1
|
Zhang XR, Chen Y, Zhang XY, Zhu YT, Yang JX, Gong GZ. Comparative transcriptomic analysis reveals a potential link between sugar transporters and the diauxic growth of Weissella paramesenteroides YT175 on inulin. Int J Biol Macromol 2025; 298:139928. [PMID: 39826731 DOI: 10.1016/j.ijbiomac.2025.139928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/22/2025]
Abstract
Inulin, a health-promoting dietary fiber, is efficiently metabolized by Weissella paramesenteroides YT175, a beneficial bacterium. The strain demonstrated a diauxic growth pattern within 48 h, reaching an optical density at 600 nm (OD600 nm) of approximately 1.5, accompanied by a significant decrease in pH to around 4.90. Thin-layer chromatography (TLC) analysis reveals an initial preference for inulin oligomers with lower degrees of polymerization (DP). Genomic sequence analysis identified a gene cluster, the pts1BCA operon, associated with inulin metabolism, which includes genes encoding sugar transport proteins, a beta-fructofuranosidase enzyme belonging to the glycoside hydrolase family 32 (GH32), and a transcriptional regulator. Comparative transcriptomic analysis revealed significant upregulation of genes encoding beta-fructofuranosidase, phosphotransferase system (PTS), major facilitator superfamily (MFS), and ATP-binding cassette (ABC) transporters, with qRT-PCR results validating the RNA-Seq data, underscoring their involvement in inulin metabolism. These findings propose a metabolic pathway for the strategic utilization of inulin by YT175, highlighting the synergistic role of its three types of membrane transport proteins in the consumption of inulin oligomers with diverse DPs and its diauxic growth behavior. These insights enhance our understanding of the interaction between probiotics and dietary fibers and pave the way for the development of novel synbiotic foods.
Collapse
Affiliation(s)
- Xin-Rui Zhang
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
| | - Yang Chen
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
| | - Xin-Yu Zhang
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
| | - Yuan-Ting Zhu
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China; Key Laboratory of the Evaluation and Monitoring of Southwest Land Resources (Ministry of Education), Sichuan Normal University, Chengdu 610066, China.
| | - Jian-Xia Yang
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
| | - Gui-Zhen Gong
- College of Life Science, Sichuan Normal University, Chengdu 610066, Sichuan, China
| |
Collapse
|
2
|
Zhang H, You C, Wang Y. Metabolomics study on fermentation of Lactiplantibacillus plantarum ST-III with food-grade proliferators in milk. J Dairy Sci 2024; 107:9005-9014. [PMID: 39004129 DOI: 10.3168/jds.2024-25017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 06/17/2024] [Indexed: 07/16/2024]
Abstract
Milk is a naturally complex medium that is suitable for the growth of most lactic acid bacteria. Unfortunately, Lactiplantibacillus plantarum ST-III, a probiotic strain of bacteria used to produce fermented foods, grows poorly in milk without supplementation. To solve this problem, we used fresh pineapple and mung bean juice to develop an edible proliferator for L. plantarum ST-III. Our comparative analysis of changes in metabolomics before and after fermentation revealed that amino acids, dipeptides, nucleotides, and vitamins were the most consumed compounds, implying the mechanism of proliferation. These results, in combination with Kyoto Encyclopedia of Genes and Genomes metabolic pathway analysis, were used to screen substances that could promote the growth of L. plantarum ST-III in milk. To explore which component of the proliferator was required for L. plantarum ST-III growth, we supplemented milk with several combinations of substances from the proliferator that were identified as promoting growth. The experimental results showed that if any of these substances were missing, the concentration of viable bacteria was lower. The highest concentration of viable bacteria could only be obtained when all the substances were added to the milk. Compared with the control, the concentration of viable bacteria was about 32-fold higher in milk that contained the proliferator. Thus, the study proves that milk primarily lacks available amino acids, dipeptides, uracil, xanthine, nicotinamide, and manganese, which are necessary for the growth of L. plantarum ST-III.
Collapse
Affiliation(s)
- Hongfa Zhang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China.
| | - Chunping You
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China
| | - Yunqing Wang
- State Key Laboratory of Dairy Biotechnology, Shanghai Engineering Research Centre of Dairy Biotechnology, Dairy Research Institute, Bright Dairy & Food Co., Ltd., Synergetic Innovation Centre of Food Safety and Nutrition, Shanghai 200436, China
| |
Collapse
|
3
|
Rawat HK, Nath S, Sharma I, Kango N. Recent developments in the production of prebiotic fructooligosaccharides using fungal fructosyltransferases. Mycology 2024; 15:564-584. [PMID: 39678637 PMCID: PMC11636151 DOI: 10.1080/21501203.2024.2323713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 02/21/2024] [Indexed: 12/17/2024] Open
Abstract
Prebiotic nutritional ingredients have received attention due to their health-promoting potential and related uses in the food and nutraceutical industries. Recent times have witnessed an increasing interest in the use of fructooligosaccharides (FOS) as prebiotics and their generation using microbial enzymes. FOS consumption is known to confer health benefits such as protection against colon cancer, improved mineral absorption, lowering effect on serum lipid and cholesterol concentration, antioxidant properties, favourable dietary modulation of the human colonic microbiota, and immuno-modulatory effects. Comparative analysis of molecular models of various fructosyltransferases (FTases) reveals the mechanism of action and interaction of substrate with the active site. Microbial FTases carry out transfructosylation of sucrose into fructooligosaccharides (kestose, nystose, and fructofuranosylnystose), the most predominantly used prebiotic oligosaccharides. Furthermore, FOS has also been used for other purposes, such as low-calorie sweeteners, dietary fibres, and as the substrates for fermentation. This review highlights the occurrence, characteristics, immobilisation, and potential applications of FOS-generating fungal FTases. Production, heterologous expression, molecular characteristics, and modelling of fungal FTases underpinning their biotechnological prospects are also discussed.
Collapse
Affiliation(s)
- Hemant Kumar Rawat
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Suresh Nath
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Isha Sharma
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| | - Naveen Kango
- Department of Microbiology, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, MP, India
| |
Collapse
|
4
|
Dobrange E, Porras-Domínguez JR, Van den Ende W. The Complex GH32 Enzyme Orchestra from Priestia megaterium Holds the Key to Better Discriminate Sucrose-6-phosphate Hydrolases from Other β-Fructofuranosidases in Bacteria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:1302-1320. [PMID: 38175162 DOI: 10.1021/acs.jafc.3c06874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Inulin is widely used as a prebiotic and emerging as a priming compound to counteract plant diseases. We isolated inulin-degrading strains from the lettuce phyllosphere, identified as Bacillus subtilis and Priestia megaterium, species hosting well-known biocontrol organisms. To better understand their varying inulin degradation strategies, three intracellular β-fructofuranosidases from P. megaterium NBRC15308 were characterized after expression in Escherichia coli: a predicted sucrose-6-phosphate (Suc6P) hydrolase (SacAP1, supported by molecular docking), an exofructanase (SacAP2), and an invertase (SacAP3). Based on protein multiple sequence and structure alignments of bacterial glycoside hydrolase family 32 enzymes, we identified conserved residues predicted to be involved in binding phosphorylated (Suc6P hydrolases) or nonphosphorylated substrates (invertases and fructanases). Suc6P hydrolases feature positively charged residues near the structural catalytic pocket (histidine, arginine, or lysine), whereas other β-fructofuranosidases contain tryptophans. This correlates with our phylogenetic tree, grouping all predicted Suc6P hydrolases in a clan associated with genomic regions coding for transporters involved in substrate phosphorylation. These results will help to discriminate between Suc6P hydrolases and other β-fructofuranosidases in future studies and to better understand the interaction of B. subtilis and P. megaterium endophytes with sucrose and/or fructans, sugars naturally present in plants or exogenously applied in the context of defense priming.
Collapse
Affiliation(s)
- Erin Dobrange
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| | | | - Wim Van den Ende
- Laboratory of Molecular Plant Biology, KU Leuven, Kasteelpark Arenberg 31, Leuven 3001, Belgium
| |
Collapse
|
5
|
Wang Y, Dong W, Chu L, Zhao H, He L, Sheng X. A combination of proteomics, genetics, and physiology provides insights into the acid-tolerance phenotype of Pseudomonas pergaminensis F77. Microbiol Res 2024; 278:127545. [PMID: 37952350 DOI: 10.1016/j.micres.2023.127545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/29/2023] [Accepted: 11/04/2023] [Indexed: 11/14/2023]
Abstract
Acid tolerance is crucial for the effective and persistent mineral weathering by acid-producing bacteria. Here, the molecular basis of the acid tolerance of mineral-weathering Pseudomonas pergaminensis F77 was identified using proteomics analysis of the strain under acid stress. Then, the acid tolerance of strain F77 and its mutants with deletion of the acid tolerance-related genes orf03767, mcp, resR, nueR, yegD, and fxsA, which are involved in the two-component systems, DNA repair, nucleotide binding, and membrane parts, were compared. Finally, the acid tolerance-related physiological mechanisms of strain F77 and its mutants F77ΔnueR and F77ΔresR under acidic conditions were characterized. The significantly upregulated proteins in the acid-adapted and acid-challenged strain F77 included the proteins involved in metabolic pathways associated with ATPase, membrane components, organic acid transmembrane transporters, response to stimulus, nucleotide binding, ABC transporters, and two-component systems. The cell numbers decreased by 24-100% at pH ≤ 4.50, while the membrane fluidity increased by 22-61% at pH ≤ 5.50 for the mutants F77ΔnueR and F77ΔresR, compared with that of strain F77. The intracellular H+-ATPase activities decreased by 29-33% for the mutant F77ΔnueR at pH ≤ 4.50% and 33-79% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00); meanwhile, the ratios of intracellular NAD+/NADH decreased by 71-91% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00), compared with that of strain F77. Furthermore, the intracellular putrescine concentrations were reduced by 40-70% for the mutant F77ΔresR at all tested pHs (pH ≤ 7.00) compared with that of strain F77. Our findings suggested that multiple proteins and metabolic pathways were associated with bacterial acid tolerance and revealed that nueR and resR were involved in acid tolerance based on their modulation of multiple acid tolerance-related physiological functions in strain F77.
Collapse
Affiliation(s)
- Yuanli Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China; College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, China
| | - Wen Dong
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Lingfeng Chu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Hui Zhao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Linyan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| | - Xiafang Sheng
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China.
| |
Collapse
|
6
|
Zhao X, Zhang Y, He B, Han Y, Shen B, Zang Y, Wang H. Transcriptional control of carbohydrate catabolism by the CcpA protein in the ruminal bacterium Streptococcus bovis. Appl Environ Microbiol 2023; 89:e0047423. [PMID: 37823652 PMCID: PMC10617382 DOI: 10.1128/aem.00474-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/23/2023] [Indexed: 10/13/2023] Open
Abstract
As a potent, pleiotropic regulatory protein in Gram-positive bacteria, catabolite control protein A (CcpA) mediates the transcriptional control of carbohydrate metabolism in Streptococcus bovis, a lactate-producing bacterium that plays an essential role in rumen acidosis in dairy cows. Although the rumen uptake of carbohydrates is multi-substrate, the focus of S. bovis research thus far has been on the glucose. With the aid of gene deletion, whole-genome sequencing, and transcriptomics, we have unraveled the role of CcpA in carbohydrate metabolism, on the one hand, and acidosis, on the other, and we show that the S. bovis strain S1 encodes "Carbohydrate-Active Enzymes" and that ccpA deletion slows the organism's growth rate and modulates the organic acid fermentation pathways toward lower lactate, higher formate, and acetate in the maltose and cellobiose. Furthermore, this study revealed the different regulatory functions of the CcpA protein in rumen metabolism and acidosis.IMPORTANCEThis study is important as it illustrates the varying regulatory role of the Streptococcus bovis catabolite control protein A protein in carbohydrate metabolism and the onset of acidosis in dairy cattle.
Collapse
Affiliation(s)
- Xiujuan Zhao
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Banglin He
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Han
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ben Shen
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yu Zang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Taweerodjanakarn S, Kongnum K, Hongpattarakere T. Persistence of maternal milk derived Lactobacillus plantarum in the infant feces and its antagonistic activity against Escherichia coli O157:H7. Food Sci Biotechnol 2023; 32:1079-1089. [PMID: 37215257 PMCID: PMC10195941 DOI: 10.1007/s10068-023-01243-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 01/21/2023] Open
Abstract
The diversity of lactic acid bacteria (LAB) in maternal milk and feces from Thai mother-infants pairs were revealed through nested PCR-DGGE. LAB species residing in maternal milk drawn from each individual demonstrated high uniqueness, yet shared similarity to her infant. Multiple strains of L. plantarum, L. fermentum, L. rhamnosus, L. mucosae, L. casei were continuously detected, suggesting direct transfer from a mother to her infant via breastfeeding. L. plantarum, the most commonly found species with many strain variants, remained persistent in infant's feces up to six months postpartum. Such success could be achieved through its ability to utilize fructooligosaccharides (FOS)/inulin together with antibacterial activity and competitive adhesion. With FOS/inulin, the prebiotic utilizing L. plantarum (M117 and M118) isolated from maternal milk effectively inhibited E. coli O157:H7 under highly microflora competitive and glucose-limited environments of colon model. The results introduce the potential trend for development of effective anti-diarrheal synbiotic infant formulae.
Collapse
Affiliation(s)
- Siriporn Taweerodjanakarn
- Biotechnology Program, Faculty of Agro-Industry, Prince of Songkla University, 15 Kanchanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Khanitta Kongnum
- Biotechnology Program, Faculty of Agro-Industry, Prince of Songkla University, 15 Kanchanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| | - Tipparat Hongpattarakere
- Biotechnology Program, Faculty of Agro-Industry, Prince of Songkla University, 15 Kanchanavanich Rd., Hat Yai, Songkhla, 90110 Thailand
| |
Collapse
|
8
|
Lee MH, Kim J, Kim GH, Kim MS, Yoon SS. Effects of Lactiplantibacillus plantarum FBT215 and prebiotics on the gut microbiota structure of mice. Food Sci Biotechnol 2023; 32:481-488. [PMID: 36911336 PMCID: PMC9992507 DOI: 10.1007/s10068-022-01185-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/29/2022] [Accepted: 10/05/2022] [Indexed: 12/11/2022] Open
Abstract
Imbalanced intestinal microbiota is associated with diseases, including inflammatory bowel disease and obesity, and diet can alter the structure of the gut microbiota. In this study, the effects of dietary treatments including the potential probiotic Lactiplantibacillus plantarum FBT215 with/without prebiotics on the intestinal microbiota composition of mice were investigated. Lactiplantibacillus plantarum FBT215 administration significantly decreased the Firmicutes/Bacteroidetes ratio and increased the abundance of Muribaculum and Duncaniella. The diversity within and between groups was measured according to α and β diversity metrics, respectively. The Shannon index of α diversity decreased significantly in all treatment groups except the probiotic group, although this group showed an increase in the Chao1 index. Principal coordinate analysis of β diversity showed that the groups had different species distributions. Finally, gamma-aminobutyric acid (GABA) concentration increased in groups fed L. plantarum FBT215. These findings improve our understanding of the association between the gut microbiota structure and specific probiotic/prebiotic-containing diets.
Collapse
Affiliation(s)
- Myung-Hyun Lee
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Jaegon Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Gyeong-Hwuii Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Min-Sun Kim
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| | - Sung-Sik Yoon
- Department of Biological and Technology, Yonsei University, 1 Yeonsedae-gil, Heungeop-myeon, Wonju-si, Gangwon-do 26493 Republic of Korea
| |
Collapse
|
9
|
Echegaray N, Yilmaz B, Sharma H, Kumar M, Pateiro M, Ozogul F, Lorenzo JM. A novel approach to Lactiplantibacillus plantarum: From probiotic properties to the omics insights. Microbiol Res 2023; 268:127289. [PMID: 36571922 DOI: 10.1016/j.micres.2022.127289] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 10/24/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Lactiplantibacillus plantarum (previously known as Lactobacillus plantarum) strains are one of the lactic acid bacteria (LAB) commonly used in fermentation and their probiotic and functional properties along with their health-promoting roles come to the fore. Food-derived L. plantarum strains have shown good resistance and adhesion in the gastrointestinal tract (GI) and excellent antioxidant and antimicrobial properties. Furthermore, many strains of L. plantarum can produce bacteriocins with interesting antimicrobial activity. This probiotic properties of L. plantarum and existing in different niches give a great potential to have beneficial effects on health. It is also has been shown that L. plantarum can regulate the intestinal microbiota composition in a good way. Recently, omics approaches such as metabolomics, secretomics, proteomics, transcriptomics and genomics try to understand the roles and mechanisms of L. plantarum that are related to its functional characteristics. This review provides an overview of the probiotic properties, including the specific interactions between microbiota and host, and omics insights of L. plantarum.
Collapse
Affiliation(s)
- Noemí Echegaray
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Birsen Yilmaz
- Department of Nutrition and Dietetics, Cukurova University, Sarıcam, 01330 Adana, Turkey
| | - Heena Sharma
- Dairy Technology Division, ICAR-National Dairy Research Institute, Karnāl, Haryana, 132001, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, Central Institute for Research on Cotton Technology, Mumbai 400019, India
| | - Mirian Pateiro
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain
| | - Fatih Ozogul
- Department of Seafood Processing Technology, Faculty of Fisheries, Cukurova University, 01330, Adana, Turkey
| | - Jose Manuel Lorenzo
- Centro Tecnológico de la Carne de Galicia, Avda. Galicia nº 4, Parque Tecnológico de Galicia, San Cibrao das Viñas, 32900 Ourense, Spain; Universidade de Vigo, Área de Tecnoloxía dos Alimentos, Facultade de Ciencias de Ourense, 32004 Ourense, Spain.
| |
Collapse
|
10
|
Wang W, Sudun, Hu H, An J, Zhang H, Zhao Z, Hao Y, Zhai Z. Unraveling the mechanism of raffinose utilization in Ligilactobacillus salivarius Ren by transcriptomic analysis. 3 Biotech 2022; 12:229. [PMID: 35992897 PMCID: PMC9385920 DOI: 10.1007/s13205-022-03280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/22/2022] [Indexed: 11/26/2022] Open
Abstract
In the gastrointestinal tract, some dietary carbohydrates, such as xylose, raffinose and arabinose, are able to stimulate the growth of Lactobacillus and Bifidobacterium. In this study, the growth rate of Ligilactobacillus salivarius Ren in raffinose was 0.91 ± 0.03 h-1, which was higher than that in glucose (0.83 ± 0.01 h-1). However, limited information is available on specific transporters and glycoside hydrolases responsible for raffinose uptake and catabolism in L. salivarius. Transcriptomic analysis revealed the differential expression of 236 genes (∣log2FoldChange∣ > 0.8) in response to raffinose, which were mainly associated with raffinose transport, raffinose hydrolysis, galactose metabolism and pyruvate metabolism. Notably, gene rafP encoding lactose/raffinose permease was 101.86-fold up-regulated. Two α-galactosidase gene galA1 and galA2 were 117.82-fold and 2.66-fold up-regulated, respectively. To further investigate the role of these genes in raffinose utilization, insertional inactivation was performed using the pORI28-pTRK669 system. The growth assay of these mutants in modified MRS containing 2% (w/v) raffinose indicated that RafP played an important role in raffinose transport and GalA1 was the primary enzyme involved in raffinose hydrolysis. To our knowledge, this is the first report on the molecular mechanism of raffinose utilization in L. salivarius. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03280-6.
Collapse
Affiliation(s)
- Weizhe Wang
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Sudun
- HUA Cloud Intelligent Healthcare Co., Ltd, Shenzhen, China
| | - Huizhong Hu
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Jieran An
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Hongxing Zhang
- Department of Food Science, Beijing University of Agriculture, Beijing, China
| | - Zigang Zhao
- Department of Dermatology, Hainan Hospital of PLA General Hospital, Sanya, Hainan China
| | - Yanling Hao
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Zhengyuan Zhai
- Key Laboratory of Functional Dairy, Co-Constructed by Ministry of Education and Beijing Municipality, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
- Present Address: College of Food Science and Nutritional Engineering, China Agricultural University, 17 Qing Hua East Road, Hai Dian District, Beijing, 100083 China
| |
Collapse
|
11
|
Versluys M, Toksoy Öner E, Van den Ende W. Fructan oligosaccharide priming alters apoplastic sugar dynamics and improves resistance against Botrytis cinerea in chicory. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:4214-4235. [PMID: 35383363 DOI: 10.1093/jxb/erac140] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Carbohydrates such as fructans can be involved in priming or defence stimulation, and hence potentially provide new strategies for crop protection against biotic stress. Chicory (Cichorium intybus) is a model plant for fructan research and is a crop with many known health benefits. Using the chicory-Botrytis cinerea pathosystem, we tested the effectiveness of fructan-induced immunity, focussing on different plant and microbial fructans. Sugar dynamics were followed after priming and subsequent pathogen infection. Our results indicated that many higher plants might detect extracellular levan oligosaccharides (LOS) of microbial origin, while chicory also detects extracellular small inulin-type fructooligosaccharides (FOS) of endogenous origin, thus differing from the findings of previous fructan priming studies. No clear positive effects were observed for inulin or mixed-type fructans. An elicitor-specific burst of reactive oxygen species was observed for sulfated LOS, while FOS and LOS both behaved as genuine priming agents. In addition, a direct antifungal effect was observed for sulfated LOS. Intriguingly, LOS priming led to a temporary increase in apoplastic sugar concentrations, mainly glucose, which could trigger downstream responses. Total sugar and starch contents in total extracts of LOS-primed leaves were higher after leaf detachment, indicating they could maintain their metabolic activity. Our results indicate the importance of balancing intra- and extracellular sugar levels (osmotic balance) in the context of 'sweet immunity' pathways.
Collapse
Affiliation(s)
- Maxime Versluys
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| | - Ebru Toksoy Öner
- IBSB-Industrial Biotechnology and Systems Biology Research Group, Department of Bioengineering, Marmara University, Istanbul, Turkey
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Cui S, Guo W, Chen C, Tang X, Zhao J, Mao B, Zhang H. Metagenomic Analysis of the Effects of Lactiplantibacillus plantarum and Fructooligosaccharides (FOS) on the Fecal Microbiota Structure in Mice. Foods 2022; 11:foods11091187. [PMID: 35563910 PMCID: PMC9102988 DOI: 10.3390/foods11091187] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 02/04/2023] Open
Abstract
Understanding the association between food composition and intestinal microbiota in the context of individual health is a critical problem in personalized nutrition. The objective of the present research was to elucidate the influence of Lactiplantibacillus plantarum ST-III and fructooligosaccharides (FOS) on the intestinal microbiota structure. We found that L. plantarum ST-III and FOS interventions remarkably enhanced the levels of cecal short-chain fatty acids (SCFAs), especially acetic, butyric, and valeric acids. Moreover, L. plantarum ST-III and/or FOS intervention obviously altered the intestinal microbiota structure. At the genus level, L. plantarum ST-III and/or FOS intervention remarkably elevated the proportion of Sutterella, Pediococcus, Proteus, Parabacteroides, Prevotella and Desulfovibrio. Correlation analysis further uncovered that the specific compositional features of intestinal microbiota were strongly related to the concentration of cecal SCFAs. Our results offered scientific evidence to understanding the association between food composition and intestinal microbiota.
Collapse
Affiliation(s)
- Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Weiling Guo
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Cailing Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (S.C.); (W.G.); (C.C.); (X.T.); (J.Z.); (H.Z.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
13
|
Versluys M, Van den Ende W. Sweet Immunity Aspects during Levan Oligosaccharide-Mediated Priming in Rocket against Botrytis cinerea. Biomolecules 2022; 12:370. [PMID: 35327562 PMCID: PMC8945012 DOI: 10.3390/biom12030370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/15/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
New strategies are required for crop protection against biotic stress. Naturally derived molecules, including carbohydrates such as fructans, can be used in priming or defense stimulation. Rocket (Eruca sativa) is an important leafy vegetable and a good source of antioxidants. Here, we tested the efficacy of fructan-induced immunity in the Botrytis cinerea pathosystem. Different fructan types of plant and microbial origin were considered and changes in sugar dynamics were analyzed. Immune resistance increased significantly after priming with natural and sulfated levan oligosaccharides (LOS). No clear positive effects were observed for fructo-oligosaccharides (FOS), inulin or branched-type fructans. Only sulfated LOS induced a direct ROS burst, typical for elicitors, while LOS behaved as a genuine priming compound. Total leaf sugar levels increased significantly both after LOS priming and subsequent infection. Intriguingly, apoplastic sugar levels temporarily increased after LOS priming but not after infection. We followed LOS and small soluble sugar dynamics in the apoplast as a function of time and found a temporal peak in small soluble sugar levels. Although similar dynamics were also found with inulin-type FOS, increased Glc and FOS levels may benefit B. cinerea. During LOS priming, LOS- and/or Glc-dependent signaling may induce downstream sweet immunity responses.
Collapse
Affiliation(s)
| | - Wim Van den Ende
- Laboratory of Molecular Plant Biology and KU Leuven Plant Institute, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven, Belgium;
| |
Collapse
|
14
|
Xu Z, Li C, Ye Y, Wang T, Zhang S, Liu X. The β-galactosidase LacLM plays the major role in lactose utilization of Lactiplantibacillus plantarum. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Global genome and comparative transcriptomic analysis reveal the inulin consumption strategy of Lactiplantibacillus plantarum QS7T. Food Res Int 2022; 151:110846. [PMID: 34980384 DOI: 10.1016/j.foodres.2021.110846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/01/2021] [Accepted: 11/27/2021] [Indexed: 11/21/2022]
Abstract
Sichuan pickle is a natural combination of probiotics and dietary fibers, in which a strain Lactiplantibacillus plantarum QS7T was found to be capable of efficiently metabolizing inulin. However, the underlying molecular mechanism of inulin consumption by the strain QS7T is unclear. Therefore, this study firstly investigated the metabolic characteristics of inulin in the strain QS7T, and the results showed it could grow very well on the medium containing inulin as a carbon source (maximum OD600 nm, 1.891 ± 0.028) and degrade both short-chain oligofructose and long-chain fructan components through thin layer chromatography analysis. Genomic sequencing and analysis revealed a high percentage of functional genes associated with carbohydrate transport and metabolism, particularly glycoside hydrolase (GH) genes responsible for hydrolysing carbohydrates, within the genome of the strain QS7T. Furthermore, comparative transcriptomic analysis of L. plantarum QS7T in response to inulin or glucose indicated that functional genes associated with inulin consumption including several genes encoding PTS sugar transporters and two predicted GH32 family genes encoding beta-fructofuranosidase and beta-fructosidase were significantly up-regulated by inulin compared to the gene expression on glucose. In conclusion, we obtained a mechanistic understanding of interplay between probiotic L. plantarum QS7T derived from Sichuan pickle and natural dietary fiber, inulin; totally two operons including a sacPTS1 operon responsible for metabolizing short-chain oligofructose primarily in the cytoplasm and a fos operon responsible for extracellularly degrading all moderate and long-chain fructan components linked to inulin consumption by L. plantarum QS7T.
Collapse
|
16
|
Cui Y, Wang M, Zheng Y, Miao K, Qu X. The Carbohydrate Metabolism of Lactiplantibacillus plantarum. Int J Mol Sci 2021; 22:ijms222413452. [PMID: 34948249 PMCID: PMC8704671 DOI: 10.3390/ijms222413452] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Lactiplantibacillus plantarum has a strong carbohydrate utilization ability. This characteristic plays an important role in its gastrointestinal tract colonization and probiotic effects. L. plantarum LP-F1 presents a high carbohydrate utilization capacity. The genome analysis of 165 L. plantarum strains indicated the species has a plenty of carbohydrate metabolism genes, presenting a strain specificity. Furthermore, two-component systems (TCSs) analysis revealed that the species has more TCSs than other lactic acid bacteria, and the distribution of TCS also shows the strain specificity. In order to clarify the sugar metabolism mechanism under different carbohydrate fermentation conditions, the expressions of 27 carbohydrate metabolism genes, catabolite control protein A (CcpA) gene ccpA, and TCSs genes were analyzed by quantitative real-time PCR technology. The correlation analysis between the expressions of regulatory genes and sugar metabolism genes showed that some regulatory genes were correlated with most of the sugar metabolism genes, suggesting that some TCSs might be involved in the regulation of sugar metabolism.
Collapse
Affiliation(s)
- Yanhua Cui
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; (M.W.); (Y.Z.); (K.M.)
- Correspondence:
| | - Meihong Wang
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; (M.W.); (Y.Z.); (K.M.)
| | - Yankun Zheng
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; (M.W.); (Y.Z.); (K.M.)
| | - Kai Miao
- Department of Food Nutrition and Health, School of Medicine and Health, Harbin Institute of Technology, Harbin 150001, China; (M.W.); (Y.Z.); (K.M.)
| | - Xiaojun Qu
- Institute of Microbiology, Heilongjiang Academy of Sciences, Harbin 150010, China;
| |
Collapse
|
17
|
Jin Y, Fan Y, Sun H, Zhang Y, Wang H. Transcriptome Analysis Reveals Catabolite Control Protein A Regulatory Mechanisms Underlying Glucose-Excess or -Limited Conditions in a Ruminal Bacterium, Streptococcus bovis. Front Microbiol 2021; 12:767769. [PMID: 34867900 PMCID: PMC8637274 DOI: 10.3389/fmicb.2021.767769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 10/20/2021] [Indexed: 12/05/2022] Open
Abstract
Ruminants may suffer from rumen acidosis when fed with high-concentrate diets due to the higher proliferation and overproduction of lactate by Streptococcus bovis. The catabolite control protein A (CcpA) regulates the transcription of lactate dehydrogenase (ldh) and pyruvate formate-lyase (pfl) in S. bovis, but its role in response to different carbon concentrations remains unclear. To characterize the regulatory mechanisms of CcpA in S. bovis S1 at different levels of carbon, herein, we analyzed the transcriptomic and physiological characteristics of S. bovis S1 and its ccpA mutant strain grown in glucose-excess and glucose-limited conditions. A reduced growth rate and a shift in fermentation pattern from homofermentation to heterofermentation were observed under glucose-limited condition as compared to glucose-excess condition, in S. bovis S1. Additionally, the inactivation of ccpA significantly affected the growth and end metabolites in both conditions. For the glycolytic intermediate, fructose 1,6-bisphosphate (FBP), the concentration significantly reduced at lower glucose conditions; its concentration decreased significantly in the ccpA mutant strain. Transcriptomic results showed that about 46% of the total genes were differentially transcribed between the wild-type strain and ccpA mutant strain grown in glucose-excess conditions; while only 12% genes were differentially transcribed in glucose-limited conditions. Different glucose concentrations led to the differential expression of 38% genes in the wild-type strain, while only half of these were differentially expressed in the ccpA-knockout strain. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses showed that the substrate glucose concentration significantly affected the gene expression in histidine metabolism, nitrogen metabolism, and some carbohydrate metabolism pathways. The deletion of ccpA affected several genes involved in carbohydrate metabolism, such as glycolysis, pyruvate metabolism, fructose and mannose metabolism, as well as in fatty acid biosynthesis pathways in bacteria grown in glucose-excess conditions; this effect was attenuated under glucose-limited conditions. Overall, these findings provide new information on gene transcription and metabolic mechanisms associated with substrate glucose concentration and validate the important role of CcpA in the regulation of carbon metabolism in S. bovis S1 at differential glucose availability.
Collapse
Affiliation(s)
- Yaqian Jin
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Yaotian Fan
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hua Sun
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Ying Zhang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Hongrong Wang
- Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
18
|
Cui Y, Qu X. Genetic mechanisms of prebiotic carbohydrate metabolism in lactic acid bacteria: Emphasis on Lacticaseibacillus casei and Lacticaseibacillus paracasei as flexible, diverse and outstanding prebiotic carbohydrate starters. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
19
|
Tsujikawa Y, Ishikawa S, Sakane I, Yoshida KI, Osawa R. Identification of genes encoding a novel ABC transporter in Lactobacillus delbrueckii for inulin polymers uptake. Sci Rep 2021; 11:16007. [PMID: 34362962 PMCID: PMC8346543 DOI: 10.1038/s41598-021-95356-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/26/2021] [Indexed: 02/07/2023] Open
Abstract
Lactobacillus delbrueckii JCM 1002T grows on highly polymerized inulin-type fructans as its sole carbon source. When it was grown on inulin, a > 10 kb long gene cluster inuABCDEF (Ldb1381-1386) encoding a plausible ABC transporter was suggested to be induced, since a transcriptome analysis revealed that the fourth gene inuD (Ldb1384) was up-regulated most prominently. Although Bacillus subtilis 168 is originally unable to utilize inulin, it became to grow on inulin upon heterologous expression of inuABCDEF. When freshly cultured cells of the recombinant B. subtilis were then densely suspended in buffer containing inulin polymers and incubated, inulin gradually disappeared from the buffer and accumulated in the cells without being degraded, whereas levan-type fructans did not disappear. The results imply that inuABCDEF might encode a novel ABC transporter in L. delbrueckii to "monopolize" inulin polymers selectively, thereby, providing a possible advantage in competition with other concomitant inulin-utilizing bacteria.
Collapse
Affiliation(s)
- Yuji Tsujikawa
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan ,grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| | - Shu Ishikawa
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Iwao Sakane
- Central Research Institute, ITO EN, Ltd., 21 Mekami, Makinohara, Shizuoka 421-0516 Japan
| | - Ken-ichi Yoshida
- grid.31432.370000 0001 1092 3077Department of Science, Technology and Innovation, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501 Japan
| | - Ro Osawa
- grid.31432.370000 0001 1092 3077Department of Bioresource Science, Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
20
|
Chen C, Huang K, Li X, Tian H, Yu H, Huang J, Yuan H, Zhao S, Shao L. Effects of CcpA against salt stress in Lactiplantibacillus plantarum as assessed by comparative transcriptional analysis. Appl Microbiol Biotechnol 2021; 105:3691-3704. [PMID: 33852024 DOI: 10.1007/s00253-021-11276-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 03/27/2021] [Accepted: 04/06/2021] [Indexed: 10/21/2022]
Abstract
Lactiplantibacillus plantarum is frequently exposed to salt stress during industrial applications. Catabolite control protein (CcpA) controls the transcription of many genes, but its role in the response to salt stress remains unclear. In this study, we used transcriptome analyses to investigate differences in the logarithmic growth phases of Lactiplantibacillus plantarum ST-III and its ccpA-knockout mutant when grown with or without salt and glycine betaine (GB). The deletion of ccpA significantly affected bacterial growth under different conditions. Among the comparisons, the highest proportion of differentially expressed genes (64%) was observed in the comparison between the wild-type and ccpA mutant grown with NaCl, whereas the lowest proportion (6%) was observed in the comparison between the ccpA mutant strain cultures grown with NaCl alone or with GB together. Transcriptomic analyses showed that CcpA could regulate GB uptake, activate iron uptake, produce acetyl-CoA, and affect fatty acid composition to maintain membrane lipid homeostasis in the adaptation of high-salinity conditions. Conclusively, these results demonstrate the importance of CcpA as a master regulator of these processes in response to salt stress, and provide new insights into the complex regulatory network of lactic acid bacteria. KEY POINTS: • The absence of CcpA significantly affected growth of L. plantarum and its response to salt stress. • CcpA regulates compatible solutes absorption and ions transport to resist salt stress. • CcpA alters fatty acids composition to maintain membrane lipid homeostasis towards salt stress.
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Ke Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Xiaohong Li
- Shanghai Customs P. R. China Technical Center For Animal, Plant And Food Inspection And Quarantine, Shanghai, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Juan Huang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Haibin Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China
| | - Shanshan Zhao
- College of Agriculture, Hebei University of Engineering, Handan, People's Republic of China
| | - Li Shao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, People's Republic of China.
| |
Collapse
|
21
|
Transcriptional analysis for cholesterol-lowering effects of marine Lactobacillus plantarum Lp10 isolated from kelp. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2020.110563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Han D, Shi R, Yan Q, Shi Y, Ma J, Jiang Z. Global transcriptomic analysis of functional oligosaccharide metabolism in Pediococcus pentosaceus. Appl Microbiol Biotechnol 2021; 105:1601-1614. [PMID: 33511444 DOI: 10.1007/s00253-021-11120-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/31/2020] [Accepted: 01/16/2021] [Indexed: 11/27/2022]
Abstract
Lactic acid bacteria (LAB) are important in food fermentation and may enhance overall host health. Previous studies to explore LAB metabolism mainly focused on the genera Lacticaseibacillus and Lactococcus. Pediococcus pentosaceus, historically recognized as an important food fermentation bacterial strain, can produce bacteriocins and occasionally demonstrated probiotic functionalities. This study thoroughly surveyed the growth kinetic of three P. pentosaceus isolates in various culture formulations, especially in fructooligosaccharide (FOS), xylooligosaccharide (XOS), or konjac mannooligosaccharide (KMOS) conditions. Results showed that P. pentosaceus effectively metabolized KMOS, the culture of which led to 23.6-fold population increase. However, FOS and XOS were less metabolized by P. pentosaceus. On functional oligosaccharide cultures, P. pentosaceus could result in higher population proliferation, more acidified fermentation environment, and higher glycoside hydrolysis activities in the culture. RNA-Seq analysis classified 1572 out of 1708 putative genes as mRNA-coding genes. The dataset also revealed that the three functional oligosaccharides led to extensive global functional gene regulations. Phosphate conservation and utilization efficiency enhancement may serve as a leading transcriptional regulation direction in functional oligosaccharide metabolisms. In summary, these discovered metabolic characteristics could be employed to support future studies. KEY POINTS: • Konjac mannooligosaccharides effectively promoted P. pentosaceus proliferation. • Functional genes were highly regulated in functional oligosaccharide utilization. • Phosphate conservation was an important transcriptional regulation direction.
Collapse
Affiliation(s)
- Dong Han
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ran Shi
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Qiaojuan Yan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, China
| | - Yuqin Shi
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| | - Junwen Ma
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Engineering, China Agricultural University, Beijing, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China.
| |
Collapse
|
23
|
Role of Lactic Acid Bacteria Phospho-β-Glucosidases during the Fermentation of Cereal by-Products. Foods 2021; 10:foods10010097. [PMID: 33466465 PMCID: PMC7830935 DOI: 10.3390/foods10010097] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 02/07/2023] Open
Abstract
Bioprocessing using lactic acid bacteria (LAB) is a powerful means to exploit plant-derived by-products as a food ingredient. LAB have the capability to metabolize a large variety of carbohydrates, but such metabolism only relies on few metabolic routes, conferring on them a high fermentation potential. One example of these pathways is that involving phospho-β-glucosidase genes, which are present in high redundancy within LAB genomes. This enzymatic activity undertakes an ambivalent role during fermentation of plant-based foods related to the release of a wide range of phenolic compounds, from their β-D-glycosylated precursors and the degradation of β-glucopyranosyl derived carbohydrates. We proposed a novel phenomic approach to characterize the metabolism drift of Lactiplantibacillus plantarum and Leuconostoc pseudomesenteroides caused by a lignocellulosic by-product, such as the brewers’ spent grain (BSG), in contrast to Rich De Man, Rogosa and Sharpe (MRS) broth. We observed an increased metabolic activity for gentiobiose, cellobiose and β-glucoside conjugates of phenolic compounds during BSG fermentation. Gene expression analysis confirmed the importance of cellobiose metabolism while a release of lignin-derived aglycones was found during BSG fermentation. We provided a comprehensive view of the important role exerted by LAB 6-phospho-β-glucosidases as well the major metabolic routes undertaken during plant-based fermentations. Further challenges will consider a controlled characterization of pbg gene expression correlated to the metabolism of β-glucosides with different aglycone moieties.
Collapse
|
24
|
Choi HJ, Shin D, Shin M, Yun B, Kang M, Yang HJ, Jeong DY, Kim Y, Oh S. Comparative Genomic and Functional Evaluations of Bacillus subtilis Newly Isolated from Korean Traditional Fermented Foods. Foods 2020; 9:E1805. [PMID: 33291832 PMCID: PMC7762004 DOI: 10.3390/foods9121805] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/20/2020] [Accepted: 11/28/2020] [Indexed: 01/28/2023] Open
Abstract
Many fermented foods are known to have beneficial effects on human and animal health, offering anti-aging and immunomodulatory benefits to host. Microorganisms contained in the fermented foods are known to provide metabolic products possibly improving host health. However, despite of a number of studies on the functional effects of the fermented foods, isolation and identification of the effective bacterial strains in the products are still in progress. The objective of this study was to isolate candidate functional strains in various Korean traditional fermented foods, including ganjang, gochujang, doenjang, and jeotgal, and evaluate their beneficial effects on the host, using Caenorhabditis elegans as a surrogate animal model. Among the 30 strains isolated, five Bacillus spp. were selected that increased the expression level of pmk-1, an innate immune gene of C. elegans. These strains extended the nematode lifespan and showed intestinal adhesion to the host. Based on the bioinformatic analyses of whole genome sequences and pangenomes, the five strains of Bacillus subtilis were genetically different from the strains found in East Asian countries and previously reported strains isolated from Korean fermented foods. Our findings suggest that the newly isolated B. subtilis strains can be a good candidate for probiotic with further in-depth investigation on health benefits and safety.
Collapse
Affiliation(s)
- Hye Jin Choi
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Donghyun Shin
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju 54896, Korea;
| | - Minhye Shin
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Bohyun Yun
- Department of Animal Science and Institute of Milk Genomics, Jeonbuk National University, Jeonju 54896, Korea;
| | - Minkyoung Kang
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea;
| | - Hee-Jong Yang
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk 56048, Korea; (H.-J.Y.); (D.-Y.J.)
| | - Do-Youn Jeong
- Microbial Institute for Fermentation Industry, Sunchang, Jeonbuk 56048, Korea; (H.-J.Y.); (D.-Y.J.)
| | - Younghoon Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea; (H.J.C.); (M.S.)
| | - Sangnam Oh
- Department of Functional Food and Biotechnology, Jeonju University, Jeonju 55069, Korea;
| |
Collapse
|
25
|
Chen C, Wang L, Yu H, Tian H. The local transcriptional regulators SacR1 and SacR2 act as repressors of fructooligosaccharides metabolism in Lactobacillus plantarum. Microb Cell Fact 2020; 19:161. [PMID: 32778113 PMCID: PMC7419226 DOI: 10.1186/s12934-020-01403-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/13/2020] [Indexed: 11/25/2022] Open
Abstract
Background In Lactobacillus plantarum, fructooligosaccharides (FOS) metabolism is controlled by both global and local regulatory mechanisms. Although catabolite control protein A has been identified as a global regulator of FOS metabolism, the functions of local regulators remain unclear. This study aimed to elucidate the roles of two local regulators, SacR1 and SacR2, in the regulation of FOS metabolism in L. plantarum both in vitro and in vivo. Results The inactivation of sacR1 and sacR2 affected the growth and production of metabolites for strains grown on FOS or glucose, respectively. A reverse transcription-quantitative PCR analysis of one wild-type and two mutant strains (ΔsacR1 and ΔsacR2) of L. plantarum identified SacR1 and SacR2 as repressors of genes relevant to FOS metabolism in the absence of FOS, and these genes could be induced or derepressed by the addition of FOS. The analysis predicted four potential transcription factor binding sites (TFBSs) in the putative promoter regions of two FOS-related clusters. The binding of SacR1 and SacR2 to these TFBSs both in vitro and in vivo was verified using electrophoretic mobility shift assays and chromatin immunoprecipitation, respectively. A consensus sequence of WNNNNNAACGNNTTNNNNNW was deduced for the TFBSs of SacR1 and SacR2. Conclusion Our results identified SacR1 and SacR2 as local repressors for FOS metabolism in L. plantarum. The regulation is achieved by the binding of SacR1 and SacR2 to TFBSs in the promoter regions of FOS-related clusters. The results provide new insights into the complex network regulating oligosaccharide metabolism by lactic acid bacteria. ![]()
Collapse
Affiliation(s)
- Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Linlin Wang
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
26
|
Guo Y, Bian X, Liu J, Zhu M, Li L, Yao T, Tang C, Ravichandran V, Liao P, Papadimitriou K, Yin J. Dietary Components, Microbial Metabolites and Human Health: Reading between the Lines. Foods 2020; 9:E1045. [PMID: 32756378 PMCID: PMC7466307 DOI: 10.3390/foods9081045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 02/06/2023] Open
Abstract
Trillions of bacteria reside in the human gut and they metabolize dietary substances to obtain nutrients and energy while producing metabolites. Therefore, different dietary components could affect human health in various ways through microbial metabolism. Many such metabolites have been shown to affect human physiological activities, including short-chain fatty acids metabolized from carbohydrates; indole, kynurenic acid and para-cresol, metabolized from amino acids; conjugated linoleic acid and linoleic acid, metabolized from lipids. Here, we review the features of these metabolites and summarize the possible molecular mechanisms of their metabolisms by gut microbiota. We discuss the potential roles of these metabolites in health and diseases, and the interactions between host metabolism and the gut microbiota. We also show some of the major dietary patterns around the world and hope this review can provide insights into our eating habits and improve consumers' health conditions.
Collapse
Affiliation(s)
- Yao Guo
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Xiaohan Bian
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Jiali Liu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| | - Ming Zhu
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Lin Li
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Tingyu Yao
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Congjia Tang
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
| | - Vinothkannan Ravichandran
- State Key Laboratory of Microbial Technology, Shandong University–Helmholtz Institute of Biotechnology, Shandong University, Qingdao 266237, China;
| | - Peng Liao
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China;
| | - Konstantinos Papadimitriou
- Department of Food Science and Technology, School of Agriculture and Food, University of Peloponnese, 22131 Antikalamos, Greece;
| | - Jia Yin
- Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, College of Life Sciences, Hunan Normal University, Changsha 410006, China; (Y.G.); (X.B.); (J.L.); (M.Z.); (L.L.); (T.Y.); (C.T.)
- Hunan International Joint Laboratory of Animal Intestinal Ecology and Health, College of Life Science, Hunan Normal University, Changsha 410006, China
| |
Collapse
|
27
|
Panwar D, Kapoor M. Transcriptional analysis of galactomannooligosaccharides utilization by Lactobacillus plantarum WCFS1. Food Microbiol 2020; 86:103336. [DOI: 10.1016/j.fm.2019.103336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 09/12/2019] [Accepted: 09/13/2019] [Indexed: 02/06/2023]
|
28
|
Abstract
Prebiotics are increasingly used as food supplements, especially in infant formulas, to modify the functioning and composition of the microbiota. However, little is currently known about the mechanisms of prebiotic recognition and transport by gut bacteria, while these steps are crucial in their metabolism. In this study, we established a new strategy to profile the specificity of oligosaccharide transporters, combining microbiomics, genetic locus and strain engineering, and state-of-the art metabolomics. We revisited the transporter classification database and proposed a new way to classify these membrane proteins based on their structural and mechanistic similarities. Based on these developments, we identified and characterized, at the molecular level, a fructooligosaccharide transporting phosphotransferase system, which constitutes a biomarker of diet and gut pathology. The deciphering of this prebiotic metabolization mechanism by a nonbeneficial bacterium highlights the controversial use of prebiotics, especially in the context of chronic gut diseases. Prebiotic oligosaccharides, such as fructooligosaccharides, are increasingly being used to modulate the composition and activity of the gut microbiota. However, carbohydrate utilization analyses and metagenomic studies recently revealed the ability of deleterious and uncultured human gut bacterial species to metabolize these functional foods. Moreover, because of the difficulties of functionally profiling transmembrane proteins, only a few prebiotic transporters have been biochemically characterized to date, while carbohydrate binding and transport are the first and thus crucial steps in their metabolization. Here, we describe the molecular mechanism of a phosphotransferase system, highlighted as a dietary and pathology biomarker in the human gut microbiome. This transporter is encoded by a metagenomic locus that is highly conserved in several human gut Firmicutes, including Dorea species. We developed a generic strategy to deeply analyze, in vitro and in cellulo, the specificity and functionality of recombinant transporters in Escherichia coli, combining carbohydrate utilization locus and host genome engineering and quantification of the binding, transport, and growth rates with analysis of phosphorylated carbohydrates by mass spectrometry. We demonstrated that the Dorea fructooligosaccharide transporter is specific for kestose, whether for binding, transport, or phosphorylation. This constitutes the biochemical proof of effective phosphorylation of glycosides with a degree of polymerization of more than 2, extending the known functional diversity of phosphotransferase systems. Based on these new findings, we revisited the classification of these carbohydrate transporters. IMPORTANCE Prebiotics are increasingly used as food supplements, especially in infant formulas, to modify the functioning and composition of the microbiota. However, little is currently known about the mechanisms of prebiotic recognition and transport by gut bacteria, while these steps are crucial in their metabolism. In this study, we established a new strategy to profile the specificity of oligosaccharide transporters, combining microbiomics, genetic locus and strain engineering, and state-of-the art metabolomics. We revisited the transporter classification database and proposed a new way to classify these membrane proteins based on their structural and mechanistic similarities. Based on these developments, we identified and characterized, at the molecular level, a fructooligosaccharide transporting phosphotransferase system, which constitutes a biomarker of diet and gut pathology. The deciphering of this prebiotic metabolization mechanism by a nonbeneficial bacterium highlights the controversial use of prebiotics, especially in the context of chronic gut diseases.
Collapse
|
29
|
Transcriptional Regulator AcrR Increases Ethanol Tolerance through Regulation of Fatty Acid Synthesis in Lactobacillus plantarum. Appl Environ Microbiol 2019; 85:AEM.01690-19. [PMID: 31519657 DOI: 10.1128/aem.01690-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/11/2019] [Indexed: 01/24/2023] Open
Abstract
Lactobacillus plantarum is a versatile bacterium with significant adaptability to harsh habitats containing excessive ethanol concentrations. It was found that the L. plantarum NF92-TetR/AcrR family regulator, AcrR, significantly enhanced the growth rate of this lactic acid bacterium in the presence of ethanol. Through screening 172 ethanol-resistant related genes by electrophoretic mobility shift and quantitative reverse transcription-PCR (RT-qPCR) assays, six genes were identified to be regulated by AcrR under ethanol stress. Among these was a gene coding for a 3-hydroxyacyl-ACP dehydratase (fabZ1) regulated by AcrR under ethanol stress. AcrR regulated fabZ1 under ethanol stress by binding to its promoter, P fabZ1 DNase I footprinting analysis indicated that there were two specific AcrR binding sites on P fabZ1 RT-PCR results showed fabZ1 could cotranscribe with its downstream 12 genes and conform a fatty acid de novo biosynthesis (fab) gene cluster under the control of P fabZ1 Both RT-qPCR of the fab gene cluster in acrR knockout and overexpression strains and fatty acid methyl ester analysis of the acrR knockout strain showed that AcrR could promote fatty acid synthesis in L. plantarum NF92. Membrane fluorescence anisotropy analysis of acrR knockout and overexpression strains showed that AcrR could increase membrane fluidity under ethanol stress. Thus, AcrR could regulate fatty acid synthesis and membrane fluidity to promote the adaption of L. plantarum NF92 to a high ethanol concentration.IMPORTANCE Ethanol tolerance is essential for L. plantarum strains living in substances with more than 9% ethanol, such as wine and beer. The details regarding how L. plantarum adapts to ethanol are still lacking. This study demonstrates that AcrR regulates the de novo synthesis of fatty acids in L. plantarum adapting to toxic levels of ethanol. We also identified the ability of the TetR/AcrR family regulator to bind to the fatty acid biosynthesis gene promoter, P fabZ1 , in L. plantarum and defined the binding sites. This finding facilitates the induction of the adaptation of L. plantarum strains to ethanol for food fermentation applications.
Collapse
|
30
|
Zhai P, Song J, Gao L, Lu L. A sphingolipid synthesis-related protein OrmA in Aspergillus fumigatus is responsible for azole susceptibility and virulence. Cell Microbiol 2019; 21:e13092. [PMID: 31376233 DOI: 10.1111/cmi.13092] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/17/2019] [Accepted: 07/29/2019] [Indexed: 01/24/2023]
Abstract
Previous studies identified that the budding yeast Saccharomyces cerevisiae have two sphingolipid synthesis-related proteins, Orm1p and Orm2p, that negatively regulate the activities of SPT, which is a key rate-limiting enzyme in sphingolipid synthesis. However, little is known about whether sphingolipids in the cell membrane, which are closely related to ergosterols, could affect the efficacy of azole drugs, which target to the ergosterol biosynthesis. In this study, through genome-wide homologue search analysis, we found that the Aspergillus fumigatus genome only contains one Orm homologue, referred to as OrmA for which the protein expression could be induced by azole antifungals in a dose-dependent manner. Deletion of ormA caused hypersensitivity to azoles, and adding the sphingolipid synthesis inhibitor myriocin rescued the azole susceptibility induced by lack of ormA. In contrast, overexpression of OrmA resulted in azole resistance, indicating that OrmA is a positive azole-response regulator. Further mechanism analysis verified that OrmA is related to drug susceptibility by affecting endoplasmic reticulum stress responses in an unfolded protein response pathway-HacA-dependent manner. Lack of ormA led to an abnormal profile of sphingolipid ceramide components accompanied by hypersensitivity to low temperatures. Furthermore, deletion of OrmA significantly reduced virulence in an immunosuppressed mouse model. The findings in this study collectively suggest that the sphingolipid metabolism pathway in A. fumigatus plays a critical role in azole susceptibility and fungal virulence.
Collapse
Affiliation(s)
- Pengfei Zhai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Jinxing Song
- The Key Laboratory of Biotechnology for Medicinal Plants of Jiangsu Province and School of Life Science, Jiangsu Normal University, Xuzhou, PR China
| | - Lu Gao
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| | - Ling Lu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, College of Life Sciences, Nanjing Normal University, Nanjing, PR China
| |
Collapse
|
31
|
Chen C, Wang L, Lu Y, Yu H, Tian H. Comparative Transcriptional Analysis of Lactobacillus plantarum and Its ccpA-Knockout Mutant Under Galactooligosaccharides and Glucose Conditions. Front Microbiol 2019; 10:1584. [PMID: 31338086 PMCID: PMC6629832 DOI: 10.3389/fmicb.2019.01584] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 06/25/2019] [Indexed: 01/02/2023] Open
Abstract
Galactooligosaccharides (GOS) are documented prebiotic compounds, but knowledge of the metabolic and regulatory mechanisms of GOS utilization by lactic acid bacteria is still limited. Here we used transcriptome and physiological analyses to investigate the differences in the logarithmic growth phase of Lactobacillus plantarum and L. plantarum ΔccpA metabolizing GOS or glucose as the sole source of carbohydrate. In total, 489 genes (16%) were differentially transcribed in the wild-type L. plantarum grown on glucose and GOS and the value is decreased to 7% due to the loss of ccpA. Only 6% genes were differentially expressed when the wild-type and the ccpA mutant were compared on GOS. Transcriptome data revealed that the carbon sources significantly affected the expression of several genes, and some of the genes were mediated by CcpA. In particular, lac and gal gene clusters resembled the corresponding clusters in L. acidophilus NCFM that are involved in GOS metabolism, indicating that these clusters may be participating in GOS utilization. Moreover, reverse transcription-PCR analysis showed that GOS-related gene clusters were organized in five independent polycistronic units. In addition, many commonalities were found between fructooligosaccharides and GOS metabolism in L. plantarum, including differentially expressed genes involved in oligosaccharide metabolism, conversion of metabolites, and changes in fatty acid biosynthesis. Overall, our findings provide new information on gene transcription and the metabolic mechanism associated with GOS utilization, and confirm that CcpA plays an important role in carbon metabolism regulation in L. plantarum.
Collapse
Affiliation(s)
- Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Linlin Wang
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yanqing Lu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huanxiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
32
|
Lu Y, Song S, Tian H, Yu H, Zhao J, Chen C. Functional analysis of the role of CcpA in Lactobacillus plantarum grown on fructooligosaccharides or glucose: a transcriptomic perspective. Microb Cell Fact 2018; 17:201. [PMID: 30593274 PMCID: PMC6309078 DOI: 10.1186/s12934-018-1050-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 12/24/2018] [Indexed: 12/19/2022] Open
Abstract
Background The catabolite control protein A (CcpA) is a master regulator of many important cellular processes in Gram-positive bacteria. In Lactobacillus plantarum, CcpA directly or indirectly controls the transcription of a large number of genes that are involved in carbohydrate metabolism, aerobic and anaerobic growth, stress response and metabolite production, but its role in response to different carbon sources remains unclear. Results Here a combined transcriptomic and physiological approach was used to survey the global alterations that occurred during the logarithmic growth phase of wild-type and ccpA mutant strains of L. plantarum ST-III using fructooligosaccharides (FOS) or glucose as the sole carbon source. The inactivation of ccpA significantly affected the growth and production of metabolites under both carbon sources. About 15% of the total genes were significantly altered between wild-type and ccpA strains grown on glucose and the value is deceased to 12% when these two strains were compared on FOS, while only 7% were obviously changed due to the loss of CcpA when comparing strains grown on glucose and FOS. Although most of the differentially expressed genes mediated by CcpA are glucose dependent, FOS can also induce carbon catabolite repression (CCR) through the CcpA pathway. Moreover, the inactivation of ccpA led to a transformation from homolactic fermentation to mixed fermentation under aerobic conditions. CcpA can control genes directly by binding in the regulatory region of the target genes (mixed fermentation), indirectly through local regulators (fatty acid biosynthesis), or have a double effect via direct and indirect regulation (FOS metabolism). Conclusion Overall, our results show that CcpA plays a central role in response to carbon source and availability of L. plantarum and provide new insights into the complex and extended regulatory network of lactic acid bacteria.![]() Electronic supplementary material The online version of this article (10.1186/s12934-018-1050-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yanqing Lu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Sichao Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, 201203, People's Republic of China
| | - Huaixiang Tian
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, 214122, Jiangsu Province, People's Republic of China
| | - Chen Chen
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, People's Republic of China.
| |
Collapse
|
33
|
Impact of Lactobacillus plantarum ST-III on the composition of infant gut microbiota and its potential synergism with breast milk and infant formula as revealed by an in vitro study. Int Dairy J 2018. [DOI: 10.1016/j.idairyj.2018.05.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Chen C, Lu Y, Wang L, Yu H, Tian H. CcpA-Dependent Carbon Catabolite Repression Regulates Fructooligosaccharides Metabolism in Lactobacillus plantarum. Front Microbiol 2018; 9:1114. [PMID: 29896178 PMCID: PMC5986886 DOI: 10.3389/fmicb.2018.01114] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/11/2018] [Indexed: 01/12/2023] Open
Abstract
Fructooligosaccharides (FOSs) metabolism in Lactobacillus plantarum is controlled by two gene clusters, and the global regulator catabolite control protein A (CcpA) may be involved in the regulation. To understand the mechanism, this study focused on the regulation relationships of CcpA toward target genes and the binding effects on the catabolite responsive element (cre). First, reverse transcription-PCR analysis of the transcriptional organization of the FOS-related gene clusters showed that they were organized in three independent polycistronic units. Diauxic growth, hierarchical utilization of carbohydrates and repression of FOS-related genes were observed in cultures containing FOS and glucose, suggesting carbon catabolite repression (CCR) control in FOS utilization. Knockout of ccpA gene eliminated these phenomena, indicating the principal role of this gene in CCR of FOS metabolism. Furthermore, six potential cre sites for CcpA binding were predicted in the regions of putative promoters of the two clusters. Direct binding was confirmed by electrophoretic mobility shift assays in vitro and chromatin immunoprecipitation in vivo. The results of the above studies suggest that CcpA is a vital regulator of FOS metabolism in L. plantarum and that CcpA-dependent CCR regulates FOS metabolism through the direct binding of CcpA toward the cre sites in the promoter regions of FOS-related clusters.
Collapse
Affiliation(s)
- Chen Chen
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Yanqing Lu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Linlin Wang
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Haiyan Yu
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| | - Huaixiang Tian
- Department of Food Science and Technology, Shanghai Institute of Technology, Shanghai, China
| |
Collapse
|
35
|
Botta C, Acquadro A, Greppi A, Barchi L, Bertolino M, Cocolin L, Rantsiou K. Genomic assessment in Lactobacillus plantarum links the butyrogenic pathway with glutamine metabolism. Sci Rep 2017; 7:15975. [PMID: 29162929 PMCID: PMC5698307 DOI: 10.1038/s41598-017-16186-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/08/2017] [Indexed: 11/09/2022] Open
Abstract
The butyrogenic capability of Lactobacillus (L.) plantarum is highly dependent on the substrate type and so far not assigned to any specific metabolic pathway. Accordingly, we compared three genomes of L. plantarum that showed a strain-specific capability to produce butyric acid in human cells growth media. Based on the genomic analysis, butyric acid production was attributed to the complementary activities of a medium-chain thioesterase and the fatty acid synthase of type two (FASII). However, the genomic islands of discrepancy observed between butyrogenic L. plantarum strains (S2T10D, S11T3E) and the non-butyrogenic strain O2T60C do not encompass genes of FASII, but several cassettes of genes related to sugar metabolism, bacteriocins, prophages and surface proteins. Interestingly, single amino acid substitutions predicted from SNPs analysis have highlighted deleterious mutations in key genes of glutamine metabolism in L. plantarum O2T60C, which corroborated well with the metabolic deficiency suffered by O2T60C in high-glutamine growth media and its consequent incapability to produce butyrate. In parallel, the increase of glutamine content induced the production of butyric acid by L. plantarum S2T10D. The present study reveals a previously undescribed metabolic route for butyric acid production in L. plantarum, and a potential involvement of the glutamine uptake in its regulation.
Collapse
Affiliation(s)
- Cristian Botta
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Alberto Acquadro
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Anna Greppi
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
- Department of Health Sciences and Technology, Laboratory of Food Biotechnology, ETH Zürich, Switzerland
| | - Lorenzo Barchi
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Marta Bertolino
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Luca Cocolin
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy
| | - Kalliopi Rantsiou
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Turin, Italy.
| |
Collapse
|
36
|
Liu YN, Zhang TJ, Lu XX, Ma BL, Ren A, Shi L, Jiang AL, Yu HS, Zhao MW. Membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in Ganoderma lucidum. Environ Microbiol 2017; 19:1653-1668. [PMID: 28198137 DOI: 10.1111/1462-2920.13693] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/06/2017] [Indexed: 01/17/2023]
Abstract
Ganoderma lucidum has become a potential model system for evaluating how environmental factors regulate the secondary metabolism of basidiomycetes. Heat stress (HS) is one of the most important environmental factors. It was previously reported that HS could induce the biosynthesis of ganoderic acids (GA). In this study, we found that HS increased GA biosynthesis and also significantly increased cell membrane fluidity. Furthermore, our results showed that addition of the membrane rigidifier dimethylsulfoxide (DMSO) could revert the increased GA biosynthesis elicited by HS. These results indicate that an increase in membrane fluidity is associated with HS-induced GA biosynthesis. Further evidence showed that the GA content was decreased in D9des-silenced strains and could be reverted to WT levels by addition of the membrane fluidizer benzyl alcohol (BA). In contrast, GA content was increased in D9des-overexpression strains and could be reverted to WT levels by the addition of DMSO. Furthermore, both membrane fluidity and GA biosynthesis induced by HS could be reverted by DMSO in WT and D9des-silenced strains. To the best of our knowledge, this is the first report demonstrating that membrane fluidity is involved in the regulation of heat stress induced secondary metabolism in filamentous fungi.
Collapse
Affiliation(s)
- Yong-Nan Liu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Tian-Jun Zhang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Xiao-Xiao Lu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Bao-Liang Ma
- Department of Physics, Science of College, Nanjing Agricultural University, Nanjing, 210095, P.R China
| | - Ang Ren
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Liang Shi
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Ai-Liang Jiang
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Han-Shou Yu
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| | - Ming-Wen Zhao
- Key Laboratory of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, Microbiology Department, College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, P.R. China
| |
Collapse
|