1
|
Bamford NC, Morris RJ, Prescott A, Murphy P, Erskine E, MacPhee CE, Stanley-Wall NR. TasA Fibre Interactions Are Necessary for Bacillus subtilis Biofilm Structure. Mol Microbiol 2024; 122:598-609. [PMID: 39344640 DOI: 10.1111/mmi.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 10/01/2024]
Abstract
The extracellular matrix of biofilms provides crucial structural support to the community and protection from environmental perturbations. TasA, a key Bacillus subtilis biofilm matrix protein, forms both amyloid and non-amyloid fibrils. Non-amyloid TasA fibrils are formed via a strand-exchange mechanism, whereas the amyloid-like form involves non-specific self-assembly. We performed mutagenesis of the N-terminus to assess the role of non-amyloid fibrils in biofilm development. We find that the N-terminal tail is essential for the formation of structured biofilms, providing evidence that the strand-exchange fibrils are the active form in the biofilm matrix. Furthermore, we demonstrate that fibre formation alone is not sufficient to give structure to the biofilm. We build an interactome of TasA with other extracellular protein components, and identify important interaction sites. Our results provide insight into how protein-matrix interactions modulate biofilm development.
Collapse
Affiliation(s)
- Natalie C Bamford
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Ryan J Morris
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Alan Prescott
- Centre for Advanced Scientific Technologies, School of Life Sciences, University of Dundee, Dundee, UK
| | - Paul Murphy
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Elliot Erskine
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Cait E MacPhee
- National Biofilms Innovation Centre, School of Physics and Astronomy, University of Edinburgh, Edinburgh, UK
| | - Nicola R Stanley-Wall
- Division of Molecular Microbiology, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Stein N, Goswami A, Goel R. Anoxic granular activated sludge process for simultaneous removal of hazardous perchlorate and nitrate. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131809. [PMID: 37343405 DOI: 10.1016/j.jhazmat.2023.131809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 06/06/2023] [Accepted: 06/07/2023] [Indexed: 06/23/2023]
Abstract
An airtight, anoxic bubble-column sequencing batch reactor (SBR) was developed for the rapid cultivation of perchlorate (ClO4-) and nitrate (NO3-) reducing granular sludge (GS) in this study. Feast/famine conditions and shear force selection pressures in tandem with a short settling time (2-min) as a hydraulic section pressure resulted in the accelerated formation of anoxic granular activated sludge (AxGS). ClO4- and NO3- were efficiently (>99.9%) reduced over long-term (>500-d) steady-state operation. Specific NO3- reduction, ClO4- reduction, chloride production, and non-purgeable dissolved organic carbon (DOC) oxidation rates of 5.77 ± 0.54 mg NO3--N/g VSS·h, 8.13 ± 0.74 mg ClO4-/g VSS·h, 2.40 ± 0.40 mg Cl-/g VSS·h, and 16.0 ± 0.06 mg DOC/g VSS·h were recorded within the reactor under steady-state conditions, respectively. The AxGS biomass cultivated in this study exhibited faster specific ClO4- reduction, NO3- reduction, and DOC oxidation rates than flocculated biomass cultivated under similar conditions and AxGS biomass operated in an up-flow anaerobic sludge blank (UASB) bioreactor receiving the same influent loading. EPS peptide identification revealed a suite of extracellular catabolic enzymes. Dechloromonas species were present in high abundance throughout the entirety of this study. This is one of the initial studies on anoxic granulation to simultaneously treat hazardous chemicals and adds to the science of the granular activated sludge process.
Collapse
Affiliation(s)
- Nathan Stein
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Anjan Goswami
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA
| | - Ramesh Goel
- Department of Civil and Environmental Engineering, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
3
|
Kumar J, Sharma N, Singh SP. Genome-resolved metagenomics inferred novel insights into the microbial community, metabolic pathways, and biomining potential of Malanjkhand acidic copper mine tailings. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:50864-50882. [PMID: 36807860 DOI: 10.1007/s11356-023-25893-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 02/08/2023] [Indexed: 04/16/2023]
Abstract
Mine tailing sites provide profound opportunities to elucidate the microbial mechanisms involved in ecosystem functioning. In the present study, metagenomic analysis of dumping soil and adjacent pond around India's largest copper mine at Malanjkhand has been done. Taxonomic analysis deciphered the abundance of phyla Proteobacteria, Bacteroidetes, Acidobacteria, and Chloroflexi. Genomic signatures of viruses were predicted in the soil metagenome, whereas Archaea and Eukaryotes were noticed in water samples. Mesophilic chemolithotrophs, such as Acidobacteria bacterium, Chloroflexi bacterium, and Verrucomicrobia bacterium, were predominant in soil, whereas, in the water sample, the abundance of Methylobacterium mesophilicum, Pedobacter sp., and Thaumarchaeota archaeon was determined. The functional potential analysis highlighted the abundance of genes related to sulfur, nitrogen, methane, ferrous oxidation, carbon fixation, and carbohydrate metabolisms. The genes for copper, iron, arsenic, mercury, chromium, tellurium, hydrogen peroxide, and selenium resistance were found to be predominant in the metagenomes. Metagenome-assembled genomes (MAGs) were constructed from the sequencing data, indicating novel microbial species genetically related to the phylum predicted through whole genome metagenomics. Phylogenetic analysis, genome annotations, functional potential, and resistome analysis showed the resemblance of assembled novel MAGs with traditional organisms used in bioremediation and biomining applications. Microorganisms harboring adaptive mechanisms, such as detoxification, hydroxyl radical scavenging, and heavy metal resistance, could be the potent benefactions for their utility as bioleaching agents. The genetic information produced in the present investigation provides a foundation for pursuing and understanding the molecular aspects of bioleaching and bioremediation applications.
Collapse
Affiliation(s)
- Jitesh Kumar
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India
| | - Nitish Sharma
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India
| | - Sudhir P Singh
- Center of Innovative and Applied Bioprocessing, Department of Biotechnology (DBT), Govt. of India, S.A.S. Nagar, Sector-81, (Knowledge City) Mohali, 140306, India.
| |
Collapse
|
4
|
Cassin EK, Araujo-Hernandez SA, Baughn DS, Londono MC, Rodriguez DQ, Tseng BS. OprF impacts Pseudomonas aeruginosa biofilm matrix eDNA levels in a nutrient-dependent manner. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.01.530729. [PMID: 36909500 PMCID: PMC10002741 DOI: 10.1101/2023.03.01.530729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
The biofilm matrix is composed of exopolysaccharides, eDNA, membrane vesicles, and proteins. While proteomic analyses have identified numerous matrix proteins, their functions in the biofilm remain understudied compared to the other biofilm components. In the Pseudomonas aeruginosa biofilm, several studies have identified OprF as an abundant matrix protein and, more specifically, as a component of biofilm membrane vesicles. OprF is a major outer membrane porin of P. aeruginosa cells. However, current data describing the effects of OprF in the P. aeruginosa biofilm is limited. Here we identify a nutrient-dependent effect of OprF in static biofilms, whereby Δ oprF cells form significantly less biofilm than wild type when grown in media containing glucose or low sodium chloride concentrations. Interestingly, this biofilm defect occurs during late static biofilm formation and is not dependent on the production of PQS, which is responsible for outer membrane vesicle production. Furthermore, while biofilms lacking OprF contain approximately 60% less total biomass than those of wild type, the number of cells in these two biofilms is equivalent. We demonstrate that P. aeruginosa Δ oprF biofilms with reduced biofilm biomass contain less eDNA than wild-type biofilms. These results suggest that the nutrient-dependent effect of OprF is involved in the maintenance of mature P. aeruginosa biofilms by retaining eDNA in the matrix. IMPORTANCE Many pathogens form biofilms, which are bacterial communities encased in an extracellular matrix that protects them against antibacterial treatments. The roles of several matrix components of the opportunistic pathogen Pseudomonas aeruginosa have been characterized. However, the effects of P. aeruginosa matrix proteins remain understudied and are untapped potential targets for antibiofilm treatments. Here we describe a conditional effect of the abundant matrix protein OprF on late-stage P. aeruginosa biofilms. A Δ oprF strain formed significantly less biofilm in low sodium chloride or with glucose. Interestingly, the defective Δ oprF biofilms did not exhibit fewer resident cells but contained significantly less extracellular DNA (eDNA) than wild type. These results suggest that OprF is involved in matrix eDNA retention in mature biofilms.
Collapse
Affiliation(s)
- Erin K. Cassin
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Dena S. Baughn
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Melissa C. Londono
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
| | | | - Boo Shan Tseng
- School of Life Sciences, University of Nevada Las Vegas, Las Vegas, NV, USA
- Corresponding author: Boo Shan Tseng ()
| |
Collapse
|
5
|
Lorite MJ, Casas-Román A, Girard L, Encarnación S, Díaz-Garrido N, Badía J, Baldomá L, Pérez-Mendoza D, Sanjuán J. Impact of c-di-GMP on the Extracellular Proteome of Rhizobium etli. BIOLOGY 2022; 12:44. [PMID: 36671740 PMCID: PMC9855851 DOI: 10.3390/biology12010044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/28/2022]
Abstract
Extracellular matrix components of bacterial biofilms include biopolymers such as polysaccharides, nucleic acids and proteins. Similar to polysaccharides, the secretion of adhesins and other matrix proteins can be regulated by the second messenger cyclic diguanylate (cdG). We have performed quantitative proteomics to determine the extracellular protein contents of a Rhizobium etli strain expressing high cdG intracellular levels. cdG promoted the exportation of proteins that likely participate in adhesion and biofilm formation: the rhizobial adhesion protein RapA and two previously undescribed likely adhesins, along with flagellins. Unexpectedly, cdG also promoted the selective exportation of cytoplasmic proteins. Nearly 50% of these cytoplasmic proteins have been previously described as moonlighting or candidate moonlighting proteins in other organisms, often found extracellularly. Western blot assays confirmed cdG-promoted export of two of these cytoplasmic proteins, the translation elongation factor (EF-Tu) and glyceraldehyde 3-phosphate dehydrogenase (Gap). Transmission Electron Microscopy immunolabeling located the Gap protein in the cytoplasm but was also associated with cell membranes and extracellularly, indicative of an active process of exportation that would be enhanced by cdG. We also obtained evidence that cdG increases the number of extracellular Gap proteoforms, suggesting a link between cdG, the post-translational modification and the export of cytoplasmic proteins.
Collapse
Affiliation(s)
- María J. Lorite
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Ariana Casas-Román
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Lourdes Girard
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Sergio Encarnación
- Centro de Ciencias Genómicas (CCG), Universidad Nacional Autónoma de México (UNAM), Cuernavaca 62210, Morelos, Mexico
| | - Natalia Díaz-Garrido
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Josefa Badía
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
- Institut de Biomedicina de la Universitat de Barcelona (IBUB), Institut de Recerca Sant Joan de Déu (IRSJD), 08028 Barcelona, Spain
| | - Laura Baldomá
- Secció de Bioquímica i Biología Molecular, Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Daniel Pérez-Mendoza
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| | - Juan Sanjuán
- Department of Soil and Plant Microbiology, Estación Experimental del Zaidín, CSIC, 18008 Granada, Spain
| |
Collapse
|
6
|
Charles CJ, Rout SP, Jackson BR, Boxall SA, Akbar S, Humphreys PN. The evolution of alkaliphilic biofilm communities in response to extreme alkaline pH values. Microbiologyopen 2022; 11:e1309. [PMID: 36031955 PMCID: PMC9380404 DOI: 10.1002/mbo3.1309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/26/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
Extremes of pH present a challenge to microbial life and our understanding of survival strategies for microbial consortia, particularly at high pH, remains limited. The utilization of extracellular polymeric substances within complex biofilms allows micro-organisms to obtain a greater level of control over their immediate environment. This manipulation of the immediate environment may confer a survival advantage in adverse conditions to biofilms. Within the present study alkaliphilic biofilms were created at pH 11.0, 12.0, or 13.0 from an existing alkaliphilic community. In each pH system, the biofilm matrix provided pH buffering, with the internal pH being 1.0-1.5 pH units lower than the aqueous environment. Increasing pH resulted in a reduced removal of substrate and standing biomass associated with the biofilm. At the highest pH investigated (pH 13.0), the biofilms matrix contained a greater degree of eDNA and the microbial community was dominated by Dietzia sp. and Anaerobranca sp.
Collapse
Affiliation(s)
- Christopher J. Charles
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
- Present address:
Sulaimani Polytechnic UniversitySulaimaniIraq
| | - Simon P. Rout
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| | - Brian R. Jackson
- Genesis BiosciencesUnit P1Capital Business Park, Capital PointParkwayCardiffUK
| | - Sally A. Boxall
- Genesis BiosciencesUnit P1Capital Business Park, Capital PointParkwayCardiffUK
| | - Sirwan Akbar
- Bio‐imaging Facility, School of Molecular and Cellular BiologyFaculty of Biological Sciences, University of LeedsLeedsUK
| | - Paul N. Humphreys
- Department of Biological and Geographical Sciences, School of Applied SciencesUniversity of HuddersfieldHuddersfieldUK
| |
Collapse
|
7
|
Vidal P, Martínez-Martínez M, Fernandez-Lopez L, Roda S, Méndez-García C, Golyshina OV, Guallar V, Peláez AI, Ferrer M. Metagenomic Mining for Esterases in the Microbial Community of Los Rueldos Acid Mine Drainage Formation. Front Microbiol 2022; 13:868839. [PMID: 35663881 PMCID: PMC9162777 DOI: 10.3389/fmicb.2022.868839] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/14/2022] [Indexed: 01/17/2023] Open
Abstract
Acid mine drainage (AMD) systems are extremely acidic and are metal-rich formations inhabited by relatively low-complexity communities of acidophiles whose enzymes remain mostly uncharacterized. Indeed, enzymes from only a few AMD sites have been studied. The low number of available cultured representatives and genome sequences of acidophiles inhabiting AMDs makes it difficult to assess the potential of these environments for enzyme bioprospecting. In this study, using naïve and in silico metagenomic approaches, we retrieved 16 esterases from the α/β-hydrolase fold superfamily with the closest match from uncultured acidophilic Acidobacteria, Actinobacteria (Acidithrix, Acidimicrobium, and Ferrimicrobium), Acidiphilium, and other Proteobacteria inhabiting the Los Rueldos site, which is a unique AMD formation in northwestern Spain with a pH of ∼2. Within this set, only two polypeptides showed high homology (99.4%), while for the rest, the pairwise identities ranged between 4 and 44.9%, suggesting that the diversity of active polypeptides was dominated not by a particular type of protein or highly similar clusters of proteins, but by diverse non-redundant sequences. The enzymes exhibited amino acid sequence identities ranging from 39 to 99% relative to homologous proteins in public databases, including those from other AMDs, thus indicating the potential novelty of proteins associated with a specialized acidophilic community. Ten of the 16 hydrolases were successfully expressed in Escherichia coli. The pH for optimal activity ranged from 7.0 to 9.0, with the enzymes retaining 33–68% of their activities at pH 5.5, which was consistent with the relative frequencies of acid residues (from 54 to 67%). The enzymes were the most active at 30–65°C, retaining 20–61% of their activity under the thermal conditions characterizing Los Rueldos (13.8 ± 0.6°C). The analysis of the substrate specificity revealed the capacity of six hydrolases to efficiently degrade (up to 1,652 ± 75 U/g at pH 8.0 and 30°C) acrylic- and terephthalic-like [including bis(2-hydroxyethyl)-terephthalate, BHET] esters, and these enzymes could potentially be of use for developing plastic degradation strategies yet to be explored. Our assessment uncovers the novelty and potential biotechnological interest of enzymes present in the microbial populations that inhibit the Los Rueldos AMD system.
Collapse
Affiliation(s)
- Paula Vidal
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Mónica Martínez-Martínez
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Laura Fernandez-Lopez
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Sergi Roda
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
| | - Celia Méndez-García
- Área de Microbiología, Departamento Biología Funcional e Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Olga V. Golyshina
- Centre for Environmental Biotechnology, School of Natural Sciences, Bangor University, Bangor, United Kingdom
| | - Víctor Guallar
- Department of Life Sciences, Barcelona Supercomputing Center, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Ana I. Peláez
- Área de Microbiología, Departamento Biología Funcional e Instituto de Biotecnología de Asturias, Universidad de Oviedo, Oviedo, Spain
| | - Manuel Ferrer
- Institute of Catalysis, Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas, Madrid, Spain
- *Correspondence: Manuel Ferrer,
| |
Collapse
|
8
|
Tong CY, Derek CJC. A Methodological Review on the Characterization of Microalgal Biofilm and Its Extracellular Polymeric Substances. J Appl Microbiol 2022; 132:3490-3514. [DOI: 10.1111/jam.15455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 12/21/2021] [Accepted: 01/17/2022] [Indexed: 11/28/2022]
Affiliation(s)
- C. Y. Tong
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| | - C. J. C Derek
- School of Chemical Engineering, Engineering Campus Universiti Sains Malaysia 14300 Nibong Tebal, Penang Malaysia
| |
Collapse
|
9
|
Rather MA, Gupta K, Mandal M. Microbial biofilm: formation, architecture, antibiotic resistance, and control strategies. Braz J Microbiol 2021; 52:1701-1718. [PMID: 34558029 PMCID: PMC8578483 DOI: 10.1007/s42770-021-00624-x] [Citation(s) in RCA: 211] [Impact Index Per Article: 52.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 09/19/2021] [Indexed: 01/08/2023] Open
Abstract
The assembly of microorganisms over a surface and their ability to develop resistance against available antibiotics are major concerns of interest. To survive against harsh environmental conditions including known antibiotics, the microorganisms form a unique structure, referred to as biofilm. The mechanism of biofilm formation is triggered and regulated by quorum sensing, hostile environmental conditions, nutrient availability, hydrodynamic conditions, cell-to-cell communication, signaling cascades, and secondary messengers. Antibiotic resistance, escape of microbes from the body's immune system, recalcitrant infections, biofilm-associated deaths, and food spoilage are some of the problems associated with microbial biofilms which pose a threat to humans, veterinary, and food processing sectors. In this review, we focus in detail on biofilm formation, its architecture, composition, genes and signaling cascades involved, and multifold antibiotic resistance exhibited by microorganisms dwelling within biofilms. We also highlight different physical, chemical, and biological biofilm control strategies including those based on plant products. So, this review aims at providing researchers the knowledge regarding recent advances on the mechanisms involved in biofilm formation at the molecular level as well as the emergent method used to get rid of antibiotic-resistant and life-threatening biofilms.
Collapse
Affiliation(s)
- Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Kuldeep Gupta
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University (A Central University), Napaam, Tezpur, 784028, Assam, India.
| |
Collapse
|
10
|
Microbiome of highly polluted coal mine drainage from Onyeama, Nigeria, and its potential for sequestrating toxic heavy metals. Sci Rep 2021; 11:17496. [PMID: 34471151 PMCID: PMC8410811 DOI: 10.1038/s41598-021-96899-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 08/17/2021] [Indexed: 11/30/2022] Open
Abstract
Drains from coal mines remain a worrisome point-source of toxic metal/metalloid pollutions to the surface- and ground-waters worldwide, requiring sustainable remediation strategies. Understanding the microbial community subtleties through microbiome and geochemical data can provide valuable information on the problem. Furthermore, the autochthonous microorganisms offer a potential means to remediate such contamination. The drains from Onyeama coal mine in Nigeria contained characteristic sulphates (313.0 ± 15.9 mg l−1), carbonate (253.0 ± 22.4 mg l−1), and nitrate (86.6 ± 41.0 mg l−1), having extreme tendencies to enrich receiving environments with extremely high pollution load index (3110 ± 942) for toxic metals/metalloid. The drains exerted severe degree of toxic metals/metalloid contamination (Degree of contamination: 3,400,000 ± 240,000) and consequent astronomically high ecological risks in the order: Lead > Cadmium > Arsenic > Nickel > Cobalt > Iron > Chromium. The microbiome of the drains revealed the dominance of Proteobacteria (50.8%) and Bacteroidetes (18.9%) among the bacterial community, whereas Ascomycota (60.8%) and Ciliophora (12.6%) dominated the eukaryotic community. A consortium of 7 autochthonous bacterial taxa exhibited excellent urease activities (≥ 253 µmol urea min−1) with subsequent stemming of acidic pH to > 8.2 and sequestration of toxic metals (approx. 100% efficiency) as precipitates (15.6 ± 0.92 mg ml−1). The drain is a point source for metals/metalloid pollution, and its bioremediation is achievable with the bacteria consortium.
Collapse
|
11
|
Kaur B, Naveen Kumar BT, Tyagi A, Admane Holeyappa S, Singh NK. Identification of novel vaccine candidates in the whole-cell Aeromonas hydrophila biofilm vaccine through reverse vaccinology approach. FISH & SHELLFISH IMMUNOLOGY 2021; 114:132-141. [PMID: 33932598 DOI: 10.1016/j.fsi.2021.04.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/03/2021] [Accepted: 04/20/2021] [Indexed: 06/12/2023]
Abstract
Biofilm vaccine has been recognised as one of the successful strategy to reduce the Aeromonas hydrophila infection in fish. But, the vaccine contains the protective and non-protective proteins, which may lead to show altered heterologous adaptive immunity response. Moreover, cross protection and effectiveness of previously developed biofilm vaccine was not tested against different geographical A. hydrophila isolates. Therefore, in the present study, whole-cell A. hydrophila biofilm vaccine was evaluated in rohu, vaccinated group showed increased antibody titer and protection against the different geographical A. hydrophila isolates namely KAH1 and AAH2 with 78.9% and 84.2% relative percentage survival, respectively. In addition, by using the immune sera of biofilm vaccinated group, a total of six protective proteins were detected using western blot assay. Further, the same proteins were identified by nano LC-MS/MS method, a total of fourteen candidate proteins showing the immunogenic property including highly expressed OMP's tolC, bamA, lamb, AH4AK4_2542, AHGSH82_029580 were identified as potential vaccine candidates. The STRING analysis revealed that, top candidate proteins identified may potentially interact with other intracellular proteins; involved in ribosomal and (tricarboxylic acid) TCA pathway. Importantly, all the selected vaccine candidate proteins contain the B-cell epitope region. Finally, the present study concludes that, whole-cell A. hydrophila biofilm vaccine able to protect the fish against the different geographical A. hydrophila isolates. Further, through reverse vaccinology approach, a total of fourteen proteins were identified as potential vaccine candidates against A. hydrophila pathogen.
Collapse
Affiliation(s)
- Basmeet Kaur
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - B T Naveen Kumar
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India.
| | - Anuj Tyagi
- College of Fisheries, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | | | - Niraj Kumar Singh
- College of Animal Biotechnology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| |
Collapse
|
12
|
Formation and characterization of biofilms formed by salt-tolerant yeast strains in seawater-based growth medium. Appl Microbiol Biotechnol 2021; 105:2411-2426. [PMID: 33630153 DOI: 10.1007/s00253-021-11132-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/30/2020] [Accepted: 01/20/2021] [Indexed: 10/22/2022]
Abstract
Yeast whole cells have been widely used in modern biotechnology as biocatalysts to generate numerous compounds of industrial, chemical, and pharmaceutical importance. Since many of the biocatalysis-utilizing manufactures have become more concerned about environmental issues, seawater is now considered a sustainable alternative to freshwater for biocatalytic processes. This approach plausibly commenced new research initiatives into exploration of salt-tolerant yeast strains. Recently, there has also been a growing interest in possible applications of microbial biofilms in the field of biocatalysis. In these complex communities, cells demonstrate higher resistance to adverse environmental conditions due to their embedment in an extracellular matrix, in which physical, chemical, and physiological gradients exist. Considering these two topics, seawater and biofilms, in this work, we characterized biofilm formation in seawater-based growth media by several salt-tolerant yeast strains with previously demonstrated biocatalytic capacities. The tested strains formed both air-liquid-like biofilms and biofilms on silicone surfaces, with Debaryomyces fabryi, Schwanniomyces etchellsii, Schwanniomyces polymorphus, and Kluyveromyces marxianus showing the highest biofilm formation. The extracted biofilm extracellular matrices mostly consisted of carbohydrates and proteins. The latter group was primarily represented by enzymes involved in metabolic processes, particularly the biosynthetic ones, and in the response to stimuli. Specific features were also found in the carbohydrate composition of the extracellular matrix, which were dependent both on the yeast isolate and the nature of formed biofilms. Overall, our findings presented herein provide a unique data resource for further development and optimization of biocatalytic processes and applications employing seawater and halotolerant yeast biofilms.Key points• Ability for biofilm formation of some yeast-halotolerant strains in seawater medium• ECM composition dependent on strain and biofilm-forming surface• Metabolic enzymes in the ECM with potential applications for biocatalysis.
Collapse
|
13
|
Chang RH, Feng DD, Peng LH, Zhu YT, Liang X, Yang JL. Complete genome sequence of Shewanella marisflavi ECSMB14101, a red pigment synthesizing bacterium isolated from the East China Sea. Mar Genomics 2021; 58:100846. [PMID: 34217483 DOI: 10.1016/j.margen.2021.100846] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/24/2021] [Accepted: 01/25/2021] [Indexed: 11/30/2022]
Abstract
Bacteria of the genus Shewanella have been studied for their versatile electron-accepting abilities, particularly for extracellular electron transfer via minerals. Shewanella marisflavi ECSMB14101 was isolated from naturally formed biofilms in the East China Sea. The genome of S. marisflavi ECSMB14101 encodes 3891 genes with a total size of 4,343,492 bp in one chromosome. Its GC content is 49.89%. S. marisflavi ECSMB14101 is able to synthesize a red pigment, which may be achieved through Cytochrome c3 and electron transfer to reduce Fe(III) oxide. The genomic data presented here could provide fundamental insights to better understand the physiological characteristics of S. marisflavi, the ecological significance of red pigment synthesis, and its inductive effects on the settlement of marine invertebrate larvae.
Collapse
Affiliation(s)
- Rui-Heng Chang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Dan-Dan Feng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Li-Hua Peng
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - You-Ting Zhu
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, China
| |
Collapse
|
14
|
Terán LC, Distefano M, Bellich B, Petrosino S, Bertoncin P, Cescutti P, Sblattero D. Proteomic Studies of the Biofilm Matrix including Outer Membrane Vesicles of Burkholderia multivorans C1576, a Strain of Clinical Importance for Cystic Fibrosis. Microorganisms 2020; 8:E1826. [PMID: 33228110 PMCID: PMC7699398 DOI: 10.3390/microorganisms8111826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/16/2020] [Accepted: 11/17/2020] [Indexed: 12/28/2022] Open
Abstract
Biofilms are aggregates of microbial cells encased in a highly hydrated matrix made up of self-produced extracellular polymeric substances (EPS) which consist of polysaccharides, proteins, nucleic acids, and lipids. While biofilm matrix polysaccharides are unraveled, there is still poor knowledge about the identity and function of matrix-associated proteins. With this work, we performed a comprehensive proteomic approach to disclose the identity of proteins associated with the matrix of biofilm-growing Burkholderia multivorans C1576 reference strain, a cystic fibrosis clinical isolate. Transmission electron microscopy showed that B. multivorans C1576 also releases outer membrane vesicles (OMVs) in the biofilm matrix, as already demonstrated for other Gram-negative species. The proteomic analysis revealed that cytoplasmic and membrane-bound proteins are widely represented in the matrix, while OMVs are highly enriched in outer membrane proteins and siderophores. Our data suggest that cell lysis and OMVs production are the most important sources of proteins for the B. multivorans C1576 biofilm matrix. Of note, some of the identified proteins are lytic enzymes, siderophores, and proteins involved in reactive oxygen species (ROS) scavenging. These proteins might help B. multivorans C1576 in host tissue invasion and defense towards immune system assaults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Daniele Sblattero
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (L.C.T.); (M.D.); (B.B.); (S.P.); (P.B.); (P.C.)
| |
Collapse
|
15
|
Nett JE, Andes DR. Contributions of the Biofilm Matrix to Candida Pathogenesis. J Fungi (Basel) 2020; 6:E21. [PMID: 32028622 PMCID: PMC7151000 DOI: 10.3390/jof6010021] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/29/2020] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
In healthcare settings, Candida spp. cause invasive disease with high mortality. The overwhelming majority of cases are associated with the use of critically-needed medical devices, such as vascular catheters. On the surface of these indwelling materials, Candida forms resilient, adherent biofilm communities. A hallmark characteristic of this process is the production of an extracellular matrix, which promotes fungal adhesion and provides protection from external threats. In this review, we highlight the medical relevance of device-associated Candida biofilms and draw attention to the process of Candida-biofilm-matrix production. We provide an update on the current understanding of how biofilm extracellular matrix contributes to pathogenicity, particularly through its roles in the promoting antifungal drug tolerance and immune evasion.
Collapse
Affiliation(s)
- Jeniel E. Nett
- Departments of Medicine and Medical Microbiology & Immunology, University of Wisconsin-Madison, Madison, WI 53706, USA;
| | | |
Collapse
|
16
|
Kumari S, Das S. Expression of metallothionein encoding gene bmtA in biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 and understanding its involvement in Pb(II) resistance and bioremediation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28763-28774. [PMID: 31376126 DOI: 10.1007/s11356-019-05916-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The genetic basis and biochemical aspects of heavy metal endurance abilities have been precisely studied in planktonic bacteria; however, in nature, bacteria mostly grows as surface-attached communities called biofilms. A hallmark trait of biofilm is increased resistance to heavy metals compared with the resistance of planktonic bacteria. A proposed mechanism that contributes to this increased resistance is the enhanced expression of metal-resistant genes. bmtA gene coding for metallothionein protein is one such metal-resistant gene found in many bacterial spp. In the present study, lead (Pb) remediation potential of a biofilm-forming marine bacterium Pseudomonas aeruginosa N6P6 was explored. Biofilm-forming marine bacterium P. aeruginosa N6P6 possess bmtA gene and shows resistance towards many heavy metals, i.e., Pb, Cd, Hg, Cr, and Zn. The expression of metallothionein encoding gene bmtA is significantly high in 48-h-old biofilm culture (11. 4 fold) followed by 24-h-old biofilm culture of P. aeruginosa N6P6 (4.7 fold) (P < 0.05). However, in the case of planktonically grown culture of P. aeruginosa N6P6, the highest expression of bmtA gene was observed in 24-h-old culture. The expression of bmtA also increased significantly with increase in Pb concentration up to 800 ppm. CSLM analysis indicated significant reduction in the raw integrated density of biofilm-associated lipids and polysaccharides (PS) of P. aeruginosa N6P6 biofilm grown in Pb (sub-lethal concentration)-amended medium (P < 0.05), whereas no significant reduction was observed in the raw integrated density of EPS-associated protein. The role of bmtA gene as Pb(II)-resistant determinant was characterized by overexpressing the bmtA gene derived from P. aeruginosa N6P6 in Escherichia coli BL21(DE3). ESI-MS and SDS-PAGE analyses validated the presence of 11.5-kDa MT protein isolated from Pb(II)-induced recombinant E. coli BL21(DE3) harboring bmtA gene.
Collapse
Affiliation(s)
- Supriya Kumari
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela, Odisha, 769 008, India.
| |
Collapse
|
17
|
Acid Mine Drainage as Habitats for Distinct Microbiomes: Current Knowledge in the Era of Molecular and Omic Technologies. Curr Microbiol 2019; 77:657-674. [DOI: 10.1007/s00284-019-01771-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 09/09/2019] [Indexed: 11/27/2022]
|
18
|
Deliorman M, Duatepe FPG, Davenport EK, Fransson BA, Call DR, Beyenal H, Abu-Lail NI. Responses of Acinetobacter baumannii Bound and Loose Extracellular Polymeric Substances to Hyperosmotic Agents Combined with or without Tobramycin: An Atomic Force Microscopy Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9071-9083. [PMID: 31184900 PMCID: PMC7607972 DOI: 10.1021/acs.langmuir.9b01227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
In this work, contributions of extracellular polymeric substances (EPS) to the nanoscale mechanisms through which the multidrug-resistant Acinetobacter baumannii responds to antimicrobial and hyperosmotic treatments were investigated by atomic force microscopy. Specifically, the adhesion strengths to a control surface of silicon nitride (Si3N4) and the lengths of bacterial surface biopolymers of bound and loose EPS extracted from A. baumannii biofilms were quantified after individual or synergistic treatments with hyperosmotic agents (NaCl and maltodextrin) and an antibiotic (tobramycin). In the absence of any treatment, the loose EPS were significantly longer in length and higher in adhesion to Si3N4 than the bound EPS. When used individually, the hyperosmotic agents and tobramycin collapsed the A. baumannii bound and loose EPS. The combined treatment of maltodextrin with tobramycin collapsed only the loose EPS and did not alter the adhesion of both bound and loose EPS to Si3N4. In addition, the combined treatment was not as effective in collapsing the EPS molecules as when tobramycin was applied alone. Finally, the effects of treatments were dose-dependent. Altogether, our findings suggest that a sequential treatment could be effective in treating A. baumannii biofilms, in which a hyperosmotic agent is used first to collapse the EPS and limit the diffusion of nutrients into the biofilm, followed by the use of an antibiotic to kill the bacterial cells that escape from the biofilm because of starvation.
Collapse
Affiliation(s)
- Muhammedin Deliorman
- Division of Engineering, New York University Abu Dhabi, P.O. Box 129188, Abu Dhabi, UAE
| | | | - Emily K. Davenport
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 99164 Pullman, Washington, United States
| | - Boel A. Fransson
- Department of Veterinary Clinical Sciences, Washington State University, 99164 Pullman, Washington, United States
| | - Douglas R. Call
- Paul G. Allen School for Global Animal Health, Washington State University, 99164 Pullman, Washington, United States
| | - Haluk Beyenal
- Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, 99164 Pullman, Washington, United States
| | - Nehal I. Abu-Lail
- Department of Biomedical Engineering, University of Texas at San Antonio, 78249 San Antonio, Texas, United States
- Corresponding Author:. Phone: +1 210 458 8131
| |
Collapse
|
19
|
Ryser S, Tenorio E, Estellés A, Kauvar LM. Human antibody repertoire frequently includes antibodies to a bacterial biofilm associated protein. PLoS One 2019; 14:e0219256. [PMID: 31287831 PMCID: PMC6615618 DOI: 10.1371/journal.pone.0219256] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 06/19/2019] [Indexed: 01/07/2023] Open
Abstract
We have previously described a native human monoclonal antibody, TRL1068, that disrupts bacterial biofilms by extracting from the biofilm matrix key scaffolding proteins in the DNABII family, which are present in both gram positive and gram negative bacterial species. The antibiotic resistant sessile bacteria released from the biofilm then revert to the antibiotic sensitive planktonic state. Qualitative resensitization to antibiotics has been demonstrated in three rodent models of acute infections. We report here the surprising discovery that antibodies against the target family were found in all twenty healthy humans surveyed, albeit at a low level requiring a sensitive single B-cell assay for detection. We have cloned 21 such antibodies. Aside from TRL1068, only one (TRL1330) has all the biochemical properties believed necessary for pharmacological efficacy (broad spectrum epitope specificity and high affinity). We suggest that the other anti-DNABII antibodies, while not necessarily curative, reflect an immune response at some point in the donor's history to these components of biofilms. Such an immune response could reflect exposure to bacterial reservoirs that have been previously described in chronic non-healing wounds, periodontal disease, chronic obstructive pulmonary disease, colorectal cancer, rheumatoid arthritis, and atherosclerotic artery explants. The detection of anti-DNABII antibodies in all twenty surveyed donors with no active infection suggests that bacterial biofilm reservoirs may be present periodically in most healthy individuals. Biofilms routinely shed bacteria, creating a continuous low level inflammatory stimulus. Since chronic subclinical inflammation is thought to contribute to most aging-related diseases, suppression of bacterial biofilm has potential value in delaying age-related pathology.
Collapse
Affiliation(s)
- Stefan Ryser
- Trellis Bioscience LLC, Redwood City, California, United States of America
| | - Edgar Tenorio
- Trellis Bioscience LLC, Redwood City, California, United States of America
| | - Angeles Estellés
- Trellis Bioscience LLC, Redwood City, California, United States of America
| | - Lawrence M. Kauvar
- Trellis Bioscience LLC, Redwood City, California, United States of America
| |
Collapse
|
20
|
Zhang P, Zhu J, Xu XY, Qing TP, Dai YZ, Feng B. Identification and function of extracellular protein in wastewater treatment using proteomic approaches: A minireview. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 233:24-29. [PMID: 30553123 DOI: 10.1016/j.jenvman.2018.12.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 11/04/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Microbial extracellular proteins serve as important functions in wastewater treatment process. Analysis of their compositions and properties is crucial to probe their specific functions. However, conventional analytical techniques cannot obtain interest protein information from complex proteins. Recently, the extracellular proteomics method has been applied to resolve the composition of extracellular proteins. In order to better understand the roles of extracellular protein in wastewater treatment process, this review provides the information on the proteomics methods and their application in investigating extracellular proteins involved in microbial attachment/aggregation, biodegradation of pollutants, and response to environmental stresses. Future work needs to exploit the full capability of the proteome.
Collapse
Affiliation(s)
- Peng Zhang
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China; Key Laboratory of the Three Gorges Reservoir Region's Eco-Environments of MOE, Chongqing University, Chongqing, 400045, China.
| | - Jing Zhu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Xiao-Yan Xu
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Tai-Ping Qing
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - You-Zhi Dai
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China
| | - Bo Feng
- College of Environment and Resources, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
21
|
Sutlief AL, Valquier-Flynn H, Wilson C, Perez M, Kleinschmidt H, Schofield BJ, Delmain E, Holmes AE, Wentworth CD. Live Cell Analysis of Shear Stress on Pseudomonas aeruginosa Using an Automated Higher-Throughput Microfluidic System. J Vis Exp 2019:10.3791/58926. [PMID: 30735194 PMCID: PMC6455916 DOI: 10.3791/58926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
A higher-throughput microfluidic in vitro bioreactor coupled with fluorescence microscopy has been used to study bacterial biofilm growth and morphology, including Pseudomonas aeruginosa (P. aeruginosa). Here, we will describe how the system can be used to study the growth kinetics and the morphological properties such as the surface roughness and textural entropy of P. aeruginosa strain PA01 that expresses an enhanced green fluorescent protein (PA01-EGFP). A detailed protocol will describe how to grow and seed PA01-EGFP cultures, how to set up the microscope and autorun, and conduct the image analysis to determine growth rate and morphological properties using a variety of shear forces that are controlled by the microfluidic device. This article will provide a detailed description of a technique to improve the study of PA01-EGFP biofilms which eventually can be applied towards other strains of bacteria, fungi, or algae biofilms using the microfluidic platform.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elizabeth Delmain
- Department of Pathology and Microbiology, University of Nebraska Medical Center
| | | | | |
Collapse
|
22
|
De Anda V, Zapata-Peñasco I, Blaz J, Poot-Hernández AC, Contreras-Moreira B, González-Laffitte M, Gámez-Tamariz N, Hernández-Rosales M, Eguiarte LE, Souza V. Understanding the Mechanisms Behind the Response to Environmental Perturbation in Microbial Mats: A Metagenomic-Network Based Approach. Front Microbiol 2018; 9:2606. [PMID: 30555424 PMCID: PMC6280815 DOI: 10.3389/fmicb.2018.02606] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 10/11/2018] [Indexed: 12/26/2022] Open
Abstract
To date, it remains unclear how anthropogenic perturbations influence the dynamics of microbial communities, what general patterns arise in response to disturbance, and whether it is possible to predict them. Here, we suggest the use of microbial mats as a model of study to reveal patterns that can illuminate the ecological processes underlying microbial dynamics in response to stress. We traced the responses to anthropogenic perturbation caused by water depletion in microbial mats from Cuatro Cienegas Basin (CCB), Mexico, by using a time-series spatially resolved analysis in a novel combination of three computational approaches. First, we implemented MEBS (Multi-genomic Entropy-Based Score) to evaluate the dynamics of major biogeochemical cycles across spatio-temporal scales with a single informative value. Second, we used robust Time Series-Ecological Networks (TS-ENs) to evaluate the total percentage of interactions at different taxonomic levels. Lastly, we utilized network motifs to characterize specific interaction patterns. Our results indicate that microbial mats from CCB contain an enormous taxonomic diversity with at least 100 phyla, mainly represented by members of the rare biosphere (RB). Statistical ecological analyses point out a clear involvement of anaerobic guilds related to sulfur and methane cycles during wet versus dry conditions, where we find an increase in fungi, photosynthetic, and halotolerant taxa. TS-ENs indicate that in wet conditions, there was an equilibrium between cooperation and competition (positive and negative relationships, respectively), while under dry conditions there is an over-representation of negative relationships. Furthermore, most of the keystone taxa of the TS-ENs at family level are members of the RB and the microbial mat core highlighting their crucial role within the community. Our results indicate that microbial mats are more robust to perturbation due to redundant functions that are likely shared among community members in the highly connected TS-ENs with density values close to one (≈0.9). Finally, we provide evidence that suggests that a large taxonomic diversity where all community members interact with each other (low modularity), the presence of permanent of low-abundant taxa, and an increase in competition can be potential buffers against environmental disturbance in microbial mats.
Collapse
Affiliation(s)
- Valerie De Anda
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Icoquih Zapata-Peñasco
- Dirección de Investigación en Transformación de Hidrocarburos, Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas, Ciudad de México, Mexico
| | - Jazmín Blaz
- Laboratorio Nacional de Ciencias de la Sostenibilidad, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Augusto Cesar Poot-Hernández
- Departamento de Ingeniería de Sistemas Computacionales y Automatización, Instituto de Investigaciones en Matemáticas Aplicadas y en Sistemas, UNAM, Ciudad Universitaria, Ciudad de México, Mexico
| | - Bruno Contreras-Moreira
- Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
| | | | - Niza Gámez-Tamariz
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | | | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Valeria Souza
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
23
|
Kuo-Dahab WC, Stauch-White K, Butler CS, Gikonyo GJ, Carbajal-González B, Ivanova A, Dolan S, Park C. Investigation of the Fate and Dynamics of Extracellular Polymeric Substances (EPS) during Sludge-Based Photogranulation under Hydrostatic Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10462-10471. [PMID: 30153020 DOI: 10.1021/acs.est.8b03033] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oxygenic photogranules have received increasing interest due to their ability to treat wastewater without aeration and recover wastewater's chemical energy and solar energy. It has been reported that these photogranules can be produced under both hydrostatic and hydrodynamic conditions, and enrichment of filamentous cyanobacteria is required for this photogranulation to occur. Despite the critical role extracellular polymeric substances (EPS) play in granulation, EPS in photogranulation is yet virtually unknown. Here, we present the fate and dynamics of different fractions of EPS in sludge-based photogranulation under hydrostatic conditions. The study shows that during the transformation of activated sludge into a photogranular biomass, sludge's base-extractable proteins selectively degrade. Strong correlations between base-extracted proteins and the growth of chlorophyll a and chlorophyll a/ b ratio suggest that the bioavailability of this organic nitrogen is linked with selection and enrichment of filamentous cyanobacteria under hydrostatic conditions. The results of soluble and sonication-extractable EPS and microscopy also show that the growth of filamentous cyanobacteria required large amounts of polysaccharide-based EPS for their motility and maintenance. With findings on the progression of photogranulation, the fate and dynamics of EPS, and microscopy on microstructures associated with EPS, we discuss potential mechanisms of photogranulation occurring under hydrostatic conditions.
Collapse
Affiliation(s)
- Wenye Camilla Kuo-Dahab
- Department of Civil and Environmental Engineering , University of Massachusetts , Amherst , Massachusetts 01003 United States
- Brown and Caldwell ; One Tech Drive , Andover , Massachusetts 01810 , United States
| | - Kristie Stauch-White
- Department of Civil and Environmental Engineering , University of Massachusetts , Amherst , Massachusetts 01003 United States
| | - Caitlyn S Butler
- Department of Civil and Environmental Engineering , University of Massachusetts , Amherst , Massachusetts 01003 United States
| | - Gitau J Gikonyo
- Department of Civil and Environmental Engineering , University of Massachusetts , Amherst , Massachusetts 01003 United States
| | - Blanca Carbajal-González
- Science Center Microscopy Facility , Mount Holyoke College , South Hadley , Massachusetts 01075 , United States
| | - Anastasia Ivanova
- Department of Biology , University of Massachusetts , Amherst , Massachusetts 01003 , United States
| | - Sona Dolan
- Department of Civil and Environmental Engineering , University of Massachusetts , Amherst , Massachusetts 01003 United States
| | - Chul Park
- Department of Civil and Environmental Engineering , University of Massachusetts , Amherst , Massachusetts 01003 United States
| |
Collapse
|
24
|
Cłapa T, Narożna D, Siuda R, Borkowski A, Selwet M, Mądrzak CJ, Koźlecka E. Bacterial Communities from the Arsenic Mine in Złoty Stok, Sudety Mountains, Poland. Pol J Microbiol 2017; 66:375-381. [PMID: 29319506 DOI: 10.5604/01.3001.0010.4875] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Investigations of bacterial communities and characterization of mineralogy of the environment in the Złoty Stok As-Au deposit were carried out. PXRD analysis revealed the presence of picropharmacolite as the most common secondary arsenic mineral in the mine. Total DNA was extracted from slime streams or slime biofilms samples to investigate the bacterial communities. PCR amplification of 16S rDNA was performed followed by subcloning of its products. Over 170 clones were analyzed by means of RFLP method. Eight group of clones representing different restriction patterns were identified. The nucleotide sequences of their inserts suggest that bacteria present in the mine environment belong to: Flavobacteria, Sphingobacteriia, Bacteroides, Proteobacteria, Mollicutes and Firmicutes. The metagenomic approach allows to demonstrate a higher diversity of microbiota than classical microbiological studies of cultivable isolates.
Collapse
Affiliation(s)
- Tomasz Cłapa
- Department of General and Environmental Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Dorota Narożna
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Rafał Siuda
- Faculty of Geology, University of Warsaw, Poland
| | | | - Marek Selwet
- Department of General and Environmental Microbiology, Poznań University of Life Sciences, Poznań, Poland
| | - Cezary J Mądrzak
- Department of Biochemistry and Biotechnology, Poznań University of Life Sciences, Poznań, Poland
| | - Ewa Koźlecka
- Department of General and Environmental Microbiology, Poznań University of Life Sciences, Poznań, Poland
| |
Collapse
|
25
|
A Human Biofilm-Disrupting Monoclonal Antibody Potentiates Antibiotic Efficacy in Rodent Models of both Staphylococcus aureus and Acinetobacter baumannii Infections. Antimicrob Agents Chemother 2017; 61:AAC.00904-17. [PMID: 28717038 DOI: 10.1128/aac.00904-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 07/11/2017] [Indexed: 12/22/2022] Open
Abstract
Many serious bacterial infections are antibiotic refractory due to biofilm formation. A key structural component of biofilm is extracellular DNA, which is stabilized by bacterial proteins, including those from the DNABII family. TRL1068 is a high-affinity human monoclonal antibody against a DNABII epitope conserved across both Gram-positive and Gram-negative bacterial species. In the present study, the efficacy of TRL1068 for the disruption of biofilm was demonstrated in vitro in the absence of antibiotics by scanning electron microscopy. The in vivo efficacy of this antibody was investigated in a well-characterized catheter-induced aortic valve infective endocarditis model in rats infected with a methicillin-resistant Staphylococcus aureus (MRSA) strain with the ability to form thick biofilms, obtained from the blood of a patient with persistent clinical infection. Animals were treated with vancomycin alone or in combination with TRL1068. MRSA burdens in cardiac vegetations and within intracardiac catheters, kidneys, spleen, and liver showed significant reductions in the combination arm versus vancomycin alone (P < 0.001). A trend toward mortality reduction was also observed (P = 0.09). In parallel, the in vivo efficacy of TRL1068 against a multidrug-resistant clinical Acinetobacter baumannii isolate was explored by using an established mouse model of skin and soft tissue catheter-related biofilm infection. Catheter segments infected with A. baumannii were implanted subcutaneously into mice; animals were treated with imipenem alone or in combination with TRL1068. The combination showed a significant reduction of catheter-adherent bacteria versus the antibiotic alone (P < 0.001). TRL1068 shows excellent promise as an adjunct to standard-of-care antibiotics for a broad range of difficult-to-treat bacterial infections.
Collapse
|
26
|
Floc Formation Reduces the pH Stress Experienced by Microorganisms Living in Alkaline Environments. Appl Environ Microbiol 2017; 83:AEM.02985-16. [PMID: 28087527 DOI: 10.1128/aem.02985-16] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/05/2017] [Indexed: 11/20/2022] Open
Abstract
The survival of microorganisms within a cementitious geological disposal facility for radioactive wastes heavily depends on their ability to survive the calcium-dominated, hyperalkaline conditions resulting from the dissolution of the cementitious materials. The results from this study show that the formation of flocs, composed of a complex mixture of extracellular polymeric substances (EPS), provides protection against alkaline pH values up to 13.0. The flocs were dominated by Alishewanella and Dietzia spp., producing a mannose-rich carbohydrate fraction incorporating extracellular DNA, resulting in Ca2+ sequestration. EPS provided a ∼10-μm thick layer around the cells within the center of the flocs, which were capable of growth at pH values of 11.0 and 11.5, maintaining internal pH values of 10.4 and 10.7, respectively. Microorganisms survived at a pH of 12.0, where an internal floc pH of 11.6 was observed, as was a reduced associated biomass. We observed limited floc survival (<2 weeks) at a pH of 13.0. This study demonstrates that flocs maintain lower internal pHs in response to the hyperalkaline conditions expected to occur within a cementitious geological disposal facility for radioactive wastes and indicates that floc communities within such a facility can survive at pHs up to 12.0.IMPORTANCE The role of extracellular polymeric substances (EPS) in the survival of microorganisms in hyperalkaline conditions is poorly understood. Here, we present the taxonomy, morphology, and chemical characteristics of an EPS-based microbial floc, formed by a consortium isolated from an anthropogenic hyperalkaline site. Short-term (<2 weeks) survival of the flocs at a pH of 13 was observed, with indefinite survival observed at a pH of 12.0. Measurements from micro-pH electrodes (10-μm-diameter tip) demonstrated that flocs maintain lower internal pHs in response to hyperalkaline conditions (pH 11.0, 11.5, and 12.0), demonstrating that floc formation and EPS production are survival strategies under hyperalkaline conditions. The results indicate how microbial communities may survive and propagate within the hyperalkaline environment that is expected to prevail in a cementitious geological disposal facility for radioactive wastes; the results are also relevant to the wider extremophile community.
Collapse
|
27
|
Ennouri H, d'Abzac P, Hakil F, Branchu P, Naïtali M, Lomenech AM, Oueslati R, Desbrières J, Sivadon P, Grimaud R. The extracellular matrix of the oleolytic biofilms of Marinobacter hydrocarbonoclasticus comprises cytoplasmic proteins and T2SS effectors that promote growth on hydrocarbons and lipids. Environ Microbiol 2016; 19:159-173. [PMID: 27727521 DOI: 10.1111/1462-2920.13547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/12/2016] [Accepted: 09/21/2016] [Indexed: 11/28/2022]
Abstract
The assimilation of the nearly water insoluble substrates hydrocarbons and lipids by bacteria entails specific adaptations such as the formation of oleolytic biofilms. The present article reports that the extracellular matrix of an oleolytic biofilm formed by Marinobacter hydrocarbonoclasticus at n-hexadecane-water interfaces is largely composed of proteins typically cytoplasmic such as translation factors and chaperones, and a lesser amount of proteins of unknown function that are predicted extra-cytoplasmic. Matrix proteins appear to form a structured film on hydrophobic interfaces and were found mandatory for the development of biofilms on lipids, alkanes and polystyrene. Exo-proteins secreted through the type-2 secretion system (T2SS) were shown to be essential for the formation of oleolytic biofilms on both alkanes and triglycerides. The T2SS effector involved in biofilm formation on triglycerides was identified as a lipase. In the case of biofilm formation on n-hexadecane, the T2SS effector is likely involved in the mass transfer, capture or transport of alkanes. We propose that M. hydrocarbonoclasticus uses cytoplasmic proteins released by cell lysis to form a proteinaceous matrix and dedicated proteins secreted through the T2SS to act specifically in the assimilation pathways of hydrophobic substrates.
Collapse
Affiliation(s)
- Habiba Ennouri
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France.,Unité d'Immunologie, Microbiologie Environnementale et Cancérogenèse (IMEC), Faculté des sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Paul d'Abzac
- IPREM -Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Technopole Hélioparc, 2 avenue du Président Pierre Angot, Pau Cedex 09, 64053, France
| | - Florence Hakil
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| | - Priscilla Branchu
- Equipe Bioadhésion, Biofilm et Hygiène des Matériaux B2HM, UMR 1319 MICALIS, INRA AgroParisTech, Massy, France
| | - Murielle Naïtali
- Equipe Bioadhésion, Biofilm et Hygiène des Matériaux B2HM, UMR 1319 MICALIS, INRA AgroParisTech, Massy, France
| | - Anne-Marie Lomenech
- Plateforme Protéome, Centre Génomique Fonctionnelle Bordeaux, Université Bordeaux Segalen, 146 Rue Léo Saignat, Bordeaux, 33076, France
| | - Ridha Oueslati
- Unité d'Immunologie, Microbiologie Environnementale et Cancérogenèse (IMEC), Faculté des sciences de Bizerte, Université de Carthage, 7021 Zarzouna, Bizerte, Tunisie
| | - Jacques Desbrières
- IPREM -Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Technopole Hélioparc, 2 avenue du Président Pierre Angot, Pau Cedex 09, 64053, France
| | - Pierre Sivadon
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| | - Régis Grimaud
- IPREM - Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, UMR 5254 CNRS, Université de Pau et des Pays de l'Adour Bâtiment IBEAS - UFR Sciences, avenue de l'Université, BP 1155, PAU Cedex, 64013, France
| |
Collapse
|
28
|
Biofilms of vaginal Lactobacillus reuteri CRL 1324 and Lactobacillus rhamnosus CRL 1332: kinetics of formation and matrix characterization. Arch Microbiol 2016; 198:689-700. [PMID: 27146055 DOI: 10.1007/s00203-016-1225-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Revised: 03/16/2016] [Accepted: 04/15/2016] [Indexed: 01/02/2023]
Abstract
Adhesion and biofilm formation are strain properties that reportedly contribute to the permanence of lactobacilli in the human vagina. The kinetics of biofilm formation and the chemical nature of the biofilm matrix formed by Lactobacillus reuteri CRL (Centro de Referencia para Lactobacilos Culture Collection) 1324 and Lactobacillus rhamnosus CRL 1332, vaginal beneficial strains, were evaluated in this work. Crystal violet-stained microplate assay and techniques of epifluorescence, electron and confocal microscopy were applied. The highest density and complexity of biofilms of both vaginal lactobacilli were observed at 72 h of incubation. Protease, proteinase K, α-chymotrypsin and trypsin treatments efficiently detached L. reuteri CRL 1324 biofilm that was also partially affected by α-amylase. However, L. rhamnosus CRL 1332 biofilm was slightly affected by protease, proteinase K and α-amylase. Confocal microscopy revealed greater amount of polysaccharides in L. rhamnosus CRL 1332 biofilm matrix than in L. reuteri CRL 1324 biofilm matrix. The results indicate that proteins are one of the main components of the L. reuteri CRL 1324 biofilm, while the biofilm matrix of L. rhamnosus CRL 1332 is composed of carbohydrates and proteins. The results obtained support the knowledge, understanding and characterization of two biofilm-forming vaginal Lactobacillus strains.
Collapse
|
29
|
Abstract
Bacteria have traditionally been studied as single-cell organisms. In laboratory settings, aerobic bacteria are usually cultured in aerated flasks, where the cells are considered essentially homogenous. However, in many natural environments, bacteria and other microorganisms grow in mixed communities, often associated with surfaces. Biofilms are comprised of surface-associated microorganisms, their extracellular matrix material, and environmental chemicals that have adsorbed to the bacteria or their matrix material. While this definition of a biofilm is fairly simple, biofilms are complex and dynamic. Our understanding of the activities of individual biofilm cells and whole biofilm systems has developed rapidly, due in part to advances in molecular, analytical, and imaging tools and the miniaturization of tools designed to characterize biofilms at the enzyme level, cellular level, and systems level.
Collapse
|
30
|
Abstract
Proteinaceous components of the biofilm matrix include secreted extracellular proteins, cell surface adhesins, and protein subunits of cell appendages such as flagella and pili. Biofilm matrix proteins play diverse roles in biofilm formation and dissolution. They are involved in attaching cells to surfaces, stabilizing the biofilm matrix via interactions with exopolysaccharide and nucleic acid components, developing three-dimensional biofilm architectures, and dissolving biofilm matrix via enzymatic degradation of polysaccharides, proteins, and nucleic acids. In this article, we will review functions of matrix proteins in a selected set of microorganisms, studies of the matrix proteomes of Vibrio cholerae and Pseudomonas aeruginosa, and roles of outer membrane vesicles and of nucleoid-binding proteins in biofilm formation.
Collapse
|
31
|
Zhang W, Sun J, Ding W, Lin J, Tian R, Lu L, Liu X, Shen X, Qian PY. Extracellular matrix-associated proteins form an integral and dynamic system during Pseudomonas aeruginosa biofilm development. Front Cell Infect Microbiol 2015; 5:40. [PMID: 26029669 PMCID: PMC4429628 DOI: 10.3389/fcimb.2015.00040] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 04/27/2015] [Indexed: 12/13/2022] Open
Abstract
Though the essential role of extracellular matrix in biofilm development has been extensively documented, the function of matrix-associated proteins is elusive. Determining the dynamics of matrix-associated proteins would be a useful way to reveal their functions in biofilm development. Therefore, we applied iTRAQ-based quantitative proteomics to evaluate matrix-associated proteins isolated from different phases of Pseudomonas aeruginosa ATCC27853 biofilms. Among the identified 389 proteins, 54 changed their abundance significantly. The increased abundance of stress resistance and nutrient metabolism-related proteins over the period of biofilm development was consistent with the hypothesis that biofilm matrix forms micro-environments in which cells are optimally organized to resist stress and use available nutrients. Secreted proteins, including novel putative effectors of the type III secretion system were identified, suggesting that the dynamics of pathogenesis-related proteins in the matrix are associated with biofilm development. Interestingly, there was a good correlation between the abundance changes of matrix-associated proteins and their expression. Further analysis revealed complex interactions among these modulated proteins, and the mutation of selected proteins attenuated biofilm development. Collectively, this work presents the first dynamic picture of matrix-associated proteins during biofilm development, and provides evidences that the matrix-associated proteins may form an integral and well regulated system that contributes to stress resistance, nutrient acquisition, pathogenesis and the stability of the biofilm.
Collapse
Affiliation(s)
- Weipeng Zhang
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Jin Sun
- Department of Biology, Hong Kong Baptist University Hong Kong, China
| | - Wei Ding
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University Yangling, China
| | - Jinshui Lin
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University Yangling, China
| | - Renmao Tian
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Liang Lu
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Xiaofen Liu
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A & F University Yangling, China
| | - Pei-Yuan Qian
- Division of Life Science, The Hong Kong University of Science and Technology Hong Kong, China
| |
Collapse
|
32
|
Zarnowski R, Westler WM, Lacmbouh GA, Marita JM, Bothe JR, Bernhardt J, Lounes-Hadj Sahraoui A, Fontaine J, Sanchez H, Hatfield RD, Ntambi JM, Nett JE, Mitchell AP, Andes DR. Novel entries in a fungal biofilm matrix encyclopedia. mBio 2014; 5:e01333-14. [PMID: 25096878 PMCID: PMC4128356 DOI: 10.1128/mbio.01333-14] [Citation(s) in RCA: 215] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 07/10/2014] [Indexed: 12/31/2022] Open
Abstract
Virulence of Candida is linked with its ability to form biofilms. Once established, biofilm infections are nearly impossible to eradicate. Biofilm cells live immersed in a self-produced matrix, a blend of extracellular biopolymers, many of which are uncharacterized. In this study, we provide a comprehensive analysis of the matrix manufactured by Candida albicans both in vitro and in a clinical niche animal model. We further explore the function of matrix components, including the impact on drug resistance. We uncovered components from each of the macromolecular classes (55% protein, 25% carbohydrate, 15% lipid, and 5% nucleic acid) in the C. albicans biofilm matrix. Three individual polysaccharides were identified and were suggested to interact physically. Surprisingly, a previously identified polysaccharide of functional importance, β-1,3-glucan, comprised only a small portion of the total matrix carbohydrate. Newly described, more abundant polysaccharides included α-1,2 branched α-1,6-mannans (87%) associated with unbranched β-1,6-glucans (13%) in an apparent mannan-glucan complex (MGCx). Functional matrix proteomic analysis revealed 458 distinct activities. The matrix lipids consisted of neutral glycerolipids (89.1%), polar glycerolipids (10.4%), and sphingolipids (0.5%). Examination of matrix nucleic acid identified DNA, primarily noncoding sequences. Several of the in vitro matrix components, including proteins and each of the polysaccharides, were also present in the matrix of a clinically relevant in vivo biofilm. Nuclear magnetic resonance (NMR) analysis demonstrated interaction of aggregate matrix with the antifungal fluconazole, consistent with a role in drug impedance and contribution of multiple matrix components. Importance: This report is the first to decipher the complex and unique macromolecular composition of the Candida biofilm matrix, demonstrate the clinical relevance of matrix components, and show that multiple matrix components are needed for protection from antifungal drugs. The availability of these biochemical analyses provides a unique resource for further functional investigation of the biofilm matrix, a defining trait of this lifestyle.
Collapse
Affiliation(s)
- Robert Zarnowski
- Department of Medicine, Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - William M Westler
- National Magnetic Resonance Facility at Madison, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Jane M Marita
- Dairy Forage Research Center, U.S. Department of Agriculture, Madison, Wisconsin, USA
| | - Jameson R Bothe
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Anissa Lounes-Hadj Sahraoui
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale at Interactions sur le Vivant, Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d'Opale, Unité de Chimie Environnementale at Interactions sur le Vivant, Calais, France
| | - Hiram Sanchez
- Department of Medicine, Infectious Diseases, University of Wisconsin, Madison, Wisconsin, USA
| | - Ronald D Hatfield
- Dairy Forage Research Center, U.S. Department of Agriculture, Madison, Wisconsin, USA
| | | | | | - Aaron P Mitchell
- Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | | |
Collapse
|
33
|
Boon E, Meehan CJ, Whidden C, Wong DHJ, Langille MGI, Beiko RG. Interactions in the microbiome: communities of organisms and communities of genes. FEMS Microbiol Rev 2014; 38:90-118. [PMID: 23909933 PMCID: PMC4298764 DOI: 10.1111/1574-6976.12035] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/02/2013] [Accepted: 07/10/2013] [Indexed: 12/17/2022] Open
Abstract
A central challenge in microbial community ecology is the delineation of appropriate units of biodiversity, which can be taxonomic, phylogenetic, or functional in nature. The term 'community' is applied ambiguously; in some cases, the term refers simply to a set of observed entities, while in other cases, it requires that these entities interact with one another. Microorganisms can rapidly gain and lose genes, potentially decoupling community roles from taxonomic and phylogenetic groupings. Trait-based approaches offer a useful alternative, but many traits can be defined based on gene functions, metabolic modules, and genomic properties, and the optimal set of traits to choose is often not obvious. An analysis that considers taxon assignment and traits in concert may be ideal, with the strengths of each approach offsetting the weaknesses of the other. Individual genes also merit consideration as entities in an ecological analysis, with characteristics such as diversity, turnover, and interactions modeled using genes rather than organisms as entities. We identify some promising avenues of research that are likely to yield a deeper understanding of microbial communities that shift from observation-based questions of 'Who is there?' and 'What are they doing?' to the mechanistically driven question of 'How will they respond?'
Collapse
Affiliation(s)
- Eva Boon
- Department of Biology, Dalhousie University, Halifax, NS, Canada
| | | | | | | | | | | |
Collapse
|
34
|
Seifert J, Herbst FA, Halkjaer Nielsen P, Planes FJ, Jehmlich N, Ferrer M, von Bergen M. Bioinformatic progress and applications in metaproteogenomics for bridging the gap between genomic sequences and metabolic functions in microbial communities. Proteomics 2013; 13:2786-804. [PMID: 23625762 DOI: 10.1002/pmic.201200566] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 03/07/2013] [Accepted: 03/28/2013] [Indexed: 11/06/2022]
Abstract
Metaproteomics of microbial communities promises to add functional information to the blueprint of genes derived from metagenomics. Right from its beginning, the achievements and developments in metaproteomics were closely interlinked with metagenomics. In addition, the evaluation, visualization, and interpretation of metaproteome data demanded for the developments in bioinformatics. This review will give an overview about recent strategies to use genomic data either from public databases or organismal specific genomes/metagenomes to increase the number of identified proteins obtained by mass spectrometric measurements. We will review different published metaproteogenomic approaches in respect to the used MS pipeline and to the used protein identification workflow. Furthermore, different approaches of data visualization and strategies for phylogenetic interpretation of metaproteome data are discussed as well as approaches for functional mapping of the results to the investigated biological systems. This information will in the end allow a comprehensive analysis of interactions and interdependencies within microbial communities.
Collapse
Affiliation(s)
- Jana Seifert
- Department of Proteomics, UFZ-Helmholtz Centre for Environmental Research, Leipzig, Germany; Institute of Animal Nutrition, University of Hohenheim, Stuttgart, Germany
| | | | | | | | | | | | | |
Collapse
|
35
|
Chandramouli KH, Dash S, Zhang Y, Ravasi T, Qian PY. Proteomic and metabolomic profiles of marine Vibrio sp. 010 in response to an antifoulant challenge. BIOFOULING 2013; 29:789-802. [PMID: 23822634 DOI: 10.1080/08927014.2013.805209] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Vibrio spp. have the ability to form biofilms, which may contribute to the subsequent successful colonization by microfouling and macrofouling organisms. The effects of an antifouling compound, poly-ether B, on Vibrio sp. 010 were investigated using flow cytometry, proteomics, and metabolomics. A 2-D gel-based proteomic analysis was used to identify proteins responsive to poly-ether B treatment. The profiles of biofilm metabolites were analyzed by ultra-performance liquid chromatography-mass spectrometry. Poly-ether B caused a significant reduction in viability. The proteins affected by the treatment were related to nucleotide metabolism, the glyoxylate cycle, and stress responses. Metabolites such as tripeptides, fatty acids, and quorum-sensing molecules were regulated differentially. Down-regulation of proteins and metabolites potentially led to a loss in colonisation ability, thereby affecting the structure of the biofilm. These results suggest that the proteins and metabolites identified may serve as target molecules for potent antifouling compounds.
Collapse
Affiliation(s)
- Kondethimmanahalli H Chandramouli
- KAUST Global Collaborative Research, Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
36
|
Copper susceptibility in Acinetobacter junii BB1A is related to the production of extracellular polymeric substances. Antonie van Leeuwenhoek 2013; 104:261-9. [PMID: 23756604 DOI: 10.1007/s10482-013-9946-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Acinetobacter junii BB1A cells, grown in different media, were differentially inhibited in the presence of the copper. The minimum inhibitory concentration of Cu(2+) was influenced by the nutrient status of the media. The production of extracellular polymeric substances (EPS) was stimulated by the copper present in the growth medium. The nature of the EPS was anionic showing non-Newtonian pseudoplastic behaviour. The thermal behaviour of the EPS was studied by differential scanning calorimetry. The EPS was amorphous in nature with a crystalline index of 0.16. Scanning electron micrographs revealed its porous structure. Cells grown in the presence of quorum sensing inhibitor (QSI: 4-Nitropyridine-N-oxide) did not produce EPS and were found to be more sensitive to Cu(2+) than cells which produced EPS in the absence of QSI. EPS production in different media in the presence and absence of Cu(2+) was determined. The production of EPS was the highest in brain heart Infusion medium and the lowest in AB minimal medium. The sorption of Cu(2+) by EPS extracted from cells grown in non-copper-complexing AB medium was demonstrated by energy dispersive X-ray spectroscopy. A pertinent functional aspect of EPS in providing protection to A. junii in copper stress condition has been revealed.
Collapse
|
37
|
Insights from quantitative metaproteomics and protein-stable isotope probing into microbial ecology. ISME JOURNAL 2013; 7:1877-85. [PMID: 23677009 DOI: 10.1038/ismej.2013.78] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2012] [Revised: 04/08/2013] [Accepted: 04/13/2013] [Indexed: 01/09/2023]
Abstract
The recent development of metaproteomics has enabled the direct identification and quantification of expressed proteins from microbial communities in situ, without the need for microbial enrichment. This became possible by (1) significant increases in quality and quantity of metagenome data and by improvements of (2) accuracy and (3) sensitivity of modern mass spectrometers (MS). The identification of physiologically relevant enzymes can help to understand the role of specific species within a community or an ecological niche. Beside identification, relative and absolute quantitation is also crucial. We will review label-free and label-based methods of quantitation in MS-based proteome analysis and the contribution of quantitative proteome data to microbial ecology. Additionally, approaches of protein-based stable isotope probing (protein-SIP) for deciphering community structures are reviewed. Information on the species-specific metabolic activity can be obtained when substrates or nutrients are labeled with stable isotopes in a protein-SIP approach. The stable isotopes ((13)C, (15)N, (36)S) are incorporated into proteins and the rate of incorporation can be used for assessing the metabolic activity of the corresponding species. We will focus on the relevance of the metabolic and phylogenetic information retrieved with protein-SIP studies and for detecting and quantifying the carbon flux within microbial consortia. Furthermore, the combination of protein-SIP with established tools in microbial ecology such as other stable isotope probing techniques are discussed.
Collapse
|
38
|
Melvin Blaze MT, Aydin B, Carlson R, Hanley L. Identification and imaging of peptides and proteins on Enterococcus faecalis biofilms by matrix assisted laser desorption ionization mass spectrometry. Analyst 2012; 137:5018-25. [PMID: 22962657 PMCID: PMC3654527 DOI: 10.1039/c2an35922g] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The heptapeptide ARHPHPH was identified from biofilms and planktonic cultures of two different strains of Enterococcus faecalis, V583 and ATCC 29212, using matrix assisted laser desorption ionization mass spectrometry (MALDI-MS). ARHPHPH was also imaged at the boundary of cocultured, adjacent E. faecalis and Escherichia coli (ATCC 25922) biofilms, appearing only on the E. faecalis side. ARHPHPH was proteolyzed from κ-casein, a component in the growth media, by E. faecalis microbes. Additionally, top down and bottom up proteomic approaches were combined to identify and spatially locate multiple proteins within intact E. faecalis V583 biofilms by MALDI-MS. The resultant tandem MS data were searched against the NCBInr E. faecalis V583 database to identify thirteen cytosolic and membrane proteins which have functional association with the cell surface. Two of these proteins, enolase and GAPDH, are glycolytic enzymes known to display multiple functions in bacterial virulence in related bacterial strains. This work illustrates a powerful approach for discovering and localizing multiple peptides and proteins within intact biofilms.
Collapse
Affiliation(s)
- M. T. Melvin Blaze
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Berdan Aydin
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| | - Ross Carlson
- Center for Biofilm Engineering, Montana State University, Bozeman, MT 59717
| | - Luke Hanley
- Department of Chemistry, MC 111, University of Illinois at Chicago, Chicago, IL 60607-7061
| |
Collapse
|
39
|
Seifert J, Taubert M, Jehmlich N, Schmidt F, Völker U, Vogt C, Richnow HH, von Bergen M. Protein-based stable isotope probing (protein-SIP) in functional metaproteomics. MASS SPECTROMETRY REVIEWS 2012; 31:683-97. [PMID: 22422553 DOI: 10.1002/mas.21346] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2011] [Revised: 01/24/2012] [Accepted: 01/24/2012] [Indexed: 05/08/2023]
Abstract
The community phenotype as the sum of molecular functions of organisms living in consortia strongly depends on interactions within these communities. Therefore, the analyses of the most significant molecules in terms of the phenotype, the proteins, have to be performed on samples without disrupting the meta-species environment. Due to the increasing genomic information, proteins provide insights into a potential molecular function and the phylogenetic structure of the community. Unfortunately, the lists of identified proteins are often based first on the technical capacity of the used methods or instruments, and second on the interpretation of them by the assignment of molecular functions to proteins in databases. Especially in non-model organisms the functions of many proteins are often not known and an increasing number of studies indicate a significant amount of uncertainty. To decrease the dependency on assumptions and to enable functional insights by metaproteome approaches, the metabolic labeling from an isotopically labeled substrate can be used. Since the metabolites deriving from the substrate are very rarely species-specific, the incorporation of the stable isotope into proteins can be used as a surrogate marker for metabolic activity. The degree of incorporation can be determined accurately on the peptide level by mass spectrometry; additionally, the peptide sequence provides information on the metabolic active species. Thereby, protein-stable isotope probing (protein-SIP) adds functional information to metaproteome approaches. The classical metaproteome approaches will be reviewed with an emphasis on their attempts towards functional interpretation. The gain from functional insights into metaproteomics by using metabolic labeling of stable isotopes of carbon, nitrogen, and sulfur is reviewed with a focus on the techniques of measurement, calculation of incorporation and data processing.
Collapse
Affiliation(s)
- Jana Seifert
- Department of Proteomics, Helmholtz Centre for Environmental Research-UFZ, Permoserstrasse 15, D-04318 Leipzig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Jagtap P, McGowan T, Bandhakavi S, Tu ZJ, Seymour S, Griffin TJ, Rudney JD. Deep metaproteomic analysis of human salivary supernatant. Proteomics 2012; 12:992-1001. [PMID: 22522805 DOI: 10.1002/pmic.201100503] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The human salivary proteome is extremely complex, including proteins from salivary glands, serum, and oral microbes. Much has been learned about the host component, but little is known about the microbial component. Here we report a metaproteomic analysis of salivary supernatant pooled from six healthy subjects. For deep interrogation of the salivary proteome, we combined protein dynamic range compression (DRC), multidimensional peptide fractionation, and high-mass accuracy MS/MS with a novel two-step peptide identification method using a database of human proteins plus those translated from oral microbe genomes. Peptides were identified from 124 microbial species as well as uncultured phylotypes such as TM7. Streptococcus, Rothia, Actinomyces, Prevotella, Neisseria, Veilonella, Lactobacillus, Selenomonas, Pseudomonas, Staphylococcus, and Campylobacter were abundant among the 65 genera from 12 phyla represented. Taxonomic diversity in our study was broadly consistent with metagenomic studies of saliva. Proteins mapped to 20 KEGG pathways, with carbohydrate metabolism, amino acid metabolism, energy metabolism, translation, membrane transport, and signal transduction most represented. The communities sampled appear to be actively engaged in glycolysis and protein synthesis. This first deep metaproteomic catalog from human salivary supernatant provides a baseline for future studies of shifts in microbial diversity and protein activities potentially associated with oral disease.
Collapse
Affiliation(s)
- Pratik Jagtap
- Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Toyofuku M, Roschitzki B, Riedel K, Eberl L. Identification of proteins associated with the Pseudomonas aeruginosa biofilm extracellular matrix. J Proteome Res 2012; 11:4906-15. [PMID: 22909304 DOI: 10.1021/pr300395j] [Citation(s) in RCA: 168] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biofilms are surface-associated bacteria that are embedded in a matrix of self-produced polymeric substances (EPSs). The EPS is composed of nucleic acids, polysaccharides, lipids, and proteins. While polysaccharide components have been well studied, the protein content of the matrix is largely unknown. Here we conducted a comprehensive proteomic study to identify proteins associated with the biofilm matrix of Pseudomonas aeruginosa PAO1 (the matrix proteome). This analysis revealed that approximately 30% of the identified matrix proteins were outer membrane proteins, which are also typically found in outer membrane vesicles (OMVs). Electron microscopic inspection confirmed the presence of large amounts of OMVs within the biofilm matrix, supporting previous notions that OMVs are abundant constituents of P. aeruginosa biofilms. Our results demonstrate that while some proteins associated with the P. aeruginosa matrix are derived from secreted proteins and lysed cells, the large majority of the matrix proteins originate from OMVs. Furthermore, we demonstrate that the protein content of planktonic and biofilm OMVs is surprisingly different and may reflect the different physiological states of planktonic and sessile cells.
Collapse
Affiliation(s)
- Masanori Toyofuku
- Institute of Plant Biology, Department of Microbiology, University of Zurich, Zurich, Switzerland.
| | | | | | | |
Collapse
|
42
|
Chao TC, Hansmeier N. The current state of microbial proteomics: Where we are and where we want to go. Proteomics 2012; 12:638-50. [DOI: 10.1002/pmic.201100381] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Revised: 08/15/2011] [Accepted: 08/22/2011] [Indexed: 11/11/2022]
|