1
|
Bakhet S, Mardosaitė R, Ahmed Baba M, Tamulevičienė A, Abakevičienė B, Klinavičius T, Dagilis K, Račkauskas S, Tamulevičius S, Lelešius R, Zienius D, Šalomskas A, Šmits KN, Tamulevičius T. Virucidal Efficacy of Laser-Generated Copper Nanoparticle Coatings against Model Coronavirus and Herpesvirus. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40263124 DOI: 10.1021/acsami.5c03330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
High-efficiency antiviral surfaces can be an effective means of fighting viral diseases, such as the recent COVID-19 pandemic. Copper and copper oxides, their nanoparticles (NPs) (CuNPs), and coatings are among the effective antiviral materials having internal and external biocidal effects on viruses. In this work, CuNP colloids were produced via femtosecond laser ablation of the metal target in water, a photophysical, cost-effective green synthesis alternative utilizing sodium citrate surfactant stabilizing the NPs. Raman spectroscopy and X-ray diffraction studies confirmed that the 32 nm mean size CuNPs are mixtures of mainly metallic copper and copper(I) oxide. Polyvinyl butyral was utilized as the binding agent for the CuNPs deposited via high-throughput spray-coating technology. The virucidal efficacy of such coatings containing Cu content ranging from 2.9 to 11.2 atom % was confirmed against animal-origin coronavirus containing ribonucleic acid, the agent of avian infectious bronchitis (IBV), and herpesvirus containing DNA, the agent of bovine herpesvirus (BoHV-1) infection. It was demonstrated that after a short time of exposure, the Cu NP-based coatings do not have a toxic effect on the cell cultures while demonstrating a negative effect on the biological activity of both model viruses that was confirmed by quantification of the viruses via the determination of tissue culture infectious dose (TCID50) virus titer and their viral nucleic acids via determination of threshold cycle (Ct) employing real-time polymerase chain reaction analysis. The assays showed that the decrease in TCID50 virus titer and increase in Ct values correlated with Cu content in Cu NP-based coatings for both investigated viruses. Contact with coatings decreased IBV and BoHV-1 numbers from 99.42% to 100.00% and from 98.65% to 99.96%, respectively. These findings suggest that CuNPs show inhibitory effects leading to the inactivation of viruses and their nuclei regardless of the presence of a viral envelope.
Collapse
Affiliation(s)
- Shahd Bakhet
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Rasa Mardosaitė
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Mohamed Ahmed Baba
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Asta Tamulevičienė
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Brigita Abakevičienė
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Tomas Klinavičius
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Kristupas Dagilis
- Department of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Simas Račkauskas
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
| | - Sigitas Tamulevičius
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| | - Raimundas Lelešius
- Department of Veterinary Pathobiology, Lithuanian University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Dainius Zienius
- Department of Veterinary Pathobiology, Lithuanian University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
- Institute of Microbiology and Virology, Lithuanian University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Algirdas Šalomskas
- Department of Veterinary Pathobiology, Lithuanian University of Health Sciences, Tilžės Street 18, LT-47181 Kaunas, Lithuania
| | - Krišja Nis Šmits
- Institute of Solid State Physics, University of Latvia, 8 Kengaraga Street, LV-1063 Riga, Latvia
| | - Tomas Tamulevičius
- Institute of Materials Science of Kaunas University of Technology, K. Baršausko Street 59, LT-51423 Kaunas, Lithuania
- Department of Physics, Kaunas University of Technology, Studentų Street 50, LT-51368 Kaunas, Lithuania
| |
Collapse
|
2
|
Nejman A, Tkacz-Szczęsna B, Chodkowski M, Krzyżowska M, Cieślak M. Antiviral and antibacterial cotton woven fabric functionalized with CuNPs/ZnONPs- silane sols. Int J Biol Macromol 2025; 310:143386. [PMID: 40268024 DOI: 10.1016/j.ijbiomac.2025.143386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 04/04/2025] [Accepted: 04/19/2025] [Indexed: 04/25/2025]
Abstract
In recent years, increasing attention has been paid to the development of functional fabrics with novel or improved bioactive properties. This trend has intensified during the SARS-CoV-2 pandemic. We modified cotton (CO) fabrics using ZnO and Cu nanoparticles in vinyltrimethoxysilane (VIN) sol, giving them tailored antiviral and antibacterial properties. The CO woven fabric was pretreated with polydopamine and then functionalized with 1 wt% and 2.5 wt% of CuNPs, ZnONPs, and their mixture in VIN sols using the dip-coating method. The physicochemical effects of the modifications were assessed by FTIR and Raman spectroscopy, SEM/EDS and AAS techniques and goniometric analysis. The modified fabrics become highly hydrophobic (the water contact angle amounts about 140 deg). The strongest antiviral activities against Human coronavirus 229E (HCoV-229E) were found for fabrics functionalized using sol with 2.5 wt% of CuNPs and the mixture of both nanoparticles. All modified fabrics also have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia bacteria, which amounts from 4.57 to 6.17 and from 6.28 to 6.38, respectively. The results of the MTT test using HaCat and A549 cells showed no toxic effect of the fabrics.
Collapse
Affiliation(s)
- Alicja Nejman
- LUKASIEWICZ Research Network - Lodz Institute of Technology, Department of Chemical Textiles Technologies, Maria Sklodowska-Curie St. 19/27, 90-570 Lodz, Poland.
| | - Beata Tkacz-Szczęsna
- LUKASIEWICZ Research Network - Lodz Institute of Technology, Department of Chemical Textiles Technologies, Maria Sklodowska-Curie St. 19/27, 90-570 Lodz, Poland.
| | - Marcin Chodkowski
- Military Institute of Hygiene and Epidemiology, Department of Nanobiology and Biomaterials, Kozielska 4, 01-163 Warsaw, Poland.
| | - Małgorzata Krzyżowska
- Military Institute of Hygiene and Epidemiology, Department of Nanobiology and Biomaterials, Kozielska 4, 01-163 Warsaw, Poland.
| | - Małgorzata Cieślak
- LUKASIEWICZ Research Network - Lodz Institute of Technology, Department of Chemical Textiles Technologies, Maria Sklodowska-Curie St. 19/27, 90-570 Lodz, Poland.
| |
Collapse
|
3
|
Zhang N, Zhuang L, King MF, Qian H, Zhu M. Public surface disinfection every 2 hours can reduce the infection risk of norovirus in airports up to 83. PLoS Comput Biol 2024; 20:e1012561. [PMID: 39636806 PMCID: PMC11620375 DOI: 10.1371/journal.pcbi.1012561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 10/15/2024] [Indexed: 12/07/2024] Open
Abstract
Norovirus, primarily transmitted via fomite route, poses a significant threat to global public health and the economy. Airports, as critical transportation hubs connecting people from around the world, has high potential risk of norovirus transmission due to large number of public surfaces. A total of 21.3 hours of video episodes were recorded across nine functional areas at the airport, capturing 25,925 touches. A surface transmission model based on a Markov chain was developed. Using the beta-Poisson dose-response model, the infection risk of norovirus and the effectiveness of various interventions in different airports' areas were quantified. Without any preventive measures, restaurants at airports exhibited the highest risk of norovirus transmission, with an infection probability of 8.8×10-3% (95% CI, 1.5×10-3% -2.1×10-2%). This means approximately 4.6 (95% CI, 0.8-10.9) out of 51,494 passengers who entered the restaurants would be infected by an infected passenger. Comparing with no surface disinfection, disinfecting public surfaces every 2 hours can reduce the risk of norovirus infection per visit to the airport by 83.2%. In contrast, comparing with no hand washing, handwashing every 2 hours can reduce the infection risk per visit to the airport by only 2.0%, making public surface disinfection significantly more effective than handwashing. If the mask-wearing rate increases from 0% to 50%, the infection risk of norovirus would be decreased by 48.0% (95% CI, 43.5-52.3%). Furthermore, using antimicrobial copper/copper-nickel alloy coatings for most public surfaces could reduce the infection risk by 15.9%-99.2%.
Collapse
Affiliation(s)
- Nan Zhang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Linan Zhuang
- Beijing Key Laboratory of Green Built Environment and Energy Efficient Technology, Beijing University of Technology, Beijing, China
| | - Marco-Felipe King
- School of Civil Engineering, University of Leeds, Woodhouse Lane, Leeds, United Kingdom
| | - Hua Qian
- School of Energy and Environment, Southeast University, Nanjing, China
| | - Min Zhu
- 6th Medical Center of General Hospital of PLA, Beijing, China
| |
Collapse
|
4
|
Raymond P, St-Germain F, Paul S, Chabot D, Deschênes L. Impact of Nanoparticle-Based TiO 2 Surfaces on Norovirus Capsids and Genome Integrity. Foods 2024; 13:1527. [PMID: 38790828 PMCID: PMC11121413 DOI: 10.3390/foods13101527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 04/28/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
Human noroviruses (HuNoVs) are among the main causes of acute gastroenteritis worldwide. HuNoVs can survive for several days up to weeks at room temperature in the environment, on food, and on food handling and processing surfaces. As a result, this could lead to viral spread through the ingestion of food in contact with contaminated surfaces. The development of stable surface materials with antiviral activity might be useful to reduce viral outbreaks. Metal-based compounds, including photoactivated titanium nanoparticles (TiO2 NPs), are known for their antiviral activity. In this study, we tested the impact of 2000 µg/mL TiO2 NPs, with or without UV activation, on HuNoV GII and murine norovirus. Their recovery rates were reduced by 99.6%. We also evaluated a new TiO2 NP-coating process on a polystyrene surface. This process provided a homogenous coated surface with TiO2 NPs ranging between 5 nm and 15 nm. Without photoactivation, this TiO2 NP-coated polystyrene surface reduced the recovery rates of intact HuNoV GII by more than 94%. When a capsid integrity treatment with PtCl4 or a longer reverse transcription polymerase chain detection approach was used to evaluate virus integrity following contact with the TiO2 NP-coated polystyrene, the HuNoV GII recovery yield reduction varied between 97 and 100%. These results support the hypothesis that TiO2 NP-coated surfaces have the potential to prevent viral transmission associated with contaminated food surfaces.
Collapse
Affiliation(s)
- Philippe Raymond
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - François St-Germain
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| | - Sylvianne Paul
- Canadian Food Inspection Agency (CFIA), St-Hyacinthe Laboratory—Food Virology National Reference Centre, St-Hyacinthe, QC J2S 8E3, Canada
| | - Denise Chabot
- Agriculture and Agri-Food Canada (AAFC), Ottawa Food Research and Development Centre, 960 Carling Ave, Ottawa, ON K1A 0C6, Canada
| | - Louise Deschênes
- Agriculture and Agri-Food Canada (AAFC), St-Hyacinthe Food Research and Development Centre, 3600 Casavant W, St-Hyacinthe, QC J2S 8E3, Canada
| |
Collapse
|
5
|
Lorenzetti L, Brandolini M, Gatti G, Bernardi E, Chiavari C, Gualandi P, Galliani G, Sambri V, Martini C. Cu-based thin rolled foils: relationship among alloy composition, micromechanical and antiviral properties against SARS-CoV-2. Heliyon 2024; 10:e28238. [PMID: 38560697 PMCID: PMC10979200 DOI: 10.1016/j.heliyon.2024.e28238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024] Open
Abstract
The healthcare-associated infections (HAIs) and pandemics caused by multidrug-resistant (MDR) and new-generation pathogens threaten the whole world community. Cu and its alloys have been attracting widespread interest as anti-contamination materials due to the rapid inactivation of MDR-superbugs and viruses. Applying thin Cu-based foils on pre-existing surfaces in hygiene-sensitive areas represents a quick, simple, cost-effective self-sanitising practice. However, the influence of chemical composition and microstructure should be deeply investigated when evaluating the antimicrobial capability and durability of Cu-based materials. The effect of composition on micromechanical and antiviral properties was investigated by comparing Cu15Zn and Cu18Ni20Zn (foil thickness from 13 to 27 μm) with Phosphorous High-Conductivity (PHC) Cu. The influence of recrystallisation annealing of PHC Cu was also investigated. Microstructural characterisation was carried out by optical (OM) and scanning electron (FEG-SEM) microscopy, Energy-dispersive Spectroscopy (EDS) and Electron-Backscattered Diffraction (EBSD). The micromechanical behaviour was assessed by microhardness, microscale abrasion and scratch tests. Cu-based foils were exposed to SARS-CoV-2 for different time points in quasi-dry conditions (artificial sweat solution), evaluating their antiviral capability by quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Surface morphology, contact angle measurements and Cu release were measured. All Cu-based surfaces completely inactivated SARS-CoV-2 in 10 min: pure Cu was the best option regarding antiviral efficiency, while Cu15Zn showed the best trade-off between micromechanical and antiviral properties.
Collapse
Affiliation(s)
- L. Lorenzetti
- Dept. Industrial Engineering (DIN), University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| | - M. Brandolini
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
- Dept. Medical and Surgical Sciences (DIMEC), University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - G. Gatti
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
- Dept. Medical and Surgical Sciences (DIMEC), University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - E. Bernardi
- Dept. Industrial Chemistry "Toso Montanari", University of Bologna, Via Piero Gobetti 85, Bologna 40129, Italy
| | - C. Chiavari
- Dept. Cultural Heritage (DBC), University of Bologna, Via degli Ariani 1, 48121 Ravenna, Italy
| | - P. Gualandi
- Pietro Galliani SpA, Via Molino Malpasso 65, 40038 Vergato (BO), Italy
| | - G. Galliani
- Pietro Galliani SpA, Via Molino Malpasso 65, 40038 Vergato (BO), Italy
| | - V. Sambri
- Unit of Microbiology, The Great Romagna Hub Laboratory, Piazza della Liberazione 60, 47522 Pievesestina, Italy
- Dept. Medical and Surgical Sciences (DIMEC), University of Bologna, Via Irnerio 49, 40126 Bologna, Italy
| | - C. Martini
- Dept. Industrial Engineering (DIN), University of Bologna, Viale Risorgimento 4, 40136 Bologna, Italy
| |
Collapse
|
6
|
Hossieni M, Kiani SJ, Tavakoli A, Kachooei A, Habib Z, Monavari SH. In vitro inhibition of rotavirus multiplication by copper oxide nanoparticles. ARCHIVES OF RAZI INSTITUTE 2024; 79:83-91. [PMID: 39192955 PMCID: PMC11345465 DOI: 10.32592/ari.2024.79.1.83] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 07/19/2023] [Indexed: 08/29/2024]
Abstract
Group A rotaviruses are the most common cause of gastroenteritis in children under five years of age worldwide. Rotavirus gastroenteritis can be related to mild to severe diarrhea in children and in some cases, can lead to death due to severe dehydration. Approximately 146,480 people die annually from rotavirus infection worldwide, and most of these deaths occur in low-income countries in Africa and Asia. Since there are no specific effective drugs to treat rotavirus infections, and infected patients can only be treated supportively, new antiviral agents need to be developed. Copper oxide nanoparticles (CuO NPs) have a wide range of applications in the magnetic and electrical industries, as well as in biology. The antiviral activity of nanoparticles (CuO NPs) is well documented. This study aimed to investigate the antiviral effect of CuO NPs on rotaviruses. The cytotoxic effects of CuO NPs on MA-104 cells were examined by methyl thiazolyl tetrazolium assay. In addition, the anti-rotavirus activity of CuO NPs was evaluated by TCID50 and real-time polymerase chain reaction PCR assay. Our results showed that exposure of rotavirus-infected cells to various non-toxic concentrations of CuO NPs did not cause a decrease in viral titer, compared to the control. However, the virucidal effect of CuO NPs on rotavirus was observed at concentrations of 80 and 100 μg/ml (P<0.001). Our study suggested that CuO NPs had significant antiviral activity against rotavirus replication. However, the exact mechanism of anti-rotavirus activity of CuO NPs remained unknown. According to the virucidal assay, it appears that the loss of capsid integrity and genome disruption in the presence of CuO NPs are possible mechanisms of its anti-rotavirus activity.
Collapse
Affiliation(s)
- M Hossieni
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S J Kiani
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - A Tavakoli
- Research Center of Pediatric Infectious Diseases, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - A Kachooei
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Z Habib
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - S H Monavari
- Department of Virology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
7
|
Reyes-Carmona L, Sepúlveda-Robles OA, Almaguer-Flores A, Bello-Lopez JM, Ramos-Vilchis C, Rodil SE. Antimicrobial activity of silver-copper coating against aerosols containing surrogate respiratory viruses and bacteria. PLoS One 2023; 18:e0294972. [PMID: 38079398 PMCID: PMC10712891 DOI: 10.1371/journal.pone.0294972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
The transmission of bacteria and respiratory viruses through expelled saliva microdroplets and aerosols is a significant concern for healthcare workers, further highlighted during the SARS-CoV-2 pandemic. To address this issue, the development of nanomaterials with antimicrobial properties for use as nanolayers in respiratory protection equipment, such as facemasks or respirators, has emerged as a potential solution. In this study, a silver and copper nanolayer called SakCu® was deposited on one side of a spun-bond polypropylene fabric using the magnetron sputtering technique. The antibacterial and antiviral activity of the AgCu nanolayer was evaluated against droplets falling on the material and aerosols passing through it. The effectiveness of the nanolayer was assessed by measuring viral loads of the enveloped virus SARS-CoV-2 and viability assays using respiratory surrogate viruses, including PaMx54, PaMx60, PaMx61 (ssRNA, Leviviridae), and PhiX174 (ssDNA, Microviridae) as representatives of non-enveloped viruses. Colony forming unit (CFU) determination was employed to evaluate the survival of aerobic and anaerobic bacteria. The results demonstrated a nearly exponential reduction in SARS-CoV-2 viral load, achieving complete viral load reduction after 24 hours of contact incubation with the AgCu nanolayer. Viability assays with the surrogate viruses showed a significant reduction in viral replication between 2-4 hours after contact. The simulated viral filtration system demonstrated inhibition of viral replication ranging from 39% to 64%. The viability assays with PhiX174 exhibited a 2-log reduction in viral replication after 24 hours of contact and a 16.31% inhibition in viral filtration assays. Bacterial growth inhibition varied depending on the species, with reductions ranging from 70% to 92% for aerobic bacteria and over 90% for anaerobic strains. In conclusion, the AgCu nanolayer displayed high bactericidal and antiviral activity in contact and aerosol conditions. Therefore, it holds the potential for incorporation into personal protective equipment to effectively reduce and prevent the transmission of aerosol-borne pathogenic bacteria and respiratory viruses.
Collapse
Affiliation(s)
- Lorena Reyes-Carmona
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
- Programa de Maestría y Doctorado en Ciencias Médicas Odontológicas y de la Salud, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Omar A. Sepúlveda-Robles
- Unidad de Investigación Médica en Genética Humana, UMAE Hospital de Pediatría, Centro Médico Nacional "Siglo XXI", Instituto Mexicano del Seguro Social (IMSS), CDMX, México
| | - Argelia Almaguer-Flores
- Laboratorio de Biointerfases, DEPeI, Facultad de Odontología, Universidad Nacional Autónoma de México, CDMX, México
| | - Juan Manuel Bello-Lopez
- Dirección de Investigación, Hospital Juárez de México, Magdalena de las Salinas, CDMX, México
| | - Carlos Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| | - Sandra E. Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, México
| |
Collapse
|
8
|
Ramos-Zúñiga J, Bruna N, Pérez-Donoso JM. Toxicity Mechanisms of Copper Nanoparticles and Copper Surfaces on Bacterial Cells and Viruses. Int J Mol Sci 2023; 24:10503. [PMID: 37445681 DOI: 10.3390/ijms241310503] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/08/2023] [Accepted: 06/13/2023] [Indexed: 07/15/2023] Open
Abstract
Copper is a metal historically used to prevent infections. One of the most relevant challenges in modern society are infectious disease outbreaks, where copper-based technologies can play a significant role. Currently, copper nanoparticles and surfaces are the most common antimicrobial copper-based technologies. Despite the widespread use of copper on nanoparticles and surfaces, the toxicity mechanism(s) explaining their unique antimicrobial properties are not entirely known. In general, toxicity effects described in bacteria and fungi involve the rupture of membranes, accumulation of ions inside the cell, protein inactivation, and DNA damage. A few studies have associated Cu-toxicity with ROS production and genetic material degradation in viruses. Therefore, understanding the mechanisms of the toxicity of copper nanoparticles and surfaces will contribute to developing and implementing efficient antimicrobial technologies to combat old and new infectious agents that can lead to disease outbreaks such as COVID-19. This review summarizes the current knowledge regarding the microbial toxicity of copper nanoparticles and surfaces and the gaps in this knowledge. In addition, we discuss potential applications derived from discovering new elements of copper toxicity, such as using different molecules or modifications to potentiate toxicity or antimicrobial specificity.
Collapse
Affiliation(s)
- Javiera Ramos-Zúñiga
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - Nicolás Bruna
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| | - José M Pérez-Donoso
- BioNanotechnology and Microbiology Laboratory, Center for Bioinformatics and Integrative Biology (CBIB), Faculty of Life Sciences, Universidad Andres Bello, Santiago 8370186, Chile
| |
Collapse
|
9
|
Asmat-Campos D, Rojas-Jaimes J, de Oca-Vásquez GM, Nazario-Naveda R, Delfín-Narciso D, Juárez-Cortijo L, Bayona DE, Diringer B, Pereira R, Menezes DB. Biogenic production of silver, zinc oxide, and cuprous oxide nanoparticles, and their impregnation into textiles with antiviral activity against SARS-CoV-2. Sci Rep 2023; 13:9772. [PMID: 37328549 PMCID: PMC10275893 DOI: 10.1038/s41598-023-36910-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023] Open
Abstract
Nanotechnology is being used to fight off infections caused by viruses, and one of the most outstanding nanotechnological uses is the design of protective barriers made of textiles functionalized with antimicrobial agents, with the challenge of combating the SARS-CoV-2 virus, the causal agent of COVID-19. This research is framed within two fundamental aspects: the first one is linked to the proposal of new methods of biogenic synthesis of silver, cuprous oxide, and zinc oxide nanoparticles using organic extracts as reducing agents. The second one is the application of nanomaterials in the impregnation (functionalization) of textiles based on methods called "in situ" (within the synthesis), and "post-synthesis" (after the synthesis), with subsequent evaluation of their effectiveness in reducing the viral load of SARS-CoV-2. The results show that stable, monodisperse nanoparticles with defined geometry can be obtained. Likewise, the "in situ" impregnation method emerges as the best way to adhere nanoparticles. The results of viral load reduction show that 'in situ' textiles with Cu2O NP achieved a 99.79% load reduction of the SARS-CoV-2 virus.
Collapse
Affiliation(s)
- David Asmat-Campos
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru.
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru.
| | - Jesús Rojas-Jaimes
- Dirección de Investigación, Innovación y Responsabilidad Social, Universidad Privada del Norte (UPN), Trujillo, Peru
| | | | - R Nazario-Naveda
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | - D Delfín-Narciso
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | - L Juárez-Cortijo
- Grupo de Investigación en Ciencias Aplicadas y Nuevas Tecnologías, Universidad Privada del Norte (UPN), Trujillo, 13011, Peru
| | | | - Benoit Diringer
- INCABIOTEC SAC, Tumbes, 24 000, Peru
- Programa de Maestría de Biotecnología Molecular, Universidad Nacional de Tumbes, Tumbes, 24 000, Peru
| | - Reinaldo Pereira
- National Laboratory of Nanotechnology, National Center for High Technology, Pavas, San José, 10109, Costa Rica
| | - Diego Batista Menezes
- National Laboratory of Nanotechnology, National Center for High Technology, Pavas, San José, 10109, Costa Rica
| |
Collapse
|
10
|
Guerrero-Arguero I, Khan SR, Henry BM, Garcia-Vilanova A, Chiem K, Ye C, Shrestha S, Knight D, Cristner M, Hill S, Waldman WJ, Dutta PK, Torrelles JB, Martinez-Sobrido L, Nagy AM. Mitigation of SARS-CoV-2 by Using Transition Metal Nanozeolites and Quaternary Ammonium Compounds as Antiviral Agents in Suspensions and Soft Fabric Materials. Int J Nanomedicine 2023; 18:2307-2324. [PMID: 37163142 PMCID: PMC10164392 DOI: 10.2147/ijn.s396669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 04/05/2023] [Indexed: 05/11/2023] Open
Abstract
Introduction The coronavirus disease 2019 (COVID-19) pandemic has demonstrated the need for novel, affordable, and efficient reagents to help reduce viral transmission, especially in high-risk environments including medical treatment facilities, close quarters, and austere settings. We examined transition-metal nanozeolite suspensions and quaternary ammonium compounds as an antiviral surface coating for various textile materials. Methods Zeolites are crystalline porous aluminosilicate materials, with the ability of ion-exchanging different cations. Nanozeolites (30 nm) were synthesized and then ion-exchanged with silver, zinc and copper ions. Benzalkonium nitrate (BZN) was examined as the quaternary ammonium ion (quat). Suspensions of these materials were tested for antiviral activity towards SARS-CoV-2 using plaque assay and immunostaining. Suspensions of the nanozeolite and quat were deposited on polyester and cotton fabrics and the ability of these textiles towards neutralizing SARS-CoV-2 was examined. Results We hypothesized that transition metal ion containing zeolites, particularly silver and zinc (AM30) and silver and copper (AV30), would be effective in reducing the infectivity of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Additionally, AM30 and AV30 antiviral potency was tested when combined with a quaternary ammonium carrier, BZN. Our results indicate that exposure of SARS-CoV-2 to AM30 and/or AV30 suspensions reduced viral loads with time and exhibited dose-dependence. Antiviral activities of the combination of zeolite and BZN compositions were significantly enhanced. When used in textiles, AM30 and AV30-coated cotton and polyester fabrics alone or in combination with BZN exhibited significant antiviral properties, which were maintained even after various stress tests, including washes, SARS-CoV-2-repeated exposures, or treatments with soil-like materials. Conclusion This study shows the efficacy of transition metal nanozeolite formulations as novel antiviral agents and establishes that nanozeolite with silver and zinc ions (AM30) and nanozeolite with silver and copper ions (AV30) when combined with benzalkonium nitrate (BZN) quickly and continuously inactivate SARS-CoV-2 in suspension and on fabric materials.
Collapse
Affiliation(s)
- Israel Guerrero-Arguero
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Siddiqur Rahman Khan
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Brandon M Henry
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Andreu Garcia-Vilanova
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Kevin Chiem
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Chengjin Ye
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | | | - Deborah Knight
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Mark Cristner
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - Shauna Hill
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| | - W James Waldman
- Department of Pathology, The Ohio State University, Columbus, OH, USA
| | - Prabir K Dutta
- ZeoVation Inc., Columbus, OH, USA
- Department of Chemistry, The Ohio State University, Columbus, OH, USA
| | - Jordi B Torrelles
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Luis Martinez-Sobrido
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Amber M Nagy
- Disease Intervention & Prevention and Population Health Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Chief Scientist’s Office of Science and Technology, 59 Medical Wing, Joint Base San Antonio-Lackland, San Antonio, TX, USA
| |
Collapse
|
11
|
Bassam SN, Salimijazi H, Labbaf S, Amya M, Ehsani P, Mehrbod P. Antibacterial and Virucidal Evaluation of Ultrafine Wire Arc Sprayed German Silver Coatings. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2023; 32:959-969. [PMID: 37521527 PMCID: PMC9810382 DOI: 10.1007/s11666-022-01528-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 08/01/2023]
Abstract
Copper and its alloys are known as antimicrobial agents that can be used in public places; however, pure copper has a low wear resistance and tends to lose its gloss relatively fast and stainless steel is still more desirable because of its mechanical properties and stable appearance. In this research, German silver coatings, a copper-nickel alloy, are studied as a superior alternative for pure copper coatings. German silver coating on mild steel substrates and stainless steel with two different surface roughnesses was prepared and placed into water bath up to 6 months to investigate the corrosion and exposure effects on the antibacterial behavior. A range of techniques was used to study the microstructure, surface morphology and mechanical properties such as microhardness, coating bonding adhesion, surface roughness and wettability of the coating. Colony count method was used to measure the antibacterial properties, and samples were tested against influenza A virus to evaluate the virucidal activity. The coating thickness was around 130 µm and contained 15% pores and oxides with splats forming inside the coating structure. Inside each splat, columnar grains could be seen with an average of 700 nm width and 4 µm length. The bonding strength of the coating was about 15 MPa, the hardness of coatings was about 180 HV, and the average surface roughness of the as-sprayed samples was about 10 µm. German silver coatings can destroy both Staphylococcus aureus and Escherichia coli by more than 90% after 6 h of exposure time, and it also has a high-level of virucidal activity against influenza A virus after 2 h exposure time. Antibacterial behavior did not show any significant changes after 6 months of immersing samples in water bath. Thus, thermally sprayed German silver coatings exhibited silvery color for a long period of time, while its antimicrobial efficiency was comparable to pure copper coatings. Supplementary Information The online version contains supplementary material available at 10.1007/s11666-022-01528-4.
Collapse
Affiliation(s)
- Seyed Navid Bassam
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Hamidreza Salimijazi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Sheyda Labbaf
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 84156-83111 Iran
| | - Melika Amya
- Bacteriology Department, Molecular Biology Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Bacteriology Department, Molecular Biology Lab, Pasteur Institute of Iran, Tehran, Iran
| | - Parvaneh Mehrbod
- Influenza and Respiratory Viruses Department, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
12
|
Ghosal K. Tackling COVID-19 Using Antiviral Nanocoating's-Recent Progress and Future Challenges. PARTICLE & PARTICLE SYSTEMS CHARACTERIZATION : MEASUREMENT AND DESCRIPTION OF PARTICLE PROPERTIES AND BEHAVIOR IN POWDERS AND OTHER DISPERSE SYSTEMS 2023; 40:2200154. [PMID: 36711425 PMCID: PMC9874835 DOI: 10.1002/ppsc.202200154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/24/2022] [Indexed: 05/05/2023]
Abstract
In the current situation of the global coronavirus disease 2019 (COVID-19) pandemic, there is a worldwide demand for the protection of regular handling surfaces from viral transmission to restrict the spread of COVID-19 infection. To tackle this challenge, researchers and scientists are continuously working on novel antiviral nanocoatings to make various substrates capable of arresting the spread of such pathogens. These nanocoatings systems include metal/metal oxide nanoparticles, electrospun antiviral polymer nanofibers, antiviral polymer nanoparticles, graphene family nanomaterials, and etched nanostructures. The antiviral mechanism of these systems involves depletion of the spike glycoprotein that anchors to surfaces by the nanocoating and makes the spike glycoprotein and viral nucleotides inactive; however, the nature of the interaction between the spike proteins and virus depends on the type of nanostructure and a surface charge over the coating surface. In this article, the current scenario of COVID-19 and how it can be tackled using antiviral nanocoatings from the further transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), along with their different mode of action, are discussed. Additionally, it is also highlighted different types of nanocoatings developed for various substrates to encounter transmission of SARS-CoV-2, future research areas along with the current challenges related to it, and how these challenges can be resolved.
Collapse
Affiliation(s)
- Krishanu Ghosal
- Research & Development LaboratoryShalimar Paints LimitedNashikMaharashtra422403India
- The Wolfson Faculty of Chemical EngineeringTechnion‐Israel Institute of TechnologyHaifa3200003Israel
| |
Collapse
|
13
|
Sahihi M, Faraudo J. Computer Simulation of the Interaction between SARS-CoV-2 Spike Protein and the Surface of Coinage Metals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14673-14685. [PMID: 36418228 PMCID: PMC9730903 DOI: 10.1021/acs.langmuir.2c02120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 11/07/2022] [Indexed: 06/16/2023]
Abstract
A prominent feature of the SARS-CoV-2 virus is the presence of a large glycoprotein spike protruding from the virus envelope. The spike determines the interaction of the virus with the environment and the host. Here, we used an all-atom molecular dynamics simulation method to investigate the interaction of up- and down-conformations of the S1 subunit of the SARS-CoV-2 spike with the (100) surface of Au, Ag, and Cu. Our results revealed that the spike protein is adsorbed onto the surface of these metals, with Cu being the metal with the highest interaction with the spike. In our simulations, we considered the spike protein in both its up-conformation Sup (one receptor binding domain exposed) and down-conformation Sdown (no exposed receptor binding domain). We found that the affinity of the metals for the up-conformation was higher than their affinity for the down-conformation. The structural changes in the spike in the up-conformation were also larger than the changes in the down-conformation. Comparing the present results for metals with those obtained in our previous MD simulations of Sup with other materials (cellulose, graphite, and human skin models), we see that Au induces the highest structural change in Sup, larger than those obtained in our previous studies.
Collapse
|
14
|
Jampa S, Ratanatawanate C, Pimtong W, Aueviriyavit S, Chantho V, Sillapaprayoon S, Kunyanee C, Warin C, Gamonchuang J, Kumnorkaew P. Transparent Anti-SARS COV-2 Film from Copper(I) Oxide Incorporated in Zeolite Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:52334-52346. [PMID: 36352778 DOI: 10.1021/acsami.2c12274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The high antibacterial and antiviral performance of synthesized copper(I) oxide (Cu2O) incorporated in zeolite nanoparticles (Cu-Z) was determined. Various Cu contents (1-9 wt %) in solutions were loaded in the zeolite matrix under neutral conditions at room temperature. All synthesized Cu-Z nanoparticles showed high selectivity of the cuprous oxide, as confirmed by X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) analysis. An advantage of the prepared Cu-Z over the pristine Cu2O nanoparticles was its high thermal stability. The 7 and 9 wt % Cu contents (07Cu-Z and 09Cu-Z) exhibited the best activities to deactivate Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus bacteria. The film coated with 07Cu-Z nanoparticles also had high antiviral activities against porcine coronavirus (porcine epidemic diarrhea virus, PEDV) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Specifically, the 07Cu-Z-coated film could reduce 99.93% of PEDV and 99.94% of SARS-CoV-2 viruses in 5 min of contact time, which were higher efficacies and faster than those of any previously reported works. The anti-SARS-CoV-2 virus film was coated on a low-cost PET or PVC film. A very small amount of cuprous oxide in zeolite was used to fabricate the antivirus film; therefore, the film was more transparent (79.4% transparency) than the cuprous oxide film or other commercial products. The toxicity of 07Cu-Z nanoparticles was determined by a toxicity test on zebrafish embryo and a skin irritation test to reconstruct a human epidermis (RhE) model. It was found that the impact on the aquatic environment and human skin was lower than that of the pristine Cu2O.
Collapse
Affiliation(s)
- Sureerat Jampa
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chalita Ratanatawanate
- Environmental Nanotechnology Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Wittaya Pimtong
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Sasitorn Aueviriyavit
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Varissara Chantho
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Siwapech Sillapaprayoon
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Chanikarn Kunyanee
- Nano Environmental and Health Safety Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Choochart Warin
- Nanocharacterization Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Jirasak Gamonchuang
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| | - Pisist Kumnorkaew
- Innovative Nanocoating Research Team, National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand
| |
Collapse
|
15
|
Kuzmyn A, Teunissen LW, Kroese MV, Kant J, Venema S, Zuilhof H. Antiviral Polymer Brushes by Visible-Light-Induced, Oxygen-Tolerant Covalent Surface Coating. ACS OMEGA 2022; 7:38371-38379. [PMID: 36340175 PMCID: PMC9631418 DOI: 10.1021/acsomega.2c03214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
This work presents a novel route for creating metal-free antiviral coatings based on polymer brushes synthesized by surface-initiated photoinduced electron transfer-reversible addition-fragmentation chain transfer (SI-PET-RAFT) polymerization, applying eosin Y as a photocatalyst, water as a solvent, and visible light as a driving force. The polymer brushes were synthesized using N-[3-(decyldimethyl)-aminopropyl] methacrylamide bromide and carboxybetaine methacrylamide monomers. The chemical composition, thickness, roughness, and wettability of the resulting polymer brush coatings were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), water contact angle measurements, and ellipsometry. The antiviral properties of coatings were investigated by exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and avian influenza viruses, with further measurement of residual viable viral particles. The best performance was obtained with Cu surfaces, with a ca. 20-fold reduction of SARS-Cov-2 and a 50-fold reduction in avian influenza. On the polymer brush-modified surfaces, the number of viable virus particles decreased by about 5-6 times faster for avian flu and about 2-3 times faster for SARS-CoV-2, all compared to unmodified silicon surfaces. Interestingly, no significant differences were obtained between quaternary ammonium brushes and zwitterionic brushes.
Collapse
Affiliation(s)
- Andriy
R. Kuzmyn
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Lucas W. Teunissen
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Michiel V. Kroese
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Jet Kant
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Sandra Venema
- Wageningen
Bioveterinary Research, Houtribweg 39, 8221 RA Lelystad, The Netherlands
| | - Han Zuilhof
- Laboratory
of Organic Chemistry, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
- School
of Pharmaceutical Sciences and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, People’s Republic of China
- Department
of Chemical and Materials Engineering, Faculty of Engineering, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
16
|
Ivanauskas R, Bronusiene A, Ivanauskas A, Šarkinas A, Ancutiene I. Antibacterial Activity of Copper Particles Embedded in Knitted Fabrics. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7147. [PMID: 36295215 PMCID: PMC9607619 DOI: 10.3390/ma15207147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/05/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The composition and antibacterial properties of copper particles synthesized by a very simple reduction method were studied. For the preparation of particles in knitted fabrics, copper(II) sulfate was used as a precursor and ascorbic acid as a reducing natural agent. X-ray diffraction analysis showed the crystalline nature of the obtained particles. The round or oval particles and their agglomerates in knitted fabrics consisted of copper with traces of copper(I) oxide-cuprite. The element maps and energy dispersive X-ray spectra showed a high content of copper in the samples. The samples of wool and cotton knitted fabrics with copper particles had excellent antibacterial activity against gram-positive Staphylococcus aureus (S. aureus) and gram-negative Escherichia coli (E. coli) bacterial strains. The maximum zones of inhibition were 19.3 mm for S. aureus and 18.3 mm for E. coli using wool knitted fabric and 14.7 mm and 15.3 mm using cotton knitted fabric, respectively. The obtained results showed that the modified wool and cotton fabrics are suitable for use as inserts in reusable masks due to their noticeable and long-term activity against pathogenic bacteria.
Collapse
Affiliation(s)
- Remigijus Ivanauskas
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Asta Bronusiene
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Algimantas Ivanauskas
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Antanas Šarkinas
- Food Institute, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| | - Ingrida Ancutiene
- Department of Physical and Inorganic Chemistry, Kaunas University of Technology, Radvilenu Str. 19, LT-50254 Kaunas, Lithuania
| |
Collapse
|
17
|
Cieślak M, Kowalczyk D, Krzyżowska M, Janicka M, Witczak E, Kamińska I. Effect of Cu Modified Textile Structures on Antibacterial and Antiviral Protection. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6164. [PMID: 36079542 PMCID: PMC9457927 DOI: 10.3390/ma15176164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Textile structures with various bioactive and functional properties are used in many areas of medicine, special clothing, interior textiles, technical goods, etc. We investigated the effect of two different textile woven structures made of 90% polyester with 10% polyamide (PET) and 100% cotton (CO) modified by magnetron sputtering with copper (Cu) on bioactive properties against Gram-positive and Gram-negative bacteria and four viruses and also on the some comfort parameters. PET/Cu and CO/Cu fabrics have strong antibacterial activity against Staphylococcus aureus and Klebsiella pneumonia. CO/Cu fabric has good antiviral activity in relation to vaccinia virus (VACV), herpes simplex virus type 1 (HSV-1) and influenza A virus H1N1 (IFV), while its antiviral activity against mouse coronavirus (MHV) is weak. PET/Cu fabric showed weak antiviral activity against HSV-1 and MHV. Both modified fabrics showed no significant toxicity in comparison to the control medium and pristine fabrics. After Cu sputtering, fabric surfaces became hydrophobic and the value of the surface free energy was over four times lower than for pristine fabrics. The modification improved thermal conductivity and thermal diffusivity, facilitated water vapour transport, and air permeability did not decrease.
Collapse
Affiliation(s)
- Małgorzata Cieślak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Dorota Kowalczyk
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Małgorzata Krzyżowska
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Martyna Janicka
- Department of Nanobiology and Biomaterials, Military Institute of Hygiene and Epidemiology, Kozielska 4, 01-163 Warsaw, Poland
| | - Ewa Witczak
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| | - Irena Kamińska
- Department of Chemical Textile Technologies, Lukasiewicz Research Network-Lodz Institute of Technology, Maria Sklodowska-Curie 19/27, 90-570 Lodz, Poland
| |
Collapse
|
18
|
Toledo E, Dim S, Edri A, Greenshpan Y, Ottolenghi A, Eisner N, Tzadka S, Pandey A, Ben Nun H, Le Saux G, Porgador A, Schvartzman M. Nanocomposite coatings for the prevention of surface contamination by coronavirus. PLoS One 2022; 17:e0272307. [PMID: 35917302 PMCID: PMC9345348 DOI: 10.1371/journal.pone.0272307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 07/14/2022] [Indexed: 11/19/2022] Open
Abstract
The current Covid-19 pandemic has a profound impact on all aspects of our lives. Aside from contagion by aerosols, the presence of the SARS-CoV-2 is ubiquitous on surfaces that millions of people handle daily. Therefore, controlling this pandemic involves the reduction of potential infections via contaminated surfaces. We developed antiviral surfaces by preparing suspensions of copper and cupric oxide nanoparticles in two different polymer matrices, poly(methyl methacrylate) and polyepoxide. For total copper contents as low as 5%, the composite material showed remarkable antiviral properties against the HCoV‐OC43 human coronavirus and against a model lentivirus and proved well-resistant to accelerated aging conditions. Importantly, we showed that the Cu/CuO mixture showed optimal performances. This product can be implemented to produce a simple and inexpensive coating with long-term antiviral properties and will open the way to developing surface coatings against a broad spectrum of pathogens including SARS-CoV-2.
Collapse
Affiliation(s)
- Esti Toledo
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sharon Dim
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Avishay Edri
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yariv Greenshpan
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Aner Ottolenghi
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Nadav Eisner
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Sivan Tzadka
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Ashish Pandey
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Haggai Ben Nun
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Guillaume Le Saux
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Angel Porgador
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (AP); (MS)
| | - Mark Schvartzman
- Department of Materials Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- Ilse Katz Institute for Nanoscale Science & Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail: (AP); (MS)
| |
Collapse
|
19
|
Marquez R, Zwilling J, Zambrano F, Tolosa L, Marquez ME, Venditti R, Jameel H, Gonzalez R. Nanoparticles and essential oils with antiviral activity on packaging and surfaces: An overview of their selection and application. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Ronald Marquez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Jacob Zwilling
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Franklin Zambrano
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Laura Tolosa
- School of Chemical Engineering Universidad de Los Andes Mérida Venezuela
| | - Maria E. Marquez
- Laboratory of Parasite Enzymology, Department of Biology Universidad de Los Andes Mérida Venezuela
| | - Richard Venditti
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Hasan Jameel
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| | - Ronalds Gonzalez
- Tissue Pack Innovation Lab, Department of Forest Biomaterials North Carolina State University Raleigh North Carolina USA
| |
Collapse
|
20
|
Jamshidinia N, Mohammadipanah F. Nanomaterial-Augmented Formulation of Disinfectants and Antiseptics in Controlling SARS CoV-2. FOOD AND ENVIRONMENTAL VIROLOGY 2022; 14:105-119. [PMID: 35266117 PMCID: PMC8906532 DOI: 10.1007/s12560-022-09517-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 02/22/2022] [Indexed: 05/24/2023]
Abstract
The worldwide COVID-19 pandemic has brought significant consideration toward innovative strategies for overcoming the viral spread. Nanotechnology will change our lives in several forms as its uses span from electronics to pharmaceutical procedures. The use of nanoparticles provides a possibility to promote new antiviral treatments with a low possibility of increasing drug resistance compared to typical chemical-based antiviral treatments. Since the long-term usage of disinfectants and antiseptics at high concentrations has deleterious impacts on well-being and the environment, this review was intended to discuss the antiviral activity of disinfectants and antiseptics required for their activity against respiratory viruses especially SARS-CoV-2. It could improve the inhibition of viral penetration into cells, solvation of the lipid bilayer envelope, and ROS production, therefore enhancing the effect of disinfectants. However, significant concerns about nanomaterial's hazardous effects on individuals and the environment are increasing as nanotechnology flourishes. In this review, we first discuss the significant and essential types of nanomaterials, especially silver and copper, that could be used as antiviral agents and their viral entry mechanisms into host cells. Further, we consider the toxicity on health, and environmental concerns of nanoparticles. Eventually, we present our outlook on the fate of nanomaterials toward viral diseases.
Collapse
Affiliation(s)
- Niloofar Jamshidinia
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran
| | - Fatemeh Mohammadipanah
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, 14155-6455, Tehran, Iran.
| |
Collapse
|
21
|
Mertens B, Moore MD, Jaykus LA, Velev OD. Efficacy and Mechanisms of Copper Ion-Catalyzed Inactivation of Human Norovirus. ACS Infect Dis 2022; 8:855-864. [PMID: 35315654 PMCID: PMC9003239 DOI: 10.1021/acsinfecdis.1c00609] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Indexed: 11/29/2022]
Abstract
The antinoroviral effect of copper ions is well known, yet most of this work has previously been conducted in copper and copper alloy surfaces, not copper ions in solution. In this work, we characterized the effects that Cu ions have on human norovirus capsids' and surrogates' integrity to explain empirical data, indicating virus inactivation by copper alloy surfaces, and as means of developing novel metal ion-based virucides. Comparatively high concentrations of Cu(II) ions (>10 mM) had little effect on the infectivity of human norovirus surrogates, so we used sodium ascorbate as a reducing agent to generate unstable Cu(I) ions from solutions of copper bromide. We found that significantly lower concentrations of monovalent copper ions (∼0.1 mM) compared to divalent copper ions cause capsid protein damage that prevents human norovirus capsids from binding to cell receptors in vitro and induce a greater than 4-log reduction in infectivity of Tulane virus, a human norovirus surrogate. Further, these Cu(I) solutions caused reduction of GII.4 norovirus from stool in suspension, producing about a 2-log reduction of virus as measured by a reverse transcriptase-quantitative polymerase chain reaction. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) data indicate substantial major capsid protein cleavage of both GI.7 and GII.4 norovirus capsids, and TEM images show the complete loss of capsid integrity of GI.7 norovirus. GII.4 virus-like particles (VLPs) were less susceptible to inactivation by copper ion treatments than GI.7 VLPs based upon receptor binding and SDS-PAGE analysis of viral capsids. The combined data demonstrate that stabilized Cu(I) ion solutions show promise as highly effective noroviral disinfectants in solution that can potentially be utilized at low concentrations for inactivation of human noroviruses.
Collapse
Affiliation(s)
- Brittany
S. Mertens
- Department
of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina 27606, United States
| | - Matthew D. Moore
- Department
of Food, Bioprocessing, and Nutrition Sciences, NC State University, Raleigh, North Carolina 27606, United States
- Department
of Food Science, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Lee-Ann Jaykus
- Department
of Food, Bioprocessing, and Nutrition Sciences, NC State University, Raleigh, North Carolina 27606, United States
| | - Orlin D. Velev
- Department
of Chemical and Biomolecular Engineering, NC State University, Raleigh, North Carolina 27606, United States
| |
Collapse
|
22
|
Hardison RL, Ryan SP, Limmer RA, Crouse M, Nelson SW, Barriga D, Ghere JM, Stewart MJ, Lee SD, Taylor BM, James RR, Calfee MW, Howard MW. Residual antimicrobial coating efficacy against SARS-CoV-2. J Appl Microbiol 2022; 132:3375-3386. [PMID: 34981882 PMCID: PMC9547327 DOI: 10.1111/jam.15437] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 11/28/2022]
Abstract
AIMS This study evaluated the residual efficacy of commercially available antimicrobial coatings or films against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on non-porous surfaces. METHODS AND RESULTS Products were applied to stainless steel or ABS plastic coupons and dried overnight. Coupons were inoculated with SARS-CoV-2 in the presence of 5% soil load. Recovered infectious SARS-CoV-2 was quantified by TCID50 assay. Tested product efficacies ranged from <1.0 to >3.0 log10 reduction at a 2-h contact time. The log10 reduction in recovered infectious SARS-CoV-2 ranged from 0.44 to 3 log10 reduction on stainless steel and 0.25 to >1.67 log10 on ABS plastic. The most effective products tested contained varying concentrations (0.5%-1.3%) of the same active ingredient: 3-(trihydroxysilyl) propyldimethyloctadecyl ammonium chloride. Products formulated with other quaternary ammonium compounds were less effective against SARS-CoV-2 in this test. CONCLUSIONS The residual antimicrobial products tested showed varied effectiveness against SARS-CoV-2 as a function of product tested. Several products were identified as efficacious against SARS-CoV-2 on both stainless steel and ABS plastic surfaces under the conditions evaluated. Differences in observed efficacy may be due to variation in active ingredient formulation; efficacy is, therefore, difficult to predict based upon listed active ingredient and its concentration. SIGNIFICANCE AND IMPACT This study highlights the formulation-specific efficacy of several products against SARS-CoV-2 and may inform future development of residual antiviral products for use on non-porous surfaces. The identification of antimicrobial coatings or films showing promise to inactivate SARS-CoV-2 suggests that these products may be worth future testing and consideration.
Collapse
Affiliation(s)
| | | | - Rebecca A. Limmer
- Battelle Eastern Science & Technology Center, Aberdeen, Maryland, USA
| | - Margaret Crouse
- Battelle Eastern Science & Technology Center, Aberdeen, Maryland, USA
| | | | | | | | | | - Sang Don Lee
- US EPA, Research Triangle Park, North Carolina, USA
| | - Brian M. Taylor
- Battelle Eastern Science & Technology Center, Aberdeen, Maryland, USA
| | | | | | | |
Collapse
|
23
|
Phuna ZX, Panda BP, Hawala Shivashekaregowda NK, Madhavan P. Nanoprotection from SARS-COV-2: would nanotechnology help in Personal Protection Equipment (PPE) to control the transmission of COVID-19? INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022:1-30. [PMID: 35253535 DOI: 10.1080/09603123.2022.2046710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The coronavirus disease 2019 (COVID-19) has caused a worldwide outbreak. The severe acute respiratory syndrome coronavirus 2 virus can be transmitted human-to-human through droplets and close contact where personal protective equipment (PPE) is imperative to protect the individuals. The advancement of nanotechnology with significant nanosized properties can confer a higher form of protection. Incorporation of nanotechnology into facemasks can exhibit antiviral properties. Nanocoating on surfaces can achieve self-disinfecting purposes and be applied in highly populated places. Moreover, nano-based hand sanitizers can confer better sterilizing efficacies with low skin irritation as compared to alcohol-based hand sanitizers. The present review discusses the incorporation of nanotechnology into nano-based materials and coatings in facemasks, self-surface disinfectants and hand sanitizers, in the hope to contribute to the current understanding of PPE to combat COVID-19.
Collapse
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| | - Bibhu Prasad Panda
- Department of Pharmaceutical Technology, Schoolof Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | | | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Selangor, Malaysia
| |
Collapse
|
24
|
Xu VW, Nizami MZI, Yin IX, Yu OY, Lung CYK, Chu CH. Application of Copper Nanoparticles in Dentistry. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:805. [PMID: 35269293 PMCID: PMC8912653 DOI: 10.3390/nano12050805] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Nanoparticles based on metal and metallic oxides have become a novel trend for dental applications. Metal nanoparticles are commonly used in dentistry for their exclusive shape-dependent properties, including their variable nano-sizes and forms, unique distribution, and large surface-area-to-volume ratio. These properties enhance the bio-physio-chemical functionalization, antimicrobial activity, and biocompatibility of the nanoparticles. Copper is an earth-abundant inexpensive metal, and its nanoparticle synthesis is cost effective. Copper nanoparticles readily intermix and bind with other metals, ceramics, and polymers, and they exhibit physiochemical stability in the compounds. Hence, copper nanoparticles are among the commonly used metal nanoparticles in dentistry. Copper nanoparticles have been used to enhance the physical and chemical properties of various dental materials, such as dental amalgam, restorative cements, adhesives, resins, endodontic-irrigation solutions, obturation materials, dental implants, and orthodontic archwires and brackets. The objective of this review is to provide an overview of copper nanoparticles and their applications in dentistry.
Collapse
Affiliation(s)
| | - Mohammed Zahedul Islam Nizami
- Faculty of Dentistry, University of Hong Kong, Hong Kong 999077, China; (V.W.X.); (I.X.Y.); (O.Y.Y.); (C.Y.K.L.); (C.H.C.)
| | | | | | | | | |
Collapse
|
25
|
Pavletić B, Runzheimer K, Siems K, Koch S, Cortesão M, Ramos-Nascimento A, Moeller R. Spaceflight Virology: What Do We Know about Viral Threats in the Spaceflight Environment? ASTROBIOLOGY 2022; 22:210-224. [PMID: 34981957 PMCID: PMC8861927 DOI: 10.1089/ast.2021.0009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Viruses constitute a significant part of the human microbiome, so wherever humans go, viruses are brought with them, even on space missions. In this mini review, we focus on the International Space Station (ISS) as the only current human habitat in space that has a diverse range of viral genera that infect microorganisms from bacteria to eukaryotes. Thus, we have reviewed the literature on the physical conditions of space habitats that have an impact on both virus transmissibility and interaction with their host, which include UV radiation, ionizing radiation, humidity, and microgravity. Also, we briefly comment on the practices used on space missions that reduce virus spread, that is, use of antimicrobial surfaces, spacecraft sterilization practices, and air filtration. Finally, we turn our attention to the health threats that viruses pose to space travel. Overall, even though efforts are taken to ensure safe conditions during human space travel, for example, preflight quarantines of astronauts, we reflect on the potential risks humans might be exposed to and how those risks might be aggravated in extraterrestrial habitats.
Collapse
Affiliation(s)
- Bruno Pavletić
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Runzheimer
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Katharina Siems
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Stella Koch
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Marta Cortesão
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ana Ramos-Nascimento
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
| | - Ralf Moeller
- German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology Research Group, Linder Hoehe, Cologne (Köln), Germany
- Address correspondence to: Ralf Moeller, German Aerospace Center (DLR), Institute of Aerospace Medicine, Radiation Biology Department, Aerospace Microbiology, Linder Hoehe, Building 24, Room 104, D-51147 Köln, Germany
| |
Collapse
|
26
|
Birkett M, Dover L, Cherian Lukose C, Wasy Zia A, Tambuwala MM, Serrano-Aroca Á. Recent Advances in Metal-Based Antimicrobial Coatings for High-Touch Surfaces. Int J Mol Sci 2022; 23:1162. [PMID: 35163084 PMCID: PMC8835042 DOI: 10.3390/ijms23031162] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
International interest in metal-based antimicrobial coatings to control the spread of bacteria, fungi, and viruses via high contact human touch surfaces are growing at an exponential rate. This interest recently reached an all-time high with the outbreak of the deadly COVID-19 disease, which has already claimed the lives of more than 5 million people worldwide. This global pandemic has highlighted the major role that antimicrobial coatings can play in controlling the spread of deadly viruses such as SARS-CoV-2 and scientists and engineers are now working harder than ever to develop the next generation of antimicrobial materials. This article begins with a review of three discrete microorganism-killing phenomena of contact-killing surfaces, nanoprotrusions, and superhydrophobic surfaces. The antimicrobial properties of metals such as copper (Cu), silver (Ag), and zinc (Zn) are reviewed along with the effects of combining them with titanium dioxide (TiO2) to create a binary or ternary contact-killing surface coatings. The self-cleaning and bacterial resistance of purely structural superhydrophobic surfaces and the potential of physical surface nanoprotrusions to damage microbial cells are then considered. The article then gives a detailed discussion on recent advances in attempting to combine these individual phenomena to create super-antimicrobial metal-based coatings with binary or ternary killing potential against a broad range of microorganisms, including SARS-CoV-2, for high-touch surface applications such as hand rails, door plates, and water fittings on public transport and in healthcare, care home and leisure settings as well as personal protective equipment commonly used in hospitals and in the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Martin Birkett
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Lynn Dover
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK;
| | - Cecil Cherian Lukose
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Abdul Wasy Zia
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle upon Tyne NE1 8ST, UK; (C.C.L.); (A.W.Z.)
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Science, Ulster University, Coleraine BT52 1SA, UK;
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, c/Guillem de Castro 94, 46001 Valencia, Spain;
| |
Collapse
|
27
|
Zinn AA, Izadjoo M, Kim H, Brody RL, Roth RR, Vega A, Nguyen KK, Ngo NT, Zinn HT, Antonopoulos N, Stoltenberg RM. Rapidly Self-Sterilizing PPE Capable of Destroying 100% of Microbes in 30-60 Seconds. Front Cell Infect Microbiol 2021; 11:752899. [PMID: 34976853 PMCID: PMC8715083 DOI: 10.3389/fcimb.2021.752899] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
The continued proliferation of superbugs in hospitals and the coronavirus disease 2019 (COVID-19) has created an acute worldwide demand for sustained broadband pathogen suppression in households, hospitals, and public spaces. In response, we have created a highly active, self-sterilizing copper configuration capable of inactivating a wide range of bacteria and viruses in 30-60 seconds. The highly active material destroys pathogens faster than any conventional copper configuration and acts as quickly as alcohol wipes and hand sanitizers. Unlike the latter, our copper material does not release volatile compounds or leave harmful chemical residues and maintains its antimicrobial efficacy over sustained use; it is shelf stable for years. We have performed rigorous testing in accordance with guidelines from U.S. regulatory agencies and believe that the material could offer broad spectrum, non-selective defense against most microbes via integration into masks, protective equipment, and various forms of surface coatings.
Collapse
Affiliation(s)
| | - Mina Izadjoo
- Kuprion, Inc., San Jose, CA, United States
- Integrated Pharma Services, Frederick, MD, United States
| | - Hosan Kim
- Integrated Pharma Services, Frederick, MD, United States
| | | | | | | | | | - Nhi T. Ngo
- Kuprion, Inc., San Jose, CA, United States
| | | | | | | |
Collapse
|
28
|
Nasri N, Rusli A, Teramoto N, Jaafar M, Ku Ishak KM, Shafiq MD, Abdul Hamid ZA. Past and Current Progress in the Development of Antiviral/Antimicrobial Polymer Coating towards COVID-19 Prevention: A Review. Polymers (Basel) 2021; 13:4234. [PMID: 34883737 PMCID: PMC8659939 DOI: 10.3390/polym13234234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/04/2021] [Accepted: 11/08/2021] [Indexed: 01/10/2023] Open
Abstract
The astonishing outbreak of SARS-CoV-2 coronavirus, known as COVID-19, has attracted numerous research interests, particularly regarding fabricating antimicrobial surface coatings. This initiative is aimed at overcoming and minimizing viral and bacterial transmission to the human. When contaminated droplets from an infected individual land onto common surfaces, SARS-CoV-2 coronavirus is able to survive on various surfaces for up to 9 days. Thus, the possibility of virus transmission increases after touching or being in contact with contaminated surfaces. Herein, we aim to provide overviews of various types of antiviral and antimicrobial coating agents, such as antimicrobial polymer-based coating, metal-based coating, functional nanomaterial, and nanocomposite-based coating. The action mode for each type of antimicrobial agent against pathogens is elaborated. In addition, surface properties of the designed antiviral and antimicrobial polymer coating with their influencing factors are discussed in this review. This paper also exhibits several techniques on surface modification to improve surface properties. Various developed research on the development of antiviral/antimicrobial polymer coating to curb the COVID-19 pandemic are also presented in this review.
Collapse
Affiliation(s)
- Nazihah Nasri
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Arjulizan Rusli
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Naozumi Teramoto
- Department of Applied Chemistry, Faculty of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino 275-0016, Chiba, Japan;
| | - Mariatti Jaafar
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Ku Marsilla Ku Ishak
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Mohamad Danial Shafiq
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| | - Zuratul Ain Abdul Hamid
- School of Materials & Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, Nibong Tebal 14300, Pulau Pinang, Malaysia; (N.N.); (A.R.); (M.J.); (K.M.K.I.); (M.D.S.)
| |
Collapse
|
29
|
Bello-Lopez JM, Silva-Bermudez P, Prado G, Martínez A, Ibáñez-Cervantes G, Cureño-Díaz MA, Rocha-Zavaleta L, Manzo-Merino J, Almaguer-Flores A, Ramos-Vilchis C, Rodil SE. Biocide effect against SARS-CoV-2 and ESKAPE pathogens of a noncytotoxic silver-copper nanofilm. Biomed Mater 2021; 17. [PMID: 34673548 DOI: 10.1088/1748-605x/ac3208] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023]
Abstract
Nanometric materials with biocidal properties effective against severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) and pathogenic bacteria could be used to modify surfaces, reducing the risk of touching transmission. In this work, we showed that a nanometric layer of bimetallic AgCu can be effectively deposited on polypropylene (PP) fibers. The virucidal properties of the AgCu nanofilm were evaluated by comparing the viral loads remaining on uncoated and coated PP after contact times between 2 and 24 h. Quantification of virion numbers for different initial concentrations indicated a reduction of more than 95% after 2 h of contact. The bactericidal action of the AgCu nanofilm was also confirmed by inoculating uncoated and coated PP with a pool of pathogenic bacteria associated with pneumonia (ESKAPE). Meanwhile, no cytotoxicity was observed for human fibroblasts and keratinocyte cells, indicating that the nanofilm could be in contact with human skin without threat. The deposition of the AgCu nanofilm on the nonwoven component of reusable cloth masks might help to prevent virus and bacterial infection while reducing the pollution burden related to the disposable masks. The possible mechanism of biocide contact action was studied by quantum chemistry calculations that show that the addition of Ag and/or Cu makes the polymeric fiber a better electron acceptor. This can promote the oxidation of the phospholipids present at both the virus and bacterial membranes. The rupture at the membrane exposes and damages the genetic material of the virus. More studies are needed to determine the mechanism of action, but the results reported here indicate that Cu and Ag ions are good allies, which can help protect us from the virus that has caused this disturbing pandemic.
Collapse
Affiliation(s)
- J M Bello-Lopez
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - P Silva-Bermudez
- Unidad de ingeniería de Téjidos, Terapia Celular y Medicina Regenerativa; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - G Prado
- Laboratorio de Biotecnología; Instituto Nacional de Rehabilitación Luis Guillermo Ibarra-Ibarra, Av. México-Xochimilco No. 289 Col. Arenal de Guadalupe, C.P. 14389 CDMX, México
| | - A Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - Gabriela Ibáñez-Cervantes
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - Mónica Alethia Cureño-Díaz
- Dirección de Investigación. Hospital Juárez de México, Av. Instituto Politécnico Nacional 5160, Magdalena de las Salinas, Delegación Gustavo A. Madero, 07760 CDMX, México
| | - L Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Circuito Escolar sn, Ciudad Universitaria, 04510 CDMX, México
| | - J Manzo-Merino
- Cátedras CONACyT-Instituto Nacional de Cancerología, CDMX, México
| | - A Almaguer-Flores
- Laboratorio de Biointerfases, Facultad de Odontología, División de Estudios de Posgrado e Investigación, Universidad Nacional Autónoma de México, 04510 CDMX, México
| | - C Ramos-Vilchis
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| | - S E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México. Circuito Exterior sn, Ciudad Universitaria, 04510 CDMX, México
| |
Collapse
|
30
|
Delumeau LV, Asgarimoghaddam H, Alkie T, Jones AJB, Lum S, Mistry K, Aucoin MG, DeWitte-Orr S, Musselman KP. Effectiveness of antiviral metal and metal oxide thin-film coatings against human coronavirus 229E. APL MATERIALS 2021; 9:111114. [PMID: 34868741 PMCID: PMC8638753 DOI: 10.1063/5.0056138] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 10/24/2021] [Indexed: 05/13/2023]
Abstract
Virucidal thin-film coatings have the potential to inactivate pathogens on surfaces, preventing or slowing their spread. Six potential nanoscale antiviral coatings, Cu, Cu2O, Ag, ZnO, zinc tin oxide (ZTO), and TiO2, are deposited on glass, and their ability to inactivate the HCoV-229E human coronavirus is assessed using two methods. In one method, droplets containing HCoV-229E are deposited on thin-film coatings and then collected after various stages of desiccation. In the second method, the thin-film coatings are soaked in the virus supernatant for 24 h. The Cu and Cu2O coatings demonstrate clear virucidal behavior, and it is shown that controlled delamination and dissolution of the coating can enhance the virucidal effect. Cu is found to produce a faster and stronger virucidal effect than Cu2O in the droplet tests (3 log reduction in the viral titer after 1 h of exposure), which is attributed, in part, to the differences in film adhesion that result in delamination of the Cu film from the glass and accelerated dissolution in the droplet. Despite Ag, ZnO, and TiO2 being frequently cited antimicrobial materials, exposure to the Ag, ZnO, ZTO, and TiO2 coatings results in no discernible change to the infectivity of the coronavirus under the conditions tested. Thin-film Cu coatings are also applied to the polypropylene fabrics of N95 respirators, and droplet tests are performed. The Cu fabric coating reduces the infectivity of the virus; it results in a 1 order-of-magnitude reduction in the viral titer within 15 min with a 2 order-of-magnitude reduction after 1 h.
Collapse
Affiliation(s)
| | | | - Tamiru Alkie
- Department of Health Sciences, Wilfrid Laurier
University, 75 University Ave. West, Waterloo, Ontario N2L 3C5,
Canada
| | | | - Samantha Lum
- Department of Health Sciences, Wilfrid Laurier
University, 75 University Ave. West, Waterloo, Ontario N2L 3C5,
Canada
| | | | - Marc G. Aucoin
- Department of Chemical Engineering, University of
Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1,
Canada
| | - Stephanie DeWitte-Orr
- Department of Health Sciences, Wilfrid Laurier
University, 75 University Ave. West, Waterloo, Ontario N2L 3C5,
Canada
| | | |
Collapse
|
31
|
Olejnik A, Goscianska J. On the importance of physicochemical parameters of copper and aminosilane functionalized mesoporous silica for hydroxychloroquine release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 130:112438. [PMID: 34702523 PMCID: PMC8445882 DOI: 10.1016/j.msec.2021.112438] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 08/29/2021] [Accepted: 09/12/2021] [Indexed: 12/12/2022]
Abstract
Recently, great attention has been paid to hydroxychloroquine which after promising in vitro studies has been proposed to treat the severe acute respiratory syndrome caused by SARS-CoV-2. The clinical trials have shown that hydroxychloroquine was not as effective as was expected and additionally, several side effects were observed in patients cured with this medicament. In order to reduce them, it is suggested to deliver hydroxychloroquine in a controlled manner. Therefore, in this study non-modified (SBA-15, SBA-16) and modified with copper and aminosilane mesoporous silica materials were applied as novel nanocarriers for hydroxychloroquine. First, pristine and functionalized samples were synthesized and characterized by X-ray diffraction, low-temperature nitrogen sorption, transmission electron microscopy, X-ray photoelectron spectroscopy, infrared spectroscopy, laser diffraction. Then the influence of physicochemical parameters of materials obtained on the adsorption and release processes of hydroxychloroquine was analyzed. The mechanism of hydroxychloroquine binding to non-modified silicas was based on the formation of hydrogen bonds, while in the case of copper and aminosilane functionalized materials the complexes with drug molecules were generated. The release behavior of hydroxychloroquine from silica samples obtained was determined by different factors including pH conditions, textural parameters, surface charge, and presence of surface functional groups. The greatest differences in hydroxychloroquine release profiles between materials were observed at pH 7.2. The amount of drug desorbed from silica decreased in the following order: functionalized SBA-15 (84%) > functionalized SBA-16 (79%) > SBA-15 (59%) > SBA-16 (33%). It proved that a higher amount of drug was released from materials of hexagonal structure.
Collapse
Affiliation(s)
- Anna Olejnik
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Department of Chemical Technology, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| | - Joanna Goscianska
- Adam Mickiewicz University in Poznań, Faculty of Chemistry, Department of Chemical Technology, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland.
| |
Collapse
|
32
|
Lin N, Verma D, Saini N, Arbi R, Munir M, Jovic M, Turak A. Antiviral nanoparticles for sanitizing surfaces: A roadmap to self-sterilizing against COVID-19. NANO TODAY 2021; 40:101267. [PMID: 34404999 PMCID: PMC8361009 DOI: 10.1016/j.nantod.2021.101267] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 07/05/2021] [Accepted: 08/08/2021] [Indexed: 05/13/2023]
Abstract
Nanoparticles provide new opportunities in merging therapeutics and new materials, with current research efforts just beginning to scratch the surface of their diverse benefits and potential applications. One such application, the use of inorganic nanoparticles in antiseptic coatings to prevent pathogen transmission and infection, has seen promising developments. Notably, the high reactive surface area to volume ratio and unique chemical properties of metal-based nanoparticles enables their potent inactivation of viruses. Nanoparticles exert their virucidal action through mechanisms including inhibition of virus-cell receptor binding, reactive oxygen species oxidation and destructive displacement bonding with key viral structures. The prevention of viral outbreaks is one of the foremost challenges to medical science today, emphasizing the importance of research efforts to develop nanoparticles for preventative antiviral applications. In this review, the use of nanoparticles to inactivate other viruses, such as influenza, HIV-1, or norovirus, among others, will be discussed to extrapolate broad-spectrum antiviral mechanisms that could also inhibit SARS-CoV-2 pathogenesis. This review analyzes the published literature to highlight the current state of knowledge regarding the efficacy of metal-based nanoparticles and other antiviral materials for biomedical, sterile polymer, and surface coating applications.
Collapse
Affiliation(s)
- Neil Lin
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- Faculty of Health Science, McMaster University, Hamilton, Canada
| | - Daksh Verma
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Nikhil Saini
- Department of Engineering Physics, McMaster University, Hamilton, Canada
- W Booth School of Engineering Practice and Technology, McMaster University, Hamilton, Canada
| | - Ramis Arbi
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | - Muhammad Munir
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| | | | - Ayse Turak
- Department of Engineering Physics, McMaster University, Hamilton, Canada
| |
Collapse
|
33
|
Li Z, Qiao D, Xu Y, Zhou E, Yang C, Yuan X, Lu Y, Gu JD, Wolfgang S, Xu D, Wang F. Cu-bearing high-entropy alloys with excellent antiviral properties. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 2021; 84:59-64. [PMID: 33526964 PMCID: PMC7839385 DOI: 10.1016/j.jmst.2020.12.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Indexed: 05/21/2023]
Affiliation(s)
- Zhong Li
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Dongxu Qiao
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Yan Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Enze Zhou
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Chuntian Yang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Xinyi Yuan
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Yiping Lu
- Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Ji-Dong Gu
- Environmental Engineering, Guangdong Technion Israel Institute of Technology, Shantou 515063, China
| | - Sand Wolfgang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Dake Xu
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| | - Fuhui Wang
- Shenyang National Laboratory for Materials Science, Northeastern University, Shenyang, 110819, China
- Key Laboratory for Anisotropy and Texture of Materials (Ministry of Education), School of Materials Science and Engineering, Northeastern University, Shenyang, 110819, China
| |
Collapse
|
34
|
Walji SD, Bruder MR, Aucoin MG. Virus matrix interference on assessment of virucidal activity of high-touch surfaces designed to prevent hospital-acquired infections. Antimicrob Resist Infect Control 2021; 10:133. [PMID: 34507617 PMCID: PMC8431935 DOI: 10.1186/s13756-021-01001-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 08/27/2021] [Indexed: 12/24/2022] Open
Abstract
Objectives/purpose High-touch surfaces are a critical reservoir in the spread of nosocomial infections. Although disinfection and infection control protocols are well developed, they lack the ability to passively reduce the pathogenic load of high-touch surfaces. Copper and its alloys have been suggested as a surface that exhibit continuous biocidal effects. Antimicrobial studies on these surfaces are prevalent, while virucidal studies are not as well explored. The goal of this study was to first determine the virucidal activity of a copper–nickel–zinc alloy and to then examine the effect of soiling and virus preparation on virucidal activity. Methods A baculovirus vector was used as an easily quantifiable model of an infectious enveloped animal cell virus. Droplets containing virus were deposited on surfaces and allowed to stay wet using humidity control or were dried onto the surface. Virus was then recovered from the surface and assayed for infectivity. To examine how the composition of the droplet affected the survival of the virus, 3 different soiling conditions were tested. The first two were recommended by the United States Environmental Protection Agency and the third consisted of cell debris resulting from virus amplification. Results A copper–nickel–zinc alloy was shown to have strong virucidal effects for an enveloped virus. Copper, nickel, and zinc ions were all shown to leach from the alloy surface and are the likely cause of virucidal activity by this surface. Virucidal activity was achieved under moderate soiling but lost under high soiling generated by routine virus amplification procedures. The surface was able to repeatably inactivate dried virus droplets under moderate soiling conditions, but unable to do so for virus droplets kept wet using high humidity. Conclusion Ion leaching was associated with virucidal activity in both wet and dried virus conditions. Soiling protected the virus by quenching metal ions, and not by inhibiting leaching. The composition of the solution containing virus plays a critical role in evaluating the virucidal activity of surfaces and surface coatings.
Collapse
Affiliation(s)
- Sadru-Dean Walji
- Department of Chemical Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Mark R Bruder
- Department of Chemical Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada
| | - Marc G Aucoin
- Department of Chemical Engineering, University of Waterloo, 200 University Ave West, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
35
|
Rani I, Goyal A, Bhatnagar M, Manhas S, Goel P, Pal A, Prasad R. Potential molecular mechanisms of zinc- and copper-mediated antiviral activity on COVID-19. Nutr Res 2021; 92:109-128. [PMID: 34284268 PMCID: PMC8200255 DOI: 10.1016/j.nutres.2021.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 05/05/2021] [Accepted: 05/28/2021] [Indexed: 12/11/2022]
Abstract
Novel coronavirus disease 2019 (COVID-19) has spread across the globe; and surprisingly, no potentially protective or therapeutic antiviral molecules are available to treat severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection. However, zinc (Zn) and copper (Cu) have been shown to exert protective effects due to their antioxidant, anti-inflammatory, and antiviral properties. Therefore, it is hypothesized that supplementation with Zn and Cu alone or as an adjuvant may be beneficial with promising efficacy and a favorable safety profile to mitigate symptoms, as well as halt progression of the severe form of SARS-CoV-2 infection. The objective of this review is to discuss the proposed underlying molecular mechanisms and their implications for combating SARS-CoV-2 infection in response to Zn and Cu administration. Several clinical trials have also included the use of Zn as an adjuvant therapy with dietary regimens/antiviral drugs against COVID-19 infection. Overall, this review summarizes that nutritional intervention with Zn and Cu may offer an alternative treatment strategy by eliciting their virucidal effects through several fundamental molecular cascades, such as, modulation of immune responses, redox signaling, autophagy, and obstruction of viral entry and genome replication during SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Isha Rani
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Anmol Goyal
- Department of Community Medicine, Gian Sagar Medical College and Hospital, Banur, Patiala, Punjab, India
| | - Mini Bhatnagar
- Department of General Medicine, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Sunita Manhas
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Parul Goel
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India
| | - Amit Pal
- Department of Biochemistry, AIIMS Kalyani, West Bengal, India
| | - Rajendra Prasad
- Department of Biochemistry, M.M. Institute of Medical Sciences and Research (MMIMSR), Maharishi Markandeshwar University (MMU), Mullana, Ambala, Haryana, India.
| |
Collapse
|
36
|
Luminore CopperTouch Surface Coating Effectively Inactivates SARS-CoV-2, Ebola Virus, and Marburg Virus In Vitro. Antimicrob Agents Chemother 2021; 65:e0139020. [PMID: 33903111 PMCID: PMC8218611 DOI: 10.1128/aac.01390-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the ability of Luminore CopperTouch copper and copper-nickel surfaces to inactivate filoviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The copper and copper-nickel surfaces inactivated 99.9% of Ebola and Marburg viruses after 30 min, and the copper surfaces inactivated 99% of SARS-CoV-2 in 2 h. These data reveal that Ebola virus, Marburg virus, and SARS-CoV-2 are inactivated by exposure to copper ions, validating Luminore CopperTouch as an efficacious tool for infection control.
Collapse
|
37
|
Salah I, Parkin IP, Allan E. Copper as an antimicrobial agent: recent advances. RSC Adv 2021; 11:18179-18186. [PMID: 35480904 PMCID: PMC9033467 DOI: 10.1039/d1ra02149d] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/11/2021] [Indexed: 12/13/2022] Open
Abstract
From its uses in ancient civilisations, copper has an established history as an antimicrobial agent. Extensive research has determined the efficacy and mechanism of copper's antimicrobial activity against microorganisms. The process is multifaceted with the main mechanism of bactericidal activity being the generation of reactive oxygen species (ROS), which irreversibly damages membranes. Copper ions released from surfaces lead to RNA degradation and membrane disruption of enveloped viruses. For fungi, the mechanism involves the physical deterioration of the membrane and copper ion influx. Due to variations in the experimental parameters, it is difficult to compare studies directly. In this review article, we outline the importance of the experimental conditions currently employed and how they bear little resemblance to real-world conditions. We endorse previous recommendations calling for an update to industrial standard tests.
Collapse
Affiliation(s)
- Intisar Salah
- Materials Chemistry Research Centre, Department of Chemistry, University College London 20 Gordon Street London UK
| | - Ivan P Parkin
- Materials Chemistry Research Centre, Department of Chemistry, University College London 20 Gordon Street London UK
| | - Elaine Allan
- Department of Microbial Diseases, Eastman Dental Institute, University College London Royal Free Campus, Rowland Hill Street London UK
| |
Collapse
|
38
|
Thomas RE. Reducing Morbidity and Mortality Rates from COVID-19, Influenza and Pneumococcal Illness in Nursing Homes and Long-Term Care Facilities by Vaccination and Comprehensive Infection Control Interventions. Geriatrics (Basel) 2021; 6:48. [PMID: 34066781 PMCID: PMC8162358 DOI: 10.3390/geriatrics6020048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 05/05/2021] [Accepted: 05/06/2021] [Indexed: 12/24/2022] Open
Abstract
The COVID-19 pandemic identifies the problems of preventing respiratory illnesses in seniors, especially frail multimorbidity seniors in nursing homes and Long-Term Care Facilities (LCTFs). Medline and Embase were searched for nursing homes, long-term care facilities, respiratory tract infections, disease transmission, infection control, mortality, systematic reviews and meta-analyses. For seniors, there is strong evidence to vaccinate against influenza, SARS-CoV-2 and pneumococcal disease, and evidence is awaited for effectiveness against COVID-19 variants and when to revaccinate. There is strong evidence to promptly introduce comprehensive infection control interventions in LCFTs: no admissions from inpatient wards with COVID-19 patients; quarantine and monitor new admissions in single-patient rooms; screen residents, staff and visitors daily for temperature and symptoms; and staff work in only one home. Depending on the vaccination situation and the current risk situation, visiting restrictions and meals in the residents' own rooms may be necessary, and reduce crowding with individual patient rooms. Regional LTCF administrators should closely monitor and provide staff and PPE resources. The CDC COVID-19 tool measures 33 infection control indicators. Hand washing, social distancing, PPE (gowns, gloves, masks, eye protection), enhanced cleaning of rooms and high-touch surfaces need comprehensive implementation while awaiting more studies at low risk of bias. Individual ventilation with HEPA filters for all patient and common rooms and hallways is needed.
Collapse
Affiliation(s)
- Roger E Thomas
- Department of Family Medicine, Faculty of Medicine, University of Calgary, Calgary, AB T2M 1M1, Canada
| |
Collapse
|
39
|
Castaño N, Cordts SC, Kurosu Jalil M, Zhang KS, Koppaka S, Bick AD, Paul R, Tang SKY. Fomite Transmission, Physicochemical Origin of Virus-Surface Interactions, and Disinfection Strategies for Enveloped Viruses with Applications to SARS-CoV-2. ACS OMEGA 2021; 6:6509-6527. [PMID: 33748563 PMCID: PMC7944398 DOI: 10.1021/acsomega.0c06335] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 02/19/2021] [Indexed: 05/07/2023]
Abstract
Inanimate objects or surfaces contaminated with infectious agents, referred to as fomites, play an important role in the spread of viruses, including SARS-CoV-2, the virus responsible for the COVID-19 pandemic. The long persistence of viruses (hours to days) on surfaces calls for an urgent need for effective surface disinfection strategies to intercept virus transmission and the spread of diseases. Elucidating the physicochemical processes and surface science underlying the adsorption and transfer of virus between surfaces, as well as their inactivation, is important for understanding how diseases are transmitted and for developing effective intervention strategies. This review summarizes the current knowledge and underlying physicochemical processes of virus transmission, in particular via fomites, and common disinfection approaches. Gaps in knowledge and the areas in need of further research are also identified. The review focuses on SARS-CoV-2, but discussion of related viruses is included to provide a more comprehensive review given that much remains unknown about SARS-CoV-2. Our aim is that this review will provide a broad survey of the issues involved in fomite transmission and intervention to a wide range of readers to better enable them to take on the open research challenges.
Collapse
Affiliation(s)
- Nicolas Castaño
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Seth C. Cordts
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Myra Kurosu Jalil
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Kevin S. Zhang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Saisneha Koppaka
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Alison D. Bick
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Rajorshi Paul
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| | - Sindy K. Y. Tang
- Department
of Mechanical Engineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
40
|
Mostaghimi J, Pershin L, Salimijazi H, Nejad M, Ringuette M. Thermal Spray Copper Alloy Coatings as Potent Biocidal and Virucidal Surfaces. JOURNAL OF THERMAL SPRAY TECHNOLOGY 2021; 30:25-39. [PMID: 38624650 PMCID: PMC7914122 DOI: 10.1007/s11666-021-01161-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/29/2020] [Accepted: 01/08/2021] [Indexed: 05/15/2023]
Abstract
Microbial and viral pathogen contamination of touch surfaces contributes to the rapid transmission of diseases. It has been known for decades that microbes and viruses are rapidly inactivated when exposed to copper and its alloys. Consequently, the use of thermal spray technologies to coat surfaces in healthcare and public settings has been receiving a considerable amount of interest during recent viral pandemics and particularly now with COVID-19. This review is focused on recent successes using thermal spray technology to uniformly coat metal and organic surfaces, providing a rapid and economical means of inhibiting fomite transmission of pathogens on diverse surfaces with complex topographies. Emphasis is placed on the influence of lamella structure, porosity, and roughness of the coatings as it pertains to biocidal activity and the implications of using this knowledge to optimize the ability of copper coatings to irreversibly inactivate viral pathogens, regardless of their genomic mutation rates. Results of the long-term performance of the copper alloy coatings in real hospital settings in Canada and Peru are also presented.
Collapse
Affiliation(s)
| | | | | | - M. Nejad
- Michigan State University, East Lansing, USA
| | | |
Collapse
|
41
|
Fan X, Yahia L, Sacher E. Antimicrobial Properties of the Ag, Cu Nanoparticle System. BIOLOGY 2021; 10:137. [PMID: 33578705 PMCID: PMC7916421 DOI: 10.3390/biology10020137] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/03/2021] [Accepted: 02/07/2021] [Indexed: 12/11/2022]
Abstract
Microbes, including bacteria and fungi, easily form stable biofilms on many surfaces. Such biofilms have high resistance to antibiotics, and cause nosocomial and postoperative infections. The antimicrobial and antiviral behaviors of Ag and Cu nanoparticles (NPs) are well known, and possible mechanisms for their actions, such as released ions, reactive oxygen species (ROS), contact killing, the immunostimulatory effect, and others have been proposed. Ag and Cu NPs, and their derivative NPs, have different antimicrobial capacities and cytotoxicities. Factors, such as size, shape and surface treatment, influence their antimicrobial activities. The biomedical application of antimicrobial Ag and Cu NPs involves coating onto substrates, including textiles, polymers, ceramics, and metals. Because Ag and Cu are immiscible, synthetic AgCu nanoalloys have different microstructures, which impact their antimicrobial effects. When mixed, the combination of Ag and Cu NPs act synergistically, offering substantially enhanced antimicrobial behavior. However, when alloyed in Ag-Cu NPs, the antimicrobial behavior is even more enhanced. The reason for this enhancement is unclear. Here, we discuss these results and the possible behavior mechanisms that underlie them.
Collapse
Affiliation(s)
- Xinzhen Fan
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - L’Hocine Yahia
- Laboratoire d’Innovation et d’Analyse de Bioperformance, Département de Génie Mécanique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada; (X.F.); (L.Y.)
| | - Edward Sacher
- Département de Génie Physique, Polytechnique Montréal, CP 6079, Succursale C-V, Montréal, QC H3C 3A7, Canada
| |
Collapse
|
42
|
Food safety, hygiene, and awareness during combating of COVID-19. ENVIRONMENTAL AND HEALTH MANAGEMENT OF NOVEL CORONAVIRUS DISEASE (COVID-19 ) 2021. [PMCID: PMC8237641 DOI: 10.1016/b978-0-323-85780-2.00002-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Novel coronavirus is a family of viruses that usually leads to respiratory illness. This coronavirus pandemic has affected human life drastically, and there is a chance that this virus persists on raw foods of animal origin. Also, food that is served to the customers by retail sectors passes through different operational steps, which involves multiple touchpoints by the food handlers on the surface of the food or to the food directly. This may lead to the spreading of the coronavirus through the food sector if proper hygiene, sanitization, and disinfection, social distancing, and other preventive measures are not followed. This chapter will give an overview of the type of foodborne viruses and their effects on human health. It will also provide an understanding of the possibilities of transmitting coronavirus disease (COVID-19) through food and food packaging. The review will also focus on the preventive measures, hygiene practices, and safety precautions that should be adopted by the food handlers or food business owners to mitigate the risk of transmitting COVID-19 in the food service and retail sector. Essential aspects of the food safety management system with respect to COVID-19 will be discussed, which should be followed by all the food companies. Finally, the role of different dietary supplements and bioactive ingredients of foods and herbs will be discussed that are known to improve the human immune system, which will fight against the virus.
Collapse
|
43
|
Bleichert P, Bütof L, Rückert C, Herzberg M, Francisco R, Morais PV, Grass G, Kalinowski J, Nies DH. Mutant Strains of Escherichia coli and Methicillin-Resistant Staphylococcus aureus Obtained by Laboratory Selection To Survive on Metallic Copper Surfaces. Appl Environ Microbiol 2020; 87:e01788-20. [PMID: 33067196 PMCID: PMC7755237 DOI: 10.1128/aem.01788-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/09/2020] [Indexed: 01/27/2023] Open
Abstract
Artificial laboratory evolution was used to produce mutant strains of Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) able to survive on antimicrobial metallic copper surfaces. These mutants were 12- and 60-fold less susceptible to the copper-mediated contact killing process than their respective parent strains. Growth levels of the mutant and its parent in complex growth medium were similar. Tolerance to copper ions of the mutants was unchanged. The mutant phenotype remained stable over about 250 generations under nonstress conditions. The mutants and their respective parental strains accumulated copper released from the metallic surfaces to similar extents. Nevertheless, only the parental strains succumbed to copper stress when challenged on metallic copper surfaces, suffering complete destruction of the cell structure. Whole-genome sequencing and global transcriptome analysis were used to decipher the genetic alterations in the mutant strains; however, these results did not explain the copper-tolerance phenotypes on the systemic level. Instead, the mutants shared features with those of stressed bacterial subpopulations entering the early or "shallow" persister state. In contrast to the canonical persister state, however, the ability to survive on solid copper surfaces was adopted by the majority of the mutant strain population. This indicated that application of solid copper surfaces in hospitals and elsewhere has to be accompanied by strict cleaning regimens to keep the copper surfaces active and prevent evolution of tolerant mutant strains.IMPORTANCE Microbes are rapidly killed on solid copper surfaces by contact killing. Copper surfaces thus have an important role to play in preventing the spread of nosocomial infections. Bacteria adapt to challenging natural and clinical environments through evolutionary processes, for instance, by acquisition of beneficial spontaneous mutations. We wish to address the question of whether mutants can be selected that have evolved to survive contact killing on solid copper surfaces. We isolated such mutants from Escherichia coli and methicillin-resistant Staphylococcus aureus (MRSA) by artificial laboratory evolution. The ability to survive on solid copper surfaces was a stable phenotype of the mutant population and not restricted to a small subpopulation. As a consequence, standard operation procedures with strict hygienic measures are extremely important to prevent the emergence and spread of copper-surface-tolerant persister-like bacterial strains if copper surfaces are to be sustainably used to limit the spread of pathogenic bacteria, e.g., to curb nosocomial infections.
Collapse
Affiliation(s)
| | - Lucy Bütof
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | | | - Martin Herzberg
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| | - Romeu Francisco
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Paula V Morais
- CEMMPRE-Centre for Mechanical Engineering, Materials and Processes, Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Gregor Grass
- Bundeswehr Institute of Microbiology, Munich, Germany
| | - Jörn Kalinowski
- Bielefeld University, Center for Biotechnology, Bielefeld, Germany
| | - Dietrich H Nies
- Martin-Luther University Halle-Wittenberg, Institute of Molecular Microbiology, Halle (Saale), Germany
| |
Collapse
|
44
|
Na Z, Bo J, Yifei Y, Fuyuan C, Bin H, Yanshu Z, Huan J, Jingliang S, Shuang L. Isolation and Identification of a Murine Norovirus Persistent Infection Strain in China. Front Vet Sci 2020; 7:571730. [PMID: 33335918 PMCID: PMC7736604 DOI: 10.3389/fvets.2020.571730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 11/02/2020] [Indexed: 11/13/2022] Open
Abstract
Murine Norovirus (MNV) is one of the most known viruses among viruses in mice. Because of the high prevalence of MNV in frequently used laboratory animals in biomedical researches, there is a significant impact of MNV. There may be different prevalence degrees and molecular characteristics of MNV in different regions around the world. Here, we reported an MNV strain "designated HBTS-1806" isolation from commercial mice's feces that caused a detectable cytopathic effect (CPE) in RAW264.7 cells. According to electron microscopy, the virus was 50-70 nm in diameter. The complete genome of HBTS-1806 is 7383 nucleotides with a structure similar to that of MNV reference strains. According to phylogenetic analysis on the basis of the whole genome, HBTS-1806 shared nucleotide sequence identities of 90.2-95.4% with other Chinese isolates reported. Analysis of amino acid sequence on the basis of ORF1 and ORF2 suggested that the isolated strain may be derived from recombination. Although no gross lesions or histopathological changes were found from mice infected with 5 × 105 TCLD50 of MNV by oral gavage inoculation, the intestinal virus loads lasted 12 weeks, suggesting a persistent infection strain of MNV isolate in China.
Collapse
Affiliation(s)
- Zhao Na
- The Experiment Animal Center, North China University of Science and Technology, Tangshan, China
| | - Jiang Bo
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Yang Yifei
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Cao Fuyuan
- The Experiment Animal Center, North China University of Science and Technology, Tangshan, China
| | - He Bin
- The Experiment Animal Center, North China University of Science and Technology, Tangshan, China
| | - Zhang Yanshu
- The Experiment Animal Center, North China University of Science and Technology, Tangshan, China
| | - Jin Huan
- Institute of Animal Husbandry and Veterinary Medicine, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Su Jingliang
- Key Laboratory of Animal Epidemiology and Zoonosis, Ministry of Agriculture, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Li Shuang
- The Experiment Animal Center, North China University of Science and Technology, Tangshan, China
| |
Collapse
|
45
|
Imani SM, Ladouceur L, Marshall T, Maclachlan R, Soleymani L, Didar TF. Antimicrobial Nanomaterials and Coatings: Current Mechanisms and Future Perspectives to Control the Spread of Viruses Including SARS-CoV-2. ACS NANO 2020; 14:12341-12369. [PMID: 33034443 PMCID: PMC7553040 DOI: 10.1021/acsnano.0c05937] [Citation(s) in RCA: 190] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/01/2020] [Indexed: 05/05/2023]
Abstract
The global COVID-19 pandemic has attracted considerable attention toward innovative methods and technologies for suppressing the spread of viruses. Transmission via contaminated surfaces has been recognized as an important route for spreading SARS-CoV-2. Although significant efforts have been made to develop antibacterial surface coatings, the literature remains scarce for a systematic study on broad-range antiviral coatings. Here, we aim to provide a comprehensive overview of the antiviral materials and coatings that could be implemented for suppressing the spread of SARS-CoV-2 via contaminated surfaces. We discuss the mechanism of operation and effectivity of several types of inorganic and organic materials, in the bulk and nanomaterial form, and assess the possibility of implementing these as antiviral coatings. Toxicity and environmental concerns are also discussed for the presented approaches. Finally, we present future perspectives with regards to emerging antimicrobial technologies such as omniphobic surfaces and assess their potential in suppressing surface-mediated virus transfer. Although some of these emerging technologies have not yet been tested directly as antiviral coatings, they hold great potential for designing the next generation of antiviral surfaces.
Collapse
Affiliation(s)
- Sara M. Imani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Liane Ladouceur
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Terrel Marshall
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Roderick Maclachlan
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Leyla Soleymani
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Engineering Physics,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
| | - Tohid F. Didar
- School of Biomedical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Department of Mechanical Engineering,
McMaster University, 1280 Main Street
West, Hamilton, ON L8S 4L7, Canada
- Michael G. DeGroote Institute of
Infectious Disease Research, McMaster
University, Hamilton, ON L8N 3Z5,
Canada
| |
Collapse
|
46
|
Monette A, Mouland AJ. Zinc and Copper Ions Differentially Regulate Prion-Like Phase Separation Dynamics of Pan-Virus Nucleocapsid Biomolecular Condensates. Viruses 2020; 12:E1179. [PMID: 33081049 PMCID: PMC7589941 DOI: 10.3390/v12101179] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/05/2020] [Accepted: 10/12/2020] [Indexed: 02/08/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a rapidly growing research focus due to numerous demonstrations that many cellular proteins phase-separate to form biomolecular condensates (BMCs) that nucleate membraneless organelles (MLOs). A growing repertoire of mechanisms supporting BMC formation, composition, dynamics, and functions are becoming elucidated. BMCs are now appreciated as required for several steps of gene regulation, while their deregulation promotes pathological aggregates, such as stress granules (SGs) and insoluble irreversible plaques that are hallmarks of neurodegenerative diseases. Treatment of BMC-related diseases will greatly benefit from identification of therapeutics preventing pathological aggregates while sparing BMCs required for cellular functions. Numerous viruses that block SG assembly also utilize or engineer BMCs for their replication. While BMC formation first depends on prion-like disordered protein domains (PrLDs), metal ion-controlled RNA-binding domains (RBDs) also orchestrate their formation. Virus replication and viral genomic RNA (vRNA) packaging dynamics involving nucleocapsid (NC) proteins and their orthologs rely on Zinc (Zn) availability, while virus morphology and infectivity are negatively influenced by excess Copper (Cu). While virus infections modify physiological metal homeostasis towards an increased copper to zinc ratio (Cu/Zn), how and why they do this remains elusive. Following our recent finding that pan-retroviruses employ Zn for NC-mediated LLPS for virus assembly, we present a pan-virus bioinformatics and literature meta-analysis study identifying metal-based mechanisms linking virus-induced BMCs to neurodegenerative disease processes. We discover that conserved degree and placement of PrLDs juxtaposing metal-regulated RBDs are associated with disease-causing prion-like proteins and are common features of viral proteins responsible for virus capsid assembly and structure. Virus infections both modulate gene expression of metalloproteins and interfere with metal homeostasis, representing an additional virus strategy impeding physiological and cellular antiviral responses. Our analyses reveal that metal-coordinated virus NC protein PrLDs initiate LLPS that nucleate pan-virus assembly and contribute to their persistence as cell-free infectious aerosol droplets. Virus aerosol droplets and insoluble neurological disease aggregates should be eliminated by physiological or environmental metals that outcompete PrLD-bound metals. While environmental metals can control virus spreading via aerosol droplets, therapeutic interference with metals or metalloproteins represent additional attractive avenues against pan-virus infection and virus-exacerbated neurological diseases.
Collapse
Affiliation(s)
- Anne Monette
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
| | - Andrew J. Mouland
- Lady Davis Institute at the Jewish General Hospital, Montréal, QC H3T 1E2, Canada
- Department of Medicine, McGill University, Montréal, QC H4A 3J1, Canada
| |
Collapse
|
47
|
Walji SD, Aucoin MG. A critical evaluation of current protocols for self-sterilizing surfaces designed to reduce viral nosocomial infections. Am J Infect Control 2020; 48:1255-1260. [PMID: 32204920 DOI: 10.1016/j.ajic.2020.02.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Biocidal high-touch surfaces contact surfaces can be used to help reduce healthcare-acquired infections (HAIs). While the bactericidal protocols are well developed, there remains high variability in the methods used to evaluate the virucidal properties of such surfaces. This paper seeks to identify the most commonly used methods and critically evaluate the strengths of each method by comparing tests from standard testing organisations and related bactericidal protocols. METHODS Three databases and grey literature were queried using a key-word search for relevant articles. Articles were selected if they met the criteria of virucidal properties of self-sterilizing surfaces designed to prevent HAIs. Of the resulting 177 articles, 38 met the inclusion criteria. RESULTS The resulting papers varied greatly in their testing methods and recommendations. Further, no standard test adequately meets the needs for specifically testing virucidal properties of self-sterilizing surfaces. CONCLUSIONS Studies have shown that temperature and humidity can affect the performance of virucidal touch-surfaces, but no standard protocols were found to test these factors.
Collapse
|
48
|
Recker JD, Li X. Evaluation of Copper Alloy Surfaces for Inactivation of Tulane Virus and Human Noroviruses. J Food Prot 2020; 83:1782-1788. [PMID: 32991723 DOI: 10.4315/0362-028x.jfp-19-410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 05/18/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study evaluated the efficacy of copper alloy surfaces for inactivation of Tulane virus (TV), assessed by plaque assay and porcine gastric mucin-conjugated magnetic bead (PGM-MB) binding assay, followed by quantitative reverse transcription PCR (PGM-MB-RT-qPCR assay). In addition, the efficacy of a copper surface for inactivation of human norovirus (HuNoV) GII.4 Sydney and GI.3B Potsdam strains was evaluated by PGM-MB-RT-qPCR assay. Results of time-dependent inactivation of viruses on copper, bronze, and brass coupons revealed that 15 min of surface treatments of each of the copper and copper alloys achieved >4-log reduction of purified TV, as assessed by plaque assay, while up to 20 min of copper alloy surface treatments only achieved ∼2-log reduction, as assessed by PGM-MB-RT-qPCR assay. As assessed by PGM-MB-RT-qPCR assay, 10 min of copper surface treatments achieved reductions of 3 and 4 log units for HuNoVs GII.4 Sydney and GI.3B Potsdam, respectively. Results from this study suggest that even though PGM-MB-RT-qPCR assay underestimated the efficacy of copper alloy surface inactivation of TV, copper alloy surfaces were able to effectively inactivate TV and HuNoVs. Therefore, copper alloys can be used as a preventive measure to prevent HuNoV infection and are an effective surface treatment for HuNoVs. HIGHLIGHTS
Collapse
Affiliation(s)
- Jordan D Recker
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA
| | - Xinhui Li
- Department of Microbiology, University of Wisconsin-La Crosse, La Crosse, Wisconsin 54601, USA.,(ORCID: https://orcid.org/0000-0003-1568-1999 [X.L.])
| |
Collapse
|
49
|
Hutasoit N, Kennedy B, Hamilton S, Luttick A, Rahman Rashid RA, Palanisamy S. Sars-CoV-2 (COVID-19) inactivation capability of copper-coated touch surface fabricated by cold-spray technology. MANUFACTURING LETTERS 2020; 25:93-97. [PMID: 32904558 PMCID: PMC7455544 DOI: 10.1016/j.mfglet.2020.08.007] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 07/31/2020] [Accepted: 08/19/2020] [Indexed: 05/06/2023]
Abstract
In this work, cold-spray technique was employed for rapid coating of copper on in-use steel parts. The primary intention was to alleviate the tendency of SARS-CoV-2 (COVID-19) virus to linger longer on touch surfaces that attract high-to-medium volume human contact, such as the push plates used in publicly accessed buildings and hospitals. The viricidal activity test revealed that 96% of the virus was inactivated within 2-hrs, which was substantially shorter than the time required for stainless steel to inactivate the virus to the same level. Moreover, it was found that the copper-coated samples significantly reduces the lifetime of COVID-19 virus to less than 5-hrs. The capability of the cold-spray technique to generate antiviral copper coating on the existing touch surface eliminates the need for replacing the entire touch surface application with copper material. Furthermore, with a short manufacturing time to produce coatings, the re-deployment of copper-coated parts can be accomplished in minutes, thereby resulting in significant cost savings. This work showcases the capability of cold-spray as a potential copper-coating solution for different in-use parts and components that can act as sources for the spread of the virus.
Collapse
Affiliation(s)
- Novana Hutasoit
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | | | | | | | - Rizwan Abdul Rahman Rashid
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| | - Suresh Palanisamy
- Department of Mechanical and Product Design Engineering, Swinburne University of Technology, Hawthorn, VIC 3122, Australia
| |
Collapse
|
50
|
Poggio C, Colombo M, Arciola CR, Greggi T, Scribante A, Dagna A. Copper-Alloy Surfaces and Cleaning Regimens against the Spread of SARS-CoV-2 in Dentistry and Orthopedics. From Fomites to Anti-Infective Nanocoatings. MATERIALS (BASEL, SWITZERLAND) 2020; 13:3244. [PMID: 32707757 PMCID: PMC7435369 DOI: 10.3390/ma13153244] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/14/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022]
Abstract
The latest diffusion of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), responsible for the coronavirus disease (COVID-19), has involved the whole world population. Even if huge efforts to control the pandemic have been done, the viral spread is still continuing. COVID-19 is reported as a zoonosis jumped from bats and pangolins to humans. After infection in humans, SARS-CoV-2 is found in the nasopharyngeal and salivary secretions. The virus has also been detected in the blood plasma of infected patients. The viral spread occurs through droplets exhaled from the nose and mouth of the infected people when they breath or talk, or through droplets propelled as a dense cloud by chough or sneeze. The virus can also be delivered as an aerosol from blood plasma, through surgical procedures. Following these ways, the virus can disperse in the air, then reaching and settling on the exposed surfaces. How long the virus will survive on a surface depends on the material the surface is made from. Infection via high-touch surfaces should be prevented. Copper alloy coatings, combined with efficient hygienic/disinfectant procedures and careful surgical practice, could be helpful to health protection in dental practice and can also be adopted in orthopedic traumatology.
Collapse
Affiliation(s)
- Claudio Poggio
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Marco Colombo
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Carla Renata Arciola
- IRCCS Istituto Ortopedico Rizzoli, Laboratorio di Patologia delle Infezioni Associate all'Impianto, via di Barbiano 1/10, 40136 Bologna, Italy
- Department of Experimental, Diagnostic and Specially Medicine, University of Bologna, via San Giacomo 14, 40126 Bologna, Italy
| | - Tiziana Greggi
- IRCCS Istituto Ortopedico Rizzoli, Chirurgia delle Deformità del Rachide, via di Barbiano 1/10, 40136 Bologna, Italy
| | - Andrea Scribante
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| | - Alberto Dagna
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences-Section of Dentistry, University of Pavia, Piazzale Golgi 2, 27100 Pavia, Italy
| |
Collapse
|