1
|
Avila-Arias H, Casallas FC, Arbeli Z, García Gutiérrez A, Fajardo Gomez CA, Herrera Castillo DY, Carvajal Ramirez S, Tamayo-Figueroa DP, Benavides López de Mesa J, Roldan F. Bacteria isolated from explosive contaminated environments transform pentaerythritol tetranitrate (PETN) under aerobic and anaerobic conditions. Lett Appl Microbiol 2023; 76:ovad113. [PMID: 37740443 DOI: 10.1093/lambio/ovad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Pentaerythritol tetranitrate (PETN) is a nitrate ester explosive that may be persistent with scarce reports on its environmental fate and impacts. Our main objective was to isolate and characterize bacteria that transform PETN under aerobic and anaerobic conditions. Biotransformation of PETN (100 mg L-1) was evaluated using mineral medium with (M + C) and without (M - C) additional carbon sources under aerobic conditions and with additional carbon sources under anaerobic conditions. Here, we report on the isolation of 12 PETN-transforming cultures (4 pure and 8 co-cultures) from environmental samples collected at an explosive manufacturing plant. The highest transformation of PETN was observed for cultures in M + C under aerobic conditions, reaching up to 91% ± 2% in 2 d. Under this condition, PETN biotransformation was observed in conjunction with the release of nitrites and bacterial growth. No substantial transformation of PETN (<45%) was observed during 21 d in M - C under aerobic conditions. Under anaerobic conditions, five cultures could transform PETN (up to 52% ± 13%) as the sole nitrogen source, concurrent with the formation of two unidentified metabolites. PETN-transforming cultures belonged to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria. In conclusion, we isolated 12 PETN-transforming cultures belonging to diverse taxa, suggesting that PETN transformation is phylogenetically widespread.
Collapse
Affiliation(s)
- Helena Avila-Arias
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Francy-Carolina Casallas
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ziv Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrea García Gutiérrez
- Programa de ingeniería Ambiental y Sanitaria, Facultad de ingeniería, Universidad de la Salle, Bogotá 110231, Colombia
- Maestría en Diseño y gestión de Procesos, Facultad de Ingeniería, Universidad de la Sabana, Bogotá 110831, Colombia
| | - Carlos Andres Fajardo Gomez
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Denis Yohana Herrera Castillo
- Programa de ingeniería Ambiental y Sanitaria, Facultad de ingeniería, Universidad de la Salle, Bogotá 110231, Colombia
| | - Sandra Carvajal Ramirez
- Programa de ingeniería Ambiental y Sanitaria, Facultad de ingeniería, Universidad de la Salle, Bogotá 110231, Colombia
| | - Diana Paola Tamayo-Figueroa
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Fabio Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
2
|
Romaniuk K, Golec P, Dziewit L. Insight Into the Diversity and Possible Role of Plasmids in the Adaptation of Psychrotolerant and Metalotolerant Arthrobacter spp. to Extreme Antarctic Environments. Front Microbiol 2018; 9:3144. [PMID: 30619210 PMCID: PMC6305408 DOI: 10.3389/fmicb.2018.03144] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 12/04/2018] [Indexed: 11/13/2022] Open
Abstract
Arthrobacter spp. are coryneform Gram-positive aerobic bacteria, belonging to the class Actinobacteria. Representatives of this genus have mainly been isolated from soil, mud, sludge or sewage, and are usually mesophiles. In recent years, the presence of Arthrobacter spp. was also confirmed in various extreme, including permanently cold, environments. In this study, 36 psychrotolerant and metalotolerant Arthrobacter strains isolated from petroleum-contaminated soil from the King George Island (Antarctica), were screened for the presence of plasmids. The identified replicons were thoroughly characterized in order to assess their diversity and role in the adaptation of Arthrobacter spp. to harsh Antarctic conditions. The screening process identified 11 different plasmids, ranging in size from 8.4 to 90.6 kb. A thorough genomic analysis of these replicons detected the presence of numerous genes encoding proteins that potentially perform roles in adaptive processes such as (i) protection against ultraviolet (UV) radiation, (ii) resistance to heavy metals, (iii) transport and metabolism of organic compounds, (iv) sulfur metabolism, and (v) protection against exogenous DNA. Moreover, 10 of the plasmids carry genetic modules enabling conjugal transfer, which may facilitate their spread among bacteria in Antarctic soil. In addition, transposable elements were identified within the analyzed plasmids. Some of these elements carry passenger genes, which suggests that these replicons may be actively changing, and novel genetic modules of adaptive value could be acquired by transposition events. A comparative genomic analysis of plasmids identified in this study and other available Arthrobacter plasmids was performed. This showed only limited similarities between plasmids of Antarctic Arthrobacter strains and replicons of other, mostly mesophilic, isolates. This indicates that the plasmids identified in this study are novel and unique replicons. In addition, a thorough meta-analysis of 247 plasmids of psychrotolerant bacteria was performed, revealing the important role of these replicons in the adaptation of their hosts to extreme environments.
Collapse
Affiliation(s)
- Krzysztof Romaniuk
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Piotr Golec
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| | - Lukasz Dziewit
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
3
|
Ren L, Jia Y, Zhang R, Lin Z, Zhen Z, Hu H, Yan Y. Insight Into Metabolic Versatility of an Aromatic Compounds-Degrading Arthrobacter sp. YC-RL1. Front Microbiol 2018; 9:2438. [PMID: 30364317 PMCID: PMC6193132 DOI: 10.3389/fmicb.2018.02438] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 09/24/2018] [Indexed: 01/11/2023] Open
Abstract
The genus Arthrobacter is ubiquitously distributed in different natural environments. Many xenobiotic-degrading Arthrobacter strains have been isolated and described; however, few have been systematically characterized with regard to multiple interrelated metabolic pathways and the genes that encode them. In this study, the biodegradability of seven aromatic compounds by Arthrobacter sp. YC-RL1 was investigated. Strain YC-RL1 could efficiently degrade p-xylene (PX), naphthalene, phenanthrene, biphenyl, p-nitrophenol (PNP), and bisphenol A (BPA) under both separated and mixed conditions. Based on the detected metabolic intermediates, metabolic pathways of naphthalene, biphenyl, PNP, and BPA were proposed, which indicated that strain YC-RL1 harbors systematic metabolic pathways toward aromatic compounds. Further, genomic analysis uncovered part of genes involved in the proposed pathways. Both intradiol and extradiol ring-cleavage dioxygenase genes were identified in the genome of strain YC-RL1. Meanwhile, gene clusters predicted to encode the degradation of biphenyl (bph), para-substituted phenols (npd) and protocatechuate (pca) were identified, and bphA1A2BCD was proposed to be a novel biphenyl-degrading gene cluster. The complete metabolic pathway of biphenyl was deduced via intermediates and functional gene analysis (bph and pca gene clusters). One of the these genes encoding ring-cleavage dioxygenase in bph gene cluster, a predicted 2,3-dihydroxybiphenyl 1,2-dioxygenase (BphC) gene, was cloned and its activity was confirmed by heterologous expression. This work systematically illuminated the metabolic versatility of aromatic compounds in strain YC-RL1 via the combination of metabolites identification, genomics analysis and laboratory experiments. These results suggested that strain YC-RL1 might be a promising candidate for the bioremediation of aromatic compounds pollution sites.
Collapse
Affiliation(s)
- Lei Ren
- Agricultural College, Guangdong Ocean University, Zhanjiang, China.,Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yang Jia
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Rui Zhang
- Agricultural College, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Research Institute of Guangdong Ocean University, Shenzhen, China
| | - Zhong Lin
- Agricultural College, Guangdong Ocean University, Zhanjiang, China.,Faculty of Chemistry and Environmental Science, Guangdong Ocean University, Zhanjiang, China
| | - Zhen Zhen
- Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Hanqiao Hu
- Agricultural College, Guangdong Ocean University, Zhanjiang, China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
4
|
Kuperman RG, Checkai RT, Simini M, Sunahara GI, Hawari J. Energetic contaminants inhibit plant litter decomposition in soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 153:32-39. [PMID: 29407735 DOI: 10.1016/j.ecoenv.2018.01.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 01/19/2018] [Accepted: 01/26/2018] [Indexed: 06/07/2023]
Abstract
Individual effects of nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT), 2-amino-4,6-dinitrotoluene (2-ADNT), 4-amino-2,6-dinitrotoluene (4-ADNT), nitroglycerin (NG), and 2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (CL-20) on litter decomposition, an essential biologically-mediated soil process, were assessed using Orchard grass (Dactylis glomerata) straw in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support "very high" qualitative relative bioavailability for organic chemicals. Batches of SSL soil were separately amended with individual EMs or acetone carrier control. To quantify the decomposition rates, one straw cluster was harvested from a set of randomly selected replicate containers from within each treatment, after 1, 2, 3, 4, 6, and 8 months of exposure. Results showed that soil amended with 2,4-DNT or NG inhibited litter decomposition rates based on the median effective concentration (EC50) values of 1122 mg/kg and 860 mg/kg, respectively. Exposure to 2-ADNT, 4-ADNT or CL-20 amended soil did not significantly affect litter decomposition in SSL soil at ≥ 10,000 mg/kg. These ecotoxicological data will be helpful in identifying concentrations of EMs in soil that present an acceptable ecological risk for biologically-mediated soil processes.
Collapse
Affiliation(s)
- Roman G Kuperman
- US Army Edgewood Chemical Biological Center, RDCB-DRT-M E5641, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424, USA.
| | - Ronald T Checkai
- US Army Edgewood Chemical Biological Center, RDCB-DRT-M E5641, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424, USA
| | - Michael Simini
- US Army Edgewood Chemical Biological Center, RDCB-DRT-M E5641, 5183 Blackhawk Road, Aberdeen Proving Ground, MD 21010-5424, USA
| | - Geoffrey I Sunahara
- Dept. Natural Resource Sciences, McGill University, 21111 Lakeshore Road, Ste Anne de Bellevue, Quebec, Canada H9X3V9
| | - Jalal Hawari
- École Polytechnique de Montréal, Département des génies civil, géologique et des mines, 2900 boul. Édouard-Montpetit, Montréal, Québec, Canada H3T 1J4
| |
Collapse
|
5
|
Kuperman RG, Minyard ML, Checkai RT, Sunahara GI, Rocheleau S, Dodard SG, Paquet L, Hawari J. Inhibition of soil microbial activity by nitrogen-based energetic materials. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:2981-2990. [PMID: 28519901 DOI: 10.1002/etc.3862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 05/15/2017] [Indexed: 06/07/2023]
Abstract
We investigated individual toxicities of the nitrogen-based energetic materials (EMs) 2,4-dinitrotoluene (2,4-DNT); 2-amino-4,6-dinitrotoluene (2-ADNT); 4-amino-2,6-dinitrotoluene (4-ADNT); and nitroglycerin (NG) on microbial activity in Sassafras sandy loam (SSL) soil, which has physicochemical characteristics that support very high qualitative relative bioavailability for organic chemicals. Batches of SSL soil for basal respiration (BR) and substrate-induced respiration (SIR) assays were separately amended with individual EMs or acetone carrier control. Total microbial biomass carbon (biomass C) was determined from CO2 production increases after addition of 2500 mg/kg of glucose-water slurry to the soil. Exposure concentrations of each EM in soil were determined using US Environmental Protection Agency method 8330A. Basal respiration was the most sensitive endpoint for assessing the effects of nitroaromatic EMs on microbial activity in SSL, whereas SIR and biomass C were more sensitive endpoints for assessing the effects of NG in soil. The orders of toxicity (from greatest to least) were 4-ADNT > 2,4-DNT = 2-ADNT > NG for BR; but for SIR and biomass C, the order of toxicity was NG > 2,4-DNT > 2-ADNT = 4-ADNT. No inhibition of SIR was found up to and including the greatest concentration of each ADNT tested in SSL. These ecotoxicological data will be helpful in identifying concentrations of contaminant EMs in soil that present acceptable ecological risks for biologically mediated processes in soil. Environ Toxicol Chem 2017;36:2981-2990. Published 2017 Wiley Periodicals Inc. on behalf of SETAC.This article is a US government work and, as such, is in the public domain in the United States of America.
Collapse
Affiliation(s)
- Roman G Kuperman
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | | | - Ronald T Checkai
- US Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, USA
| | | | | | - Sabine G Dodard
- National Research Council of Canada, Montréal, Quebec, Canada
| | - Louise Paquet
- National Research Council of Canada, Montréal, Quebec, Canada
| | - Jalal Hawari
- Polytechnique de Montréal, Montréal, Quebec, Canada
| |
Collapse
|
6
|
Karthikeyan S, Kurt Z, Pandey G, Spain JC. Immobilized Biocatalyst for Detection and Destruction of the Insensitive Explosive, 2,4-Dinitroanisole (DNAN). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11193-11199. [PMID: 27617621 DOI: 10.1021/acs.est.6b03044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Accurate and convenient detection of explosive components is vital for a wide spectrum of applications ranging from national security and demilitarization to environmental monitoring and restoration. With the increasing use of DNAN as a replacement for 2,4,6-trinitrotoluene (TNT) in insensitive explosive formulations, there has been a growing interest in strategies to minimize its release and to understand and predict its behavior in the environment. Consequently, a convenient tool for its detection and destruction could enable development of more effective decontamination and demilitarization strategies. Biosensors and biocatalysts have limited applicability to the more traditional explosives because of the inherent limitations of the relevant enzymes. Here, we report a highly specific, convenient and robust biocatalyst based on a novel ether hydrolase enzyme, DNAN demethylase (that requires no cofactors), from a Nocardioides strain that can mineralize DNAN. Biogenic silica encapsulation was used to stabilize the enzyme and enable it to be packed into a model microcolumn for application as a biosensor or as a bioreactor for continuous destruction of DNAN. The immobilized enzyme was stable and not inhibited by other insensitive munitions constituents. An alternative method for DNAN detection involved coating the encapsulated enzyme on cellulose filter paper. The hydrolase based biocatalyst could provide the basis for a wide spectrum of applications including detection, identification, destruction or inertion of explosives containing DNAN (demilitarization operations), and for environmental restorations.
Collapse
Affiliation(s)
- Smruthi Karthikeyan
- Department of Civil and Environmental Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
| | - Zohre Kurt
- Department of Civil and Environmental Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
- Institute of Scientific Research and High Technology Services , Calle Pullpn, Panamá, Panama
| | - Gunjan Pandey
- CSIRO Land and Water , Clunies Ross Street, Acton, Australian Capital Territory 2615, Australia
| | - Jim C Spain
- Department of Civil and Environmental Engineering, Georgia Institute of Technology , 311 Ferst Drive, Atlanta, Georgia 30332, United States
- Center for Environmental Diagnostics & Bioremediation, University of West Florida , 11000 University Parkway, Pensacola, Florida 32514-5751, United States
| |
Collapse
|
7
|
Wang Y, Zhai A, Zhang Y, Qiu K, Wang J, Li Q. Degradation of Swainsonine by the NADP-Dependent Alcohol Dehydrogenase A1R6C3 in Arthrobacter sp. HW08. Toxins (Basel) 2016; 8:toxins8050145. [PMID: 27196926 PMCID: PMC4885060 DOI: 10.3390/toxins8050145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 12/02/2022] Open
Abstract
Swainsonine is an indolizidine alkaloid that has been found in locoweeds and some fungi. Our previous study demonstrated that Arthrobacter sp. HW08 or its crude enzyme extract could degrade swainsonie efficiently. However, the mechanism of swainsonine degradation in bacteria remains unclear. In this study, we used label-free quantitative proteomics method based on liquid chromatography-electrospray ionization-tandem mass spectrometry to dissect the mechanism of swainsonine biodegradation by Arthrobacter sp. HW08. The results showed that 129 differentially expressed proteins were relevant to swainsonine degradation. These differentially expressed proteins were mostly related to the biological process of metabolism and the molecular function of catalytic activity. Among the 129 differentially expressed proteins, putative sugar phosphate isomerase/epimerase A1R5X7, Acetyl-CoA acetyltransferase A0JZ95, and nicotinamide adenine dinucleotide phosphate (NADP)-dependent alcohol dehydrogenase A1R6C3 were found to contribute to the swainsonine degradation. Notably, NADP-dependent alcohol dehyrodgenase A1R6C3 appeared to play a major role in degrading swainsonine, but not as much as Arthrobacter sp. HW08 did. Collectively, our findings here provide insights to understand the mechanism of swainsonine degradation in bacteria.
Collapse
Affiliation(s)
- Yan Wang
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - A'guan Zhai
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - Yanqi Zhang
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - Kai Qiu
- Hulun Buir Animal Epidemic Prevention and Control Center, Hulun Buir 021000, China.
| | - Jianhua Wang
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| | - Qinfan Li
- College of Veterinary Medicine, Northwest A & F University, No. 22 Xinong Road, Yangling 712100, China.
| |
Collapse
|
8
|
Arbeli Z, Garcia-Bonilla E, Pardo C, Hidalgo K, Velásquez T, Peña L, C ER, Avila-Arias H, Molano-Gonzalez N, Brandão PFB, Roldan F. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9144-9155. [PMID: 26832872 DOI: 10.1007/s11356-016-6133-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Pentolite is a mixture (1:1) of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), and little is known about its fate in the environment. This study was aimed to determine the dissipation of pentolite in soils under laboratory conditions. Microcosm experiments conducted with two soils demonstrated that dissipation rate of PETN was significantly slower than that of TNT. Interestingly, the dissipation of PETN was enhanced by the presence of TNT, while PETN did not enhanced the dissipation of TNT. Pentolite dissipation rate was significantly faster under biostimulation treatment (addition of carbon source) in soil from the artificial wetland, while no such stimulation was observed in soil from detonation field. In addition, the dissipation rate of TNT and PETN in soil from artificial wetland under biostimulation was significantly faster than the equivalent abiotic control, although it seems that non-biological processes might also be important for the dissipation of TNT and PETN. Transformation of PETN was also slower during establishment of enrichment culture using pentolite as the sole nitrogen source. In addition, transformation of these explosives was gradually reduced and practically stopped after the forth cultures transfer (80 days). DGGE analysis of bacterial communities from these cultures indicates that all consortia were dominated by bacteria from the order Burkholderiales and Rhodanobacter. In conclusion, our results suggest that PETN might be more persistent than TNT.
Collapse
Affiliation(s)
- Ziv Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia.
| | - Erika Garcia-Bonilla
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Cindy Pardo
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Kelly Hidalgo
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Trigal Velásquez
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Luis Peña
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Eliana Ramos C
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Helena Avila-Arias
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Nicolás Molano-Gonzalez
- Study Center of Autoimmune Diseases (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Pedro F B Brandão
- Laboratorio de Microbiología Ambiental y Aplicada, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N. 45-03, Bogotá, Colombia
| | - Fabio Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| |
Collapse
|
9
|
Comparative genome analysis reveals the molecular basis of nicotine degradation and survival capacities of Arthrobacter. Sci Rep 2015; 5:8642. [PMID: 25721465 PMCID: PMC4342571 DOI: 10.1038/srep08642] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/23/2015] [Indexed: 01/06/2023] Open
Abstract
Arthrobacter is one of the most prevalent genera of nicotine-degrading bacteria; however, studies of nicotine degradation in Arthrobacter species remain at the plasmid level (plasmid pAO1). Here, we report the bioinformatic analysis of a nicotine-degrading Arthrobacter aurescens M2012083, and show that the moeB and mogA genes that are essential for nicotine degradation in Arthrobacter are absent from plasmid pAO1. Homologues of all the nicotine degradation-related genes of plasmid pAO1 were found to be located on a 68,622-bp DNA segment (nic segment-1) in the M2012083 genome, showing 98.1% nucleotide acid sequence identity to the 69,252-bp nic segment of plasmid pAO1. However, the rest sequence of plasmid pAO1 other than the nic segment shows no significant similarity to the genome sequence of strain M2012083. Taken together, our data suggest that the nicotine degradation-related genes of strain M2012083 are located on the chromosome or a plasmid other than pAO1. Based on the genomic sequence comparison of strain M2012083 and six other Arthrobacter strains, we have identified 17 σ(70) transcription factors reported to be involved in stress responses and 109 genes involved in environmental adaptability of strain M2012083. These results reveal the molecular basis of nicotine degradation and survival capacities of Arthrobacter species.
Collapse
|
10
|
Bordeleau G, Martel R, Bamba AN, Blais JF, Ampleman G, Thiboutot S. Nitroglycerin degradation mediated by soil organic carbon under aerobic conditions. JOURNAL OF CONTAMINANT HYDROLOGY 2014; 166:52-63. [PMID: 25086776 DOI: 10.1016/j.jconhyd.2014.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 06/20/2014] [Accepted: 06/27/2014] [Indexed: 06/03/2023]
Abstract
The presence of nitroglycerin (NG) has been reported in shallow soils and pore water of several military training ranges. In this context, NG concentrations can be reduced through various natural attenuation processes, but these have not been thoroughly documented. This study aimed at investigating the role of soil organic matter (SOM) in the natural attenuation of NG, under aerobic conditions typical of shallow soils. The role of SOM in NG degradation has already been documented under anoxic conditions, and was attributed to SOM-mediated electron transfer involving different reducing agents. However, unsaturated soils are usually well-oxygenated, and it was not clear whether SOM could participate in NG degradation under these conditions. Our results from batch- and column-type experiments clearly demonstrate that in presence of dissolved organic matter (DOM) leached from a natural soil, partial NG degradation can be achieved. In presence of particulate organic matter (POM) from the same soil, complete NG degradation was achieved. Furthermore, POM caused rapid sorption of NG, which should result in NG retention in the organic matter-rich shallow horizons of the soil profile, thus promoting degradation. Based on degradation products, the reaction pathway appears to be reductive, in spite of the aerobic conditions. The relatively rapid reaction rates suggest that this process could significantly participate in the natural attenuation of NG, both on military training ranges and in contaminated soil at production facilities.
Collapse
Affiliation(s)
- Geneviève Bordeleau
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, Quebec City, QC, Canada, G1K 9A9.
| | - Richard Martel
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, Quebec City, QC, Canada, G1K 9A9.
| | - Abraham N'Valoua Bamba
- Université Laval, Département de Géographie, Faculté de foresterie, de géographie et de géomatique, Pavillon Abitibi-Price, 2405, rue de la Terrasse, Local 3137, Quebec City, QC, Canada, G1V 0A6.
| | - Jean-François Blais
- Institut National de la Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de la Couronne, Quebec City, QC, Canada, G1K 9A9.
| | - Guy Ampleman
- Defence Research and Development Canada - Valcartier, 2459 Pie-XI Blvd. North, Quebec City, QC, Canada, G3J 1X5.
| | - Sonia Thiboutot
- Defence Research and Development Canada - Valcartier, 2459 Pie-XI Blvd. North, Quebec City, QC, Canada, G3J 1X5.
| |
Collapse
|
11
|
Bordeleau G, Martel R, Drouin M, Ampleman G, Thiboutot S. Biodegradation of nitroglycerin from propellant residues on military training ranges. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:441-449. [PMID: 25602645 DOI: 10.2134/jeq2013.06.0241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nitroglycerin (NG) is often present in soils and sometimes in pore water at antitank firing positions due to incomplete combustion of propellants. Various degradation processes can contribute to the natural attenuation of NG in soils and pore water, thus reducing the risks of groundwater contamination. However, until now these processes have been sparsely documented. This study aimed at evaluating the ability of microorganisms from a legacy firing position to degrade dissolved NG, as well as NG trapped within propellant particles. Results from the shake-flask experiments showed that the isolated culture is capable of degrading dissolved NG but not the nitrocellulose matrix of propellant particles, so that the deeply embedded NG molecules cannot be degraded. Furthermore, the results from column experiments showed that in a nutrient-poor sand, degradation of dissolved NG may not be sufficiently rapid to prevent groundwater contamination. Therefore, the results from this study indicate that, under favorable soil conditions, biodegradation can be an important natural attenuation process for NG dissolving out of fresh propellant residues. In contrast, biodegradation does not contribute to the long-term attenuation of NG within old, weathered propellant residues. Although NG in these old residues no longer poses a threat to groundwater quality, if soil clean-up of a legacy site is required, active remediation approaches should be sought.
Collapse
|
12
|
Husserl J, Hughes JB. Biodegradation of nitroglycerin in porous media and potential for bioaugmentation with Arthrobacter sp. strain JBH1. CHEMOSPHERE 2013; 92:721-724. [PMID: 23664478 DOI: 10.1016/j.chemosphere.2013.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2012] [Revised: 04/01/2013] [Accepted: 04/02/2013] [Indexed: 06/02/2023]
Abstract
Nitroglycerin (NG) is a toxic explosive found as a contaminant of soil and groundwater. Several microbial strains are capable of partially reducing the NG molecule to dinitro or mononitroesters. Recently, a strain capable of growing on NG as the sole source of carbon and nitrogen (Arthrobacter sp. strain JBH1) was isolated from contaminated soil. Despite the widespread presence of microbial strains capable of transforming NG in contaminated soils and sediments, the extent of NG biodegradation at contaminated sites is still unknown. In this study column experiments were conducted to investigate the extent of microbial degradation of NG in saturated porous media, specifically after bioaugmentation with JBH1. Initial experiments using sterile, low sorptivity sand, showed mineralization of NG after bioaugmentation with JBH1 in the absence of sources of carbon and nitrogen other than NG. Results could be modeled using a first order degradation rate of 0.14d(-1). Further experiments conducted using contaminated soil with high organic carbon content (highly sorptive) resulted in column effluents that did not contain NG although high dinitroester concentrations were observed. Bioaugmentation with JBH1 in sediments containing strains capable of partial transformation of NG resulted in complete mineralization of NG and faster degradation rates.
Collapse
Affiliation(s)
- Johana Husserl
- Department of Civil and Environmental Engineering, Universidad de los Andes, Bogotá, Colombia.
| | | |
Collapse
|
13
|
Key enzymes enabling the growth of Arthrobacter sp. strain JBH1 with nitroglycerin as the sole source of carbon and nitrogen. Appl Environ Microbiol 2012; 78:3649-55. [PMID: 22427495 DOI: 10.1128/aem.00006-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Flavoprotein reductases that catalyze the transformation of nitroglycerin (NG) to dinitro- or mononitroglycerols enable bacteria containing such enzymes to use NG as the nitrogen source. The inability to use the resulting mononitroglycerols limits most strains to incomplete denitration of NG. Recently, Arthrobacter strain JBH1 was isolated for the ability to grow on NG as the sole source of carbon and nitrogen, but the enzymes and mechanisms involved were not established. Here, the enzymes that enable the Arthrobacter strain to incorporate NG into a productive pathway were identified. Enzyme assays indicated that the transformation of nitroglycerin to mononitroglycerol is NADPH dependent and that the subsequent transformation of mononitroglycerol is ATP dependent. Cloning and heterologous expression revealed that a flavoprotein catalyzes selective denitration of NG to 1-mononitroglycerol (1-MNG) and that 1-MNG is transformed to 1-nitro-3-phosphoglycerol by a glycerol kinase homolog. Phosphorylation of the nitroester intermediate enables the subsequent denitration of 1-MNG in a productive pathway that supports the growth of the isolate and mineralization of NG.
Collapse
|
14
|
Rocheleau S, Kuperman RG, Dodard SG, Sarrazin M, Savard K, Paquet L, Hawari J, Checkai RT, Thiboutot S, Ampleman G, Sunahara GI. Phytotoxicity and uptake of nitroglycerin in a natural sandy loam soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:5284-5291. [PMID: 21975007 DOI: 10.1016/j.scitotenv.2011.08.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 08/26/2011] [Accepted: 08/29/2011] [Indexed: 05/31/2023]
Abstract
Nitroglycerin (NG) is widely used for the production of explosives and solid propellants, and is a soil contaminant of concern at some military training ranges. NG phytotoxicity data reported in the literature cannot be applied directly to development of ecotoxicological benchmarks for plant exposures in soil because they were determined in studies using hydroponic media, cell cultures, and transgenic plants. Toxicities of NG in the present studies were evaluated for alfalfa (Medicago sativa), barnyard grass (Echinochloa crusgalli), and ryegrass (Lolium perenne) exposed to NG in Sassafras sandy loam soil. Uptake and degradation of NG were also evaluated in ryegrass. The median effective concentration values for shoot growth ranged from 40 to 231 mg kg(-1) in studies with NG freshly amended in soil, and from 23 to 185 mg kg(-1) in studies with NG weathered-and-aged in soil. Weathering-and-aging NG in soil did not significantly affect the toxicity based on 95% confidence intervals for either seedling emergence or plant growth endpoints. Uptake studies revealed that NG was not accumulated in ryegrass but was transformed into dinitroglycerin in the soil and roots, and was subsequently translocated into the ryegrass shoots. The highest bioconcentration factors for dinitroglycerin of 685 and 40 were determined for roots and shoots, respectively. Results of these studies will improve our understanding of toxicity and bioconcentration of NG in terrestrial plants and will contribute to ecological risk assessment of NG-contaminated sites.
Collapse
Affiliation(s)
- Sylvie Rocheleau
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, Montreal, Quebec, Canada H4P 2R2
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|