1
|
Suleman M, Yaseen AR, Ahmed S, Khan Z, Irshad A, Pervaiz A, Rahman HH, Azhar M. Pyocins and Beyond: Exploring the World of Bacteriocins in Pseudomonas aeruginosa. Probiotics Antimicrob Proteins 2025; 17:240-252. [PMID: 39023701 DOI: 10.1007/s12602-024-10322-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 07/20/2024]
Abstract
Pseudomonas aeruginosa significantly induces health-associated infections in a variety of species other than humans. Over the years, the opportunistic pathogen has developed resistance against commonly used antibiotics. Since most P. aeruginosa strains are multi-drug resistant, regular antibiotic treatment of its infections is becoming a dire concern, shifting the global focus towards the development of alternate antimicrobial approaches. Pyocins are one of the most diverse antimicrobial peptide combinations produced by bacteria. They have potent antimicrobial properties, mainly against bacteria from the same phylogenetic group. P. aeruginosa, whether from clinical or environmental origins, produce several different pyocins that show inhibitory activity against other multi-drug-resistant strains of P. aeruginosa. They are, therefore, good candidates for alternate therapeutic antimicrobials because they have a unique mode of action that kills antibiotic-resistant bacteria by attacking their biofilms. Here, we review pseudomonas-derived antimicrobial pyocins with great therapeutic potential against multi-drug-resistant P. aeruginosa.
Collapse
Affiliation(s)
- Muhammad Suleman
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan.
| | - Allah Rakha Yaseen
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Shahbaz Ahmed
- School of Biological Sciences, Faculty of Life Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Zoha Khan
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Asma Irshad
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| | - Afsah Pervaiz
- Institute of Microbiology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Hafiza Hiba Rahman
- Department of Pathology, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Muteeba Azhar
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
2
|
Vu NT, Kim H, Lee S, Hwang IS, Kwon CT, Oh CS. Bacteriophage cocktail for biocontrol of soft rot disease caused by Pectobacterium species in Chinese cabbage. Appl Microbiol Biotechnol 2024; 108:11. [PMID: 38159122 DOI: 10.1007/s00253-023-12881-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 09/26/2023] [Accepted: 10/05/2023] [Indexed: 01/03/2024]
Abstract
Pectobacterium spp. are necrotrophic plant pathogens that cause the soft rot disease in Chinese cabbage, resulting in severe yield loss. The use of conventional antimicrobial agents, copper-based bactericides, and antibiotics has encountered several limitations, such as bioaccumulation on plants and microbial resistance. Bacteriophages (phages) are considered promising alternative antimicrobial agents against diverse phytopathogens. In this study, we isolated and characterized two virulent phages (phiPccP-2 and phiPccP-3) to develop a phage cocktail. Morphological and genomic analyses revealed that two phages belonged to the Tevenvirinae and Mccorquodalevirinae subfamilies, respectively. The phiPccP-2 and phiPccP-3 phages, which have a broad host range, were stable at various environmental conditions, such as various pHs and temperatures and exposure to ultraviolet light. The phage cocktail developed using these two lytic phages inhibited the emergence of phage-resistant bacteria compared to single-phage treatments in in vitro challenge assays. The phage cocktail treatment effectively prevented the development of soft rot symptom in matured Chinese cabbage leaves. Additionally, the phage cocktail comprising three phages (phiPccP-1, phiPccP-2, and phiPccP-3) showed superior biocontrol efficacy against the mixture of Pectobacterium strains in Chinese cabbage seedlings. These results suggest that developing phage cocktails is an effective approach for biocontrol of soft rot disease caused by Pectobacterium strains in crops compared to single-phage treatments. KEY POINTS: •Two newly isolated Pectobacterium phages, phiPccP-2 and phiPccP-3, infected diverse Pectobacterium species and effectively inhibited the emergence of phage-resistant bacteria. •Genomic and physiological analyses suggested that both phiPccP-2 and phiPccP-3 are lytic phages and that their lytic activities are stable in the environmental conditions under which Chinese cabbage grows. •Treatment using a phage cocktail comprising phiPccP-2 and phiPccP-3 efficiently suppressed soft rot disease in detached mature leaves and seedlings of Chinese cabbage, indicating the applicability of the phage cocktail as an alternative antimicrobial agent.
Collapse
Affiliation(s)
- Nguyen Trung Vu
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Hyeongsoon Kim
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Soohong Lee
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - In Sun Hwang
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Choon-Tak Kwon
- Department of Green-Bio Science, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Chang-Sik Oh
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
3
|
Borowska-Beszta M, Smoktunowicz M, Horoszkiewicz D, Jonca J, Waleron MM, Gawor J, Mika A, Sledzinski T, Waleron K, Waleron M. Comparative genomics, pangenomics, and phenomic studies of Pectobacterium betavasculorum strains isolated from sugar beet, potato, sunflower, and artichoke: insights into pathogenicity, virulence determinants, and adaptation to the host plant. FRONTIERS IN PLANT SCIENCE 2024; 15:1352318. [PMID: 38576793 PMCID: PMC10991766 DOI: 10.3389/fpls.2024.1352318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/26/2024] [Indexed: 04/06/2024]
Abstract
Introduction Bacteria of genus Pectobacterium, encompassing economically significant pathogens affecting various plants, includes the species P. betavasculorum, initially associated with beetroot infection. However, its host range is much broader. It causes diseases of sunflower, potato, tomato, carrots, sweet potato, radish, squash, cucumber, and chrysanthemum. To explain this phenomenon, a comprehensive pathogenomic and phenomic characterisation of P. betavasculorum species was performed. Methods Genomes of P. betavasculorum strains isolated from potato, sunflower, and artichoke were sequenced and compared with those from sugar beet isolates. Metabolic profiling and pathogenomic analyses were conducted to assess virulence determinants and adaptation potential. Pathogenicity assays were performed on potato tubers and chicory leaves to confirm in silico predictions of disease symptoms. Phenotypic assays were also conducted to assess the strains ability to synthesise homoserine lactones and siderophores. Results The genome size ranged from 4.675 to 4.931 kbp, and GC % was between 51.0% and 51.2%. The pangenome of P. betavasculorum is open and comprises, on average, 4,220 gene families. Of these, 83% of genes are the core genome, and 2% of the entire pangenome are unique genes. Strains isolated from sugar beet have a smaller pangenome size and a higher number of unique genes than those from other plants. Interestingly, genomes of strains from artichoke and sunflower share 391 common CDS that are not present in the genomes of other strains from sugar beet or potato. Those strains have only one unique gene. All strains could use numerous sugars as building materials and energy sources and possessed a high repertoire of virulence determinants in the genomes. P. betavasculorum strains were able to cause disease symptoms on potato tubers and chicory leaves. They were also able to synthesise homoserine lactones and siderophores. Discussion The findings underscore the adaptability of P. betavasculorum to diverse hosts and environments. Strains adapted to plants with high sugar content in tissues have a different composition of fatty acids in membranes and a different mechanism of replenishing nitrogen in case of deficiency of this compound than strains derived from other plant species. Extensive phenomics and genomic analyses performed in this study have shown that P. betavasculorum species is an agronomically relevant pathogen.
Collapse
Affiliation(s)
- Maria Borowska-Beszta
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Magdalena Smoktunowicz
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Daria Horoszkiewicz
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Joanna Jonca
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Michal Mateusz Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | - Jan Gawor
- DNA Sequencing & Synthesis Facility, Institute of Biochemistry & Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Adriana Mika
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdansk, Gdansk, Poland
| | - Malgorzata Waleron
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| |
Collapse
|
4
|
Arizala D, Arif M. Impact of Homologous Recombination on Core Genome Evolution and Host Adaptation of Pectobacterium parmentieri. Genome Biol Evol 2024; 16:evae032. [PMID: 38385549 PMCID: PMC10946231 DOI: 10.1093/gbe/evae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/02/2024] [Accepted: 02/11/2024] [Indexed: 02/23/2024] Open
Abstract
Homologous recombination is a major force mechanism driving bacterial evolution, host adaptability, and acquisition of novel virulence traits. Pectobacterium parmentieri is a plant bacterial pathogen distributed worldwide, primarily affecting potatoes, by causing soft rot and blackleg diseases. The goal of this investigation was to understand the impact of homologous recombination on the genomic evolution of P. parmentieri. Analysis of P. parmentieri genomes using Roary revealed a dynamic pan-genome with 3,742 core genes and over 55% accessory genome variability. Bayesian population structure analysis identified 7 lineages, indicating species heterogeneity. ClonalFrameML analysis displayed 5,125 recombination events, with the lineage 4 exhibiting the highest events. fastGEAR analysis identified 486 ancestral and 941 recent recombination events ranging from 43 bp to 119 kb and 36 bp to 13.96 kb, respectively, suggesting ongoing adaptation. Notably, 11% (412 genes) of the core genome underwent recent recombination, with lineage 1 as the main donor. The prevalence of recent recombination (double compared to ancient) events implies continuous adaptation, possibly driven by global potato trade. Recombination events were found in genes involved in vital cellular processes (DNA replication, DNA repair, RNA processing, homeostasis, and metabolism), pathogenicity determinants (type secretion systems, cell-wall degrading enzymes, iron scavengers, lipopolysaccharides (LPS), flagellum, etc.), antimicrobial compounds (phenazine and colicin) and even CRISPR-Cas genes. Overall, these results emphasize the potential role of homologous recombination in P. parmentieri's evolutionary dynamics, influencing host colonization, pathogenicity, adaptive immunity, and ecological fitness.
Collapse
Affiliation(s)
- Dario Arizala
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| | - Mohammad Arif
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI, USA
| |
Collapse
|
5
|
Kang J, Yoon HM, Jung J, Yu S, Choi SY, Bae HW, Cho YH, Chung EH, Lee Y. Pleiotropic effects of N-acylhomoserine lactone synthase ExpI on virulence, competition, and transmission in Pectobacterium carotovorum subsp. carotovorum Pcc21. PEST MANAGEMENT SCIENCE 2024; 80:687-697. [PMID: 37758685 DOI: 10.1002/ps.7797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/18/2023] [Accepted: 09/28/2023] [Indexed: 09/29/2023]
Abstract
BACKGROUND Pectobacterium species are necrotrophic phytopathogenic bacteria that cause soft rot disease in economically important crops. The successful infection of host plants relies on interactions among virulence factors, competition, and transmission within hosts. Pectobacteria primarily produce and secrete plant cell-wall degrading enzymes (PCWDEs) for virulence. The regulation of PCWDEs is controlled by quorum sensing (QS). Thus, the QS system is crucial for disease development in pectobacteria through PCWDEs. RESULTS In this study, we identified a Tn-insertion mutant, M2, in the expI gene from a transposon mutant library of P. carotovorum subsp. carotovorum Pcc21 (hereafter Pcc21). The mutant exhibited reduced production and secretion of PCWDEs, impaired flagellar motility, and increased sensitivity to hydrogen peroxide, resulting in attenuated soft rot symptoms in cabbage and potato tubers. Transcriptomic analysis revealed the down-regulation of genes involved in the production and secretion in the mutant, consistent with the observed phenotype. Furthermore, the Pcc21 wild-type transiently colonized in the gut of Drosophila melanogaster within 12 h after feeding, while the mutant compromised colonization phenotype. Interestingly, Pcc21 produces a bacteriocin, carocin D, to compete with other bacteria. The mutant exhibited up-regulation of carocin D-encoding genes (caroDK) and inhibited the growth of a closely related bacterium, P. wasabiae. CONCLUSION Our results demonstrated the significance of ExpI in the overall pathogenic lifestyle of Pcc21, including virulence, competition, and colonization in plant and insect hosts. These findings suggest that disease outcome is a result of complex interactions mediated by ExpI across multiple steps. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jihee Kang
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Hye Min Yoon
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Seonmi Yu
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| | - Shin-Yae Choi
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Hee-Won Bae
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - You-Hee Cho
- Department of Pharmacy, and Institutes of Pharmaceutical Sciences, CHA University, Seongnam, Republic of Korea
| | - Eui-Hwan Chung
- Department of Plant Biotechnology, Korea University, Seoul, Republic of Korea
| | - Yunho Lee
- Department of Food Science and Biotechnology, CHA University, Pocheon, Republic of Korea
| |
Collapse
|
6
|
Premsuriya J, Mosbahi K, Atanaskovic I, Kleanthous C, Walker D. Outer membrane translocation of pyocins via the copper regulated TonB-dependent transporter CrtA. Biochem J 2023; 480:1035-1049. [PMID: 37399084 PMCID: PMC10422930 DOI: 10.1042/bcj20220552] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/28/2023] [Accepted: 07/03/2023] [Indexed: 07/05/2023]
Abstract
Pseudomonas aeruginosa is a common cause of serious hospital-acquired infections, the leading proven cause of mortality in people with cystic fibrosis and is associated with high levels of antimicrobial resistance. Pyocins are narrow-spectrum protein antibiotics produced by P. aeruginosa that kill strains of the same species and have the potential to be developed as therapeutics targeting multi-drug resistant isolates. We have identified two novel pyocins designated SX1 and SX2. Pyocin SX1 is a metal-dependent DNase while pyocin SX2 kills cells through inhibition of protein synthesis. Mapping the uptake pathways of SX1 and SX2 shows these pyocins utilize a combination of the common polysaccharide antigen (CPA) and a previously uncharacterized TonB-dependent transporter (TBDT) PA0434 to traverse the outer membrane. In addition, TonB1 and FtsH are required by both pyocins to energize their transport into cells and catalyze their translocation across the inner membrane, respectively. Expression of PA0434 was found to be specifically regulated by copper availability and we have designated PA0434 as Copper Responsive Transporter A, or CrtA. To our knowledge these are the first S-type pyocins described that utilize a TBDT that is not involved in iron uptake.
Collapse
Affiliation(s)
- Jiraphan Premsuriya
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
- Princess Srisavangavadhana College of Medicine, Chulabhorn Royal Academy, Bangkok 10210, Thailand
| | - Khedidja Mosbahi
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
| | - Iva Atanaskovic
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, U.K
| | - Daniel Walker
- School of Infection and Immunity, University of Glasgow, Glasgow G12 8TA, U.K
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| |
Collapse
|
7
|
Chang CP, Lagitnay RBJS, Li TR, Lai WT, Derilo RC, Chuang DY. Unleashing the Influence of cAMP Receptor Protein: The Master Switch of Bacteriocin Export in Pectobacterium carotovorum subsp. carotovorum. Int J Mol Sci 2023; 24:ijms24119752. [PMID: 37298703 DOI: 10.3390/ijms24119752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) is a Gram-negative phytopathogenic bacterium that produces carocin, a low-molecular-weight bacteriocin that can kill related strains in response to factors in the environment such as UV exposure or nutritional deficiency. The function of the catabolite activator protein (CAP), also known as the cyclic AMP receptor protein (CRP), as a regulator of carocin synthesis was examined. The crp gene was knocked out as part of the investigation, and the outcomes were assessed both in vivo and in vitro. Analysis of the DNA sequence upstream of the translation initiation site of carocin S3 revealed two putative binding sites for CRP that were confirmed using a biotinylated probe pull-down experiment. This study revealed that the deletion of crp inhibited genes involved in extracellular bacteriocin export via the flagellar type III secretion system and impacted the production of many low-molecular-weight bacteriocins. The biotinylated probe pull-down test demonstrated that when UV induction was missing, CRP preferentially attached to one of the two CAP sites while binding to both when UV induction was present. In conclusion, our research aimed to simulate the signal transduction system that controls the expression of the carocin gene in response to UV induction.
Collapse
Affiliation(s)
- Chung-Pei Chang
- Department of Anesthesiology, Show Chwan Memorial Hospital, Changhua 500, Taiwan
| | - Ruchi Briam James Sersenia Lagitnay
- College of Arts and Sciences, Bayombong Campus, Nueva Vizcaya State University, Bayombong 3700, Philippines
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| | - Tzu-Rong Li
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| | - Wei-Ting Lai
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| | - Reymund Calanga Derilo
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
- College of Teacher Education, Bambang Campus, Nueva Vizcaya State University, Bambang 3702, Philippines
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung Hsing University, Taichung City 400, Taiwan
| |
Collapse
|
8
|
Wu J, Ohura T, Ogura R, Wang J, Choi JH, Kobori H, D’Alessandro-Gabazza CN, Toda M, Yasuma T, Gabazza EC, Takikawa Y, Hirai H, Kawagishi H. Bioactive Compounds from the Mushroom-Forming Fungus Chlorophyllum molybdites. Antibiotics (Basel) 2023; 12:596. [PMID: 36978462 PMCID: PMC10044768 DOI: 10.3390/antibiotics12030596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 03/13/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023] Open
Abstract
A novel compound (1) along with two known compounds (2 and 3) were isolated from the culture broth of Chlorophyllum molybdites, and three known compounds (4-6) were isolated from its fruiting bodies. The planar structure of 1 was determined by the interpretation of spectroscopic data. By comparing the specific rotation of the compound with that of the analog compound, the absolute configuration of 1 was determined to be R. This is the first time that compounds 2-4 were isolated from a mushroom-forming fungus. Compound 2 showed significant inhibition activity against Axl and immune checkpoints (PD-L1, PD-L2). In the bioassay to examine growth inhibitory activity against the phytopathogenic bacteria Peptobacterium carotovorum, Clavibacter michiganensis and Burkholderia glumae, compounds 2 and 3 inhibited the growth of P. carotovorum and C. michiganensis. In the bioassay to examine plant growth regulatory activity, compounds 1-4 showed a significant regulatory activity on lettuce growth.
Collapse
Affiliation(s)
- Jing Wu
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Takeru Ohura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Ryuhei Ogura
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Junhong Wang
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Jae-Hoon Choi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hajime Kobori
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Iwade Research Institute of Mycology Co., Ltd., Suehirocho 1-9, Tsu 514-0012, Japan
| | | | - Masaaki Toda
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Taro Yasuma
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Esteban C. Gabazza
- Department of Immunology, Mie University Graduate School of Medicine, Edobashi 2-174, Tsu 524-8507, Japan
| | - Yuichi Takikawa
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
| | - Hirofumi Hirai
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| | - Hirokazu Kawagishi
- Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan; (J.W.)
- Research Institute for Mushroom Science, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka 422-8529, Japan
| |
Collapse
|
9
|
Hespanhol JT, Karman L, Sanchez-Limache DE, Bayer-Santos E. Intercepting biological messages: Antibacterial molecules targeting nucleic acids during interbacterial conflicts. Genet Mol Biol 2023; 46:e20220266. [PMID: 36880694 PMCID: PMC9990079 DOI: 10.1590/1678-4685-gmb-2022-0266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/25/2022] [Indexed: 03/08/2023] Open
Abstract
Bacteria live in polymicrobial communities and constantly compete for resources. These organisms have evolved an array of antibacterial weapons to inhibit the growth or kill competitors. The arsenal comprises antibiotics, bacteriocins, and contact-dependent effectors that are either secreted in the medium or directly translocated into target cells. During bacterial antagonistic encounters, several cellular components important for life become a weak spot prone to an attack. Nucleic acids and the machinery responsible for their synthesis are well conserved across the tree of life. These molecules are part of the information flow in the central dogma of molecular biology and mediate long- and short-term storage for genetic information. The aim of this review is to summarize the diversity of antibacterial molecules that target nucleic acids during antagonistic interbacterial encounters and discuss their potential to promote the emergence antibiotic resistance.
Collapse
Affiliation(s)
- Julia Takuno Hespanhol
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Lior Karman
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | | | - Ethel Bayer-Santos
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| |
Collapse
|
10
|
Wang J, Wu J, Tsutsumi K, Choi JH, Hirai H, Kobori H, Takikawa Y, Kawagishi H. A new lanostane triterpenoid from the mushroom Hypholoma fasciculare. Biosci Biotechnol Biochem 2022; 86:819-823. [PMID: 35388876 DOI: 10.1093/bbb/zbac050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/28/2022] [Indexed: 11/12/2022]
Abstract
A novel compound (1) and 3 known compounds (2-4) were isolated from the fruiting bodies of Hypholoma fasciculare. The structure of 1 was determined by the interpretation of spectroscopic data. Compounds 2-4 were identified by comparing the spectra data of known compounds. In the bioassay examining growth inhibitory activity against phytopathogenic bacteria Clavibacter michiganensis, Burkholderia glumae, and Peptobacterium carotovorum, compounds 1, 2, and 4 showed inhibition effects on C. michiganensis only.
Collapse
Affiliation(s)
- Junhong Wang
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Jing Wu
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Kenta Tsutsumi
- Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan
| | - Jae-Hoon Choi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirofumi Hirai
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hajime Kobori
- Iwade Research Institute of Mycology Co., Ltd., Tsu-shi, Mie, Japan
| | - Yuichi Takikawa
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Hirokazu Kawagishi
- Department of Agriculture, Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka, Japan.,Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,Department of Applied Life Science, Faculty of Agriculture, Shizuoka University, Shizuoka, Japan.,Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
11
|
Atanaskovic I, Sharp C, Press C, Kaminska R, Kleanthous C. Bacterial Competition Systems Share a Domain Required for Inner Membrane Transport of the Bacteriocin Pyocin G from Pseudomonas aeruginosa. mBio 2022; 13:e0339621. [PMID: 35343790 PMCID: PMC9040868 DOI: 10.1128/mbio.03396-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/28/2022] [Indexed: 02/06/2023] Open
Abstract
Bacteria exploit a variety of attack strategies to gain dominance within ecological niches. Prominent among these are contact-dependent inhibition (CDI), type VI secretion (T6SS), and bacteriocins. The cytotoxic endpoint of these systems is often the delivery of a nuclease to the cytosol. How such nucleases translocate across the cytoplasmic membrane of Gram-negative bacteria is unknown. Here, we identify a small, conserved, 15-kDa domain, which we refer to as the inner membrane translocation (IMT) domain, that is common to T6SS and bacteriocins and linked to nuclease effector domains. Through fluorescence microscopy assays using intact and spheroplasted cells, we demonstrate that the IMT domain of the Pseudomonas aeruginosa-specific bacteriocin pyocin G (PyoG) is required for import of the toxin nuclease domain to the cytoplasm. We also show that translocation of PyoG into the cytosol is dependent on inner membrane proteins FtsH, a AAA+ATPase/protease, and TonB1, the latter more typically associated with transport of bacteriocins across the outer membrane. Our study reveals that the IMT domain directs the cytotoxic nuclease of PyoG to cross the cytoplasmic membrane and, more broadly, has been adapted for the transport of other toxic nucleases delivered into Gram-negative bacteria by both contact-dependent and contact-independent means. IMPORTANCE Nuclease bacteriocins are potential antimicrobials for the treatment of antibiotic-resistant bacterial infections. While the mechanism of outer membrane translocation is beginning to be understood, the mechanism of inner membrane transport is not known. This study uses PyoG as a model nuclease bacteriocin and defines a conserved domain that is essential for inner membrane translocation and is widespread in other bacterial competition systems. Additionally, the presented data link two membrane proteins, FtsH and TonB1, with inner membrane translocation of PyoG. These findings point to the general importance of this domain to the cellular uptake mechanisms of nucleases delivered by otherwise diverse and distinct bacterial competition systems. The work is also of importance for the design of new protein antibiotics.
Collapse
Affiliation(s)
- Iva Atanaskovic
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Connor Sharp
- Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - Cara Press
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
12
|
Unraveling the Uncharacterized Domain of Carocin S2: A Ribonuclease Pectobacterium carotovorum subsp. carotovorum Bacteriocin. Microorganisms 2022; 10:microorganisms10020359. [PMID: 35208813 PMCID: PMC8878655 DOI: 10.3390/microorganisms10020359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 11/29/2022] Open
Abstract
Carocin S2 is a bacteriocin with a low molecular weight generated by Pectobacterium carotovorum subsp. carotovorum 3F3 strain. The caroS2K gene, which is found in the genomic DNA alongside the caroS2I gene, which codes for an immunity protein, encodes this bacteriocin. We explored the residues responsible for Carocin S2’s cytotoxic or RNA-se activity using a structure-based mutagenesis approach. The minimal antibiotic functional region starts at Lys691 and ends at Arg783, according to mutational research. Two residues in the identified region, Phe760 and Ser762, however, are unable to demonstrate this activity, suggesting that these sites may interact with another domain. Small modifications in the secondary structure of mutant caroS2K were revealed by circular dichroism (CD) spectroscopy and intrinsic tryptophan fluorescence (ITF), showing ribosomal RNA cleavage in the active site. A co-immunoprecipitation test indicated that the immunity protein CaroS2I binds to CaroS2K’s C-terminus, while a region under the uncharacterized Domain III inhibits association of N-terminally truncated CaroS2K from interacting with CaroS2I. Carocin S2, a ribosomal ribonuclease bacteriocin, is the first to be identified with a domain III that encodes the cytotoxic residues as well as the binding sites between its immunity and killer proteins.
Collapse
|
13
|
Wu HP, Derilo RC, Chen HL, Li TR, Lagitnay RBJS, Chan YC, Chuang Y, Chuang DY. Injectisome T3SS subunits as potential chaperones in the extracellular export of Pectobacterium carotovorum subsp. carotovorum bacteriocins Carocin S1 and Carocin S3 secreted via flagellar T3SS. BMC Microbiol 2021; 21:345. [PMID: 34911446 PMCID: PMC8672553 DOI: 10.1186/s12866-021-02405-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum (Pcc) causes soft-rot disease in a wide variety of plants resulting in economic losses worldwide. It produces various types of bacteriocin to compete against related plant pathogens. Studies on how bacteriocins are extracellularly secreted are conducted to understand the mechanism of interbacterial competition. In this study, the secretion of the low-molecular-weight bacteriocins (LMWB) Carocin S1 and Carocin S3 produced by a multiple-bacteriocin producing strain of Pcc, 89-H-4, was investigated. Tn5 insertional mutagenesis was used to generate a mutant, TH22-6, incapable of LMWBs secretion. Sequence and homology analyses of the gene disrupted by transposon Tn5 insertion revealed that the gene sctT, an essential component of the injectisome type III secretion machinery (T3aSS), is required for the secretion of the bacteriocins. This result raised a question regarding the nature of the secretion mechanism of Pcc bacteriocins which was previously discovered to be secreted via T3bSS, a system that utilizes the bacterial flagellum for extracellular secretions. Our previous report has shown that bacteriocin Carocin S1 cannot be secreted by mutants that are defective of T3bSS-related genes such as flhA, flhC, flhD and fliC. We knocked out several genes making up the significant structural components of both T3aSS and T3bSS. The findings led us to hypothesize the potential roles of the T3aSS-related proteins, SctT, SctU and SctV, as flagellar T3SS chaperones in the secretion of Pcc bacteriocins. This current discovery and the findings of our previous study helped us to conceptualize a unique Type III secretion system for bacteriocin extracellular export which is a hybrid of the injectisome and flagellar secretion systems.
Collapse
Affiliation(s)
- Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Reymund C Derilo
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Teacher Education, Nueva Vizcaya State University Bambang Campus, Bambang, Nueva Vizcaya, Philippines
| | - Han-Ling Chen
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Tzu-Rung Li
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Ruchi Briam James S Lagitnay
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
- College of Arts and Sciences, Nueva Vizcaya State University Bayombong Campus, Bayombong, Nueva Vizcaya, Philippines
| | - Yung-Chieh Chan
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan
| | - Yutin Chuang
- Department of Entomology, National Chung Hsing University, Taichung City, Taiwan
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung Hsing University, 145, Xingda Rd., Taichung, 402, Taiwan.
| |
Collapse
|
14
|
CESA-LUNA CATHERINE, ALATORRE-CRUZ JULIAMARÍA, CARREÑO-LÓPEZ RICARDO, QUINTERO-HERNÁNDEZ VERÓNICA, BAEZ ANTONINO. Emerging Applications of Bacteriocins as Antimicrobials, Anticancer Drugs, and Modulators of The Gastrointestinal Microbiota. Pol J Microbiol 2021; 70:143-159. [PMID: 34349808 PMCID: PMC8326989 DOI: 10.33073/pjm-2021-020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 04/06/2021] [Accepted: 04/25/2021] [Indexed: 02/06/2023] Open
Abstract
The use of bacteriocins holds great promise in different areas such as health, food, nutrition, veterinary, nanotechnology, among others. Many research groups worldwide continue to advance the knowledge to unravel a novel range of therapeutic agents and food preservatives. This review addresses the advances of bacteriocins and their producer organisms as biocontrol agents for applications in the medical industry and agriculture. Furthermore, the bacteriocin mechanism of action and structural characteristics will be reviewed. Finally, the potential role of bacteriocins to modulate the signaling in host-associated microbial communities will be discussed.
Collapse
Affiliation(s)
- CATHERINE CESA-LUNA
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - RICARDO CARREÑO-LÓPEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| | | | - ANTONINO BAEZ
- Centro de Investigaciones en Ciencias Microbiológicas (CICM), Instituto de Ciencias (IC), Benemérita Universidad Autónoma de Puebla (BUAP), Puebla, México
| |
Collapse
|
15
|
Biocontrol of Soft Rot Caused by Pectobacterium odoriferum with Bacteriophage phiPccP-1 in Kimchi Cabbage. Microorganisms 2021; 9:microorganisms9040779. [PMID: 33917817 PMCID: PMC8068257 DOI: 10.3390/microorganisms9040779] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 11/17/2022] Open
Abstract
Pectobacterium odoriferum has recently emerged as a widely infective and destructive pathogen causing soft-rot disease in various vegetables. Bacteriophage phiPccP-1 isolated from Pyeongchang, South Korea, showed lytic activity against P. odoriferum Pco14 and two other Pectobacterium species. The transmission electron microscopy and genome phylograms revealed that phiPccP-1 belongs to the Unyawovirus genus, Studiervirinae subfamily of the Autographivirinae family. Genome comparison showed that its 40,487 bp double-stranded DNA genome shares significant similarity with Pectobacterium phage DU_PP_II with the identity reaching 98% of the genome. The phiPccP-1 application significantly inhibited the development of soft-rot disease in the mature leaves of the harvested Kimchi cabbage up to 48 h after Pco14 inoculation compared to the untreated leaves, suggesting that phiPccP-1 can protect Kimchi cabbage from soft-rot disease after harvest. Remarkably, bioassays with phiPccP-1 in Kimchi cabbage seedlings grown in the growth chamber successfully demonstrated its prophylactic and therapeutic potential in the control of bacterial soft-rot disease in Kimchi cabbage. These results indicate that bacteriophage phiPccP-1 can be used as a potential biological agent for controlling soft rot disease in Kimchi cabbage.
Collapse
|
16
|
|
17
|
Rooney WM, Chai R, Milner JJ, Walker D. Bacteriocins Targeting Gram-Negative Phytopathogenic Bacteria: Plantibiotics of the Future. Front Microbiol 2020; 11:575981. [PMID: 33042091 PMCID: PMC7530242 DOI: 10.3389/fmicb.2020.575981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/25/2020] [Indexed: 12/12/2022] Open
Abstract
Gram-negative phytopathogenic bacteria are a significant threat to food crops. These microbial invaders are responsible for a plethora of plant diseases and can be responsible for devastating losses in crops such as tomatoes, peppers, potatoes, olives, and rice. Current disease management strategies to mitigate yield losses involve the application of chemicals which are often harmful to both human health and the environment. Bacteriocins are small proteinaceous antibiotics produced by bacteria to kill closely related bacteria and thereby establish dominance within a niche. They potentially represent a safer alternative to chemicals when used in the field. Bacteriocins typically show a high degree of selectivity toward their targets with no off-target effects. This review outlines the current state of research on bacteriocins active against Gram-negative phytopathogenic bacteria. Furthermore, we will examine the feasibility of weaponizing bacteriocins for use as a treatment for bacterial plant diseases.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Ray Chai
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Joel J. Milner
- Plant Science Group, School of Life Sciences, Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, United Kingdom
| | - Daniel Walker
- College of Medical, Veterinary and Life Sciences, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
18
|
Wang JW, Derilo RC, Lagitnay RBJS, Wu HP, Chen KI, Chuang DY. Identification and characterization of the bacteriocin Carocin S3 from the multiple bacteriocin producing strain of Pectobacterium carotovorum subsp. carotovorum. BMC Microbiol 2020; 20:273. [PMID: 32867691 PMCID: PMC7461348 DOI: 10.1186/s12866-020-01955-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 08/23/2020] [Indexed: 01/01/2023] Open
Abstract
Background Pectobacterium carotovorum subsp. carotovorum belongs to the Enterobacteriaceae family, which causes soft-rot disease in numerous plants worldwide resulting in significant economic losses. Results from our previous studies showed that the strain H-rif-8-6 produces low-molecular-weight bacteriocin (LMWB) Carocin S1. Interestingly, TH22–10, the caroS1K:Tn5 insertional mutant in H-rif-8-6, loses Carocin S1 producing ability, but still produces other LMWBs which the indicator strain SP33 can detect. The SP33 is one of the many strains that are sensitive toward the cytotoxic effects of Carocin S3K, but not Carocin S1. The result revealed that H-rif-8-6 is a multiple-bacteriocin producing strain. Results In this study, a 4.1-kb DNA fragment was isolated from the chromosomal DNA of Pcc strain, H-rif-8-6, by a DNA probe using the caroS1K gene as the template. DNA sequencing and analysis by GenBank revealed two complete open reading frames (ORFs), designated ORF1 and ORF2, which were identified within the sequence fragment. ORF1 and ORF2, similar to the identified carocin S2 genes, encode the killer (Carocin S3K) and the immunity (Carocin S3I) proteins, respectively, which were homologous to the colicin E3 gene. Carocin S3K and Carocin S3I were expressed, isolated, and purified in Escherichia coli BL21 after subcloning of the expression plasmid pGS3KI or pGSK3I. SDS-PAGE analysis showed that the relative masses of Carocin S3K and Carocin S3I were 95.6 kDa and 10.2 kDa, respectively. The results reveal that Carocin S3K has higher antimicrobial and specific antimicrobial activities for Pcc along with a nuclease activity than Carocin S3I. However, Carocin S3I inhibits the activity of Carocin S3K. Interestingly, a high concentration of Carocin S3I protein is also a DNA nuclease, and Carocin S3K also inhibits its activity. Conclusion This study showed that another type of bacteriocin was found in Pectobacterium carotovorum. This new type of bacteriocin, Carocin S3, has the killer protein, Carocin S3K, and the immunity protein, Carocin S3I.
Collapse
Affiliation(s)
- Jyun-Wei Wang
- Depertment of Gastroenterology, Chang Bing Show Chwan Memorial Hospital, 6 Lukon Road, Lukong Town, Changhua, 505, Taiwan
| | - Reymund C Derilo
- Department of Chemistry, National Chung-Hsing University, 250, Kuokuang Rd, Taichung City, 402, Taiwan
| | | | - Huang-Pin Wu
- Division of Pulmonary, Critical Care and Sleep Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan.,College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Kai-In Chen
- Department of Chemistry, National Chung-Hsing University, 250, Kuokuang Rd, Taichung City, 402, Taiwan
| | - Duen-Yau Chuang
- Department of Chemistry, National Chung-Hsing University, 250, Kuokuang Rd, Taichung City, 402, Taiwan.
| |
Collapse
|
19
|
Atanaskovic I, Mosbahi K, Sharp C, Housden NG, Kaminska R, Walker D, Kleanthous C. Targeted Killing of Pseudomonas aeruginosa by Pyocin G Occurs via the Hemin Transporter Hur. J Mol Biol 2020; 432:3869-3880. [PMID: 32339530 PMCID: PMC7322526 DOI: 10.1016/j.jmb.2020.04.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/21/2020] [Accepted: 04/21/2020] [Indexed: 01/20/2023]
Abstract
Pseudomonas aeruginosa is a priority pathogen for the development of new antibiotics, particularly because multi-drug-resistant strains of this bacterium cause serious nosocomial infections and are the leading cause of death in cystic fibrosis patients. Pyocins, bacteriocins of P. aeruginosa, are potent and diverse protein antibiotics that are deployed during bacterial competition. Pyocins are produced by more than 90% of P. aeruginosa strains and may have utility as last resort antibiotics against this bacterium. In this study, we explore the antimicrobial activity of a newly discovered pyocin called pyocin G (PyoG). We demonstrate that PyoG has broad killing activity against a collection of clinical P. aeruginosa isolates and is active in a Galleria mellonella infection model. We go on to identify cell envelope proteins that are necessary for the import of PyoG and its killing activity. PyoG recognizes bacterial cells by binding to Hur, an outer-membrane TonB-dependent transporter. Both pyocin and Hur interact with TonB1, which in complex with ExbB-ExbD links the proton motive force generated across the inner membrane with energy-dependent pyocin translocation across the outer membrane. Inner-membrane translocation of PyoG is dependent on the conserved inner-membrane AAA+ ATPase/protease, FtsH. We also report a functional exploration of the PyoG receptor. We demonstrate that Hur can bind to hemin in vitro and that this interaction is blocked by PyoG, confirming the role of Hur in hemin acquisition.
Collapse
Affiliation(s)
- Iva Atanaskovic
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Khedidja Mosbahi
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, G12 8QQ Glasgow, UK
| | - Connor Sharp
- Department of Zoology, University of Oxford, 11a Mansfield Rd, Oxford OX1 3SZ, UK
| | - Nicholas G Housden
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Renata Kaminska
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK
| | - Daniel Walker
- Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary, and Life Sciences, University of Glasgow, G12 8QQ Glasgow, UK
| | - Colin Kleanthous
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK.
| |
Collapse
|
20
|
Five Fungal Pathogens Are Responsible for Bayberry Twig Blight and Fungicides Were Screened for Disease Control. Microorganisms 2020; 8:microorganisms8050689. [PMID: 32397322 PMCID: PMC7284972 DOI: 10.3390/microorganisms8050689] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/27/2020] [Accepted: 05/06/2020] [Indexed: 11/17/2022] Open
Abstract
Bayberry (Myrica rubra) is a commercial fruit in China. For the past seven years, twig blight disease has been attacking bayberry plantations in Shantou City, Guangdong Province, China, leading to destructive damage and financial loss. In this study, five fungal species associated with twig dieback and stem blight were identified based on morphological characteristics combined with multilocus sequence analysis (MLSA) on the internal transcribed spacer (ITS) region, partial sequences of β-tubulin (tub2), translation elongation factor 1-α (tef1-α), large subunit ribosomal RNA (LSU) and small subunit ribosomal RNA (SSU) genes, which are Epicoccum sorghinum, Neofusicoccum parvum, Lasiodiplodia theobromae, Nigrospora oryzae and a Pestalotiopsis new species P. myricae. P. myricae is the chief pathogen in fields, based on its high isolation rate and fast disease progression after inoculation. To our knowledge, this is the first study reporting the above five fungi as the pathogens responsible for bayberry twig blight. Indoor screening of fungicides indicates that Prochloraz (copper salt) is the most promising fungicide for field application, followed by Pyraclostrobin, 15% Difenoconazole + 15% Propiconazole, Difenoconazole and Myclobutanil. Additionally, Bacillus velezensis strain 3–10 and zeamines from Dickeya zeae strain EC1 could be used as potential ecofriendly alternatives to control the disease.
Collapse
|
21
|
Rooney WM, Grinter RW, Correia A, Parkhill J, Walker DC, Milner JJ. Engineering bacteriocin-mediated resistance against the plant pathogen Pseudomonas syringae. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1296-1306. [PMID: 31705720 PMCID: PMC7152609 DOI: 10.1111/pbi.13294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 10/16/2019] [Accepted: 10/27/2019] [Indexed: 05/20/2023]
Abstract
The plant pathogen, Pseudomonas syringae (Ps), together with related Ps species, infects and attacks a wide range of agronomically important crops, including tomato, kiwifruit, pepper, olive and soybean, causing economic losses. Currently, chemicals and introduced resistance genes are used to protect plants against these pathogens but have limited success and may have adverse environmental impacts. Consequently, there is a pressing need to develop alternative strategies to combat bacterial disease in crops. One such strategy involves using narrow-spectrum protein antibiotics (so-called bacteriocins), which diverse bacteria use to compete against closely related species. Here, we demonstrate that one bacteriocin, putidacin L1 (PL1), can be expressed in an active form at high levels in Arabidopsis and in Nicotiana benthamiana in planta to provide effective resistance against diverse pathovars of Ps. Furthermore, we find that Ps strains that mutate to acquire tolerance to PL1 lose their O-antigen, exhibit reduced motility and still cannot induce disease symptoms in PL1-transgenic Arabidopsis. Our results provide proof-of-principle that the transgene-mediated expression of a bacteriocin in planta can provide effective disease resistance to bacterial pathogens. Thus, the expression of bacteriocins in crops might offer an effective strategy for managing bacterial disease, in the same way that the genetic modification of crops to express insecticidal proteins has proven to be an extremely successful strategy for pest management. Crucially, nearly all genera of bacteria, including many plant pathogenic species, produce bacteriocins, providing an extensive source of these antimicrobial agents.
Collapse
Affiliation(s)
- William M. Rooney
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Rhys W. Grinter
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
- Present address:
School of Biological SciencesCentre for Geometric BiologyMonash UniversityClaytonVictoria3800Australia
| | - Annapaula Correia
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of ZoologyUniversity of OxfordSouth Parks RoadOxfordOX1 3PSUK
| | - Julian Parkhill
- Wellcome Trust Sanger InstituteWellcome Trust Genome CampusHinxtonUK
- Present address:
Department of Veterinary MedicineUniversity of CambridgeMadingley RoadCambridgeCB3 0ESUK
| | - Daniel C. Walker
- Institute of Infection, Immunity & InflammationCollege of Medical, Veterinary & Life SciencesUniversity of GlasgowGlasgowUK
| | - Joel J. Milner
- Plant Science GroupInstitute of Molecular, Cell and Systems Biology & School of Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
22
|
Genome-Wide Analyses Revealed Remarkable Heterogeneity in Pathogenicity Determinants, Antimicrobial Compounds, and CRISPR-Cas Systems of Complex Phytopathogenic Genus Pectobacterium. Pathogens 2019; 8:pathogens8040247. [PMID: 31756888 PMCID: PMC6963963 DOI: 10.3390/pathogens8040247] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023] Open
Abstract
The Pectobacterium genus comprises pectolytic enterobacteria defined as the causal agents of soft rot, blackleg, and aerial stem rot diseases of potato and economically important crops. In this study, we undertook extensive genome-wide comparative analyses of twelve species that conform the Pectobacterium genus. Bioinformatics approaches outlined a low nucleotide identity of P. parmentieri and P. wasabiae with other species, while P. carotovorum subsp. odoriferum was shown to harbor numerous pseudogenes, which suggests low coding capacity and genomic degradation. The genome atlases allowed for distinguishing distinct DNA structures and highlighted suspicious high transcription zones. The analyses unveiled a noteworthy heterogeneity in the pathogenicity determinants. Specifically, phytotoxins, polysaccharides, iron uptake systems, and the type secretion systems III-V were observed in just some species. Likewise, a comparison of gene clusters encoding antimicrobial compounds put in evidence for high conservation of carotovoricin, whereas a few species possessed the phenazine, carbapenem, and carocins. Moreover, three clustered regularly interspaced short palindromic repeats-Cas (CRISPR-Cas) systems: I-E, I-F, and III-A were identified. Surrounding some CRISPR-Cas regions, different toxin and antitoxin systems were found, which suggests bacterial suicide in the case of an immune system failure. Multiple whole-genome alignments shed light on to the presence of a novel cellobiose phosphotransferase system (PTS) exclusive to P. parmenteri, and an unreported T5SS conserved in almost all species. Several regions that were associated with virulence, microbe antagonism, and adaptive immune systems were predicted within genomic islands, which underscored the essential role that horizontal gene transfer has imparted in the dynamic evolution and speciation of Pectobacterium species. Overall, the results decipher the different strategies that each species has developed to infect their hosts, outcompete for food resources, and defend against bacteriophages. Our investigation provides novel genetic insights that will assist in understanding the pathogenic lifestyle of Pectobacterium, a genus that jeopardizes the agriculture sustainability of important crops worldwide.
Collapse
|
23
|
Shyntum DY, Nkomo NP, Shingange NL, Gricia AR, Bellieny-Rabelo D, Moleleki LN. The Impact of Type VI Secretion System, Bacteriocins and Antibiotics on Bacterial Competition of Pectobacterium carotovorum subsp. brasiliense and the Regulation of Carbapenem Biosynthesis by Iron and the Ferric-Uptake Regulator. Front Microbiol 2019; 10:2379. [PMID: 31681235 PMCID: PMC6813493 DOI: 10.3389/fmicb.2019.02379] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 09/30/2019] [Indexed: 12/17/2022] Open
Abstract
The complexity of plant microbial communities provides a rich model for investigating biochemical and regulatory strategies involved in interbacterial competition. Within these niches, the soft rot Enterobacteriaceae (SRE) represents an emerging group of plant-pathogens causing soft rot/blackleg diseases resulting in economic losses worldwide in a variety of crops. A preliminary screening using next-generation sequencing of 16S rRNA comparatively analyzing healthy and diseased potato tubers, identified several taxa from Proteobacteria to Firmicutes as potential potato endophytes/plant pathogens. Subsequent to this, a range of molecular and computational techniques were used to determine the contribution of antimicrobial factors such as bacteriocins, carbapenem and type VI secretion system (T6SS), found in an aggressive SRE (Pectobacterium carotovorum subsp. brasiliense strain PBR1692 - Pcb1692) against these endophytes/plant pathogens. The results showed growth inhibition of several Proteobacteria by Pcb1692 depends either on carbapenem or pyocin production. Whereas for targeted Firmicutes, only the Pcb1692 pyocin seems to play a role in growth inhibition. Furthermore, production of carbapenem by Pcb1692 was observably dependent on the presence of environmental iron and oxygen. Additionally, upon deletion of fur, slyA and expI regulators, carbapenem production ceased, implying a complex regulatory mechanism involving these three genes. Finally, the results demonstrated that although T6SS confers no relevant advantage during in vitro competition, a significant attenuation in competition by the mutant strain lacking a functional T6SS was observed in planta. IMPORTANCE Soft rot Enterobacteriaceae (SRE) represents important phytopathogens causing soft rot/blackleg diseases in a variety of crops leading to huge economic losses worldwide. These pathogens have been isolated alongside other bacteria from different environments such as potato tubers, stems, roots and from the soil. In these environments, SREs coexist with other bacteria where they have to compete for scarce nutrients and other resources. In this report, we show that Pectobacterium carotovorum subsp. brasiliense strain PBR1692 - Pcb1692, which represents one of the SREs, inhibits growth of several different bacteria by producing different antimicrobial compounds. These antimicrobial compounds can be secreted inside or outside the plant host, allowing Pcb1692 to effectively colonize different types of ecological niches. By analyzing the genome sequences of several SREs, we show that other SREs likely deploy similar antimicrobials to target other bacteria.
Collapse
Affiliation(s)
- Divine Yufetar Shyntum
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ntombikayise Precious Nkomo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Ntwanano Luann Shingange
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
| | - Alessandro Rino Gricia
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Daniel Bellieny-Rabelo
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Lucy Novungayo Moleleki
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry, Agriculture and Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
24
|
Abstract
Bacteria host an arsenal of antagonism-mediating molecules to combat for ecologic space. Bacteriocins represent a pivotal group of secreted antibacterial peptides and proteins assisting in this fight, mainly eliminating relatives. Colicin M, a model for peptidoglycan-interfering bacteriocins in Gram-negative bacteria, appears to be part of a set of polymorphic toxins equipped with such a catalytic domain (ColM) targeting lipid II. Diversifying recombination has enabled parasitism of different receptors and has also given rise to hybrid bacteriocins in which ColM is associated with another toxin module. Remarkably, ColM toxins have recruited a diverse array of immunity partners, comprising cytoplasmic membrane-associated proteins with different topologies. Together, these findings suggest that different immunity mechanisms have evolved for ColM, in contrast to bacteriocins with nuclease activities.
Collapse
|
25
|
Lim JA, Hong J, Kim J, Heu S, Roh E. OmpF of Pectobacterium carotovorum subsp. carotovorum Pcc3 is required for carocin D sensitivity. FEMS Microbiol Lett 2016; 363:fnw258. [PMID: 27915254 DOI: 10.1093/femsle/fnw258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 04/04/2016] [Accepted: 11/21/2016] [Indexed: 11/14/2022] Open
Abstract
Carocin D is a bacteriocin produced by Pectobacterium carotovorum subsp. carotovorum Pcc21. Carocin D inhibits the growth of P carotovorum subsp. carotovorum and closely related strains. Pectobacterium carotovorum subsp. carotovorum is a causative bacterium for soft rot disease and leads to severe economic losses. Bacteriocins recognize and interact with a specific membrane protein of target bacteria as a receptor. To identify the receptor responsible for carocin D recognition, mutants that underwent a phenotypic change from carocin D sensitivity to carocin D insensitivity were screened. Based on Tn5 insertions, carocin D sensitivity was dependent on expression of the outer membrane protein OmpF. The insensitivity of the mutant (Pcc3MR) to carocin D was complemented with ompF from carocin D-sensitive strains, not from carocin D-resistant strains. The selectivity between sensitive and resistant strains could be attributed to variation in OmpFs in the cell-surface-exposed regions. Based on sequence analysis and complementation assays, it appears that carocin D uses OmpF as a receptor and is translocated by the TonB system. According to previously reported translocation mechanisms of colicins, OmpF works along with the TolA system rather than the TonB system. Therefore, the current findings suggest that carocin D is imported by a unique colicin-like bacteriocin translocation system.
Collapse
Affiliation(s)
- Jeong-A Lim
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Jisoo Hong
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Jonguk Kim
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Sunggi Heu
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| | - Eunjung Roh
- Microbial Safety Team, National Institute of Agricultural Sciences, Rural Development Administration, Wanju-gun 55365, Republic of Korea
| |
Collapse
|
26
|
Kazemi-Zaromi S, Baghaee-Ravari S, Khodaygan P, Falahati-Rastegar M. Screening bactericidal effect ofPectobacterium carotovorumsubsp.carotovorumstrains against causal agent of potato soft rot. J Basic Microbiol 2015; 56:196-205. [DOI: 10.1002/jobm.201500482] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2015] [Accepted: 10/06/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Samaneh Kazemi-Zaromi
- Department of Crop Protection, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Sareh Baghaee-Ravari
- Department of Crop Protection, Faculty of Agriculture; Ferdowsi University of Mashhad; Mashhad Iran
| | - Pejman Khodaygan
- Department of Plant Protection, Faculty of Agriculture; Vali-E-Asr University; Rafsanjan Iran
| | | |
Collapse
|
27
|
Wang G, Manns D, Churey J, Worobo R. Short communication: Naturally sensitive Bacillus thuringiensis EG10368 produces thurincin H and acquires immunity after heterologous expression of the one-step-amplified thurincin H gene cluster. J Dairy Sci 2014; 97:4115-9. [DOI: 10.3168/jds.2014-8029] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/05/2014] [Indexed: 11/19/2022]
|
28
|
Kim YC, Tarr AW, Penfold CN. Colicin import into E. coli cells: a model system for insights into the import mechanisms of bacteriocins. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1843:1717-31. [PMID: 24746518 DOI: 10.1016/j.bbamcr.2014.04.010] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 04/04/2014] [Accepted: 04/06/2014] [Indexed: 01/03/2023]
Abstract
Bacteriocins are a diverse group of ribosomally synthesized protein antibiotics produced by most bacteria. They range from small lanthipeptides produced by lactic acid bacteria to much larger multi domain proteins of Gram negative bacteria such as the colicins from Escherichia coli. For activity bacteriocins must be released from the producing cell and then bind to the surface of a sensitive cell to instigate the import process leading to cell death. For over 50years, colicins have provided a working platform for elucidating the structure/function studies of bacteriocin import and modes of action. An understanding of the processes that contribute to the delivery of a colicin molecule across two lipid membranes of the cell envelope has advanced our knowledge of protein-protein interactions (PPI), protein-lipid interactions and the role of order-disorder transitions of protein domains pertinent to protein transport. In this review, we provide an overview of the arrangement of genes that controls the synthesis and release of the mature protein. We examine the uptake processes of colicins from initial binding and sequestration of binding partners to crossing of the outer membrane, and then discuss the translocation of colicins through the cell periplasm and across the inner membrane to their cytotoxic site of action. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Young Chan Kim
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Alexander W Tarr
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK
| | - Christopher N Penfold
- School of Life Sciences, University of Nottingham, Queens Medical Centre, Nottingham, NG7 2UH, UK.
| |
Collapse
|
29
|
Complete genome sequence of the Pectobacterium carotovorum subsp. carotovorum virulent bacteriophage PM1. Arch Virol 2014; 159:2185-7. [DOI: 10.1007/s00705-014-2005-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/23/2014] [Indexed: 11/26/2022]
|
30
|
Lee DH, Lim JA, Lee J, Roh E, Jung K, Choi M, Oh C, Ryu S, Yun J, Heu S. Characterization of genes required for the pathogenicity of Pectobacterium carotovorum subsp. carotovorum Pcc21 in Chinese cabbage. MICROBIOLOGY-SGM 2013; 159:1487-1496. [PMID: 23676432 PMCID: PMC3749726 DOI: 10.1099/mic.0.067280-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Pectobacterium carotovorum subsp. carotovorum is a well-known plant pathogen that causes severe soft rot disease in various crops, resulting in considerable economic loss. To identify pathogenicity-related factors, Chinese cabbage was inoculated with 5314 transposon mutants of P. carotovorum subsp. carotovorum Pcc21 derived using Tn5 transposon mutagenesis. A total of 35 reduced-virulence or avirulent mutants were isolated, and 14 loci were identified. The 14 loci could be functionally grouped into nutrient utilization (pyrD, purH, purD, leuA and serB), production of plant cell-wall-degrading enzymes (PCWDEs) (expI, expR and PCC21_023220), motility (flgA, fliA and flhB), biofilm formation (expI, expR and qseC), susceptibility to antibacterial plant chemicals (tolC) and unknown function (ECA2640). Among the 14 genes identified, qseC, tolC and PCC21_023220 are novel pathogenicity factors of P. carotovorum subsp. carotovorum involved in biofilm formation, phytochemical resistance and PCWDE production, respectively.
Collapse
Affiliation(s)
- Dong Hwan Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Jeong-A Lim
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Juneok Lee
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Eunjung Roh
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Kyusuk Jung
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Minseon Choi
- Department of Horticultural Biotechnology and Institute of Life Science & Resources, Kyung Hee University, Yongin 441-701, Republic of Korea
| | - Changsik Oh
- Department of Horticultural Biotechnology and Institute of Life Science & Resources, Kyung Hee University, Yongin 441-701, Republic of Korea
| | - Sangryeol Ryu
- Department of Agricultural Biotechnology, Center for Agricultural Biomaterials, Research Institute for Agriculture and Life Sciences, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jongchul Yun
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| | - Sunggi Heu
- Division of Microbial Safety, National Academy of Agricultural Science, Rural Development Administration, Suwon 441-707, Republic of Korea
| |
Collapse
|
31
|
Abstract
Gram-negative phytopathogens cause significant losses in a diverse range of economically important crop plants. The effectiveness of traditional countermeasures, such as the breeding and introduction of resistant cultivars, is often limited by the dearth of available sources of genetic resistance. An alternative strategy to reduce loss to specific bacterial phytopathogens is to use narrow-spectrum protein antibiotics such as colicin-like bacteriocins as biocontrol agents. A number of colicin-like bacteriocins active against phytopathogenic bacteria have been described previously as have strategies for their application to biocontrol. In the present paper, we discuss these strategies and our own recent work on the identification and characterization of candidate bacteriocins and how these potent and selective antimicrobial agents can be effectively applied to the control of economically important plant disease.
Collapse
|
32
|
Genome sequence of Pectobacterium carotovorum subsp. carotovorum strain PCC21, a pathogen causing soft rot in Chinese cabbage. J Bacteriol 2013; 194:6345-6. [PMID: 23105077 DOI: 10.1128/jb.01583-12] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum is a plant-pathogenic enterobacterium responsible for soft rot in various commercially important plants. Here we report the complete genome sequence and automatic annotation of strain PCC21.
Collapse
|
33
|
Complete genome sequence of phytopathogenic Pectobacterium carotovorum subsp. carotovorum bacteriophage PP1. J Virol 2012; 86:8899-900. [PMID: 22843859 DOI: 10.1128/jvi.01283-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pectobacterium carotovorum subsp. carotovorum is a phytopathogen causing soft rot disease on diverse plant species. To control this plant pathogen, P. carotovorum subsp. carotovorum-targeting bacteriophage PP1 was isolated and its genome was completely sequenced to develop a novel biocontrol agent. Interestingly, the 44,400-bp genome sequence does not encode any gene involved in the formation of lysogen, suggesting that this phage may be very useful as a biocontrol agent because it does not make lysogen after host infection. This is the first report on the complete genome sequence of the P. carotovorum subsp. carotovorum-targeting bacteriophage, and it will enhance our understanding of the interaction between phytopathogens and their targeting bacteriophages.
Collapse
|
34
|
Grinter R, Roszak AW, Cogdell RJ, Milner JJ, Walker D. The crystal structure of the lipid II-degrading bacteriocin syringacin M suggests unexpected evolutionary relationships between colicin M-like bacteriocins. J Biol Chem 2012; 287:38876-88. [PMID: 22995910 DOI: 10.1074/jbc.m112.400150] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Colicin-like bacteriocins show potential as next generation antibiotics with clinical and agricultural applications. Key to these potential applications is their high potency and species specificity that enables a single pathogenic species to be targeted with minimal disturbance of the wider microbial community. Here we present the structure and function of the colicin M-like bacteriocin, syringacin M from Pseudomonas syringae pv. tomato DC3000. Syringacin M kills susceptible cells through a highly specific phosphatase activity that targets lipid II, ultimately inhibiting peptidoglycan synthesis. Comparison of the structures of syringacin M and colicin M reveals that, in addition to the expected similarity between the homologous C-terminal catalytic domains, the receptor binding domains of these proteins, which share no discernible sequence homology, share a striking structural similarity. This indicates that the generation of the novel receptor binding and species specificities of these bacteriocins has been driven by diversifying selection rather than diversifying recombination as suggested previously. Additionally, the structure of syringacin M reveals the presence of an active site calcium ion that is coordinated by a conserved aspartic acid side chain and is essential for catalytic activity. We show that mutation of this residue to alanine inactivates syringacin M and that the metal ion is absent from the structure of the mutant protein. Consistent with the presence of Ca(2+) in the active site, we show that syringacin M activity is supported by Ca(2+), along with Mg(2+) and Mn(2+), and the protein is catalytically inactive in the absence of these ions.
Collapse
Affiliation(s)
- Rhys Grinter
- Institute of Infection, Immunity, and Inflammation, School of Life Sciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
35
|
Chan YC, Wu JL, Wu HP, Tzeng KC, Chuang DY. Cloning, purification, and functional characterization of Carocin S2, a ribonuclease bacteriocin produced by Pectobacterium carotovorum. BMC Microbiol 2011; 11:99. [PMID: 21569432 PMCID: PMC3120645 DOI: 10.1186/1471-2180-11-99] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 05/12/2011] [Indexed: 11/10/2022] Open
Abstract
Background Most isolates of Pectobacterium carotovorum subsp. carotovorum (Pcc) produce bacteriocins. In this study, we have determined that Pcc strain F-rif-18 has a chromosomal gene encoding the low-molecular-weight bacteriocin, Carocin S2, and that this bacteriocin inhibits the growth of a closely related strain. Carocin S2 is inducible by ultraviolet radiation but not by mutagenic agents such as mitomycin C. Results A carocin S2-defective mutant, TF1-2, was obtained by Tn5 insertional mutagenesis using F-rif-18. A 5706-bp DNA fragment was detected by Southern blotting, selected from a genomic DNA library, and cloned to the vector, pMS2KI. Two adjacent complete open reading frames within pMS2KI were sequenced, characterized, and identified as caroS2K and caroS2I, which respectively encode the killing protein and immunity protein. Notably, carocin S2 could be expressed not only in the mutant TF1-2 but also in Escherichia coli DH5α after entry of the plasmid pMS2KI. Furthermore, the C-terminal domain of CaroS2K was homologous to the nuclease domains of colicin D and klebicin D. Moreover, SDS-PAGE analysis showed that the relative mass of CaroS2K was 85 kDa and that of CaroS2I was 10 kDa. Conclusion This study shown that another nuclease type of bacteriocin was found in Pectobacterium carotovorum. This new type of bacteriocin, Carocin S2, has the ribonuclease activity of CaroS2K and the immunity protein activity of CaroS2I.
Collapse
Affiliation(s)
- Yung-Chieh Chan
- Department of Chemistry, National Chung-Hsing University, Taichung, 402, Taiwan
| | | | | | | | | |
Collapse
|