1
|
Park MJ, Kim J, Kim YJ, Yu J, Jin H, Woo S, Zo YG, Kwon KK. Genome-based reclassification of the family Stappiaceae and assessment of environmental forcing with the report of two novel taxa, Flexibacterium corallicola gen. nov., sp. nov., and Nesiotobacter zosterae sp. nov., isolated from coral and seagrass. PLoS One 2025; 20:e0322500. [PMID: 40373110 DOI: 10.1371/journal.pone.0322500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 03/23/2025] [Indexed: 05/17/2025] Open
Abstract
Two novel strains, MaLMAid0302T and SPO723T, isolated from coral and eelgrass, respectively, were distinguished from other Stappiaceae species based on phenotypic, biochemical, phylogenetic, and chemotaxonomic traits. Taxonomic challenges within the family Stappiaceae were addressed using a taxogenomic approach with iterative clustering, establishing an optimal average amino acid identity (AAI) threshold (71.92-72.88%) for genus delineation. This analysis led to major taxonomic revisions, including the establishment of new genera-Parapolycladidibacter, Astericibacter, Flexibacterium, Aliiroseibium, Laciiroseibium, Soliroseibium, Novilabrenzia, Litoriroseibium, and Algilabrenzia-as well as the reassignment of several species: Hongsoonwoonella albiluteola comb. nov., Parapolycladidibacter stylochi gen. nov., comb. nov., Astericibacter flavus gen. nov., comb. nov., Nesiotobacter exalbescens comb. nov., Aliiroseibium hamelinense gen. nov., comb. nov., Laciiroseibium aquae gen. nov., comb. nov., Soliroseibium sediminis gen. nov., comb. nov., Novilabrenzia suaedae gen. nov., comb. nov., Novilabrenzia litorale gen. nov., comb. nov., Litoriroseibium aestuarii gen. nov., comb. nov., Litoriroseibium limicola gen. nov., comb. nov., and Algilabrenzia polysiphoniae gen. nov., comb. nov. Given this extensive taxonomic reclassification of the family Stappiaceae, strain SPO723T (=KCCM 42324T = JCM 14066T) was classified as Nesiotobacter zosterae sp. nov., and Flexibacterium corallicola MaLMAid0302T (=KCTC 92348T = JCM 35474T) was designated as the type species of the newly established genus Flexibacterium. Close phylogenetic ties to Pseudovibrio, known for symbiosis, prompted analysis of niche-specific genetic compositions. Canonical Correspondence Analysis attributed 64% of genomic variation to phylogenetic forcing and 36% to environmental forcing. Functional adaptations included pectin and aromatic compound degradation in sediment strains, nitrogen reduction in flatworm strains, and sulfur metabolism in coral strains. The eelgrass strain exhibited dTDP-L-rhamnose synthesis, potentially aiding biofilm formation for adhesion in dynamic environments. These findings emphasize the roles of both environmental and phylogenetic forcing in shaping genomic diversity and highlight the ecological importance of the family Stappiaceae in marine habitat-associated niches.
Collapse
Affiliation(s)
- Mi-Jeong Park
- Marine Biotechnology and Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Jinnam Kim
- Department of Biology, Kyungsung University, Busan, Republic of Korea
| | - Yun Jae Kim
- Marine Biotechnology and Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- Marine Technology and Convergence Engineering, KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Jihyun Yu
- Marine Biotechnology and Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- Marine Technology and Convergence Engineering, KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| | - Hyein Jin
- Marine Biotechnology and Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Seonok Woo
- Marine Biotechnology and Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
| | - Young-Gun Zo
- Department of Biology, Kyungsung University, Busan, Republic of Korea
| | - Kae Kyoung Kwon
- Marine Biotechnology and Bioresource Research Department, Korea Institute of Ocean Science and Technology, Busan, Republic of Korea
- Marine Technology and Convergence Engineering, KIOST School, University of Science and Technology, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Dai Y, Eustáquio AS. Evaluation of vectors for gene expression in Pseudovibrio marine bacteria. Appl Environ Microbiol 2025; 91:e0020725. [PMID: 40035598 PMCID: PMC12016493 DOI: 10.1128/aem.00207-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 02/12/2025] [Indexed: 03/05/2025] Open
Abstract
α-Proteobacteria belonging to the Pseudovibrio genus have been isolated from different marine organisms including marine sponges, corals, and algae. This genus was first described in 2004 and has since garnered attention due to the potential ecological relevance and biotechnological application of its metabolites. For instance, we recently reported specialized metabolites that we named pseudovibriamides from Pseudovibrio brasiliensis Ab134. The pseudovibriamide encoding ppp gene cluster is found in two-thirds of Pseudovibrio genomes. Pseudovibriamides coordinate motility and biofilm formation, behaviors that are known to be important for host colonization. Although we previously established reverse genetics methods to delete genes via homologous recombination, no self-replicative vectors have been reported for Pseudovibrio. We show that plasmid vectors containing two different broad-host-range replicons, RSF1010 and pBBR1, can be used in P. brasiliensis. The efficiency of vector transfer by electroporation averaged ~3 × 103 CFU/µg plasmid DNA, whereas the conjugation frequency from Escherichia coli ranged from 10-3 to 10-6. We then tested the vectors for fluorescent protein expression and consequent labeling, which allowed us to observe their effects on swarming motility and to compare plasmid stability. This study expands the genetic toolbox available for Pseudovibrio, which is expected to enable future ecological and biotechnological studies.IMPORTANCEThe genus Pseudovibrio of α-Proteobacteria has consistently been isolated from marine sponges and other marine organisms such as corals and algae. Pseudovibrio bacteria are a source of antibiotics and other secondary metabolites with the potential to be developed into pharmaceuticals. Moreover, the secondary metabolites they produce are important for their physiology and for interactions with other organisms. Here we expand the genetic toolbox available for Pseudovibrio bacteria by establishing self-replicative vectors that can be used for the expression of, for example, fluorescent proteins. The availability of genetic tools is important to enable us to explore the emerging ecological and biotechnological potentials of Pseudovibrio bacteria.
Collapse
Affiliation(s)
- Yitao Dai
- />Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
- Center for Biomolecular Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Alessandra S. Eustáquio
- />Department of Pharmaceutical Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
- Center for Biomolecular Sciences, Retzky College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
3
|
Adeniji AA, Chukwuneme CF, Conceição EC, Ayangbenro AS, Wilkinson E, Maasdorp E, de Oliveira T, Babalola OO. Unveiling novel features and phylogenomic assessment of indigenous Priestia megaterium AB-S79 using comparative genomics. Microbiol Spectr 2025; 13:e0146624. [PMID: 39969228 PMCID: PMC11960082 DOI: 10.1128/spectrum.01466-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/12/2024] [Indexed: 02/20/2025] Open
Abstract
Priestia megaterium strain AB-S79 isolated from active gold mine soil previously expressed in vitro heavy metal resistance and has a 5.7 Mb genome useful for biotechnological exploitation. This study used web-based bioinformatic resources to analyze P. megaterium AB-S79 genomic relatedness, decipher its secondary metabolite biosynthetic gene clusters (BGCs), and better comprehend its taxa. Genes were highly conserved across the 14 P. megaterium genomes examined here. The pangenome reflected a total of 61,397 protein-coding genes, 59,745 homolog protein family hits, and 1,652 singleton protein family hits. There were also 7,735 protein families, including 1,653 singleton families and 6,082 homolog families. OrthoVenn3 comparison of AB-S79 protein sequences with 13 other P. megaterium strains, 7 other Priestia spp., and 6 other Bacillus spp. highlighted AB-S79's unique genomic and evolutionary trait. antiSMASH identified two key transcription factor binding site regulators in AB-S79's genome: zinc-responsive repressor (Zur) and antibiotic production activator (AbrC3), plus putative enzymes for the biosynthesis of terpenes and ranthipeptides. AB-S79 also harbors BGCs for two unique siderophores (synechobactins and schizokinens), phosphonate, dienelactone hydrolase family protein, and phenazine biosynthesis protein (phzF), which is significant for this study. Phosphonate particularly showed specificity for the P. megaterium sp. validating the effect of gene family expansion and contraction. P. megaterium AB-S79 looks to be a viable source for value-added compounds. Thus, this study contributes to the theoretical framework for the systematic metabolic and genetic exploitation of the P. megaterium sp., particularly the value-yielding strains. IMPORTANCE This study explores microbial natural product discovery using genome mining, focusing on Priestia megaterium. Key findings highlight the potential of P. megaterium, particularly strain AB-S79, for biotechnological applications. The research shows a limited output of P. megaterium genome sequences from Africa, emphasizing the importance of the native strain AB-S79. Additionally, the study underlines the strain's diverse metabolic capabilities, reinforcing its suitability as a model for microbial cell factories and its foundational role in future biotechnological exploitation.
Collapse
Affiliation(s)
- Adetomiwa Ayodele Adeniji
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Chinenyenwa Fortune Chukwuneme
- Department of Natural Sciences, Faculty of Applied & Computer Sciences, Vaal University of Technology, Vanderbijlpark, South Africa
| | - Emilyn Costa Conceição
- SAMRC Centre for Tuberculosis Research, Division of Molecular Biology & Human Genetics, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Ayansina Segun Ayangbenro
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Eduan Wilkinson
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Elizna Maasdorp
- SAMRC Centre for Tuberculosis Research, Division of Immunology, Faculty of Medicine & Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Tulio de Oliveira
- Centre for Epidemic Response & Innovation, School of Data Science & Computational Thinking, Stellenbosch University, Cape Town, South Africa
| | - Olubukola Oluranti Babalola
- Food Security & Safety Focus Area, Faculty of Natural & Agricultural Sciences, North-West University, Mmabatho, South Africa
- Department of Life Sciences, Faculty of Natural Sciences, Imperial College, Berkshire, United Kingdom
| |
Collapse
|
4
|
Leiva NV, Montenegro D, Castro C, Silva M, Vidal R, González MT. Is parasitic infection a buffer against metal pollution? J Helminthol 2025; 99:e34. [PMID: 40000403 DOI: 10.1017/s0022149x2500015x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Metal pollution is a major global issue in aquatic environments, affecting environmental quality and potentially altering host-parasite dynamics. This study evaluates the buffering role of a larval trematode Himasthla sp. under experimental conditions to test the effect of copper (Cu) exposure on the survival of the marine snail Echinolittorina peruviana. Snails were collected from intertidal rocky pools over a two-month period from Coloso (23°45'S, 70°28'W), northern Chile, and identified as parasitized or unparasitized. Both groups were then exposed to Cu concentrations (3 and 6 mg/L). Kaplan-Meier curves were used to determine the percentage of survival over time and the respective confidence intervals (CI). A nested ANOVA was conducted to assess whether rediae abundance per snail varied by experiment time, snail status, and Cu concentration. Snail survival was affected by both Cu-concentrations, but the effect was greater at 6 mg/L. At 3 mg/L, 57% (CI: 49.9-66.6%) of unparasitized snails were alive at 192 h, while 56% (CI: 46.6-67.4%) of parasitized snails survived at 216 h. At 6 mg/L, 42% (CI:35-51%) of unparasitized snails survived at 192 h, while 48% of parasitized snails survived at 216 h (CI:39-59%). Regardless of Cu concentration, after 240 h, all unparasitized snails had died, while 15% of parasitized snails remained alive. Dead snails harboured 125±53 rediae, while survivors had 194±73 rediae, with no significant differences between treatments. Our results show that parasitized snails survived longer than unparasitized snails, suggesting a trade-off between parasitism and host survival in polluted environments.
Collapse
Affiliation(s)
- N V Leiva
- Programa Doctorado en Ciencias Aplicadas Mención Sistemas Acuáticos, Universidad de Antofagasta, Antofagasta, Chile
- Instituto de Ciencias Naturales 'Alexander von Humboldt', Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - D Montenegro
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Universidad Católica del Maule, Talca, Chile
| | - C Castro
- Instituto de Ciencias Naturales 'Alexander von Humboldt', Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - M Silva
- Instituto de Ciencias Naturales 'Alexander von Humboldt', Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - R Vidal
- Laboratory of Genomics, Molecular Ecology and Evolutionary Studies, Department of Biology, Universidad de Santiago de Chile, Santiago, Chile
| | - M T González
- Instituto de Ciencias Naturales 'Alexander von Humboldt', Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| |
Collapse
|
5
|
Dai Y, Lourenzon V, Ióca LP, Al-Smadi D, Arnold L, McIntire I, Berlinck RGS, Eustáquio AS. Pseudovibriamides from Pseudovibrio marine sponge bacteria promote flagellar motility via transcriptional modulation. mBio 2025; 16:e0311524. [PMID: 39727420 PMCID: PMC11796379 DOI: 10.1128/mbio.03115-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/09/2024] [Indexed: 12/28/2024] Open
Abstract
Pseudovibrio α-Proteobacteria have been repeatedly isolated from marine sponges and proposed to be beneficial to the host. Bacterial motility is known to contribute to host colonization. We have previously identified pseudovibriamides A and B, produced in culture by Pseudovibrio brasiliensis Ab134, and shown that pseudovibriamide A promotes flagellar motility. Pseudovibriamides are encoded in a hybrid nonribosomal peptide synthetase-polyketide synthase gene cluster that also includes several accessory genes. Pseudovibriamide A is a linear heptapeptide and pseudovibriamide B is a nonadepsipeptide derived from pseudovibriamide A. Here, we define the borders of the pseudovibriamides gene cluster, assign function to biosynthetic genes using reverse genetics, and test the hypothesis that pseudovibriamides impact motility by modulating gene transcription. RNA-sequencing transcriptomic analyses of strains having different compositions of pseudovibriamides suggested that both pseudovibriamides A and B affect genes potentially involved in motility, and that a compensatory mechanism is at play in mutants that produce only pseudovibriamide A, resulting in comparable flagellar motility as the wild type. The data gathered suggest that pseudovibriamides A and B have opposite roles in modulating a subset of genes, with pseudovibriamide B having a primary effect in gene activation, and pseudovibriamide A on inhibition. Finally, we observed many differentially expressed genes (up to 29% of the total gene number) indicating that pseudovibriamides have a global effect on transcription that goes beyond motility.IMPORTANCEMarine sponges are found throughout the oceans from tropical coral reefs to polar sea floors, playing crucial roles in marine ecosystems. Pseudovibrio bacteria have been proposed to contribute to sponge health. We have previously shown that pseudovibriamides produced by Pseudovibrio brasiliensis promote bacterial motility, a behavior that is beneficial to bacterial survival and host colonization. The gene cluster that encodes pseudovibriamide biosynthesis is found in two-thirds of Pseudovibrio genomes. This gene cluster is also present in Pseudomonas bacteria that interact with terrestrial plants and animals. Here, we first assign functions to pseudovibriamide biosynthetic genes using reverse genetics. We then show that pseudovibriamides play a major role in transcriptional regulation, affecting up to 29% of P. brasiliensis genes, including motility genes. Thus, this work gives insights into pseudovibriamide biosynthesis and provides evidence that they are signaling molecules relevant to bacterial motility and to other yet-to-be-identified phenotypes.
Collapse
Affiliation(s)
- Yitao Dai
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Vitor Lourenzon
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Laura P. Ióca
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, Brazil
| | - Dua Al-Smadi
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Lydia Arnold
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | - Ian McIntire
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| | | | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences and Center for Biomolecular Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Quintana-Bulla JI, Tonon LAC, Michaliski LF, Hajdu E, Ferreira AG, Berlinck RGS. Testacosides A-D, glycoglycerolipids produced by Microbacterium testaceum isolated from Tedania brasiliensis. Appl Microbiol Biotechnol 2024; 108:112. [PMID: 38217254 PMCID: PMC10786734 DOI: 10.1007/s00253-023-12870-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/18/2023] [Accepted: 09/30/2023] [Indexed: 01/15/2024]
Abstract
Marine bacteria living in association with marine sponges have proven to be a reliable source of biologically active secondary metabolites. However, no studies have yet reported natural products from Microbacterium testaceum spp. We herein report the isolation of a M. testaceum strain from the sponge Tedania brasiliensis. Molecular networking analysis of bioactive pre-fractionated extracts from culture media of M. testaceum enabled the discovery of testacosides A-D. Analysis of spectroscopic data and chemical derivatizations allowed the identification of testacosides A-D as glycoglycerolipids bearing a 1-[α-glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol moiety connected to 12-methyltetradecanoic acid for testacoside A (1), 14-methylpentadecanoic acid for testacoside B (2), and 14-methylhexadecanoic acid for testacosides C (3) and D (4). The absolute configuration of the monosaccharide residues was determined by 1H-NMR analysis of the respective diastereomeric thiazolidine derivatives. This is the first report of natural products isolated from cultures of M. testaceum. KEY POINTS: • The first report of metabolites produced by Microbacterium testaceum. • 1-[α-Glucopyranosyl-(1 → 3)-(α-mannopyranosyl)]-glycerol lipids isolated and identified. • Microbacterium testaceum strain isolated from the sponge Tedania brasiliensis.
Collapse
Affiliation(s)
- Jairo I Quintana-Bulla
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Luciane A C Tonon
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Lamonielli F Michaliski
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil
| | - Eduardo Hajdu
- Museu Nacional, Universidade Federal Do Rio de Janeiro, Quinta da Boa Vista, S/N, CEP , Rio de Janeiro, RJ, 20940-040, Brazil
| | - Antonio G Ferreira
- Departamento de Química, Universidade Federal de São Carlos, CEP , São Carlos, SP, 13565-905, Brazil
| | - Roberto G S Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, CP 780, CEP 13560-970, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
Jafari M, Moghimi H, Tirandaz H, Ebrahim-Habibi MB. Corrosion behavior of predominant Halodesulfovibrio in a marine SRB consortium and its mitigation using ZnO nanoparticles. Sci Rep 2024; 14:19545. [PMID: 39174663 PMCID: PMC11341846 DOI: 10.1038/s41598-024-70654-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/20/2024] [Indexed: 08/24/2024] Open
Abstract
Formation of Sulfate Reducing Bacteria (SRB) biofilm accelerates microbiologically influenced corrosion (MIC). The aim of this study was to investigate both the corrosivity of a marine SRB consortium on carbon steel coupons and its mitigation in the presence of ZnO. Metagenomics analysis revealed that Halodesulfovibrio (78.9%) was predominant and could be related to MIC. The analysis also showed a remarkable shift from a highly corrosive SRB consortium in the control bioreactors to a far less corrosive consortium when ZnO was added to the bioreactors. Further results indicated that the corrosion rate of the SRB consortium was 8.17 mpy on the carbon steel coupons. In the ZnO-treated bioreactors, the count of SRB and MIC in the carbon steel coupons simultaneously reduced. Moreover, Confocal Laser Scanning Microscopy and profilometry analysis determined that ZnO could significantly decrease the amount of biofilm and the corrosion rate. Electrochemical experiments revealed higher corrosion current density (icorr) and lower charge transfer resistance (Rct) in the control bioreactors relative to the ZnO-treated bioreactors. We introduce Halodesulfovibrio as a potentially important corrosive genus in a marine SRB consortium. Additionally, ZnO could be considered a proper candidate to control the corrosion induced by Halodesulfovibrio.
Collapse
Affiliation(s)
- Mansour Jafari
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Hamid Moghimi
- Department of Microbiology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| | - Hassan Tirandaz
- Microbiology and Biotechnology Research Group, Research Institute of Petroleum Industry, Tehran, Iran
| | | |
Collapse
|
8
|
Zhong W, Aiosa N, Deutsch JM, Garg N, Agarwal V. Pseudobulbiferamides: Plasmid-Encoded Ureidopeptide Natural Products with Biosynthetic Gene Clusters Shared Among Marine Bacteria of Different Genera. JOURNAL OF NATURAL PRODUCTS 2023; 86:2414-2420. [PMID: 37713418 PMCID: PMC10616845 DOI: 10.1021/acs.jnatprod.3c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Indexed: 09/17/2023]
Abstract
Ureidopeptidic natural products possess a wide variety of favorable pharmacological properties. In addition, they have been shown to mediate core physiological functions in producer bacteria. Here, we report that similar ureidopeptidic natural products with conserved biosynthetic gene clusters are produced by different bacterial genera that coinhabit marine invertebrate microbiomes. We demonstrate that a Microbulbifer strain isolated from a marine sponge can produce two different classes of ureidopeptide natural products encoded by two different biosynthetic gene clusters that are positioned on the bacterial chromosome and on a plasmid. The plasmid encoded ureidopeptide natural products, which we term the pseudobulbiferamides (5-8), resemble the ureidopeptide natural products produced by Pseudovibrio, a different marine bacterial genus that is likewise present in marine sponge commensal microbiomes. Using imaging mass spectrometry, we find that the two classes of Microbulbifer-derived ureidopeptides occupy different physical spaces relative to the bacterial colony, perhaps implying different roles for these two compound classes in Microbulbifer physiology and environmental interactions.
Collapse
Affiliation(s)
- Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Nicole Aiosa
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Jessica M. Deutsch
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| | - Neha Garg
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- Center
for Microbial Dynamics and Infection, Georgia
Institute of Technology, Atlanta, Georgia 30332, United States
| | - Vinayak Agarwal
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
- School
of Biological Sciences, Georgia Institute
of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
9
|
Cooreman K, De Spiegeleer B, Van Poucke C, Vanavermaete D, Delbare D, Wynendaele E, De Witte B. Emerging pharmaceutical therapies of Ascidian-derived natural products and derivatives. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 102:104254. [PMID: 37648122 DOI: 10.1016/j.etap.2023.104254] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 09/01/2023]
Abstract
In a growing multidrug-resistant environment, the identification of potential new drug candidates with an acceptable safety profile is a substantial crux in pharmaceutical discovery. This review discusses several aspects and properties of approved marine natural products derived from ascidian sources (phylum Chordata, subphylum Tunicata) and/or their deduced analogues including their biosynthetic origin, (bio)chemical preclinical assessments and known efficacy-safety profiles, clinical status in trials, but also translational developments, opportunities and final conclusions. The review also describes the preclinical assessments of a large number of other ascidian compounds that have not been involved in clinical trials yet. Finally, the emerging research on the connectivity of the ascidian hosts and their independent or obligate symbiotic guests is discussed. The review covers the latest information on the topic of ascidian-derived marine natural products over the last two decades including 2022, with the majority of publications published in the last decade.
Collapse
Affiliation(s)
- Kris Cooreman
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Bart De Spiegeleer
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Christof Van Poucke
- Technology and Food Science Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Brusselsesteenweg 370, BE-9090 Melle, Belgium
| | - David Vanavermaete
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Daan Delbare
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium
| | - Evelien Wynendaele
- Faculty of Pharmaceutical Sciences, Drug Quality and Registration Group, Ghent University, Ottergemsesteenweg 460, BE-9000 Ghent, Belgium
| | - Bavo De Witte
- Aquatic Environment and Quality, Animal Sciences Unit, Flanders Research Institute for Agriculture, Fisheries and Food, Jacobsenstraat 1, BE-8400 Ostend, Belgium.
| |
Collapse
|
10
|
Limited Metabolomic Overlap between Commensal Bacteria and Marine Sponge Holobionts Revealed by Large Scale Culturing and Mass Spectrometry-Based Metabolomics: An Undergraduate Laboratory Pedagogical Effort at Georgia Tech. Mar Drugs 2023; 21:md21010053. [PMID: 36662226 PMCID: PMC9862627 DOI: 10.3390/md21010053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/06/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Sponges are the richest source of bioactive organic small molecules, referred to as natural products, in the marine environment. It is well established that laboratory culturing-resistant symbiotic bacteria residing within the eukaryotic sponge host matrix often synthesize the natural products that are detected in the sponge tissue extracts. However, the contributions of the culturing-amenable commensal bacteria that are also associated with the sponge host to the overall metabolome of the sponge holobiont are not well defined. In this study, we cultured a large library of bacteria from three marine sponges commonly found in the Florida Keys. Metabolomes of isolated bacterial strains and that of the sponge holobiont were compared using mass spectrometry to reveal minimal metabolomic overlap between commensal bacteria and the sponge hosts. We also find that the phylogenetic overlap between cultured commensal bacteria and that of the sponge microbiome is minimal. Despite these observations, the commensal bacteria were found to be a rich resource for novel natural product discovery. Mass spectrometry-based metabolomics provided structural insights into these cryptic natural products. Pedagogic innovation in the form of laboratory curricula development is described which provided undergraduate students with hands-on instruction in microbiology and natural product discovery using metabolomic data mining strategies.
Collapse
|
11
|
Goldberg SR, Haltli BA, Correa H, Kerr RG. Pseudovibrio flavus sp. nov. isolated from the sea sponge Verongula gigantea. Int J Syst Evol Microbiol 2022; 72. [DOI: 10.1099/ijsem.0.005457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, motile, rod-shaped marine bacterium, designated RKSG542T, was isolated from the sea sponge Verongula gigantea collected at a depth of 20 m off the west coast of San Salvador, The Bahamas. Phylogenetic analyses based on 16S rRNA gene and genome sequences place RKSG542T in a monophyletic clade with members of the genus
Pseudovibrio
. Strain RKSG542T shared <96.7 % 16S rRNA gene sequence similarity,<72.2 % average nucleotide identity,<66.7 % average amino acid identity, and <24.8 % digital DNA–DNA hybridization with type strains of the family
Stappiaceae
. Growth occurred at 22–37 °C (22–30 °C optimum), at pH 7–9 (pH 7 optimum), and with 0.5–5 % (w/v) NaCl (2 % optimum). The predominant fatty acids (>10 %) were summed feature 8 (C18 : 1
ω6c and/or C18 : 1
ω7c), C18 : 0 and C16 : 0, and the respiratory lipoquinone was Q-10. The polar lipid composition comprised phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, three unknown aminolipids, six unknown phospholipids and four unknown lipids. The DNA G+C content of the genome sequence was 52.5 mol%. Based on the results of biochemical, phylogenetic and genomic analyses, RKSG542T (=TSD-76T=LMG 29867T) is presented here as the type strain of a novel species within the genus
Pseudovibrio
(family
Stappiaceae
, order
Hyphomicrobiales
, class
Alphaproteobacteria
), for which the name Pseudovibrio flavus sp. nov. is proposed.
Collapse
Affiliation(s)
- Stacey R. Goldberg
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Brad A. Haltli
- Nautilus Biosciences Croda, Duffy Research Centre, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| | - Hebelin Correa
- Nautilus Biosciences Croda, Duffy Research Centre, Charlottetown, Prince Edward Island, Canada
| | - Russell G. Kerr
- Nautilus Biosciences Croda, Duffy Research Centre, Charlottetown, Prince Edward Island, Canada
- Department of Biomedical Science, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
- Department of Chemistry, University of Prince Edward Island, Charlottetown, Prince Edward Island, Canada
| |
Collapse
|
12
|
Kaari M, Manikkam R, Baskaran A. Exploring Newer Biosynthetic Gene Clusters in Marine Microbial Prospecting. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:448-467. [PMID: 35394575 DOI: 10.1007/s10126-022-10118-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Marine microbes genetically evolved to survive varying salinity, temperature, pH, and other stress factors by producing different bioactive metabolites. These microbial secondary metabolites (SMs) are novel, have high potential, and could be used as lead molecule. Genome sequencing of microbes revealed that they have the capability to produce numerous novel bioactive metabolites than observed under standard in vitro culture conditions. Microbial genome has specific regions responsible for SM assembly, termed biosynthetic gene clusters (BGCs), possessing all the necessary genes to encode different enzymes required to generate SM. In order to augment the microbial chemo diversity and to activate these gene clusters, various tools and techniques are developed. Metagenomics with functional gene expression studies aids in classifying novel peptides and enzymes and also in understanding the biosynthetic pathways. Genome shuffling is a high-throughput screening approach to improve the development of SMs by incorporating genomic recombination. Transcriptionally silent or lower level BGCs can be triggered by artificially knocking promoter of target BGC. Additionally, bioinformatic tools like antiSMASH, ClustScan, NAPDOS, and ClusterFinder are effective in identifying BGCs of existing class for annotation in genomes. This review summarizes the significance of BGCs and the different approaches for detecting and elucidating BGCs from marine microbes.
Collapse
Affiliation(s)
- Manigundan Kaari
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - Radhakrishnan Manikkam
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - Abirami Baskaran
- Centre for Drug Discovery and Development, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| |
Collapse
|
13
|
Henriksen NNSE, Lindqvist LL, Wibowo M, Sonnenschein EC, Bentzon-Tilia M, Gram L. Role is in the eye of the beholder-the multiple functions of the antibacterial compound tropodithietic acid produced by marine Rhodobacteraceae. FEMS Microbiol Rev 2022; 46:fuac007. [PMID: 35099011 PMCID: PMC9075582 DOI: 10.1093/femsre/fuac007] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
Many microbial secondary metabolites have been studied for decades primarily because of their antimicrobial properties. However, several of these metabolites also possess nonantimicrobial functions, both influencing the physiology of the producer and their ecological neighbors. An example of a versatile bacterial secondary metabolite with multiple functions is the tropone derivative tropodithietic acid (TDA). TDA is a broad-spectrum antimicrobial compound produced by several members of the Rhodobacteraceae family, a major marine bacterial lineage, within the genera Phaeobacter, Tritonibacter, and Pseudovibrio. The production of TDA is governed by the mode of growth and influenced by the availability of nutrient sources. The antibacterial effect of TDA is caused by disruption of the proton motive force of target microorganisms and, potentially, by its iron-chelating properties. TDA also acts as a signaling molecule, affecting gene expression in other bacteria, and altering phenotypic traits such as motility, biofilm formation, and antibiotic production in the producer. In microbial communities, TDA-producing bacteria cause a reduction of the relative abundance of closely related species and some fast-growing heterotrophic bacteria. Here, we summarize the current understanding of the chemical ecology of TDA, including the environmental niches of TDA-producing bacteria, and the molecular mechanisms governing the function and regulation of TDA.
Collapse
Affiliation(s)
- Nathalie N S E Henriksen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Laura L Lindqvist
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mario Wibowo
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Eva C Sonnenschein
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Mikkel Bentzon-Tilia
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| | - Lone Gram
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts, Plads Bldg. 221, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
14
|
Fang SY, Chen SY, Chen YY, Kuo TJ, Wen ZH, Chen YH, Hwang TL, Sung PJ. Natural Indoles From the Bacterium Pseudovibrio denitrificans P81 Isolated From a Marine Sponge, Aaptos Species. Nat Prod Commun 2021. [DOI: 10.1177/1934578x211033735] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
A new natural indole, vibrindole B (1), together with known analogs, vibrindole A (2), trisindoline (3), norharmane (4), and 3-(hydroxyacetyl)indole (5), produced by the bacterium Pseudovibrio denitrificans P81, were isolated from a sponge, Aaptos species. The structures of indoles 1 to 5 were established by spectroscopic methods. The proposed biosynthetic pathway of 1 to 5 is also discussed, starting from tryptophan. Moreover, indoles 1 to 3 were found to exhibit cytotoxicity toward T24 tumor cells with IC50 values of 1.71 ± 0.11, 4.53 ± 0.14, and 2.26 ± 0.26 µM, respectively.
Collapse
Affiliation(s)
- Shu-Yen Fang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Sheng-Yuan Chen
- Department of Internal Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - You-Ying Chen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Tsu-Jen Kuo
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- School of Dentistry, Chung Shan Medical University, Taichung, Taiwan
- Department of Dentistry, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Zhi-Hong Wen
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- Institute of BioPharmaceutical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Yu-Hsin Chen
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
| | - Tsong-Long Hwang
- Graduate Institute of Natural Products, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Research Center for Chinese Herbal Medicine, Graduate Institute of Healthy Industry Technology, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
- Department of Anaesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, New Taipei City, Taiwan
| | - Ping-Jyun Sung
- Department of Marine Biotechnology and Resources, National Sun Yat-sen University, Kaohsiung, Taiwan
- National Museum of Marine Biology and Aquarium, Pingtung, Taiwan
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung, Taiwan
- Graduate Institute of Natural Products, Kaohsiung Medical University, Kaohsiung, Taiwan
- Ph.D. Program in Pharmaceutical Biotechnology, Fu Jen Catholic University, New Taipei, Taiwan
| |
Collapse
|
15
|
Ióca LP, Dai Y, Kunakom S, Diaz‐Espinosa J, Krunic A, Crnkovic CM, Orjala J, Sanchez LM, Ferreira AG, Berlinck RGS, Eustáquio AS. A Family of Nonribosomal Peptides Modulate Collective Behavior in
Pseudovibrio
Bacteria Isolated from Marine Sponges**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Laura P. Ióca
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Instituto de Química de São Carlos Universidade de São Paulo São Carlos SP 13560-970 Brazil
| | - Yitao Dai
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Jennifer Diaz‐Espinosa
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Laura M. Sanchez
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| | - Antonio G. Ferreira
- Departamento de Química Universidade Federal de São Carlos São Carlos SP 13565-905 Brazil
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos Universidade de São Paulo São Carlos SP 13560-970 Brazil
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
- Center for Biomolecular Sciences College of Pharmacy University of Illinois at Chicago Chicago IL 60607 USA
| |
Collapse
|
16
|
Ióca LP, Dai Y, Kunakom S, Diaz-Espinosa J, Krunic A, Crnkovic CM, Orjala J, Sanchez LM, Ferreira AG, Berlinck RGS, Eustáquio AS. A Family of Nonribosomal Peptides Modulate Collective Behavior in Pseudovibrio Bacteria Isolated from Marine Sponges*. Angew Chem Int Ed Engl 2021; 60:15891-15898. [PMID: 33961724 PMCID: PMC8269750 DOI: 10.1002/anie.202017320] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Indexed: 11/08/2022]
Abstract
Although swarming motility and biofilms are opposed collective behaviors, both contribute to bacterial survival and host colonization. Pseudovibrio bacteria have attracted attention because they are part of the microbiome of healthy marine sponges. Two-thirds of Pseudovibrio genomes contain a member of a nonribosomal peptide synthetase-polyketide synthase gene cluster family, which is also found sporadically in Pseudomonas pathogens of insects and plants. After developing reverse genetics for Pseudovibrio, we isolated heptapeptides with an ureido linkage and related nonadepsipeptides we termed pseudovibriamides A and B, respectively. A combination of genetics and imaging mass spectrometry experiments showed heptapetides were excreted, promoting motility and reducing biofilm formation. In contrast to lipopeptides widely known to affect motility/biofilms, pseudovibriamides are not surfactants. Our results expand current knowledge on metabolites mediating bacterial collective behavior.
Collapse
Affiliation(s)
- Laura P. Ióca
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Yitao Dai
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sylvia Kunakom
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jennifer Diaz-Espinosa
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Aleksej Krunic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Camila M. Crnkovic
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jimmy Orjala
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Laura M. Sanchez
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Antonio G. Ferreira
- Departamento de Química, Universidade Federal de São Carlos, São Carlos, SP 13565-905, Brazil
| | - Roberto G. S. Berlinck
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, SP 13560-970, Brazil
| | - Alessandra S. Eustáquio
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
- Center for Biomolecular Sciences, College of Pharmacy, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
17
|
Sweet M, Villela H, Keller-Costa T, Costa R, Romano S, Bourne DG, Cárdenas A, Huggett MJ, Kerwin AH, Kuek F, Medina M, Meyer JL, Müller M, Pollock FJ, Rappé MS, Sere M, Sharp KH, Voolstra CR, Zaccardi N, Ziegler M, Peixoto R. Insights into the Cultured Bacterial Fraction of Corals. mSystems 2021; 6:e0124920. [PMID: 34156291 PMCID: PMC8269258 DOI: 10.1128/msystems.01249-20] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 05/13/2021] [Indexed: 02/06/2023] Open
Abstract
Bacteria associated with coral hosts are diverse and abundant, with recent studies suggesting involvement of these symbionts in host resilience to anthropogenic stress. Despite their putative importance, the work dedicated to culturing coral-associated bacteria has received little attention. Combining published and unpublished data, here we report a comprehensive overview of the diversity and function of culturable bacteria isolated from corals originating from tropical, temperate, and cold-water habitats. A total of 3,055 isolates from 52 studies were considered by our metasurvey. Of these, 1,045 had full-length 16S rRNA gene sequences, spanning 138 formally described and 12 putatively novel bacterial genera across the Proteobacteria, Firmicutes, Bacteroidetes, and Actinobacteria phyla. We performed comparative genomic analysis using the available genomes of 74 strains and identified potential signatures of beneficial bacterium-coral symbioses among the strains. Our analysis revealed >400 biosynthetic gene clusters that underlie the biosynthesis of antioxidant, antimicrobial, cytotoxic, and other secondary metabolites. Moreover, we uncovered genomic features-not previously described for coral-bacterium symbioses-potentially involved in host colonization and host-symbiont recognition, antiviral defense mechanisms, and/or integrated metabolic interactions, which we suggest as novel targets for the screening of coral probiotics. Our results highlight the importance of bacterial cultures to elucidate coral holobiont functioning and guide the selection of probiotic candidates to promote coral resilience and improve holistic and customized reef restoration and rehabilitation efforts. IMPORTANCE Our paper is the first study to synthesize currently available but decentralized data of cultured microbes associated with corals. We were able to collate 3,055 isolates across a number of published studies and unpublished collections from various laboratories and researchers around the world. This equated to 1,045 individual isolates which had full-length 16S rRNA gene sequences, after filtering of the original 3,055. We also explored which of these had genomes available. Originally, only 36 were available, and as part of this study, we added a further 38-equating to 74 in total. From this, we investigated potential genetic signatures that may facilitate a host-associated lifestyle. Further, such a resource is an important step in the selection of probiotic candidates, which are being investigated for promoting coral resilience and potentially applied as a novel strategy in reef restoration and rehabilitation efforts. In the spirit of open access, we have ensured this collection is available to the wider research community through the web site http://isolates.reefgenomics.org/ with the hope many scientists across the globe will ask for access to these cultures for future studies.
Collapse
Affiliation(s)
- Michael Sweet
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Helena Villela
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tina Keller-Costa
- Institute for Bioengineering and Biosciences (iBB), University of Lisbon, Lisbon, Portugal
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
| | - Rodrigo Costa
- Institute for Bioengineering and Biosciences (iBB), University of Lisbon, Lisbon, Portugal
- Instituto Superior Técnico (IST), University of Lisbon, Lisbon, Portugal
- Department of Energy, Joint Genome Institute and Lawrence Berkeley National Laboratory, Berkeley, California, USA
| | - Stefano Romano
- Gut Microbes and Health, Quadram Institute Bioscience, Norwich, United Kingdom
| | - David G. Bourne
- College of Science and Engineering, James Cook University, Townsville, Australia
- Australian Institute of Marine Science, Townsville, Australia
| | - Anny Cárdenas
- Department of Biology, University of Konstanz, Konstanz, Germany
| | - Megan J. Huggett
- School of Environmental and Life Sciences, The University of Newcastle, Ourimbah, NSW, Australia
- Centre for Marine Ecosystems Research, Edith Cowan University, Joondalup, WA, Australia
| | | | - Felicity Kuek
- Australian Institute of Marine Science, Townsville, Australia
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia
| | - Mónica Medina
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Julie L. Meyer
- Soil and Water Sciences Department, Genetics Institute, University of Florida, Gainesville, Florida, USA
| | - Moritz Müller
- Faculty of Engineering, Computing and Science, Swinburne University of Technology Sarawak Campus, Kuching, Sarawak, Malaysia
| | - F. Joseph Pollock
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- Hawaii and Palmyra Programs, The Nature Conservancy, Honolulu, Hawaii, USA
| | - Michael S. Rappé
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, Hawaii, USA
| | - Mathieu Sere
- Aquatic Research Facility, Environmental Sustainability Research Centre, University of Derby, Derby, United Kingdom
| | - Koty H. Sharp
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, USA
| | | | - Nathan Zaccardi
- Department of Biology and Marine Biology, Roger Williams University, Bristol, Rhode Island, USA
| | - Maren Ziegler
- Department of Animal Ecology and Systematics, Justus Liebig University Giessen, Giessen, Germany
| | - Raquel Peixoto
- Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
- Red Sea Research Center (RSRC), Division of Biological and Environmental Science and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
18
|
Dat TTH, Cuc NTK, Cuong PV, Smidt H, Sipkema D. Diversity and Antimicrobial Activity of Vietnamese Sponge-Associated Bacteria. Mar Drugs 2021; 19:md19070353. [PMID: 34206202 PMCID: PMC8307940 DOI: 10.3390/md19070353] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 06/16/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to assess the diversity and antimicrobial activity of cultivable bacteria associated with Vietnamese sponges. In total, 460 bacterial isolates were obtained from 18 marine sponges. Of these, 58.3% belonged to Proteobacteria, 16.5% to Actinobacteria, 18.0% to Firmicutes, and 7.2% to Bacteroidetes. At the genus level, isolated strains belonged to 55 genera, of which several genera, such as Bacillus, Pseudovibrio, Ruegeria, Vibrio, and Streptomyces, were the most predominant. Culture media influenced the cultivable bacterial composition, whereas, from different sponge species, similar cultivable bacteria were recovered. Interestingly, there was little overlap of bacterial composition associated with sponges when the taxa isolated were compared to cultivation-independent data. Subsequent antimicrobial assays showed that 90 isolated strains exhibited antimicrobial activity against at least one of seven indicator microorganisms. From the culture broth of the isolated strain with the strongest activity (Bacillus sp. M1_CRV_171), four secondary metabolites were isolated and identified, including cyclo(L-Pro-L-Tyr) (1), macrolactin A (2), macrolactin H (3), and 15,17-epoxy-16-hydroxy macrolactin A (4). Of these, compounds 2-4 exhibited antimicrobial activity against a broad spectrum of reference microorganisms.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence: (T.T.H.D.); (D.S.); Tel.: +84-94-949-2778 (T.T.H.D.); +31-317-483-113 (D.S.)
| | - Nguyen Thi Kim Cuc
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
| | - Pham Viet Cuong
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, 321 Huynh Thuc Khang, Hue City, Thua Thien Hue 531600, Vietnam; (N.T.K.C.); (P.V.C.)
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands;
- Correspondence: (T.T.H.D.); (D.S.); Tel.: +84-94-949-2778 (T.T.H.D.); +31-317-483-113 (D.S.)
| |
Collapse
|
19
|
Ruocco N, Esposito R, Bertolino M, Zazo G, Sonnessa M, Andreani F, Coppola D, Giordano D, Nuzzo G, Lauritano C, Fontana A, Ianora A, Verde C, Costantini M. A Metataxonomic Approach Reveals Diversified Bacterial Communities in Antarctic Sponges. Mar Drugs 2021; 19:173. [PMID: 33810171 PMCID: PMC8004616 DOI: 10.3390/md19030173] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/17/2021] [Accepted: 03/20/2021] [Indexed: 02/06/2023] Open
Abstract
Marine sponges commonly host a repertoire of bacterial-associated organisms, which significantly contribute to their health and survival by producing several anti-predatory molecules. Many of these compounds are produced by sponge-associated bacteria and represent an incredible source of novel bioactive metabolites with biotechnological relevance. Although most investigations are focused on tropical and temperate species, to date, few studies have described the composition of microbiota hosted by Antarctic sponges and the secondary metabolites that they produce. The investigation was conducted on four sponges collected from two different sites in the framework of the XXXIV Italian National Antarctic Research Program (PNRA) in November-December 2018. Collected species were characterized as Mycale (Oxymycale) acerata, Haliclona (Rhizoniera) dancoi, Hemigellius pilosus and Microxina sarai by morphological analysis of spicules and amplification of four molecular markers. Metataxonomic analysis of these four Antarctic sponges revealed a considerable abundance of Amplicon Sequence Variants (ASVs) belonging to the phyla Proteobacteria, Bacteroidetes, Actinobacteria and Verrucomicrobia. In particular, M. (Oxymycale) acerata, displayed several genera of great interest, such as Endozoicomonas, Rubritalea, Ulvibacter, Fulvivirga and Colwellia. On the other hand, the sponges H. pilosus and H. (Rhizoniera) dancoi hosted bacteria belonging to the genera Pseudhongella, Roseobacter and Bdellovibrio, whereas M. sarai was the sole species showing some strains affiliated to the genus Polaribacter. Considering that most of the bacteria identified in the present study are known to produce valuable secondary metabolites, the four Antarctic sponges could be proposed as potential tools for the discovery of novel pharmacologically active compounds.
Collapse
Affiliation(s)
- Nadia Ruocco
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Roberta Esposito
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant’Angelo, Via Cinthia 21, 80126 Napoli, Italy
| | - Marco Bertolino
- Dipartimento di Scienze della Terra, dell’Ambiente e della Vita (DISTAV), Università degli Studi di Genova, Corso Europa 26, 16132 Genova, Italy;
| | - Gianluca Zazo
- Department of Research Infrastructure for Marine Biological Resources, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| | - Michele Sonnessa
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Federico Andreani
- Bio-Fab Research srl, Via Mario Beltrami, 5, 00135 Roma, Italy; (M.S.); (F.A.)
| | - Daniela Coppola
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Daniela Giordano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Genoveffa Nuzzo
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Chiara Lauritano
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Angelo Fontana
- Consiglio Nazionale delle Ricerche, Istituto di Chimica Biomolecolare, Via Campi Flegrei 34, 80078 Pozzuoli (Napoli), Italy; (G.N.); (A.F.)
| | - Adrianna Ianora
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
| | - Cinzia Verde
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| | - Maria Costantini
- Department of Marine Biotechnology, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy; (N.R.); (R.E.); (D.C.); (D.G.); (C.L.); (A.I.); (C.V.)
- Institute of Biosciences and BioResources (IBBR), National Research Council (CNR), Via Pietro Castellino 111, 80131 Napoli, Italy
| |
Collapse
|
20
|
Gavriilidou A, Mackenzie TA, Sánchez P, Tormo JR, Ingham C, Smidt H, Sipkema D. Bioactivity Screening and Gene-Trait Matching across Marine Sponge-Associated Bacteria. Mar Drugs 2021; 19:75. [PMID: 33573261 PMCID: PMC7912018 DOI: 10.3390/md19020075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/23/2022] Open
Abstract
Marine sponges harbor diverse microbial communities that represent a significant source of natural products. In the present study, extracts of 21 sponge-associated bacteria were screened for their antimicrobial and anticancer activity, and their genomes were mined for secondary metabolite biosynthetic gene clusters (BGCs). Phylogenetic analysis assigned the strains to four major phyla in the sponge microbiome, namely Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes. Bioassays identified one extract with anti-methicillin-resistant Staphylococcus aureus (MRSA) activity, and more than 70% of the total extracts had a moderate to high cytotoxicity. The most active extracts were derived from the Proteobacteria and Actinobacteria, prominent for producing bioactive substances. The strong bioactivity potential of the aforementioned strains was also evident in the abundance of BGCs, which encoded mainly beta-lactones, bacteriocins, non-ribosomal peptide synthetases (NRPS), terpenes, and siderophores. Gene-trait matching was performed for the most active strains, aiming at linking their biosynthetic potential with the experimental results. Genetic associations were established for the anti-MRSA and cytotoxic phenotypes based on the similarity of the detected BGCs with BGCs encoding natural products with known bioactivity. Overall, our study highlights the significance of combining in vitro and in silico approaches in the search of novel natural products of pharmaceutical interest.
Collapse
Affiliation(s)
- Asimenia Gavriilidou
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Thomas Andrew Mackenzie
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - Pilar Sánchez
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | - José Ruben Tormo
- Fundación MEDINA, Centro de Excelencia en Investigación de Medicamentos Innovadores en Andalucía, Avda. del Conocimiento 34, 18016 Granada, Spain; (T.A.M.); (P.S.); (J.R.T.)
| | | | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University and Research, 6708 WE Wageningen, The Netherlands; (H.S.); (D.S.)
| |
Collapse
|
21
|
Duan Y, Petzold M, Saleem‐Batcha R, Teufel R. Bacterial Tropone Natural Products and Derivatives: Overview of their Biosynthesis, Bioactivities, Ecological Role and Biotechnological Potential. Chembiochem 2020; 21:2384-2407. [PMID: 32239689 PMCID: PMC7497051 DOI: 10.1002/cbic.201900786] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/02/2020] [Indexed: 12/05/2022]
Abstract
Tropone natural products are non-benzene aromatic compounds of significant ecological and pharmaceutical interest. Herein, we highlight current knowledge on bacterial tropones and their derivatives such as tropolones, tropodithietic acid, and roseobacticides. Their unusual biosynthesis depends on a universal CoA-bound precursor featuring a seven-membered carbon ring as backbone, which is generated by a side reaction of the phenylacetic acid catabolic pathway. Enzymes encoded by separate gene clusters then further modify this key intermediate by oxidation, CoA-release, or incorporation of sulfur among other reactions. Tropones play important roles in the terrestrial and marine environment where they act as antibiotics, algaecides, or quorum sensing signals, while their bacterial producers are often involved in symbiotic interactions with plants and marine invertebrates (e. g., algae, corals, sponges, or mollusks). Because of their potent bioactivities and of slowly developing bacterial resistance, tropones and their derivatives hold great promise for biomedical or biotechnological applications, for instance as antibiotics in (shell)fish aquaculture.
Collapse
Affiliation(s)
- Ying Duan
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | - Melanie Petzold
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| | | | - Robin Teufel
- Faculty of BiologyUniversity of Freiburg79104FreiburgGermany
| |
Collapse
|
22
|
Phylogenomic Analyses of Members of the Widespread Marine Heterotrophic Genus Pseudovibrio Suggest Distinct Evolutionary Trajectories and a Novel Genus, Polycladidibacter gen. nov. Appl Environ Microbiol 2020; 86:AEM.02395-19. [PMID: 31811036 PMCID: PMC6997731 DOI: 10.1128/aem.02395-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 12/04/2019] [Indexed: 12/16/2022] Open
Abstract
Bacteria belonging to the Pseudovibrio genus are widespread, metabolically versatile, and able to thrive as both free-living and host-associated organisms. Although more than 50 genomes are available, a comprehensive comparative genomics study to resolve taxonomic inconsistencies is currently missing. We analyzed all available genomes and used 552 core genes to perform a robust phylogenomic reconstruction. This in-depth analysis revealed the divergence of two monophyletic basal lineages of strains isolated from polyclad flatworm hosts, namely, Pseudovibrio hongkongensis and Pseudovibrio stylochi These strains have reduced genomes and lack sulfur-related metabolisms and major biosynthetic gene clusters, and their environmental distribution appears to be tightly associated with invertebrate hosts. We showed experimentally that the divergent strains are unable to utilize various sulfur compounds that, in contrast, can be utilized by the type strain Pseudovibrio denitrificans Our analyses suggest that the lineage leading to these two strains has been subject to relaxed purifying selection resulting in great gene loss. Overall genome relatedness indices (OGRI) indicate substantial differences between the divergent strains and the rest of the genus. While 16S rRNA gene analyses do not support the establishment of a different genus for the divergent strains, their substantial genomic, phylogenomic, and physiological differences strongly suggest a divergent evolutionary trajectory and the need for their reclassification. Therefore, we propose the novel genus Polycladidibacter gen. nov.IMPORTANCE The genus Pseudovibrio is commonly associated with marine invertebrates, which are essential for ocean health and marine nutrient cycling. Traditionally, the phylogeny of the genus has been based on 16S rRNA gene analysis. The use of the 16S rRNA gene or any other single marker gene for robust phylogenetic placement has recently been questioned. We used a large set of marker genes from all available Pseudovibrio genomes for in-depth phylogenomic analyses. We identified divergent monophyletic basal lineages within the Pseudovibrio genus, including two strains isolated from polyclad flatworms. These strains showed reduced sulfur metabolism and biosynthesis capacities. The phylogenomic analyses revealed distinct evolutionary trajectories and ecological adaptations that differentiate the divergent strains from the other Pseudovibrio members and suggest that they fall into a novel genus. Our data show the importance of widening the use of phylogenomics for better understanding bacterial physiology, phylogeny, and evolution.
Collapse
|
23
|
Indraningrat AAG, Micheller S, Runderkamp M, Sauerland I, Becking LE, Smidt H, Sipkema D. Cultivation of Sponge-Associated Bacteria from Agelas sventres and Xestospongia muta Collected from Different Depths. Mar Drugs 2019; 17:E578. [PMID: 31614540 PMCID: PMC6836257 DOI: 10.3390/md17100578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/23/2019] [Accepted: 10/05/2019] [Indexed: 01/15/2023] Open
Abstract
Sponge-associated bacteria have been mostly cultured from shallow water (≤30 m) sponges, whereas only few studies targeted specimens from below 30 m. This study assessed the cultivability of bacteria from two marine sponges Xestospongia muta and Agelas sventres collected from shallow (<30 m), upper mesophotic (30-60 m), and lower mesophotic (60-90 m) reefs. Sponge-associated bacteria were cultivated on six different media, and replicate plates were used to pick individual colonies or to recover the entire biomass. Prokaryotic community analysis was conducted using Illumina MiSeq sequencing of 16S rRNA gene amplicons. A total of 144 bacterial isolates were picked following a colony morphology coding scheme and subsequently identified by 16S rRNA gene sequence analysis. Sponge individuals at each depth-range harboured specific cultivable bacteria that were not retrieved from specimens collected at other depths. However, there were substantial differences in the number of colonies obtained for replicate sponges of the same species. In addition, source of inoculum and cultivation medium had more impact on the cultured prokaryotic community than sample collection depth. This suggests that the "plate count anomaly" is larger than differences in sponge-associated prokaryotic community composition related to depth.
Collapse
Affiliation(s)
- Anak Agung Gede Indraningrat
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
- Faculty of Medicine and Health Science, Warmadewa University, Jln Terompong 24, Denpasar 80239, Bali, Indonesia.
| | - Sebastian Micheller
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Mandy Runderkamp
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Ina Sauerland
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Leontine E Becking
- Marine Animal Ecology Group, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands.
- Wageningen Marine Research, Wageningen University & Research, Ankerpark 27, 1781 AG Den Helder, The Netherlands.
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
24
|
Chen R, Wong HL, Burns BP. New Approaches to Detect Biosynthetic Gene Clusters in the Environment. MEDICINES 2019; 6:medicines6010032. [PMID: 30823559 PMCID: PMC6473659 DOI: 10.3390/medicines6010032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 02/22/2019] [Accepted: 02/22/2019] [Indexed: 01/22/2023]
Abstract
Microorganisms in the environment can produce a diverse range of secondary metabolites (SM), which are also known as natural products. Bioactive SMs have been crucial in the development of antibiotics and can also act as useful compounds in the biotechnology industry. These natural products are encoded by an extensive range of biosynthetic gene clusters (BGCs). The developments in omics technologies and bioinformatic tools are contributing to a paradigm shift from traditional culturing and screening methods to bioinformatic tools and genomics to uncover BGCs that were previously unknown or transcriptionally silent. Natural product discovery using bioinformatics and omics workflow in the environment has demonstrated an extensive distribution of BGCs in various environments, such as soil, aquatic ecosystems and host microbiome environments. Computational tools provide a feasible and culture-independent route to find new secondary metabolites where traditional approaches cannot. This review will highlight some of the advances in the approaches, primarily bioinformatic, in identifying new BGCs, especially in environments where microorganisms are rarely cultured. This has allowed us to tap into the huge potential of microbial dark matter.
Collapse
Affiliation(s)
- Ray Chen
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| | - Hon Lun Wong
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| | - Brendan Paul Burns
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney 2052, Australia.
- Australian Centre for Astrobiology, The University of New South Wales, Sydney 2052, Australia.
| |
Collapse
|
25
|
Extending the "One Strain Many Compounds" (OSMAC) Principle to Marine Microorganisms. Mar Drugs 2018; 16:md16070244. [PMID: 30041461 PMCID: PMC6070831 DOI: 10.3390/md16070244] [Citation(s) in RCA: 179] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 07/17/2018] [Accepted: 07/19/2018] [Indexed: 02/07/2023] Open
Abstract
Genomic data often highlights an inconsistency between the number of gene clusters identified using bioinformatic approaches as potentially producing secondary metabolites and the actual number of chemically characterized secondary metabolites produced by any given microorganism. Such gene clusters are generally considered as “silent”, meaning that they are not expressed under laboratory conditions. Triggering expression of these “silent” clusters could result in unlocking the chemical diversity they control, allowing the discovery of novel molecules of both medical and biotechnological interest. Therefore, both genetic and cultivation-based techniques have been developed aimed at stimulating expression of these “silent” genes. The principles behind the cultivation based approaches have been conceptualized in the “one strain many compounds” (OSMAC) framework, which underlines how a single strain can produce different molecules when grown under different environmental conditions. Parameters such as, nutrient content, temperature, and rate of aeration can be easily changed, altering the global physiology of a microbial strain and in turn significantly affecting its secondary metabolism. As a direct extension of such approaches, co-cultivation strategies and the addition of chemical elicitors have also been used as cues to activate “silent” clusters. In this review, we aim to provide a focused and comprehensive overview of these strategies as they pertain to marine microbes. Moreover, we underline how changes in some parameters which have provided important results in terrestrial microbes, but which have rarely been considered in marine microorganisms, may represent additional strategies to awaken “silent” gene clusters in marine microbes. Unfortunately, the empirical nature of the OSMAC approach forces scientists to perform extensive laboratory experiments. Nevertheless, we believe that some computation and experimental based techniques which are used in other disciplines, and which we discuss; could be effectively employed to help streamline the OSMAC based approaches. We believe that natural products discovery in marine microorganisms would be greatly aided through the integration of basic microbiological approaches, computational methods, and technological innovations, thereby helping unearth much of the as yet untapped potential of these microorganisms.
Collapse
|