1
|
Fuchs S, Fiedler MK, Heiduk N, Wanisch A, Mibus C, Singh D, Debowski AW, Marshall BJ, Vieth M, Josenhans C, Suerbaum S, Sieber SA, Gerhard M, Mejías-Luque R. Helicobacter pylori γ-glutamyltransferase is linked to proteomic adaptions important for colonization. Gut Microbes 2025; 17:2488048. [PMID: 40205659 PMCID: PMC11988274 DOI: 10.1080/19490976.2025.2488048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 03/18/2025] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Helicobacter pylori γ-glutamyltransferase (gGT) is a virulence factor that promotes bacterial colonization and immune tolerance. Although some studies addressed potential functional mechanisms, the supportive role of gGT for in vivo colonization remains unclear. Additionally, it is unknown how different gGT expression levels may lead to compensatory mechanisms ensuring infection and persistence. Hence, it is crucial to unravel the in vivo function of gGT. We assessed acid survival under conditions mimicking the human gastric fluid and elevated the pH in the murine stomach prior to H. pylori infection to link gGT-mediated acid resistance to colonization. By comparing proteomes of gGT-proficient and -deficient isolates before and after infecting mice, we investigated proteomic adaptations of gGT-deficient bacteria during infection. Our data indicate that gGT is crucial to sustain urease activity in acidic environments, thereby supporting survival and successful colonization. Absence of gGT triggers expression of proteins involved in the nitrogen and iron metabolism and boosts the expression of adhesins and flagellar proteins during infection, resulting in increased motility and adhesion capacity. In summary, gGT-dependent mechanisms confer a growth advantage to the bacterium in the gastric environment, which renders gGT a valuable target for the development of new treatments against H. pylori infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Michaela K. Fiedler
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Nicole Heiduk
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Andreas Wanisch
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Cora Mibus
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Dharmesh Singh
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Aleksandra W. Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Barry J. Marshall
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Michael Vieth
- Institute of Pathology, Friedrich-Alexander-University Erlangen-Nuremberg, Klinikum Bayreuth, Bayreuth, Germany
| | - Christine Josenhans
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Sebastian Suerbaum
- Max von Pettenkofer Institute, Faculty of Medicine, Medical Microbiology and Hospital Epidemiology, Ludwig-Maximilians-Universität (LMU) Munich, Munich, Germany
- DZIF - German Center for Infection Research, Partner Site Munich, Munich, Germany
| | - Stephan A. Sieber
- Center for Functional Protein Assemblies (CPA), Chair of Organic Chemistry II, Department Biosciences, TUM School of Natural Sciences, Technical University of Munich (TUM), Garching, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, Department of Preclinical Medicine, TUM School of Medicine and Health, Technical University of Munich (TUM), Munich, Germany
| |
Collapse
|
2
|
Noszka M, Strzałka A, Muraszko J, Kolenda R, Meng C, Ludwig C, Stingl K, Zawilak-Pawlik A. Profiling of the Helicobacter pylori redox switch HP1021 regulon using a multi-omics approach. Nat Commun 2023; 14:6715. [PMID: 37872172 PMCID: PMC10593804 DOI: 10.1038/s41467-023-42364-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
The gastric human pathogen Helicobacter pylori has developed mechanisms to combat stress factors, including reactive oxygen species (ROS). Here, we present a comprehensive study on the redox switch protein HP1021 regulon combining transcriptomic, proteomic and DNA-protein interactions analyses. Our results indicate that HP1021 modulates H. pylori's response to oxidative stress. HP1021 controls the transcription of 497 genes, including 407 genes related to response to oxidative stress. 79 proteins are differently expressed in the HP1021 deletion mutant. HP1021 controls typical ROS response pathways (katA, rocF) and less canonical ones, particularly DNA uptake and central carbohydrate metabolism. HP1021 is a molecular regulator of competence in H. pylori, as HP1021-dependent repression of the comB DNA uptake genes is relieved under oxidative conditions, increasing natural competence. Furthermore, HP1021 controls glucose consumption by directly regulating the gluP transporter and has an important impact on maintaining the energetic balance in the cell.
Collapse
Affiliation(s)
- Mateusz Noszka
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Agnieszka Strzałka
- Department of Molecular Microbiology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Jakub Muraszko
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Rafał Kolenda
- Department of Biochemistry and Molecular Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
- Quadram Institute Biosciences, Norwich Research Park, Norwich, UK
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Christina Ludwig
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), Freising, Germany
| | - Kerstin Stingl
- Department of Biological Safety, National Reference Laboratory for Campylobacter, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Anna Zawilak-Pawlik
- Department of Microbiology, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland.
| |
Collapse
|
3
|
Bertram R, Neumann B, Schuster CF. Status quo of tet regulation in bacteria. Microb Biotechnol 2022; 15:1101-1119. [PMID: 34713957 PMCID: PMC8966031 DOI: 10.1111/1751-7915.13926] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/02/2021] [Accepted: 09/04/2021] [Indexed: 11/27/2022] Open
Abstract
The tetracycline repressor (TetR) belongs to the most popular, versatile and efficient transcriptional regulators used in bacterial genetics. In the tetracycline (Tc) resistance determinant tet(B) of transposon Tn10, tetR regulates the expression of a divergently oriented tetA gene that encodes a Tc antiporter. These components of Tn10 and of other natural or synthetic origins have been used for tetracycline-dependent gene regulation (tet regulation) in at least 40 bacterial genera. Tet regulation serves several purposes such as conditional complementation, depletion of essential genes, modulation of artificial genetic networks, protein overexpression or the control of gene expression within cell culture or animal infection models. Adaptations of the promoters employed have increased tet regulation efficiency and have made this system accessible to taxonomically distant bacteria. Variations of TetR, different effector molecules and mutated DNA binding sites have enabled new modes of gene expression control. This article provides a current overview of tet regulation in bacteria.
Collapse
Affiliation(s)
- Ralph Bertram
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Bernd Neumann
- Institute of Clinical Hygiene, Medical Microbiology and InfectiologyParacelsus Medical UniversityProf.‐Ernst‐Nathan‐Straße 1Nuremberg90419Germany
| | - Christopher F. Schuster
- Department of Infectious DiseasesDivision of Nosocomial Pathogens and Antibiotic ResistancesRobert Koch InstituteBurgstraße 37Wernigerode38855Germany
| |
Collapse
|
4
|
Sheshko V, Link M, Golovliov I, Balonova L, Stulik J. Utilization of a tetracycline-inducible system for high-level expression of recombinant proteins in Francisella tularensis LVS. Plasmid 2021; 115:102564. [PMID: 33610608 DOI: 10.1016/j.plasmid.2021.102564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 01/14/2021] [Accepted: 01/27/2021] [Indexed: 12/28/2022]
Abstract
Francisella tularensis is a Gram-negative intracellular pathogen causing tularemia. A number of its potential virulence factors have been identified, but their biology and functions are not precisely known. Understanding the biological and immunological functions of these proteins requires adequate genetic tools for homologous and heterologous expression of cloned genes, maintaining both original structure and post-translational modifications. Here, we report the construction of a new multipurpose shuttle plasmid - pEVbr - which can be used for high-level expression in F. tularensis. The pEVbr plasmid has been constructed by modifying the TetR-regulated expression vector pEDL17 (LoVullo, 2012) that includes (i) a strong F. tularensis bfr promoter, and (ii) two tet operator sequences cloned into the promoter. The cloned green fluorescent protein (GFP), used as a reporter, demonstrated almost undetectable basal expression level under uninduced conditions and a highly dynamic dose-dependent response to the inducer. The utility of the system was further confirmed by cloning the gapA and FTT_1676 genes into the pEVbr vector and quantifying proteins expression in F. tularensis LVS, as well as by studying post-translational modification of the cloned genes. This study demonstrates that high levels of recombinant native-like Francisella proteins can be produced in Francisella cells. Hence, this system may be beneficial for the analysis of protein function and the development of new treatments and vaccines.
Collapse
Affiliation(s)
- Valeria Sheshko
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic.
| | - Marek Link
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Igor Golovliov
- Department of Clinical Microbiology, Umeå University, SE-901 85 Umeå, Sweden
| | - Lucie Balonova
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Jiri Stulik
- Department of Molecular Pathology and Biology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| |
Collapse
|
5
|
Lolli G, Raboni S, Pasqualetto E, Benoni R, Campanini B, Ronda L, Mozzarelli A, Bettati S, Battistutta R. Insight into GFPmut2 pH Dependence by Single Crystal Microspectrophotometry and X-ray Crystallography. J Phys Chem B 2018; 122:11326-11337. [PMID: 30179482 DOI: 10.1021/acs.jpcb.8b07260] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The fluorescence of Green Fluorescent Protein (wtGFP) and variants has been exploited in distinct applications in cellular and analytical biology. GFPs emission depends on the population of the protonated (A-state) and deprotonated (B-state) forms of the chromophore. Whereas wtGFP is pH-independent, mutants in which Ser65 is replaced by either threonine or alanine (as in GFPmut2) are pH-dependent, with a p Ka around 6. Given the wtGFP pH-independence, only the structure of the protonated form was determined. The deprotonated form was deduced on the basis of the crystal structure of the Ser65Thr mutant at basic pH, assuming that it corresponds to the conformation populated in solution. Here, we present an investigation where structures of the protonated and deprotonated forms of GFPmut2 were determined from crystals grown in either MPD at pH 6 or PEG at pH 8.5, and moved to either higher or lower pH. Both crystal forms of GFPmut2 were titrated monitoring the process via polarized absorption microspectrophotometry in order to precisely correlate the protonation process with the structures. We found that (i) in solution, chromophore titration is not thermodynamically coupled with any residue and Glu222 is always protonated independent of the protonation state of the chromophore; (ii) the lack of coupling is reflected in the structural behavior of the chromophore and Glu222 environments, with only the former showing variations with pH; (iii) titrations of low-pH and high-pH grown crystals exhibit a Hill coefficient of about 0.75, indicating an anticooperative behavior not observed in solution; (iv) structures where pH was changed in the crystal point to Glu222 as the ionizable group responsible for the outset of the anticooperative behavior; and (v) in GFPmut2 the canonical GFP proton wire involving the chromophore is not interrupted at the level of Ser205 and Glu222 at basic pH as in the Ser65Thr mutant. This allows proposing the structure of the deprotonated state of GFPmut2 as an alternative model for the analogous state of wtGFP.
Collapse
Affiliation(s)
- Graziano Lolli
- Centro di Biologia Integrata - CIBIO , Università di Trento , 38123 Povo , Trento , Italy
| | - Samanta Raboni
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy
| | - Elisa Pasqualetto
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova and Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , 35131 Padua , Italy
| | - Roberto Benoni
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy
| | - Barbara Campanini
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy
| | - Luca Ronda
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy
| | - Andrea Mozzarelli
- Dipartimento di Scienze degli Alimenti e del Farmaco , Università di Parma , 43124 Parma , Italy.,Istituto di Biofisica , Consiglio Nazionale delle Ricerche , 56124 Pisa , Italy.,Istituto Nazionale Biostrutture e Biosistemi , 00136 Rome , Italy
| | - Stefano Bettati
- Dipartimento di Medicina e Chirurgia , Università di Parma , 43125 Parma , Italy.,Istituto Nazionale Biostrutture e Biosistemi , 00136 Rome , Italy
| | - Roberto Battistutta
- Dipartimento di Scienze Chimiche , Università degli Studi di Padova and Istituto di Chimica Biomolecolare, Consiglio Nazionale delle Ricerche , 35131 Padua , Italy
| |
Collapse
|
6
|
Abstract
Helicobacter pylori infection causes chronic active gastritis that after many years of infection can develop into peptic ulceration or gastric adenocarcinoma. The bacterium is highly adapted to surviving in the gastric environment and a key adaptation is the virulence factor urease. Although widely postulated, the requirement of urease expression for persistent infection has not been elucidated experimentally as conventional urease knockout mutants are incapable of colonization. To overcome this constraint, conditional H. pylori urease mutants were constructed by adapting the tetracycline inducible expression system that enabled changing the urease phenotype of the bacteria during established infection. Through tight regulation we demonstrate that urease expression is not only required for establishing initial colonization but also for maintaining chronic infection. Furthermore, successful isolation of tet-escape mutants from a late infection time point revealed the strong selective pressure on this gastric pathogen to continuously express urease in order to maintain chronic infection. In addition to mutations in the conditional gene expression system, escape mutants were found to harbor changes in other genes including the alternative RNA polymerase sigma factor, fliA, highlighting the genetic plasticity of H. pylori to adapt to a changing niche. The tet-system described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into bacterial mechanisms promoting immune escape and life-long infection. Furthermore, this genetic tool also allows for a new avenue of inquiry into understanding the importance of various virulence determinants in a changing biological environment when the bacterium is put under duress. Helicobacter pylori is a bacterial pathogen that chronically infects half the global population and is a major contributor to the development of peptic ulcers and stomach cancer. H. pylori has evolved to survive in the stomach and one important adaptation is the enzyme urease. The bacteria cannot establish an infection in the host without this enzyme, and although widely postulated, the requirement of urease for chronic infection of the host has not been tested experimentally as conventional urease mutants are incapable of colonization. To overcome this constraint, a genetic system was introduced that allowed for the making of H. pylori strains in which urease expression could be turned off after the bacteria have colonised the stomach. We show for the first time that this enzyme is not only important for initial colonization but that it is also very important for maintaining chronic infection. We also show that if urease is turned off, the bacterium can mutate several different genes in order to restore urease expression. The genetic approach described here opens up opportunities to studying genes involved in the chronic stage of H. pylori infection to gain insight into how the bacterium is able to avoid clearance by the immune system and how it is able to adapt to changing biological environments.
Collapse
|
7
|
Development of Endothelial-Specific Single Inducible Lentiviral Vectors for Genetic Engineering of Endothelial Progenitor Cells. Sci Rep 2015; 5:17166. [PMID: 26612671 PMCID: PMC4661691 DOI: 10.1038/srep17166] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 10/22/2015] [Indexed: 12/02/2022] Open
Abstract
Endothelial progenitor cells (EPC) are able to migrate to tumor vasculature. These cells, if genetically modified, can be used as vehicles to deliver toxic material to, or express anticancer proteins in tumor. To test this hypothesis, we developed several single, endothelial-specific, and doxycycline-inducible self-inactivating (SIN) lentiviral vectors. Two distinct expression cassettes were inserted into a SIN-vector: one controlled by an endothelial lineage-specific, murine vascular endothelial cadherin (mVEcad) promoter for the expression of a transactivator, rtTA2S-M2; and the other driven by an inducible promoter, TREalb, for a firefly luciferase reporter gene. We compared the expression levels of luciferase in different vector constructs, containing either the same or opposite orientation with respect to the vector sequence. The results showed that the vector with these two expression cassettes placed in opposite directions was optimal, characterized by a robust induction of the transgene expression (17.7- to 73-fold) in the presence of doxycycline in several endothelial cell lines, but without leakiness when uninduced. In conclusion, an endothelial lineage-specific single inducible SIN lentiviral vector has been developed. Such a lentiviral vector can be used to endow endothelial progenitor cells with anti-tumor properties.
Collapse
|
8
|
Expansion of the tetracycline-dependent regulation toolbox for Helicobacter pylori. Appl Environ Microbiol 2015; 81:7969-80. [PMID: 26362986 DOI: 10.1128/aem.02191-15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 09/01/2015] [Indexed: 01/19/2023] Open
Abstract
In an effort to gain greater understanding of the biology and infection processes of Helicobacter pylori, we have expanded the functionality of the tetracycline-dependent gene regulation (tet) system to provide more improved and versatile genetic control and facilitate the generation of conditional mutants to study essential genes. Second-generation tetracycline-responsive H. pylori uPtetO5 promoters were based on the mutated core ureA promoter. Single point mutations at either the ribosomal binding site or the start codon were introduced to shift the regulatory range of three uPtetO5 derivatives. All promoters were tested for regulation by TetR and revTetR using dapD, a gene essential to peptidoglycan biosynthesis, as a reporter. All tet promoters were effectively regulated by both TetR and revTetR, and their regulation windows overlapped so as to cover a broad range of expression levels. tet promoters uPtetO5m1 and uPtetO5m2 could be sufficiently silenced by both TetR and revTetR so that the conditional mutants could not grow in the absence of diaminopimelic acid (DAP). Furthermore, through the use of these inducible promoters, we reveal that insufficient DAP biosynthesis results in viable cells with altered morphology. Overall, the development and optimization of tet regulation for H. pylori will not only permit the study of essential genes but also facilitate investigations into gene dosage effects on H. pylori physiology.
Collapse
|
9
|
New vectors for chromosomal integration enable high-level constitutive or inducible magnetosome expression of fusion proteins in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2014; 80:2609-16. [PMID: 24532068 DOI: 10.1128/aem.00192-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The alphaproteobacterium Magnetospirillum gryphiswaldense biomineralizes magnetosomes, which consist of monocrystalline magnetite cores enveloped by a phospholipid bilayer containing specific proteins. Magnetosomes represent magnetic nanoparticles with unprecedented magnetic and physicochemical characteristics. These make them potentially useful in a number of biotechnological and biomedical applications. Further functionalization can be achieved by expression of foreign proteins via genetic fusion to magnetosome anchor peptides. However, the available genetic tool set for strong and controlled protein expression in magnetotactic bacteria is very limited. Here, we describe versatile vectors for either inducible or high-level constitutive expression of proteins in M. gryphiswaldense. The combination of an engineered native PmamDC promoter with a codon-optimized egfp gene (Mag-egfp) resulted in an 8-fold increase in constitutive expression and in brighter fluorescence. We further demonstrate that the widely used Ptet promoter is functional and tunable in M. gryphiswaldense. Stable and uniform expression of the EGFP and β-glucuronidase (GusA) reporters was achieved by single-copy chromosomal insertion via Tn5-mediated transposition. In addition, gene duplication by Mag-EGFP-EGFP fusions to MamC resulted in further increased magnetosome expression and fluorescence. Between 80 and 210 (for single MamC-Mag-EGFP) and 200 and 520 (for MamC-Mag-EGFP-EGFP) GFP copies were estimated to be expressed per individual magnetosome particle.
Collapse
|
10
|
McClain MS, Duncan SS, Gaddy JA, Cover TL. Control of gene expression in Helicobacter pylori using the Tet repressor. J Microbiol Methods 2013; 95:336-41. [PMID: 24113399 PMCID: PMC3856897 DOI: 10.1016/j.mimet.2013.09.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 09/25/2013] [Accepted: 09/30/2013] [Indexed: 01/15/2023]
Abstract
The lack of a versatile system to control gene expression in Helicobacter pylori has hampered efforts to study H. pylori physiology and pathogenesis. To overcome these limitations, we evaluated the utility of an inducible system based on the well-characterized Tet repressor (TetR) and Tet operator (tetO). As validation of this system, we introduced three copies of tetO into the promoter region upstream of the cagUT operon (encoding two virulence factors required for function of the H. pylori Cag type IV secretion system) and expressed tetR by introducing a codon-optimized gene into the chromosomal ureA locus. Introduction of the tetO copies upstream of cagUT did not disrupt promoter activity, as determined by immunoblotting for CagT. The subsequent introduction of tetR, however, did repress CagT synthesis. Production of CagT was restored when strains were cultured in the presence of the inducer, anhydrotetracycline. To demonstrate one potential application of this new tool, we analyzed the function of the Cag type IV secretion system. When the modified H. pylori strains were co-cultured with AGS cells, activity of the Cag type IV secretion system was dependent on the presence of anhydrotetracycline as evidenced by inducer-dependent induction of IL-8 secretion, CagA translocation, and appearance of type IV secretion system pili at the bacteria-host interface. These studies demonstrate the effectiveness of the tetR-tetO system to control gene expression in H. pylori and provide an improved system for studying H. pylori physiology and pathogenesis.
Collapse
Affiliation(s)
- Mark S. McClain
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Stacy S. Duncan
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Jennifer A. Gaddy
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| | - Timothy L. Cover
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
- Veterans Affairs Tennessee Valley Healthcare System, Nashville, Tennessee, United States of America
| |
Collapse
|