
Collapse
Affiliation(s)
- Mingliang Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Huaidong Zhang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
- CAS Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute of Virology, Wuhan 430071, P. R. China
| | - Qin Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
- The State Key Laboratory of Virology, Wuhan 430071, P. R. China
| | - Yangle Gao
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Lijun Guo
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Liu He
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Shanshan Zang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Xing Guo
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Jianzhong Huang
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| | - Li Li
- Engineering Research Center of Industrial Microbiology, Ministry of Education; Collaborative Innovation Center of Haixi Green Bio-Manufacturing Technology, Ministry of Education; National & Local Joint Engineering Research Center of Industrial Microbiology and Fermentation Technology, National Development and Reform Commission; College of Life Sciences, Fujian Normal University, Fuzhou, 350117, P. R. China
| |
Collapse
|
22
|
Du W, Li G, Ho N, Jenkins L, Hockaday D, Tan J, Cao H. CyanoPATH: a knowledgebase of genome-scale functional repertoire for toxic cyanobacterial blooms. Brief Bioinform 2020; 22:6035272. [PMID: 33320930 DOI: 10.1093/bib/bbaa375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/16/2020] [Accepted: 11/24/2020] [Indexed: 11/14/2022] Open
Abstract
CyanoPATH is a database that curates and analyzes the common genomic functional repertoire for cyanobacteria harmful algal blooms (CyanoHABs) in eutrophic waters. Based on the literature of empirical studies and genome/protein databases, it summarizes four types of information: common biological functions (pathways) driving CyanoHABs, customized pathway maps, classification of blooming type based on databases and the genomes of cyanobacteria. A total of 19 pathways are reconstructed, which are involved in the utilization of macronutrients (e.g. carbon, nitrogen, phosphorus and sulfur), micronutrients (e.g. zinc, magnesium, iron, etc.) and other resources (e.g. light and vitamins) and in stress resistance (e.g. lead and copper). These pathways, comprised of both transport and biochemical reactions, are reconstructed with proteins from NCBI and reactions from KEGG and visualized with self-created transport/reaction maps. The pathways are hierarchical and consist of subpathways, protein/enzyme complexes and constituent proteins. New cyanobacterial genomes can be annotated and visualized for these pathways and compared with existing species. This set of genomic functional repertoire is useful in analyzing aquatic metagenomes and metatranscriptomes in CyanoHAB research. Most importantly, it establishes a link between genome and ecology. All these reference proteins, pathways and maps and genomes are free to download at http://www.csbg-jlu.info/CyanoPATH.
Collapse
Affiliation(s)
| | | | - Nicholas Ho
- Biodesign Center for Fundamental and Applied Microbiomics at Arizona State University
| | - Landon Jenkins
- Biodesign Center for Fundamental and Applied Microbiomics at Arizona State University
| | - Drew Hockaday
- Biodesign Center for Fundamental and Applied Microbiomics at Arizona State University
| | | | | |
Collapse
|
23
|
Wang S, Lan C, Wang Z, Wan W, Cui Q, Song X. PUFA-synthase-specific PPTase enhanced the polyunsaturated fatty acid biosynthesis via the polyketide synthase pathway in Aurantiochytrium. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:152. [PMID: 32874202 PMCID: PMC7457351 DOI: 10.1186/s13068-020-01793-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 08/22/2020] [Indexed: 05/25/2023]
Abstract
BACKGROUND Phosphopantetheinyl transferase (PPTase) can change the acyl-carrier protein (ACP) from an inactive apo-ACP to an active holo-ACP that plays a key role in fatty acids biosynthesis. Currently, the PPTase has been proved to be involved in the biosynthesis of polyunsaturated fatty acids (PUFAs) via a polyketide synthase (PKS) pathway in Thraustochytrids, while its characteristics are not clarified. RESULTS Here, the heterologous PPTase gene (pfaE) from bacteria was first co-expressed with the PKS system (orfA-orfC) from Thraustochytrid Aurantiochytrium. Then, a new endogenous PPTase (ppt_a) in Aurantiochytrium was identified by homologous alignment and its function was verified in E. coli. Moreover, the endogenous ppt_a was then overexpressed in Aurantiochytrium, and results showed that the production and proportion of PUFAs, especially docosahexaenoic acid (DHA), in the transformant SD116::PPT_A were increased by 35.5% and 17.6%, respectively. Finally, higher DHA and PUFA proportion (53.9% and 64.5% of TFA, respectively) were obtained in SD116::PPT_A using a cerulenin feeding strategy. CONCLUSIONS This study has illustrated a PUFAs-synthase-specific PPTase in PKS system and provided a new strategy to improve the PUFA production in Thraustochytrids.
Collapse
Affiliation(s)
- Sen Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| | - Chuanzeng Lan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhuojun Wang
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Weijian Wan
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| | - Qiu Cui
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| | - Xiaojin Song
- CAS Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Shandong Engineering Laboratory of Single Cell Oil, Qingdao Engineering Laboratory of Single Cell Oil, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No.189 Songling Road, Laoshan District, Qingdao, 266101 Shandong China
| |
Collapse
|
24
|
Xie X, Sun K, Meesapyodsuk D, Miao Y, Qiu X. Distinct functions of two FabA-like dehydratase domains of polyunsaturated fatty acid synthase in the biosynthesis of very long-chain polyunsaturated fatty acids. Environ Microbiol 2020; 22:3772-3783. [PMID: 32618113 DOI: 10.1111/1462-2920.15149] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 06/06/2020] [Accepted: 06/29/2020] [Indexed: 11/29/2022]
Abstract
Thraustochytrium is a unicellular marine protist for the commercial production of very long-chain polyunsaturated fatty acids (VLCPUFAs). Biosynthesis of these VLCPUFAs in the protist is catalysed by a PUFA synthase comprising three subunits, each with multiple catalytic domains. Among these domains, two tandem FabA-like dehydratase domains (DH1 and DH2) in subunit-C together are responsible for introducing double bonds in VLCPUFAs. Domain swapping analysis in yeast showed that the defective phenotype of a Scfas1 mutant could be complemented by expressing an engineered ScFAS1 gene in which the DH domain was replaced by a single DH1 or mutated DH2 of the two. Heterologous expression of the PUFA synthase in E. coli showed that the mutation of DH1 of the two or deletion of DH1 or substitution of DH1 with DH2 resulted in the complete loss of activity in the biosynthesis of VLCPUFAs. Mutation of DH2 of the two or deletion of the DH2 domain produced a small amount of DPA, but not docosahexaenoic acid (DHA). These results indicate that each of the two FabA-like domains of the PUFA synthase possesses distinct function. DH1 domain is essential for the biosynthesis of VLCPUFAs, but DH2 domain is required for the biosynthesis of DHA.
Collapse
Affiliation(s)
- Xi Xie
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.,College of Light Industry and Food, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, 510225, China
| | - Kaiwen Sun
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada.,National Research Council of Canada, Saskatoon, Saskatchewan, S7N 0W9, Canada
| | - Yu Miao
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 5A8, Canada
| |
Collapse
|
25
|
Munawaroh HSH, Apdila ET, Awai K. hetN and patS Mutations Enhance Accumulation of Fatty Alcohols in the hglT Mutants of Anabaena sp. PCC 7120. FRONTIERS IN PLANT SCIENCE 2020; 11:804. [PMID: 32733494 PMCID: PMC7360850 DOI: 10.3389/fpls.2020.00804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
The heterocysts present in filamentous cyanobacteria such as Anabaena sp. PCC 7120 are known to be regulated by HetN and PatS, the repressors of heterocyst differentiation; therefore, the inactivation of these proteins will result in the formation of multiple heterocysts. To enhance the accumulation of fatty alcohols synthesized in the heterocyst, we introduced mutations of these repressors to increase heterocyst frequency. First, we isolated double mutants of hetN and patS and confirmed that the null mutation of these genes promoted higher frequencies of heterocyst formation and higher accumulation of heterocyst-specific glycolipids (Hgls) compared with its wild type. Next, we combined hetN and patS mutations with an hglT (encoding glycosyltransferase, an enzyme involved in Hgl synthesis) mutation to increase the accumulation of fatty alcohols since knockout mutation of hglT results in accumulation of very long chain fatty alcohol, the precursor of Hgl. We also observed retarded growth, lower chlorophyll content and up to a five-fold decrease in photosynthetic activity of the hetN/patS/hglT triple mutants. In contrast, the triple mutants showed three times higher heterocyst formation frequencies than the hglT single mutant and wild type. The production rate of fatty alcohol in the triple mutants attained a value 1.41 nmol/mL OD730, whereas accumulation of Hgls in the wild type was 0.90 nmol/mL OD730. Aeration of culture improved the accumulation of fatty alcohols in hetN/patS/hglT mutant cells up to 2.97 nmol/mL OD730 compared with cells cultured by rotation. Our study outlines an alternative strategy for fatty alcohol production supported by photosynthesis and nitrogen fixation.
Collapse
Affiliation(s)
- Heli Siti Halimatul Munawaroh
- Laboratory of Chemistry Study Program, Department of Chemistry Education, Universitas Pendidikan Indonesia, Bandung, Indonesia
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Egi Tritya Apdila
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Koichiro Awai
- Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
- Research Institute of Electronics, Shizuoka University, Hamamatsu, Japan
- Department of Biological Science, Faculty of Science, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
26
|
Molecular mechanisms for biosynthesis and assembly of nutritionally important very long chain polyunsaturated fatty acids in microorganisms. Prog Lipid Res 2020; 79:101047. [DOI: 10.1016/j.plipres.2020.101047] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 05/29/2020] [Accepted: 06/09/2020] [Indexed: 12/23/2022]
|
27
|
Allemann MN, Allen EE. Genetic regulation of the bacterial omega-3 polyunsaturated fatty acid biosynthesis pathway. J Bacteriol 2020; 202:JB.00050-20. [PMID: 32513681 PMCID: PMC8404712 DOI: 10.1128/jb.00050-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
A characteristic among many marine Gammaproteobacteria is the biosynthesis and incorporation of omega-3 polyunsaturated fatty acids into membrane phospholipids. The biosynthesis of eicosapentaenoic (EPA) and/or docosahexaenoic (DHA) acids is mediated by a polyketide/fatty acid synthase mechanism encoded by a set of five genes, pfaABCDE. This unique fatty acid synthesis pathway co-exists with the principal type II dissociated fatty acid synthesis pathway, which is responsible for the biosynthesis of core saturated, monounsaturated, and hydroxylated fatty acids used in phospholipid and lipid A biosynthesis. In this work, a genetic approach was undertaken to elucidate genetic regulation of the pfa genes in the model marine bacterium Photobacterium profundum SS9. Using a reporter gene fusion, we showed that expression of the pfa operon is down regulated in response to exogenous fatty acids, particularly long chain monounsaturated fatty acids. This regulation occurs independently of the canonical fatty acid regulators, FabR and FadR, present in P. profundum SS9. Transposon mutagenesis and screening of a library of mutants identified a novel transcriptional regulator, which we have designated pfaF, to be responsible for the observed regulation of the pfa operon in P. profundum SS9. Gel mobility shift and DNase I footprinting assays confirmed that PfaF binds the pfaA promoter and identified the PfaF binding site.Importance The production of long-chain omega-3 polyunsaturated fatty acids (PUFA) by marine Gammaproteobacteria, particularly those from deep-sea environments, has been known for decades. These unique fatty acids are produced by a polyketide-type mechanism and subsequently incorporated into the phospholipid membrane. While much research has focused on the biosynthesis genes, their products and the phylogenetic distribution of these gene clusters, no prior studies have detailed the genetic regulation of this pathway. This study describes how this pathway is regulated under various culture conditions and has identified and characterized a fatty acid responsive transcriptional regulator specific to PUFA biosynthesis.
Collapse
Affiliation(s)
- Marco N Allemann
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA USA
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA USA
| |
Collapse
|
28
|
Whole genome sequencing of four bacterial strains from South Shetland Trench revealing biosynthetic and environmental adaptation gene clusters. Mar Genomics 2020; 54:100782. [PMID: 32387528 DOI: 10.1016/j.margen.2020.100782] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 04/24/2020] [Accepted: 04/25/2020] [Indexed: 11/20/2022]
Abstract
Whole genome sequences of four bacterial strains Dietzia maris SST1, Pseudomonas zhaodongensis SST2, Pseudomonas sp. SST3 and Halomonas sulfidaeris SST4, recovered from the South Shetland Trench sediment in Antarctica were analyzed using Ion Torrent sequencing technology. The respective sizes of their genomes (3.88, 4.99, 5.60 and 4.25 Mb) and GC contents (70.0, 60.3, 59.9 and 53.8%) are in agreement with these values of other strains of the species. The bacterial strains displayed promising antimicrobial activity against a number of pathogenic bacterial and fungal species. Whole genomes have been assembled and biosynthetic gene clusters (BGCs) have been identified using the antibiotics and Secondary Metabolite Analysis Shell (antiSMASH) web platform. Comparative analysis of the genome sequences revealed that the strains host abundant BGCs encoding for terpenes, siderophores, arylpolyene, bacteriocins, and lassopeptides. Furthermore, the key stress-related genes were identified and their distribution provided an insight into how these isolates adapt to key marine environmental conditions. This comprehensive study is a contribution to understanding the nature of life on the deep-sea environments.
Collapse
|
29
|
Liang L, Zheng X, Fan W, Chen D, Huang Z, Peng J, Zhu J, Tang W, Chen Y, Xue T. Genome and Transcriptome Analyses Provide Insight Into the Omega-3 Long-Chain Polyunsaturated Fatty Acids Biosynthesis of Schizochytrium limacinum SR21. Front Microbiol 2020; 11:687. [PMID: 32373097 PMCID: PMC7179369 DOI: 10.3389/fmicb.2020.00687] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 03/25/2020] [Indexed: 11/13/2022] Open
Abstract
Schizochytrium sp. is the best natural resource for omega-3 long-chain polyunsaturated fatty acids. We report a high-quality genome sequence of Schizochytrium limacinum SR21, which has a 63 Mb genome size, with a contig N50 of 2.67 Mb and 6,838 protein-coding genes. Phylogenomic and comparative genomic analyses revealed that DHA-producing Schizochytrium and Aurantiochytrium strains were highly similar and possessed similar genes. Analysis of the fatty acid synthase (FAS) for LC-PUFAs production results in the annotation of all genes in map00062 and map01212. A gene cluster and 10 ORFs related to PKS pathway were found in the genome. 1,402 differentially expressed genes (DEGs) of the treated groups (0.5 g/L yeast extract) were identified by comparing with the control groups (1.0 g/L yeast extract) at 36 h. A weighted gene coexpression network analysis revealed that 2 of 7 modules correlated highly with the fatty acid and DHA contents. The DEGs and transcription factors were significantly correlated with fatty acid biosynthesis, including MYB, Zinc Finger and ACOX. The results showed that these hub genes are regulated by genes involved in fatty acid biosynthesis pathways. The results providing an important reference for further research on promoting fatty acid and DHA accumulation in S. limacinum SR21.
Collapse
Affiliation(s)
- Limin Liang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Xuehai Zheng
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Wenfang Fan
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Duo Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Zhen Huang
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Jiangtao Peng
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Jinmao Zhu
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Weiqi Tang
- Institute of Oceanography, Marine Biotechnology Center, Minjiang University, Fuzhou, China
| | - Youqiang Chen
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| | - Ting Xue
- The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Products of the State Oceanic Administration, Center of Engineering Technology Research for Microalga Germplasm Improvement of Fujian, Fujian Key Laboratory of Special Marine Bioresource Sustainable Utilization, Key Laboratory of Developmental and Neural Biology, Southern Institute of Oceanography, College of Life Sciences, Fujian Normal University, Fuzhou, China
| |
Collapse
|
30
|
Saito T, Awai K. A polyketide synthase HglE A, but not HglE2, synthesizes heterocyst specific glycolipids in Anabaena sp. PCC 7120. J GEN APPL MICROBIOL 2020; 66:99-105. [PMID: 32074520 DOI: 10.2323/jgam.2019.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Heterocysts are the specialized cells for nitrogen fixation in some filamentous cyanobacteria. To protect the oxygen labile nitrogen fixing enzyme, nitrogenase, heterocysts keep their inner environment microoxic by developing layers of barrier on the outside of their outer membranes. Heterocyst specific glycolipids (Hgls) are constituents of the layer of barrier and amphipathic compounds, synthesized from a very long chain fatty alcohol as a hydrophobic tail and a sugar as a polar head. In the model heterocystous cyanobacterium Anabaena sp. PCC 7120, Hgls are made of fatty alcohol with 26 carbons and a glucose, linked by an ether bond in alpha configuration. The fatty alcohol is synthesized via reactions of a polyketide synthase, HglEA. In Anabaena sp. PCC 7120, another polyketide synthase HglE2 shared more than 50% identity in an amino acid sequence with HglEA and is expected to be involved in Hgls synthesis. However, no direct evidence has been reported. Here, we experimentally show that HglEA is the contributor of Hgls synthesis, and that HglE2 is not involved in the development of the heterocyst specific glycolipid layer.
Collapse
Affiliation(s)
| | - Koichiro Awai
- Graduate School of Science, Shizuoka University.,Research Institute of Electronics, Shizuoka University.,JST, PRESTO
| |
Collapse
|
31
|
Estupiñán M, Hernández I, Saitua E, Bilbao ME, Mendibil I, Ferrer J, Alonso-Sáez L. Novel Vibrio spp. Strains Producing Omega-3 Fatty Acids Isolated from Coastal Seawater. Mar Drugs 2020; 18:E99. [PMID: 32024040 PMCID: PMC7074563 DOI: 10.3390/md18020099] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/27/2020] [Accepted: 01/30/2020] [Indexed: 12/26/2022] Open
Abstract
Omega-3 long-chain polyunsaturated fatty acids (LC-PUFAs), such as eicosapentaenoic acid (EPA) (20:5n-3) and docosahexaenoic acid (DHA) (22:6n-3), are considered essential for human health. Microorganisms are the primary producers of omega-3 fatty acids in marine ecosystems, representing a sustainable source of these lipids, as an alternative to the fish industry. Some marine bacteria can produce LC-PUFAs de novo via the Polyunsaturated Fatty Acid (Pfa) synthase/ Polyketide Synthase (PKS) pathway, which does not require desaturation and elongation of saturated fatty acids. Cultivation-independent surveys have revealed that the diversity of microorganisms harboring a molecular marker of the pfa gene cluster (i.e., pfaA-KS domain) is high and their potential distribution in marine systems is widespread, from surface seawater to sediments. However, the isolation of PUFA producers from marine waters has been typically restricted to deep or cold environments. Here, we report a phenotypic and genotypic screening for the identification of omega-3 fatty acid producers in free-living bacterial strains isolated from 5, 500, and 1000 m deep coastal seawater from the Bay of Biscay (Spain). We further measured EPA production in pelagic Vibrio sp. strains collected at the three different depths. Vibrio sp. EPA-producers and non-producers were simultaneously isolated from the same water samples and shared a high percentage of identity in their 16S rRNA genes, supporting the view that the pfa gene cluster can be horizontally transferred. Within a cluster of EPA-producers, we found intraspecific variation in the levels of EPA synthesis for isolates harboring different genetic variants of the pfaA-KS domain. The maximum production of EPA was found in a Vibrio sp. strain isolated from a 1000 m depth (average 4.29% ± 1.07 of total fatty acids at 10 °C, without any optimization of culturing conditions).
Collapse
Affiliation(s)
- Mónica Estupiñán
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Igor Hernández
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - Eduardo Saitua
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - M. Elisabete Bilbao
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Iñaki Mendibil
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| | - Jorge Ferrer
- AZTI, Food Research Division, Astondo Bidea, Building 609, 48160 Derio, Spain; (I.H.); (E.S.); (J.F.)
| | - Laura Alonso-Sáez
- AZTI, Marine Research Division, Txatxarramendi Irla s/n, 48395 Sukarrieta, Spain; (M.E.); (M.E.B.); (I.M.)
| |
Collapse
|
32
|
Czumaj A, Śledziński T. Biological Role of Unsaturated Fatty Acid Desaturases in Health and Disease. Nutrients 2020; 12:E356. [PMID: 32013225 PMCID: PMC7071289 DOI: 10.3390/nu12020356] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/21/2022] Open
Abstract
Polyunsaturated fatty acids (PUFAs) are considered one of the most important components of cells that influence normal development and function of many organisms, both eukaryotes and prokaryotes. Unsaturated fatty acid desaturases play a crucial role in the synthesis of PUFAs, inserting additional unsaturated bonds into the acyl chain. The level of expression and activity of different types of desaturases determines profiles of PUFAs. It is well recognized that qualitative and quantitative changes in the PUFA profile, resulting from alterations in the expression and activity of fatty acid desaturases, are associated with many pathological conditions. Understanding of underlying mechanisms of fatty acid desaturase activity and their functional modification will facilitate the development of novel therapeutic strategies in diseases associated with qualitative and quantitative disorders of PUFA.
Collapse
Affiliation(s)
- Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Dębinki, 80-211 Gdansk, Poland;
| | | |
Collapse
|
33
|
Artificial covalent linkage of bacterial acyl carrier proteins for fatty acid production. Sci Rep 2019; 9:16011. [PMID: 31690733 PMCID: PMC6831569 DOI: 10.1038/s41598-019-52344-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/10/2019] [Indexed: 11/23/2022] Open
Abstract
Acyl carrier proteins (ACPs) are essential to the production of fatty acids. In some species of marine bacteria, ACPs are arranged into tandem repeats joined by peptide linkers, an arrangement that results in high fatty acid yields. By contrast, Escherichia coli, a relatively low producer of fatty acids, uses a single-domain ACP. In this work, we have engineered the native E. coli ACP into tandem di- and tri-domain constructs joined by a naturally occurring peptide linker from the PUFA synthase of Photobacterium profundum. The size of these tandem fused ACPs was determined by size exclusion chromatography to be higher (21 kDa, 36 kDa and 141 kDa) than expected based on the amino acid sequence (12 kDa, 24 kDa and 37 kDa, respectively) suggesting the formation of a flexible extended conformation. Structural studies using small-angle X-ray scattering (SAXS), confirmed this conformational flexibility. The thermal stability for the di- and tri-domain constructs was similar to that of the unfused ACP, indicating a lack of interaction between domains. Lastly, E. coli cultures harboring tandem ACPs produced up to 1.6 times more fatty acids than wild-type ACP, demonstrating the viability of ACP fusion as a method to enhance fatty acid yield in bacteria.
Collapse
|
34
|
Allemann MN, Shulse CN, Allen EE. Linkage of Marine Bacterial Polyunsaturated Fatty Acid and Long-Chain Hydrocarbon Biosynthesis. Front Microbiol 2019; 10:702. [PMID: 31024488 PMCID: PMC6463001 DOI: 10.3389/fmicb.2019.00702] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 03/20/2019] [Indexed: 11/13/2022] Open
Abstract
Various marine gamma-proteobacteria produce omega-3 polyunsaturated fatty acids, such as eicosapentaenoic acid (20:5, EPA) and docosahexaenoic acid (22:6, DHA), which are incorporated into membrane phospholipids. Five genes, designated pfaABCDE, encode the polyketide/fatty acid synthase necessary for production of these long-chain fatty acids. In addition to de novo biosynthesis of EPA and DHA, the "Pfa synthase" is also involved with production of a long-chain polyunsaturated hydrocarbon product (31:9, PUHC) in conjunction with the oleABCD hydrocarbon biosynthesis pathway. In this work, we demonstrate that OleA mediates the linkage between these two pathways in vivo. Co-expression of pfaA-E along with oleA from Shewanella pealeana in Escherichia coli yielded the expected product, a 31:8 ketone along with a dramatic ∼10-fold reduction in EPA content. The decrease in EPA content was independent of 31:8 ketone production as co-expression of an OleA active site mutant also led to identical decreases in EPA content. We also demonstrate that a gene linked with either pfa and/or ole operons in diverse bacterial lineages, herein designated pfaT, plays a role in maintaining optimal production of Pfa synthase derived products in Photobacterium and Shewanella species.
Collapse
Affiliation(s)
- Marco N Allemann
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States
| | - Christine N Shulse
- Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| | - Eric E Allen
- Marine Biology Research Division, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, CA, United States.,Division of Biological Sciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
35
|
Sun XM, Ren LJ, Zhao QY, Ji XJ, Huang H. Enhancement of lipid accumulation in microalgae by metabolic engineering. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:552-566. [DOI: 10.1016/j.bbalip.2018.10.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 07/30/2018] [Accepted: 10/05/2018] [Indexed: 01/08/2023]
|
36
|
Li Z, Chen X, Li J, Meng T, Wang L, Chen Z, Shi Y, Ling X, Luo W, Liang D, Lu Y, Li Q, He N. Functions of PKS Genes in Lipid Synthesis of Schizochytrium sp. by Gene Disruption and Metabolomics Analysis. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2018; 20:792-802. [PMID: 30136198 DOI: 10.1007/s10126-018-9849-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 08/03/2018] [Indexed: 05/26/2023]
Abstract
Schizochytrium sp. is a kind of marine microalgae with great potential as promising sustainable source of polyunsaturated fatty acids (PUFAs). Polyketide synthase-like (PKS synthase) is supposed to be one of the main ways to synthesize PUFAs in Schizochytrium sp. In order to study the exact relationship between PKS and PUFA biosynthesis, chain length factor (CLF) and dehydrogenase (DH) were cloned from the PKS gene cluster in Schizochytrium sp., then disrupted by homologous recombination. The results showed that DH- and CLF-disrupted strains had significant decreases (65.85 and 84.24%) in PUFA yield, while the saturated fatty acid (SFA) proportion in lipids was slightly increased. Meanwhile, the disruption of CLF decreased the C-22 PUFA proportion by 57.51% without effect on C-20 PUFA accumulation while DH-disrupted mutant decreased the production of each PUFA. Combined with analysis of protein prediction, it indicated that CLF gene exerted an enormous function on the carbon chain elongation in PUFA synthesis, especially for the final elongation from C-20 to C-22 PUFAs. Metabolomics analysis also suggested that the disruption of both genes resulted in the decrease of PUFAs but increase of SFAs, thus weakening glycolysis and tricarboxylic acid (TCA) cycle pathways. This study offers a broad new vision to research the mechanism of PUFA synthesis in Schizochytrium sp.
Collapse
Affiliation(s)
- Zhipeng Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xi Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Jun Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Tong Meng
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Lingwei Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Zhen Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Yanyan Shi
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Xueping Ling
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| | - Weiang Luo
- Fujian Provincial Key Laboratory of Fire Retardant Materials, College of Materials, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Dafeng Liang
- Guangxi State Farms Sugar Industrial Group Company Limited, Guangxi Sugarcane Industry R&D center, Guangxi, Nanning, 530002, People's Republic of China
- Guangdong Key Lab of Sugarcane Improvement and Biorefinery, Guangzhou Sugarcane Industry Research Institute, Guangzhou, 510316, Guangdong, People's Republic of China
| | - Yinghua Lu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Qingbiao Li
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, People's Republic of China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
37
|
Wang Z, Bagde SR, Zavala G, Matsui T, Chen X, Kim CY. De Novo Design and Implementation of a Tandem Acyl Carrier Protein Domain in a Type I Modular Polyketide Synthase. ACS Chem Biol 2018; 13:3072-3077. [PMID: 30354045 DOI: 10.1021/acschembio.8b00896] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
During polyketide and fatty acid biosynthesis, the growing acyl chain is attached to the acyl carrier protein via a thioester linkage. The acyl carrier protein interacts with other enzymes that perform chain elongation and chain modification on the bound acyl chain. Most type I polyketide synthases and fatty acid synthases contain only one acyl carrier protein. However, polyunsaturated fatty acid synthases from deep-sea bacteria contain anywhere from two to nine acyl carrier proteins. Recent studies have shown that this tandem acyl carrier protein feature is responsible for the unusually high fatty acid production rate of deep-sea bacteria. To investigate if a similar strategy can be used to increase the production rate of type I polyketide synthases, a 3×ACP domain was rationally designed and genetically installed in module 6 of 6-deoxyerythronolide B synthase, which is a prototypical type I modular polyketide synthase that naturally harbors just one acyl carrier protein. This modification resulted in an ∼2.5-fold increase in the total amount of polyketide produced in vitro, demonstrating that installing a tandem acyl carrier domain in a type I polyketide synthase is an effective strategy for enhancing the rate of polyketide natural product biosynthesis.
Collapse
Affiliation(s)
- Zilong Wang
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Department of Biological Sciences, National University of Singapore, 117543 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Centre for Life Sciences, National University of Singapore, 119077 Singapore
| | - Saket R. Bagde
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Gerardo Zavala
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| | - Tsutomu Matsui
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, 14 2575 Sand Hill Road, MS69, Menlo Park, California 94025, United States
| | - Xi Chen
- College of Chemistry and Materials Science, Northwest University, 1 Xue Fu Avenue, Xi’an 710127, People’s Republic of China
| | - Chu-Young Kim
- Department of Chemistry and Biochemistry, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
- Border Biomedical Research Center, The University of Texas at El Paso, 500 West University Avenue, El Paso, Texas 79968, United States
| |
Collapse
|
38
|
de Carvalho CCCR, Caramujo MJ. The Various Roles of Fatty Acids. Molecules 2018; 23:molecules23102583. [PMID: 30304860 PMCID: PMC6222795 DOI: 10.3390/molecules23102583] [Citation(s) in RCA: 441] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 10/01/2018] [Accepted: 10/06/2018] [Indexed: 12/31/2022] Open
Abstract
Lipids comprise a large group of chemically heterogeneous compounds. The majority have fatty acids (FA) as part of their structure, making these compounds suitable tools to examine processes raging from cellular to macroscopic levels of organization. Among the multiple roles of FA, they have structural functions as constituents of phospholipids which are the "building blocks" of cell membranes; as part of neutral lipids FA serve as storage materials in cells; and FA derivatives are involved in cell signalling. Studies on FA and their metabolism are important in numerous research fields, including biology, bacteriology, ecology, human nutrition and health. Specific FA and their ratios in cellular membranes may be used as biomarkers to enable the identification of organisms, to study adaptation of bacterial cells to toxic compounds and environmental conditions and to disclose food web connections. In this review, we discuss the various roles of FA in prokaryotes and eukaryotes and highlight the application of FA analysis to elucidate ecological mechanisms. We briefly describe FA synthesis; analyse the role of FA as modulators of cell membrane properties and FA ability to store and supply energy to cells; and inspect the role of polyunsaturated FA (PUFA) and the suitability of using FA as biomarkers of organisms.
Collapse
Affiliation(s)
- Carla C C R de Carvalho
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Maria José Caramujo
- Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2-5º Piso, 1749-016 Lisboa, Portugal.
| |
Collapse
|
39
|
Santín O, Moncalián G. Loading of malonyl-CoA onto tandem acyl carrier protein domains of polyunsaturated fatty acid synthases. J Biol Chem 2018; 293:12491-12501. [PMID: 29921583 DOI: 10.1074/jbc.ra118.002443] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/04/2018] [Indexed: 12/13/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (PUFA) are produced in some unicellular organisms, such as marine gammaproteobacteria, myxobacteria, and thraustochytrids, by large enzyme complexes called PUFA synthases. These enzymatic complexes resemble bacterial antibiotic-producing proteins known as polyketide synthases (PKS). One of the PUFA synthase subunits is a conserved large protein (PfaA in marine proteobacteria) that contains three to nine tandem acyl carrier protein (ACP) domains as well as condensation and modification domains. In this work, a study of the PfaA architecture and its ability to initiate the synthesis by selecting malonyl units has been carried out. As a result, we have observed a self-acylation ability in tandem ACPs whose biochemical mechanism differ from the previously described for type II PKS. The acyltransferase domain of PfaA showed a high selectivity for malonyl-CoA that efficiently loads onto the ACPs domains. These results, together with the structural organization predicted for PfaA, suggest that this protein plays a key role at early stages of the anaerobic pathway of PUFA synthesis.
Collapse
Affiliation(s)
- Omar Santín
- From the Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011 Santander, Spain
| | - Gabriel Moncalián
- From the Departamento de Biología Molecular, Universidad de Cantabria and Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC), CSIC-Universidad de Cantabria, 39011 Santander, Spain
| |
Collapse
|
40
|
Polyunsaturated fatty acids in marine bacteria and strategies to enhance their production. Appl Microbiol Biotechnol 2018; 102:5811-5826. [PMID: 29749565 DOI: 10.1007/s00253-018-9063-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 04/26/2018] [Accepted: 04/30/2018] [Indexed: 10/16/2022]
Abstract
Polyunsaturated fatty acids (PUFAs) play an important role in human diet. Despite the wide-ranging importance and benefits from heart health to brain functions, humans and mammals cannot synthesize PUFAs de novo. The primary sources of PUFA are fish and plants. Due to the increasing concerns associated with food security as well as issues of environmental contaminants in fish oil, there has been considerable interest in the production of polyunsaturated fatty acids from alternative resources which are more sustainable, safer, and economical. For instance, marine bacteria, particularly the genus of Shewanella, Photobacterium, Colwellia, Moritella, Psychromonas, Vibrio, and Alteromonas, are found to be one among the major microbial producers of polyunsaturated fatty acids. Recent developments in the area with a focus on the production of polyunsaturated fatty acids from marine bacteria as well as the metabolic engineering strategies for the improvement of PUFA production are discussed.
Collapse
|
41
|
Allemann MN, Allen EE. Characterization and Application of Marine Microbial Omega-3 Polyunsaturated Fatty Acid Synthesis. Methods Enzymol 2018; 605:3-32. [DOI: 10.1016/bs.mie.2018.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
42
|
Zhang J, Burgess JG. Enhanced eicosapentaenoic acid production by a new deep-sea marine bacterium Shewanella electrodiphila MAR441T. PLoS One 2017; 12:e0188081. [PMID: 29176835 PMCID: PMC5703452 DOI: 10.1371/journal.pone.0188081] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 10/31/2017] [Indexed: 02/05/2023] Open
Abstract
Omega-3 fatty acids are products of secondary metabolism, essential for growth and important for human health. Although there are numerous reports of bacterial production of omega-3 fatty acids, less information is available on the biotechnological production of these compounds from bacteria. The production of eicosapentaenoic acid (EPA, 20:5ω3) by a new species of marine bacteria Shewanella electrodiphila MAR441T was investigated under different fermentation conditions. This strain produced a high percentage (up to 26%) of total fatty acids and high yields (mg / g of biomass) of EPA at or below the optimal growth temperature. At higher growth temperatures these values decreased greatly. The amount of EPA produced was affected by the carbon source, which also influenced fatty acid composition. This strain required Na+ for growth and EPA synthesis and cells harvested at late exponential or early stationary phase had a higher EPA content. Both the highest amounts (20 mg g-1) and highest percent EPA content (18%) occurred with growth on L-proline and (NH4)2SO4. The addition of cerulenin further enhanced EPA production to 30 mg g-1. Chemical mutagenesis using NTG allowed the isolation of mutants with improved levels of EPA content (from 9.7 to 15.8 mg g-1) when grown at 15°C. Thus, the yields of EPA could be substantially enhanced without the need for recombinant DNA technology, often a commercial requirement for food supplement manufacture.
Collapse
Affiliation(s)
- Jinwei Zhang
- Institute of Biomedical and Clinical Sciences, University of Exeter Medical School, Hatherly Laboratory, Exeter, United Kingdom
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - J. Grant Burgess
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
43
|
Xie X, Meesapyodsuk D, Qiu X. Functional analysis of the dehydratase domains of a PUFA synthase from Thraustochytrium in Escherichia coli. Appl Microbiol Biotechnol 2017; 102:847-856. [PMID: 29177940 DOI: 10.1007/s00253-017-8635-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 10/23/2017] [Accepted: 11/07/2017] [Indexed: 01/03/2023]
Abstract
Thraustochytrium sp. 26185, a unicellular marine protist, synthesizes docosahexaenoic acid, an omega-3 very long chain polyunsaturated fatty acid (VLC-PUFAs), by a polyunsaturated fatty acid (PUFA) synthase comprising three large subunits with multiple catalytic dehydratase (DH) domains critical for introducing double bonds at the specific position of fatty acids. To investigate functions of these DH domains, one DH domain from subunit-A and two DH domains from subunit-C of the PUFA synthase were dissected and expressed as stand-alone enzymes in Escherichia coli. The results showed that all these DH domains could complement the defective phenotype of a E. coli FabA temperature sensitive mutant, despite they have only modest sequence similarity with FabA, indicating they can function as 3-hydroxyacyl-ACP dehydratase for the biosynthesis of unsaturated fatty acids in E. coli. Site-directed mutagenesis analysis confirmed the authenticity of active site residues in these domains. In addition, overexpression of the three domains in a wild type E. coli strain resulted in the substantial alteration of fatty acid profiles including productions and ratio of unsaturated to saturated fatty acids. A combination of evidences from sequence comparison, functional expression, and mutagenesis analysis suggest that the DH domain from subunit-A is similar to DH domains from polyketide synthases, while the DH domains from subunit-C are more comparable to E. coli FabA in catalytic functions. Successful complementation and functional expression of the embedded DH domains from the PUFA synthase in E. coli is an important step towards for elucidating the molecular mechanism in the biosynthesis of VLC-PUFAs in Thraustochytrium.
Collapse
Affiliation(s)
- Xi Xie
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| |
Collapse
|
44
|
Rafiq M, Hayat M, Anesio AM, Jamil SUU, Hassan N, Shah AA, Hasan F. Recovery of metallo-tolerant and antibiotic resistant psychrophilic bacteria from Siachen glacier, Pakistan. PLoS One 2017; 12:e0178180. [PMID: 28746396 PMCID: PMC5528264 DOI: 10.1371/journal.pone.0178180] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/09/2017] [Indexed: 11/18/2022] Open
Abstract
Cultureable bacterial diversity of previously unexplored Siachen glacier, Pakistan, was studied. Out of 50 isolates 33 (66%) were Gram negative and 17 (34%) Gram positive. About half of the isolates were pigment producers and were able to grow at 4-37°C. 16S rRNA gene sequences revealed Gram negative bacteria dominated by Proteobacteria (especially γ-proteobacteria and β-proteobacteria) and Flavobacteria. The genus Pseudomonas (51.51%, 17) was dominant among γ- proteobacteria. β-proteobacteria constituted 4 (12.12%) Alcaligenes and 4 (12.12%) Janthinobacterium strains. Among Gram positive bacteria, phylum Actinobacteria, Rhodococcus (23.52%, 4) and Arthrobacter (23.52%, 4) were the dominating genra. Other bacteria belonged to Phylum Firmicutes with representative genus Carnobacterium (11.76%, 2) and 4 isolates represented 4 genera Bacillus, Lysinibacillus, Staphylococcus and Planomicrobium. Most of the Gram negative bacteria were moderate halophiles, while most of the Gram positives were extreme halophiles and were able to grow up to 6.12 M of NaCl. More than 2/3 of the isolates showed antimicrobial activity against multidrug resistant S. aureus, E. coli, Klebsiella pneumonia, Enterococcus faecium, Candida albicans, Aspergillus flavus and Aspergillus fumigatus and ATCC strains. Gram positive bacteria (94.11%) were more resistant to heavy metals as compared to Gram negative (78.79%) and showed maximum tolerance against iron and least tolerance against mercury.
Collapse
Affiliation(s)
- Muhammad Rafiq
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Microbiology, Abdul Wali Khan University, Mardan, Pakistan
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Muhammad Hayat
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Alexandre M. Anesio
- Bristol Glaciology Centre, School of Geographical Sciences, University of Bristol, Bristol, United Kingdom
| | - Syed Umair Ullah Jamil
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
- Department of Earth and Environmental Sciences, Bahria University, Islamabad, Pakistan
| | - Noor Hassan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aamer Ali Shah
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Fariha Hasan
- Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
45
|
Ketoacylsynthase Domains of a Polyunsaturated Fatty Acid Synthase in Thraustochytrium sp. Strain ATCC 26185 Can Effectively Function as Stand-Alone Enzymes in Escherichia coli. Appl Environ Microbiol 2017; 83:AEM.03133-16. [PMID: 28213537 DOI: 10.1128/aem.03133-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/03/2017] [Indexed: 11/20/2022] Open
Abstract
Thraustochytrium sp. strain ATCC 26185 accumulates a high level of docosahexaenoic acid (DHA), a nutritionally important ω-3 very-long-chain polyunsaturated fatty acid (VLCPUFA) synthesized primarily by polyunsaturated fatty acid (PUFA) synthase, a type I polyketide synthase-like megaenzyme. The PUFA synthase in this species comprises three large subunits, each with multiple catalytic domains. It was hypothesized that among these domains, ketoacylsynthase (KS) domains might be critical for catalyzing the condensation of specific unsaturated acyl-acyl carrier proteins (ACPs) with malonyl-ACP, thereby retaining double bonds in an extended acyl chain. To investigate the functions of these putative KS domains, two segment sequences from subunit A (KS-A) and subunit B (KS-B) of the PUFA synthase were dissected and then expressed as stand-alone enzymes in Escherichia coli The results showed that both KS-A and KS-B domains could complement the defective phenotypes of both E. colifabB and fabF mutants. Overexpression of these domains in wild-type E. coli led to increases in total fatty acid production. KS-B produced a higher ratio of unsaturated fatty acids (UFAs) to saturated fatty acids (SFAs), while KS-A could improve the overall production of fatty acids more effectively, particularly for the production of SFAs, implying that KS-A is more comparable to FabF, while KS-B is more similar to FabB in catalytic functions. Successful complementation and functional expression of the embedded KS domains in E. coli are the first step forward in studying the molecular mechanism of the PUFA synthase for the biosynthesis of VLCPUFAs in ThraustochytriumIMPORTANCE Very-long-chain polyunsaturated fatty acids (VLCPUFAs) are important for human health. They can be biosynthesized in either an aerobic pathway or an anaerobic pathway in nature. However, abundant VLCPUFAs in marine microorganisms are primarily synthesized by polyunsaturated fatty acid (PUFA) synthase, a megaenzyme with multiple subunits, each with multiple catalytic domains. Furthermore, the fundamental mechanism for this enzyme to synthesize these fatty acids still remains unknown. This report started with dissecting the embedded KS domains of the PUFA synthase from marine protist Thraustochytrium sp. strain ATCC 26185 and then expressing them in wild-type E. coli and mutants defective in condensation of acyl-ACP with malonyl-ACP. Successful complementation of the mutants and improved fatty acid production in the overexpression experiments indicate that these KS domains can effectively function as stand-alone enzymes in E. coli This result has paved the way for further studying of molecular mechanisms of the PUFA synthase for the biosynthesis of VLCPUFAs.
Collapse
|
46
|
Ueno A, Shimizu S, Hashimoto M, Adachi T, Matsushita T, Okuyama H, Yoshida K. Effects of Aerobic Growth on the Fatty Acid and Hydrocarbon Compositions of Geobacter bemidjiensis Bem T. J Oleo Sci 2017; 66:93-101. [PMID: 27928141 DOI: 10.5650/jos.ess16122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Geobacter spp., regarded as strict anaerobes, have been reported to grow under aerobic conditions. To elucidate the role of fatty acids in aerobiosis of Geobacter spp., we studied the effect of aerobiosis on fatty acid composition and turnover in G. bemidjiensis BemT. G. bemidjiensis BemT was grown under the following different culture conditions: anaerobic culture for 4 days (type 1) and type 1 culture followed by 2-day anaerobic (type 2) or aerobic culture (anaerobic-to-aerobic shift; type 3). The mean cell weight of the type 3 culture was approximately 2.5-fold greater than that of type 1 and 2 cultures. The fatty acid methyl ester and hydrocarbon fraction contained hexadecanoic (16:0), 9-cis-hexadecenoic [16:1(9c)], tetradecanoic (14:0), tetradecenoic [14:1(7c)] acids, hentriacontanonaene, and hopanoids, but not long-chain polyunsaturated fatty acids. The type 3 culture contained higher levels of 14:0 and 14:1(7c) and lower levels of 16:0 and 16:1(9c) compared with type 1 and 2 cultures. The weight ratio of extracted lipid per dry cell was lower in the type 3 culture than in the type 1 and 2 cultures. We concluded that anaerobically-grown G. bemidjiensis BemT followed by aerobiosis were enhanced in growth, fatty acid turnover, and de novo fatty acid synthesis.
Collapse
Affiliation(s)
- Akio Ueno
- Horonobe Research Institute for the Subsurface Environment (H-RISE), NOASTEC
| | | | | | | | | | | | | |
Collapse
|
47
|
Enhanced production of polyunsaturated fatty acids by enzyme engineering of tandem acyl carrier proteins. Sci Rep 2016; 6:35441. [PMID: 27752094 PMCID: PMC5067506 DOI: 10.1038/srep35441] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In some microorganisms, polyunsaturated fatty acids (PUFAs) are biosynthesized by PUFA synthases characterized by tandem acyl carrier proteins (ACPs) in subunit A. These ACPs were previously shown to be important for PUFA productivity. In this study, we examined their function in more detail. PUFA productivities increased depending on the number of ACPs without profile changes in each subunit A of eukaryotic and prokaryotic PUFA synthases. We also constructed derivative enzymes from subunit A with 5 × ACPs. Enzymes possessing one inactive ACP at any position produced ~30% PUFAs compared with the parental enzyme but unexpectedly had ~250% productivity compared with subunit A with 4 × ACPs. Enzymes constructed by replacing the 3rd ACP with an inactive ACP from another subunit A or ACP-unrelated sequences produced ~100% and ~3% PUFAs compared with the parental 3rd ACP-inactive enzyme, respectively. These results suggest that both the structure and number of ACP domains are important for PUFA productivity.
Collapse
|
48
|
Peng YF, Chen WC, Xiao K, Xu L, Wang L, Wan X. DHA Production in Escherichia coli by Expressing Reconstituted Key Genes of Polyketide Synthase Pathway from Marine Bacteria. PLoS One 2016; 11:e0162861. [PMID: 27649078 PMCID: PMC5029812 DOI: 10.1371/journal.pone.0162861] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/30/2016] [Indexed: 12/30/2022] Open
Abstract
The gene encoding phosphopantetheinyl transferase (PPTase), pfaE, a component of the polyketide synthase (PKS) pathway, is crucial for the production of docosahexaenoic acid (DHA, 22:6ω3), along with the other pfa cluster members pfaA, pfaB, pfaC and pfaD. DHA was produced in Escherichia coli by co-expressing pfaABCD from DHA-producing Colwellia psychrerythraea 34H with one of four pfaE genes from bacteria producing arachidonic acid (ARA, 20:4ω6), eicosapentaenoic acid (EPA, 20:5ω3) or DHA, respectively. Substitution of the pfaE gene from different strain source in E. coli did not influence the function of the PKS pathway producing DHA, although they led to different DHA yields and fatty acid profiles. This result suggested that the pfaE gene could be switchable between these strains for the production of DHA. The DHA production by expressing the reconstituted PKS pathway was also investigated in different E. coli strains, at different temperatures, or with the treatment of cerulenin. The highest DHA production, 2.2 mg of DHA per gram of dry cell weight or 4.1% of total fatty acids, was obtained by co-expressing pfaE(EPA) from the EPA-producing strain Shewanella baltica with pfaABCD in DH5α. Incubation at low temperature (10–15°C) resulted in higher accumulation of DHA compared to higher temperatures. The addition of cerulenin to the medium increased the proportion of DHA and saturated fatty acids, including C12:0, C14:0 and C16:0, at the expense of monounsaturated fatty acids, including C16:1 and C18:1. Supplementation with 1 mg/L cerulenin resulted in the highest DHA yield of 2.4 mg/L upon co-expression of pfaE(DHA) from C. psychrerythraea.
Collapse
Affiliation(s)
- Yun-Feng Peng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Wen-Chao Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Kang Xiao
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lin Xu
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Lian Wang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
| | - Xia Wan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, China
- Hubei Key Laboratory of Lipid Chemistry and Nutrition, Wuhan, China
- * E-mail:
| |
Collapse
|
49
|
Meesapyodsuk D, Qiu X. Biosynthetic mechanism of very long chain polyunsaturated fatty acids in Thraustochytrium sp. 26185. J Lipid Res 2016; 57:1854-1864. [PMID: 27527703 DOI: 10.1194/jlr.m070136] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Indexed: 12/30/2022] Open
Abstract
Thraustochytrium, a unicellular marine protist, has been used as a commercial source of very long chain PUFAs (VLCPUFAs) such as DHA (22:6n-3). Our recent work indicates coexistence of a Δ4-desaturation-dependent pathway (aerobic) and a polyketide synthase-like PUFA synthase pathway (anaerobic) to synthesize the fatty acids in Thraustochytrium sp. 26185. Heterologous expression of the Thraustochytrium PUFA synthase along with a phosphopantetheinyl transferase in Escherichia coli showed the anaerobic pathway was highly active in the biosynthesis of VLCPUFAs. The amount of Δ4 desaturated VLCPUFAs produced reached about 18% of the total fatty acids in the transformant cells at day 6 in a time course of the induced expression. In Thraustochytrium, the expression level of the PUFA synthase gene was much higher than that of the Δ4 desaturase gene, and also highly correlated with the production of VLCPUFAs. On the other hand, Δ9 and Δ12 desaturations in the aerobic pathway were either ineffective or absent in the species, as evidenced by the genomic survey, heterologous expression of candidate genes, and in vivo feeding experiments. These results indicate that the anaerobic pathway is solely responsible for the biosynthesis for VLCPUFAs in Thraustochytrium.
Collapse
Affiliation(s)
- Dauenpen Meesapyodsuk
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada; and National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada
| | - Xiao Qiu
- Department of Food and Bioproduct Sciences, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5A8, Canada; and National Research Council Canada, Saskatoon, Saskatchewan S7N 0W9, Canada.
| |
Collapse
|
50
|
AlMatar M, Makky EA. Cladosporium cladosporioides from the perspectives of medical and biotechnological approaches. 3 Biotech 2016; 6:4. [PMID: 28330073 PMCID: PMC4697913 DOI: 10.1007/s13205-015-0323-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 06/16/2015] [Indexed: 11/24/2022] Open
Abstract
Fungi are important natural product sources that have enormous potential for the production of novel compounds for use in pharmacology, agricultural applications and industry. Compared with other natural sources such as plants, fungi are highly diverse but understudied. However, research on Cladosporium cladosporioides revealed the existence of bioactive products such as p-methylbenzoic acid, ergosterol peroxide (EP) and calphostin C as well as enzymes including pectin methylesterase (PME), polygalacturonase (PG) and chlorpyrifos hydrolase. p-Methylbenzoic acid has ability to synthesise 1,5-benzodiazepine and its derivatives, polyethylene terephthalate and eicosapentaenoic acid. EP has anticancer, antiangiogenic, antibacterial, anti-oxidative and immunosuppressive properties. Calphostin C inhibits protein kinase C (PKC) by inactivating both PKC-epsilon and PKC-alpha. In addition, calphostin C stimulates apoptosis in WEHI-231 cells and vascular smooth muscle cells. Based on the stimulation of endoplasmic reticulum stress in some types of cancer, calphostin C has also been evaluated as a potential photodynamic therapeutic agent. Methylesterase (PME) and PG have garnered attention because of their usage in the food processing industry and significant physiological function in plants. Chlorpyrifos, a human, animal and plant toxin, can be degraded and eliminated by chlorpyrifos hydrolase.
Collapse
Affiliation(s)
- Manaf AlMatar
- Department of Biotechnology, Institute of Natural and Applied Sciences (Fen Bilimleri Enstitüsü), Cukurova University, Rectorate 01330 Balcali, Adana, Turkey.
| | - Essam A Makky
- Department of Biotechnology, Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang (UMP), 26300, Gambang, Kuantan, Malaysia
| |
Collapse
|