1
|
The Evanescent Bouquet of Individual Bear Fingerprint. Animals (Basel) 2023; 13:ani13020220. [PMID: 36670761 PMCID: PMC9854677 DOI: 10.3390/ani13020220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/24/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
The evanescent and invisible communication carried by chemical signals, pheromones, or signature mixtures or, as we prefer, the pheromonal individual fingerprint, between members of the same species is poorly studied in mammals, mainly because of the lack of identification of the molecules. The difference between pheromones and the pheromonal individual fingerprint is that the former generate stereotyped innate responses while the latter requires learning, i.e., different receivers can learn different signature mixtures from the same individual. Furthermore, pheromones are usually produced by a particular gland, while the pheromonal individual fingerprint is the entire bouquet produced by the entire secreting gland of the body. In the present study, we aim to investigate the pheromonal individual fingerprint of brown bears in northern Italy. We collected the entire putative pheromone bouquet from all production sites in free-ranging bears and analyzed the entire crude extract to profile the individual fingerprint according to species-, sex- and subjective-specific characteristics. We were able to putatively characterize the brown bears' pheromonal individual fingerprints and compare them with the partial pheromone identifications published by other studies. This work is a step forward in the study of the complexity of chemical communication, particularly in a solitary endangered species.
Collapse
|
2
|
Zuo Y, Li C, Yu D, Wang K, Liu Y, Wei Z, Yang Y, Wang Y, Shen X, Zhu L. A Fur-regulated type VI secretion system contributes to oxidative stress resistance and virulence in Yersinia pseudotuberculosis. STRESS BIOLOGY 2023; 3:2. [PMID: 37676351 PMCID: PMC10441874 DOI: 10.1007/s44154-022-00081-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 12/26/2022] [Indexed: 09/08/2023]
Abstract
The type VI secretion system (T6SS) is a widespread protein secretion apparatus deployed by many Gram-negative bacterial species to interact with competitor bacteria, host organisms, and the environment. Yersinia pseudotuberculosis T6SS4 was recently reported to be involved in manganese acquisition; however, the underlying regulatory mechanism still remains unclear. In this study, we discovered that T6SS4 is regulated by ferric uptake regulator (Fur) in response to manganese ions (Mn2+), and this negative regulation of Fur was proceeded by specifically recognizing the promoter region of T6SS4 in Y. pseudotuberculosis. Furthermore, T6SS4 is induced by low Mn2+ and oxidative stress conditions via Fur, acting as a Mn2+-responsive transcriptional regulator to maintain intracellular manganese homeostasis, which plays important role in the transport of Mn2+ for survival under oxidative stress. Our results provide evidence that T6SS4 can enhance the oxidative stress resistance and virulence for Y. pseudotuberculosis. This study provides new insights into the regulation of T6SS4 via the Mn2+-dependent transcriptional regulator Fur, and expands our knowledge of the regulatory mechanisms and functions of T6SS from Y. pseudotuberculosis.
Collapse
Affiliation(s)
- Yuxin Zuo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Changfu Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Danyang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Kenan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yuqi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Zhiyan Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yantao Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| | - Lingfang Zhu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
3
|
Liu YJ. Understanding the complete bioluminescence cycle from a multiscale computational perspective: A review. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100537] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
4
|
Tepavčević J, Yarrington K, Fung B, Lin X, Visick KL. sRNA chaperone Hfq controls bioluminescence and other phenotypes through Qrr1-dependent and -independent mechanisms in Vibrio fischeri. Gene X 2022; 809:146048. [PMID: 34756963 PMCID: PMC8673744 DOI: 10.1016/j.gene.2021.146048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/26/2021] [Indexed: 02/01/2023] Open
Abstract
Colonization of the squid Euprymna scolopes by the bacterium Vibrio fischeri depends on bacterial biofilm formation, motility, and bioluminescence. Previous work has demonstrated an inhibitory role for the small RNA (sRNA) Qrr1 in quorum-induced bioluminescence of V. fischeri, but the contribution of the corresponding sRNA chaperone, Hfq, was not examined. We thus hypothesized that V. fischeri Hfq similarly functions to inhibit bacterial bioluminescence as well as regulate other key steps of symbiosis, including bacterial biofilm formation and motility. Surprisingly, deletion of hfq increased luminescence of V. fischeri beyond what was observed for the loss of qrr1 sRNA. Epistasis experiments revealed that, while Hfq contributes to the Qrr1-dependent regulation of light production, it also functions independently of Qrr1 and its downstream target, LitR. This Hfq-dependent, Qrr1-independent regulation of bioluminescence is also independent of the major repressor of light production in V. fischeri, ArcA. We further determined that Hfq is required for full motility of V. fischeri in a mechanism that partially depends on the Qrr1/LitR regulators. Finally, Hfq also appears to function in the control of biofilm formation: loss of Hfq delayed the timing and diminished the extent of wrinkled colony development, but did not eliminate the production of SYP-polysaccharide-dependent cohesive colonies. Furthermore, loss of Hfq enhanced production of cellulose and resulted in increased Congo red binding. Together, these findings point to Hfq as an important regulator of multiple phenotypes relevant to symbiosis between V. fischeri and its squid host.
Collapse
Affiliation(s)
- Jovanka Tepavčević
- Department of Biology, Wheaton College, Wheaton, Illinois, USA,Corresponding author
| | - Kaiti Yarrington
- Department of Microbiology and Immunology, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Brittany Fung
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| | - Xijin Lin
- Department of Biology, Wheaton College, Wheaton, Illinois, USA
| | - Karen L. Visick
- Department of Microbiology and Immunology, Loyola University Chicago, Maywood, Illinois
| |
Collapse
|
5
|
Bioluminescence and Photoreception in Unicellular Organisms: Light-Signalling in a Bio-Communication Perspective. Int J Mol Sci 2021; 22:ijms222111311. [PMID: 34768741 PMCID: PMC8582858 DOI: 10.3390/ijms222111311] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/13/2022] Open
Abstract
Bioluminescence, the emission of light catalysed by luciferases, has evolved in many taxa from bacteria to vertebrates and is predominant in the marine environment. It is now well established that in animals possessing a nervous system capable of integrating light stimuli, bioluminescence triggers various behavioural responses and plays a role in intra- or interspecific visual communication. The function of light emission in unicellular organisms is less clear and it is currently thought that it has evolved in an ecological framework, to be perceived by visual animals. For example, while it is thought that bioluminescence allows bacteria to be ingested by zooplankton or fish, providing them with favourable conditions for growth and dispersal, the luminous flashes emitted by dinoflagellates may have evolved as an anti-predation system against copepods. In this short review, we re-examine this paradigm in light of recent findings in microorganism photoreception, signal integration and complex behaviours. Numerous studies show that on the one hand, bacteria and protists, whether autotrophs or heterotrophs, possess a variety of photoreceptors capable of perceiving and integrating light stimuli of different wavelengths. Single-cell light-perception produces responses ranging from phototaxis to more complex behaviours. On the other hand, there is growing evidence that unicellular prokaryotes and eukaryotes can perform complex tasks ranging from habituation and decision-making to associative learning, despite lacking a nervous system. Here, we focus our analysis on two taxa, bacteria and dinoflagellates, whose bioluminescence is well studied. We propose the hypothesis that similar to visual animals, the interplay between light-emission and reception could play multiple roles in intra- and interspecific communication and participate in complex behaviour in the unicellular world.
Collapse
|
6
|
Dimension-reduction simplifies the analysis of signal crosstalk in a bacterial quorum sensing pathway. Sci Rep 2021; 11:19719. [PMID: 34611201 PMCID: PMC8492804 DOI: 10.1038/s41598-021-99169-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Many pheromone sensing bacteria produce and detect more than one chemically distinct signal, or autoinducer. The pathways that detect these signals are typically noisy and interlocked through crosstalk and feedback. As a result, the sensing response of individual cells is described by statistical distributions that change under different combinations of signal inputs. Here we examine how signal crosstalk reshapes this response. We measure how combinations of two homoserine lactone (HSL) input signals alter the statistical distributions of individual cell responses in the AinS/R- and LuxI/R-controlled branches of the Vibrio fischeri bioluminescence pathway. We find that, while the distributions of pathway activation in individual cells vary in complex fashion with environmental conditions, these changes have a low-dimensional representation. For both the AinS/R and LuxI/R branches, the distribution of individual cell responses to mixtures of the two HSLs is effectively one-dimensional, so that a single tuning parameter can capture the full range of variability in the distributions. Combinations of crosstalking HSL signals extend the range of responses for each branch of the circuit, so that signals in combination allow population-wide distributions that are not available under a single HSL input. Dimension reduction also simplifies the problem of identifying the HSL conditions to which the pathways and their outputs are most sensitive. A comparison of the maximum sensitivity HSL conditions to actual HSL levels measured during culture growth indicates that the AinS/R and LuxI/R branches lack sensitivity to population density except during the very earliest and latest stages of growth respectively.
Collapse
|
7
|
Xu Y, Yang S, You G, Hou J. Attenuation effects of iron on dissemination of antibiotic resistance genes in anaerobic bioreactor: Evolution of quorum sensing, quorum quenching and dynamics of community composition. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126136. [PMID: 34492925 DOI: 10.1016/j.jhazmat.2021.126136] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/02/2021] [Accepted: 05/13/2021] [Indexed: 06/13/2023]
Abstract
Zero valent iron (ZVI) coupled with bioreactors is arising as a promising technology for antibiotic resistance genes (ARGs) mitigation, whereas the succession and behaviors of microbes caused by ZVI in relieving ARGs propagation remain unclear. Herein, the effects of ZVI on microbial quorum sensing (QS), quorum quenching (QQ) system and community dynamics were examined in anaerobic bioreactor fed with oxytetracycline (tet), to illustrate the roles of evolutive microbial communication and community composition in ARGs attenuation. With the addition of 5 g/L ZVI, the total absolute abundance of tet ARGs was retarded by approximate 95% and 72% in sludge and effluent after 25 days operation. The abundance of mobile genetic elements and the heredity of antibiotic resistant bacteria revealed the declined horizontal and vertical transfer of ARGs, which directly led to the reduced ARGs propagation. Potential mechanisms are that the positive effects of ZVI on QQ activity via the functional bacteria enrichment inhibited QS system and thus ARGs transfer. Partial least--squares path modeling further demonstrated that ARGs abundance was strongly limited by the dynamics of bacterial composition and thereby less frequent microbial communication. These results provide new insights into the mechanisms of antibiotic resistome remission in anaerobic bioreactor modified by ZVI.
Collapse
Affiliation(s)
- Yi Xu
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China; Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Shihong Yang
- College of Agricultural Science and Engineering, Hohai University, Nanjing 210098, People's Republic of China
| | - Guoxiang You
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jun Hou
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| |
Collapse
|
8
|
A lasting symbiosis: how Vibrio fischeri finds a squid partner and persists within its natural host. Nat Rev Microbiol 2021; 19:654-665. [PMID: 34089008 DOI: 10.1038/s41579-021-00557-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2021] [Indexed: 01/10/2023]
Abstract
As our understanding of the human microbiome progresses, so does the need for natural experimental animal models that promote a mechanistic understanding of beneficial microorganism-host interactions. Years of research into the exclusive symbiosis between the Hawaiian bobtail squid, Euprymna scolopes, and the bioluminescent bacterium Vibrio fischeri have permitted a detailed understanding of those bacterial genes underlying signal exchange and rhythmic activities that result in a persistent, beneficial association, as well as glimpses into the evolution of symbiotic competence. Migrating from the ambient seawater to regions deep inside the light-emitting organ of the squid, V. fischeri experiences, recognizes and adjusts to the changing environmental conditions. Here, we review key advances over the past 15 years that are deepening our understanding of these events.
Collapse
|
9
|
Morabe ML, McCarter LL. Vibrio parahaemolyticus FcrX, a Fur-controlled regulator that inhibits repression by Fur. Mol Microbiol 2020; 114:77-92. [PMID: 32096286 DOI: 10.1111/mmi.14497] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 02/20/2020] [Accepted: 02/23/2020] [Indexed: 12/15/2022]
Abstract
Iron is an essential nutrient for most organisms, but its limited availability and inherent toxicity necessitate the strict regulation of iron homeostasis. In bacteria, iron starvation affects a broad range of phenotypes including virulence, motility and biofilm formation. For Vibrio parahaemolyticus, a marine bacterium and pathogen, iron limitation is a signal modulating swarmer cell differentiation. In this work, we show the iron regulation of swarming works through the ferric uptake regulator protein Fur. We identified a new Fur-controlled regulator that is upregulated upon iron starvation. FcrX is a 144-amino acid protein containing a domain of unknown function (DUF2753) with three tetratricopeptide repeats. We found that overexpressing fcrX+ was sufficient to induce swarming, luminescence and iron uptake gene expression in multiple Vibrio species; furthermore, ectopic expression increased the transcription of a Fur-controlled gene in Escherichia coli. FcrX production increased intracellular iron. Thus, the overexpression of fcrX+ phenocopied a fur mutant and may prove a generally useful tool to ectopically derepress the Fur regulon. Both V. parahaemolyticus and E. coli Fur interacted with FcrX, and this interaction was altered by iron availability. These data support a model in which this new regulator of iron homeostasis limits the repressive action of Fur.
Collapse
Affiliation(s)
- Maria L Morabe
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Linda L McCarter
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| |
Collapse
|
10
|
Li G, Wang MY. The role of Vibrio vulnificus virulence factors and regulators in its infection-induced sepsis. Folia Microbiol (Praha) 2019; 65:265-274. [PMID: 31840198 DOI: 10.1007/s12223-019-00763-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022]
Abstract
Due to the development of Marine aquaculture, infections caused by Vibrio vulnificus are common all over the world. Symptoms of V. vulnificus infection vary from gastrointestinal illness to septicemia. After infection with V. vulnificus, some patients showed gastrointestinal symptoms, including vomiting, fever, diarrhea, and so on. Others appeared wound infection at the site of contact with bacteria, and even developed sepsis. Once it develops into sepsis, the prognosis of patients is very poor. However, its underlying pathogenic mechanism remains largely undetermined. Growing evidence shows that it can induce primary septicemia mainly via essential virulence factors and regulators. Therefore, it is important to identify the factors that play roles in sepsis. In this review, we systematically expounded the role of V. vulnificus virulence factors and regulators in its infection-induced sepsis in order to provide useful information for the treatment and prevention of V. vulnificus.
Collapse
Affiliation(s)
- Gang Li
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China.,Weihai Municipal Hospital, Weihai, 264200, China
| | - Ming-Yi Wang
- Weihai Clinical Medical School, Cheeloo College of Medicine, Shandong University, Weihai, 264200, China. .,Weihai Municipal Hospital, Weihai, 264200, China.
| |
Collapse
|
11
|
KUWAHARA HITOMI, NINOMIYA JUNKO, MORITA HIROSHI. Control of Aliivibrio fischeri Luminescence and Decrease in Bioluminescence by Fungicides. Biocontrol Sci 2018; 23:85-96. [DOI: 10.4265/bio.23.85] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- HITOMI KUWAHARA
- Graduate School of Environment Engineering, University of Kitakyushu
| | - JUNKO NINOMIYA
- Graduate School of Environment Engineering, University of Kitakyushu
- National Institute of Technology, Oita College
| | - HIROSHI MORITA
- Faculty of Environment Engineering, University of Kitakyushu
| |
Collapse
|
12
|
Kimbrough JH, Stabb EV. Comparative analysis reveals regulatory motifs at the ainS/ainR pheromone-signaling locus of Vibrio fischeri. Sci Rep 2017; 7:11734. [PMID: 28916743 PMCID: PMC5601948 DOI: 10.1038/s41598-017-11967-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 09/01/2017] [Indexed: 11/22/2022] Open
Abstract
Vibrio fischeri uses the AinS/AinR pheromone-signaling system to control bioluminescence and other symbiotic colonization factors. The Ain system is thought to initiate cell-cell signaling at moderate cell densities and to prime the LuxI/LuxR signaling system. Here we compared and analyzed the ain locus from two V. fischeri strains and a Vibrio salmonicida strain to explore ain regulation. The ainS and ainR genes were predicted to constitute an operon, which we corroborated using RT-PCR. Comparisons between strains revealed a stark area of conservation across the ainS-ainR junction, including a large inverted repeat in ainR. We found that this inverted repeat in cis can affect accumulation of the AinS-generated pheromone N-octanoyl homoserine lactone, which may account for the previously unexplained low-signal phenotype of a ∆ainR mutant, although the mechanism behind this regulation remains elusive. We also extended the previous observation of a possible “lux box” LuxR binding site upstream of ainS by showing the conservation of this site as well as a second putative lux box. Using a plasmid-based reporter we found that LuxR can mediate repression of ainS, providing a negative feedback mechanism in the Ain/Lux signaling cascade. Our results provide new insights into the regulation, expression, and evolution of ainSR.
Collapse
Affiliation(s)
- John H Kimbrough
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, Athens, GA, USA.
| |
Collapse
|
13
|
Pankey MS, Foxall RL, Ster IM, Perry LA, Schuster BM, Donner RA, Coyle M, Cooper VS, Whistler CA. Host-selected mutations converging on a global regulator drive an adaptive leap towards symbiosis in bacteria. eLife 2017; 6:e24414. [PMID: 28447935 PMCID: PMC5466423 DOI: 10.7554/elife.24414] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 04/23/2017] [Indexed: 01/14/2023] Open
Abstract
Host immune and physical barriers protect against pathogens but also impede the establishment of essential symbiotic partnerships. To reveal mechanisms by which beneficial organisms adapt to circumvent host defenses, we experimentally evolved ecologically distinct bioluminescent Vibrio fischeri by colonization and growth within the light organs of the squid Euprymna scolopes. Serial squid passaging of bacteria produced eight distinct mutations in the binK sensor kinase gene, which conferred an exceptional selective advantage that could be demonstrated through both empirical and theoretical analysis. Squid-adaptive binK alleles promoted colonization and immune evasion that were mediated by cell-associated matrices including symbiotic polysaccharide (Syp) and cellulose. binK variation also altered quorum sensing, raising the threshold for luminescence induction. Preexisting coordinated regulation of symbiosis traits by BinK presented an efficient solution where altered BinK function was the key to unlock multiple colonization barriers. These results identify a genetic basis for microbial adaptability and underscore the importance of hosts as selective agents that shape emergent symbiont populations.
Collapse
Affiliation(s)
- M Sabrina Pankey
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Randi L Foxall
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Ian M Ster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
- Graduate Program in Biochemistry, University of New Hampshire, Durham, United States
| | - Lauren A Perry
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Brian M Schuster
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Rachel A Donner
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
| | - Matthew Coyle
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Graduate Program in Microbiology, University of New Hampshire, Durham, United States
| | - Vaughn S Cooper
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| | - Cheryl A Whistler
- Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, United States
- Northeast Center for Vibrio Disease and Ecology, College of Life Science and Agriculture, University of New Hampshire, Durham, United States
| |
Collapse
|
14
|
Payne SM, Mey AR, Wyckoff EE. Vibrio Iron Transport: Evolutionary Adaptation to Life in Multiple Environments. Microbiol Mol Biol Rev 2016; 80:69-90. [PMID: 26658001 PMCID: PMC4711184 DOI: 10.1128/mmbr.00046-15] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Iron is an essential element for Vibrio spp., but the acquisition of iron is complicated by its tendency to form insoluble ferric complexes in nature and its association with high-affinity iron-binding proteins in the host. Vibrios occupy a variety of different niches, and each of these niches presents particular challenges for acquiring sufficient iron. Vibrio species have evolved a wide array of iron transport systems that allow the bacteria to compete for this essential element in each of its habitats. These systems include the secretion and uptake of high-affinity iron-binding compounds (siderophores) as well as transport systems for iron bound to host complexes. Transporters for ferric and ferrous iron not complexed to siderophores are also common to Vibrio species. Some of the genes encoding these systems show evidence of horizontal transmission, and the ability to acquire and incorporate additional iron transport systems may have allowed Vibrio species to more rapidly adapt to new environmental niches. While too little iron prevents growth of the bacteria, too much can be lethal. The appropriate balance is maintained in vibrios through complex regulatory networks involving transcriptional repressors and activators and small RNAs (sRNAs) that act posttranscriptionally. Examination of the number and variety of iron transport systems found in Vibrio spp. offers insights into how this group of bacteria has adapted to such a wide range of habitats.
Collapse
Affiliation(s)
- Shelley M Payne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Alexandra R Mey
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| | - Elizabeth E Wyckoff
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas, USA
| |
Collapse
|
15
|
Ruwandeepika HAD, Karunasagar I, Bossier P, Defoirdt T. Expression and Quorum Sensing Regulation of Type III Secretion System Genes of Vibrio harveyi during Infection of Gnotobiotic Brine Shrimp. PLoS One 2015; 10:e0143935. [PMID: 26636765 PMCID: PMC4670211 DOI: 10.1371/journal.pone.0143935] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 11/11/2015] [Indexed: 12/24/2022] Open
Abstract
Type III secretion systems enable pathogens to inject their virulence factors directly into the cytoplasm of the host cells. The type III secretion system of Vibrio harveyi, a major pathogen of aquatic organisms and a model species in quorum sensing studies, is repressed by the quorum sensing master regulator LuxR. In this study, we found that during infection of gnotobiotic brine shrimp larvae, the expression levels of three type III secretion operons in V. harveyi increased within the first 12h after challenge and decreased again thereafter. The in vivo expression levels were highest in a mutant with a quorum sensing system that is locked in low cell density configuration (minimal LuxR levels) and lowest in a mutant with a quorum sensing system that is locked in the high cell density configuration (maximal LuxR levels), which is consistent with repression of type III secretion by LuxR. Remarkably, in vivo expression levels of the type III secretion system genes were much (> 1000 fold) higher than the in vitro expression levels, indicating that (currently unknown) host factors significantly induce the type III secretion system. Given the fact that type III secretion is energy-consuming, repression by the quorum sensing master regulators might be a mechanism to save energy under conditions where it does not provide an advantage to the cells.
Collapse
Affiliation(s)
- H. A. Darshanee Ruwandeepika
- Department of Livestock Production, Faculty of Agricultural Sciences, Sabaragamuwa University of Sri Lanka, Belihuloya, Sri Lanka
- Centre for Science Education and Research, UNESCO MIRCEN for Medical and Marine Biotechnology, Nitte University, Mangalore, India
| | - Indrani Karunasagar
- Centre for Science Education and Research, UNESCO MIRCEN for Medical and Marine Biotechnology, Nitte University, Mangalore, India
| | - Peter Bossier
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
| | - Tom Defoirdt
- Laboratory of Aquaculture & Artemia Reference Center, Ghent University, Ghent, Belgium
- * E-mail:
| |
Collapse
|
16
|
Colton DM, Stabb EV. Rethinking the roles of CRP, cAMP, and sugar-mediated global regulation in the Vibrionaceae. Curr Genet 2015. [PMID: 26215147 DOI: 10.1007/s00294-015-0508-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many proteobacteria modulate a suite of catabolic genes using the second messenger cyclic 3', 5'-AMP (cAMP) and the cAMP receptor protein (CRP). Together, the cAMP-CRP complex regulates target promoters, usually by activating transcription. In the canonical model, the phosphotransferase system (PTS), and in particular the EIIA(Glc) component for glucose uptake, provides a mechanistic link that modulates cAMP levels depending on glucose availability, resulting in more cAMP and activation of alternative catabolic pathways when glucose is unavailable. Within the Vibrionaceae, cAMP-CRP appears to play the classical role in modulating metabolic pathways; however, it also controls functions involved in natural competence, bioluminescence, pheromone signaling, and colonization of animal hosts. For this group of marine bacteria, chitin is an ecologically relevant resource, and chitin's monomeric sugar N-acetylglucosamine (NAG) supports robust growth while also triggering regulatory responses. Recent studies with Vibrio fischeri indicate that NAG and glucose uptake share EIIA(Glc), yet the responses of cAMP-CRP to these two carbon sources are starkly different. Moreover, control of cAMP levels appears to be more dominantly controlled by export and degradation. Perhaps more surprisingly, although CRP may require cAMP, its activity can be controlled in response to glucose by a mechanism independent of cAMP levels. Future studies in this area promise to shed new light on the role of cAMP and CRP.
Collapse
Affiliation(s)
- Deanna M Colton
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | - Eric V Stabb
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA.
| |
Collapse
|
17
|
Septer AN, Bose JL, Lipzen A, Martin J, Whistler C, Stabb EV. Bright luminescence of Vibrio fischeri aconitase mutants reveals a connection between citrate and the Gac/Csr regulatory system. Mol Microbiol 2014; 95:283-96. [PMID: 25402589 DOI: 10.1111/mmi.12864] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2014] [Indexed: 11/28/2022]
Abstract
The Gac/Csr regulatory system is conserved throughout the γ-proteobacteria and controls key pathways in central carbon metabolism, quorum sensing, biofilm formation and virulence in important plant and animal pathogens. Here we show that elevated intracellular citrate levels in a Vibrio fischeri aconitase mutant correlate with activation of the Gac/Csr cascade and induction of bright luminescence. Spontaneous or directed mutations in the gene that encodes citrate synthase reversed the bright luminescence of aconitase mutants, eliminated their citrate accumulation and reversed their elevated expression of CsrB. Our data elucidate a correlative link between central metabolic and regulatory pathways, and they suggest that the Gac system senses a blockage at the aconitase step of the tricarboxylic acid cycle, either through elevated citrate levels or a secondary metabolic effect of citrate accumulation, and responds by modulating carbon flow and various functions associated with host colonization, including bioluminescence.
Collapse
Affiliation(s)
- Alecia N Septer
- Department of Microbiology, University of Georgia, 120 Cedar Street, Athens, GA, 30602, USA
| | | | | | | | | | | |
Collapse
|
18
|
Norsworthy AN, Visick KL. Gimme shelter: how Vibrio fischeri successfully navigates an animal's multiple environments. Front Microbiol 2013; 4:356. [PMID: 24348467 PMCID: PMC3843225 DOI: 10.3389/fmicb.2013.00356] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Accepted: 11/09/2013] [Indexed: 12/19/2022] Open
Abstract
Bacteria successfully colonize distinct niches because they can sense and appropriately respond to a variety of environmental signals. Of particular interest is how a bacterium negotiates the multiple, complex environments posed during successful infection of an animal host. One tractable model system to study how a bacterium manages a host’s multiple environments is the symbiotic relationship between the marine bacterium, Vibrio fischeri, and its squid host, Euprymna scolopes. V. fischeri encounters many different host surroundings ranging from initial contact with the squid to ultimate colonization of a specialized organ known as the light organ. For example, upon recognition of the squid, V. fischeri forms a biofilm aggregate outside the light organ that is required for efficient colonization. The bacteria then disperse from this biofilm to enter the organ, where they are exposed to nitric oxide, a molecule that can act as both a signal and an antimicrobial. After successfully managing this potentially hostile environment, V. fischeri cells finally establish their niche in the deep crypts of the light organ where the bacteria bioluminesce in a pheromone-dependent fashion, a phenotype that E. scolopes utilizes for anti-predation purposes. The mechanism by which V. fischeri manages these environments to outcompete all other bacterial species for colonization of E. scolopes is an important and intriguing question that will permit valuable insights into how a bacterium successfully associates with a host. This review focuses on specific molecular pathways that allow V. fischeri to establish this exquisite bacteria–host interaction.
Collapse
Affiliation(s)
- Allison N Norsworthy
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| | - Karen L Visick
- Department of Microbiology and Immunology, Loyola University Medical Center Maywood, IL, USA
| |
Collapse
|
19
|
Verma SC, Miyashiro T. Quorum sensing in the squid-Vibrio symbiosis. Int J Mol Sci 2013; 14:16386-401. [PMID: 23965960 PMCID: PMC3759917 DOI: 10.3390/ijms140816386] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 07/24/2013] [Accepted: 07/26/2013] [Indexed: 02/08/2023] Open
Abstract
Quorum sensing is an intercellular form of communication that bacteria use to coordinate group behaviors such as biofilm formation and the production of antibiotics and virulence factors. The term quorum sensing was originally coined to describe the mechanism underlying the onset of luminescence production in cultures of the marine bacterium Vibrio fischeri. Luminescence and, more generally, quorum sensing are important for V. fischeri to form a mutualistic symbiosis with the Hawaiian bobtail squid, Euprymna scolopes. The symbiosis is established when V. fischeri cells migrate via flagella-based motility from the surrounding seawater into a specialized structure injuvenile squid called the light organ. The cells grow to high cell densities within the light organ where the infection persists over the lifetime of the animal. A hallmark of a successful symbiosis is the luminescence produced by V. fischeri that camouflages the squid at night by eliminating its shadow within the water column. While the regulatory networks governing quorum sensing are critical for properly regulating V. fischeri luminescence within the squid light organ, they also regulate luminescence-independent processes during symbiosis. In this review, we discuss the quorum-sensing network of V. fischeri and highlight its impact at various stages during host colonization.
Collapse
Affiliation(s)
- Subhash C Verma
- Department of Biochemistry and Molecular Biology, Eberly College of Science, the Pennsylvania State University, 219 Wartik Lab, University Park, PA 16802, USA.
| | | |
Collapse
|