1
|
Radhakrishnan P, Theriot JA. Listeria monocytogenes cell-to-cell spread bypasses nutrient limitation for replicating intracellular bacteria. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635960. [PMID: 39975404 PMCID: PMC11838505 DOI: 10.1101/2025.01.31.635960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Listeria monocytogenes is an intracellular bacterial pathogen that obtains nutrients from the mammalian host cell to fuel its replication in cytosol. Sparse infection of epithelial monolayers by L. monocytogenes results in the formation of distinct infectious foci, where each focus originates from the initial infection of a single host cell followed by multiple rounds of active bacterial cell-to-cell spread into neighboring host cells in the monolayer. We used time-lapse microscopy to measure changes in bacterial growth rate in individual foci over time and found that intracellular bacteria initially replicate exponentially, but then bacterial growth rate slows later in infection, particularly in the center of the infectious focus. We found that the intracellular replication rate of L. monocytogenes is measurably decreased by limiting host cell glucose availability, by decreasing the rate of intracellular bacterial oligopeptide import, and, most interestingly, by alterations in host cell junctional proteins that limit bacterial spread into neighboring cells without directly affecting bacterial growth or metabolism. By measuring the carrying capacity of individual host cells, we found that the nutritional density of cytoplasm is comparable to rich medium. Taken together, our results indicate that the rate of intracellular L. monocytogenes replication is governed by a balance of the rate of nutrient depletion by the bacteria, the rate of nutrient replenishment by the metabolically active host cells, and the rate of bacterial cell-to-cell spread which enables the bacteria to seek out "greener pastures" before nutrient availability in a single host cell becomes limiting.
Collapse
Affiliation(s)
- Prathima Radhakrishnan
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-1800
| | - Julie A Theriot
- Department of Biology and Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195-1800
| |
Collapse
|
2
|
Gkerekou MA, Kaparakou EH, Tarantilis PA, Skandamis PN. Studying the metabolic factors that may impact the growth of co-cultured Listeria monocytogenes strains at low temperature. Food Res Int 2023; 171:113056. [PMID: 37330855 DOI: 10.1016/j.foodres.2023.113056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/19/2023]
Abstract
The simultaneous presence of more than one strains of Listeria monocytogenes in the same food product may affect the growth capacity of each strain. The present study evaluated the metabolites composition that may potentially influence the growth of individual L. monocytogenes strains in a dual strain composite. Based on previous studies, L. monocytogenes strains, C5 (4b) and 6179 (1/2a) were selected due to the remarkable interaction, which was observed during their co-culture. The selected strains were inoculated (2.0 - 3.0 log CFU/mL) in Tryptic Soy Broth with 0.6% Yeast Extract (TSB-YE) in single and two-strain cultures (1:1 strain ratio). Bacterial growth was assessed during storage at 7 °C, under aerobic conditions (AC). Their resistance to different antibiotics enabled the selective enumeration of each strain in the co-culture. After reaching stationary phase, single and dual cultures were centrifuged and filtered. The cell-free spent medium (CFSM) was either characterized by Fourier transform infrared (FTIR-ATR) spectrometry or re-inoculated, after the addition of concentrated TSB-YE (for nutrient replenishment), with single and two-strain cultures for the evaluation of growth under the influence of metabolites produced from the same singly and co-cultured strains in the different combinations of strains and CFSM origin (7 °C/AC) (n = 2x3). By the end of storage, singly-cultured C5 and 6179 had reached 9.1 log CFU/mL, while in dual culture, 6179 was affected by the presence of C5 attaining only 6.4 ± 0.8 log CFU/mL. FTIR-ATR spectra of CFSM produced by singly-cultured 6179 and the co-culture were almost identical. Characteristic peaks in FTIR-ATR spectrum of CFSM of singly-cultured C5 at 1741, 1645 and 1223 cm-1 represent functional groups which were not present in the CFSM of the co-culture. These molecules may be located intracellularly or mounted on bacterial cell surface and removed from the supernatant during cell filtration of the co-culture. Both singly- and co-cultured 6179 managed to grow similarly regardless of CFSM origin. Contrarily, both singly- and co-cultured C5 managed to outgrow 6179 in CFSM which contained high concentration of C5 metabolites, while in CFSM produced by singly-cultured 6179, C5 did not grow, suggesting that the produced metabolites of strain 6179 appears to be harmful to strain C5. However, during co-culture, C5 may produce molecules that counteract the inhibitory effect of 6179. The findings shed more light on the mechanism behind the inter-strain interactions of L. monocytogenes indicating that both contact of cells and extracellular metabolites may influence the behavior of the different co-existing strains.
Collapse
Affiliation(s)
- Maria A Gkerekou
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Eleftheria H Kaparakou
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Petros A Tarantilis
- Laboratory of General Chemistry, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece
| | - Panagiotis N Skandamis
- Laboratory of Food Quality Control and Hygiene, Department of Food Science and Human Nutrition, Agricultural University of Athens, Greece.
| |
Collapse
|
3
|
Anaerobic Growth of Listeria monocytogenes on Rhamnose Is Stimulated by Vitamin B 12 and Bacterial Microcompartment-Dependent 1,2-Propanediol Utilization. mSphere 2021; 6:e0043421. [PMID: 34287006 PMCID: PMC8386454 DOI: 10.1128/msphere.00434-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The foodborne pathogen Listeria monocytogenes can form proteinaceous organelles called bacterial microcompartments (BMCs) that optimize the utilization of substrates, such as 1,2-propanediol, and confer an anaerobic growth advantage. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol, next to acetate and lactate. Rhamnose-derived 1,2-propanediol was found to link with BMCs in some human pathogens such as Salmonella enterica, but the involvement of BMCs in rhamnose metabolism and potential physiological effects on L. monocytogenes are still unknown. In this study, we first test the effect of rhamnose uptake and utilization on anaerobic growth of L. monocytogenes EGDe without or with added vitamin B12, followed by metabolic analysis. We show that vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via 1,2-propanediol degradation into 1-propanol and propionate. Transmission electron microscopy of pdu-induced cells shows that BMCs are formed, and additional proteomics experiments confirm expression of pdu BMC shell proteins and enzymes. Finally, we discuss the physiological effects and energy efficiency of L. monocytogenespdu BMC-driven anaerobic rhamnose metabolism and the impact on competitive fitness in environments such as the human intestine. IMPORTANCEListeria monocytogenes is a foodborne pathogen causing severe illness and, as such, it is crucial to understand the molecular mechanisms contributing to its survival strategy and pathogenicity. Rhamnose is a deoxyhexose sugar abundant in a range of environments, including the human intestine, and can be degraded in anaerobic conditions into 1,2-propanediol. In our previous study, the utilization of 1,2-propanediol (pdu) in L. monocytogenes was proved to be metabolized in bacterial microcompartments (BMCs), which are self-assembling subcellular proteinaceous structures and analogs of eukaryotic organelles. Here, we show that the vitamin B12-dependent activation of pdu stimulates metabolism and anaerobic growth of L. monocytogenes EGDe on rhamnose via BMC-dependent 1,2-propanediol utilization. Combined with metabolic and proteomics analysis, our discussion on the physiological effects and energy efficiency of BMC-driven rhamnose metabolism shed new light to understand the impact on L. monocytogenes competitive fitness in ecosystems such as the human intestine.
Collapse
|
4
|
Wang D, Greenwood P, Klein MS. A protein-free chemically defined medium for the cultivation of various micro-organisms with food safety significance. J Appl Microbiol 2021; 131:844-854. [PMID: 33449387 DOI: 10.1111/jam.15005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 11/30/2022]
Abstract
AIMS To develop a broadly applicable medium free of proteins with well-defined and reproducible chemical composition for the cultivation of various micro-organisms with food safety significance. METHODS AND RESULTS The defined medium was designed as a buffered minimal salt medium supplemented with amino acids, vitamins, trace metals and other nutrients. Various strains commonly used for food safety research were selected to test the new defined medium. We investigated single growth factors needed by different strains and the growth performance of each strain cultivated in the defined medium. Results showed that the tested strains initially grew slower in the defined medium compared to tryptic soy broth, but after an overnight incubation cultures from the defined medium reached adequately high cell densities. CONCLUSIONS The newly designed defined medium can be widely applied in food safety studies that require media with well-defined chemical constituents. SIGNIFICANCE AND IMPACT OF THE STUDY Defined media are important in studies of microbial metabolites and physiological properties. A defined medium capable of cultivating different strains simultaneously is needed in the food safety area. The new defined medium has broader applications in comparing different strains directly and provides more reproducible results.
Collapse
Affiliation(s)
- D Wang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - P Greenwood
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| | - M S Klein
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
5
|
Azinheiro S, Carvalho J, Prado M, Garrido-Maestu A. Multiplex Detection of Salmonella spp., E. coli O157 and L. monocytogenes by qPCR Melt Curve Analysis in Spiked Infant Formula. Microorganisms 2020; 8:E1359. [PMID: 32899815 PMCID: PMC7564587 DOI: 10.3390/microorganisms8091359] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/23/2023] Open
Abstract
Food poisoning continue to be a threat in the food industry showing a need to improve the detection of the pathogen responsible for the hospitalization cases and death. DNA-based techniques represent a real advantage and allow the detection of several targets at the same time, reducing cost and time of analysis. The development of new methodology using SYBR Green qPCR for the detection of L. monocytogenes, Salmonella spp. and E. coli O157 simultaneously was developed and a non-competitive internal amplification control (NC-IAC) was implemented to detect reaction inhibition. The formulation and supplementation of the enrichment medium was also optimized to allow the growth of all pathogens. The limit of detection (LoD) 95% obtained was <1 CFU/25 g for E. coli O157, and 2 CFU/25 g for Salmonella spp. and L. monocytogenes and regarding the multiplex detection a LoD 95% of 1.7 CFU/25 g was observed. The specificity, relative sensitivity and accuracy of full methodology were 100% and the use of the NC-IAC allowed the reliability of the results without interfering with the sensitivity of the methodology. The described study proved to obtain results comparable to those of probe-based qPCR, and more economically than classical high resolution melting qPCR, being both important aspects for its implementation in the food industry.
Collapse
Affiliation(s)
- Sarah Azinheiro
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (S.A.); (J.C.); (M.P.)
- College of Pharmacy/School of Veterinary Sciences, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Joana Carvalho
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (S.A.); (J.C.); (M.P.)
- College of Pharmacy/School of Veterinary Sciences, University of Santiago de Compostela, Campus Vida, E-15782 Santiago de Compostela, Spain
| | - Marta Prado
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (S.A.); (J.C.); (M.P.)
| | - Alejandro Garrido-Maestu
- Food Quality and Safety Research Group, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal; (S.A.); (J.C.); (M.P.)
| |
Collapse
|
6
|
Applying Statistical Design of Experiments To Understanding the Effect of Growth Medium Components on Cupriavidus necator H16 Growth. Appl Environ Microbiol 2020; 86:AEM.00705-20. [PMID: 32561588 PMCID: PMC7440812 DOI: 10.1128/aem.00705-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 05/31/2020] [Indexed: 01/06/2023] Open
Abstract
Chemically defined media (CDM) for cultivation of C. necator vary in components and compositions. This lack of consensus makes it difficult to optimize new processes for the bacterium. This study employed statistical design of experiments (DOE) to understand how basic components of defined media affect C. necator growth. Our growth model predicts that C. necator can be cultivated to high cell density with components held at low concentrations, arguing that CDM for large-scale cultivation of the bacterium for industrial purposes will be economically competitive. Although existing CDM for the bacterium are without amino acids, addition of a few amino acids to growth medium shortened lag phase of growth. The interactions highlighted by our growth model show how factors can interact with each other during a process to positively or negatively affect process output. This approach is efficient, relying on few well-structured experimental runs to gain maximum information on a biological process, growth. Cupriavidus necator H16 is gaining significant attention as a microbial chassis for range of biotechnological applications. While the bacterium is a major producer of bioplastics, its lithoautotrophic and versatile metabolic capabilities make the bacterium a promising microbial chassis for biofuels and chemicals using renewable resources. It remains necessary to develop appropriate experimental resources to permit controlled bioengineering and system optimization of this microbe. In this study, we employed statistical design of experiments to gain understanding of the impact of components of defined media on C. necator growth and built a model that can predict the bacterium’s cell density based on medium components. This highlighted medium components, and interaction between components, having the most effect on growth: fructose, amino acids, trace elements, CaCl2, and Na2HPO4 contributed significantly to growth (t values of <−1.65 or >1.65); copper and histidine were found to interact and must be balanced for robust growth. Our model was experimentally validated and found to correlate well (r2 = 0.85). Model validation at large culture scales showed correlations between our model-predicted growth ranks and experimentally determined ranks at 100 ml in shake flasks (ρ = 0.87) and 1 liter in a bioreactor (ρ = 0.90). Our approach provides valuable and quantifiable insights on the impact of medium components on cell growth and can be applied to model other C. necator responses that are crucial for its deployment as a microbial chassis. This approach can be extended to other nonmodel microbes of medical and industrial biotechnological importance. IMPORTANCE Chemically defined media (CDM) for cultivation of C. necator vary in components and compositions. This lack of consensus makes it difficult to optimize new processes for the bacterium. This study employed statistical design of experiments (DOE) to understand how basic components of defined media affect C. necator growth. Our growth model predicts that C. necator can be cultivated to high cell density with components held at low concentrations, arguing that CDM for large-scale cultivation of the bacterium for industrial purposes will be economically competitive. Although existing CDM for the bacterium are without amino acids, addition of a few amino acids to growth medium shortened lag phase of growth. The interactions highlighted by our growth model show how factors can interact with each other during a process to positively or negatively affect process output. This approach is efficient, relying on few well-structured experimental runs to gain maximum information on a biological process, growth.
Collapse
|
7
|
Terfrüchte M, Wewetzer S, Sarkari P, Stollewerk D, Franz-Wachtel M, Macek B, Schlepütz T, Feldbrügge M, Büchs J, Schipper K. Tackling destructive proteolysis of unconventionally secreted heterologous proteins in Ustilago maydis. J Biotechnol 2018; 284:37-51. [DOI: 10.1016/j.jbiotec.2018.07.035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 07/10/2018] [Accepted: 07/26/2018] [Indexed: 02/07/2023]
|
8
|
Müller J, Beckers M, Mußmann N, Bongaerts J, Büchs J. Elucidation of auxotrophic deficiencies of Bacillus pumilus DSM 18097 to develop a defined minimal medium. Microb Cell Fact 2018; 17:106. [PMID: 29986716 PMCID: PMC6036677 DOI: 10.1186/s12934-018-0956-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022] Open
Abstract
Background Culture media containing complex compounds like yeast extract or peptone show numerous disadvantages. The chemical composition of the complex compounds is prone to significant variations from batch to batch and quality control is difficult. Therefore, the use of chemically defined media receives more and more attention in commercial fermentations. This concept results in better reproducibility, it simplifies downstream processing of secreted products and enable rapid scale-up. Culturing bacteria with unknown auxotrophies in chemically defined media is challenging and often not possible without an extensive trial-and-error approach. In this study, a respiration activity monitoring system for shake flasks and its recent version for microtiter plates were used to clarify unknown auxotrophic deficiencies in the model organism Bacillus pumilus DSM 18097. Results Bacillus pumilus DSM 18097 was unable to grow in a mineral medium without the addition of complex compounds. Therefore, a rich chemically defined minimal medium was tested containing basically all vitamins, amino acids and nucleobases, which are essential ingredients of complex components. The strain was successfully cultivated in this medium. By monitoring of the respiration activity, nutrients were supplemented to and omitted from the rich chemically defined medium in a rational way, thus enabling a systematic and fast determination of the auxotrophic deficiencies. Experiments have shown that the investigated strain requires amino acids, especially cysteine or histidine and the vitamin biotin for growth. Conclusions The introduced method allows an efficient and rapid identification of unknown auxotrophic deficiencies and can be used to develop a simple chemically defined tailor-made medium. B. pumilus DSM 18097 was chosen as a model organism to demonstrate the method. However, the method is generally suitable for a wide range of microorganisms. By combining a systematic combinatorial approach based on monitoring the respiration activity with cultivation in microtiter plates, high throughput experiments with high information content can be conducted. This approach facilitates media development, strain characterization and cultivation of fastidious microorganisms in chemically defined minimal media while simultaneously reducing the experimental effort. Electronic supplementary material The online version of this article (10.1186/s12934-018-0956-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Janina Müller
- AVT‑Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Mario Beckers
- AVT‑Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany
| | - Nina Mußmann
- International R&D Laundry and Homecare, Henkel AG & Co KGaA, Henkelstr. 67, 40589, Düsseldorf, Germany
| | - Johannes Bongaerts
- Faculty of Chemistry and Biotechnology, FH Aachen-University of Applied Sciences, Heinrich-Mußmannstr. 1, 52428, Jülich, Germany
| | - Jochen Büchs
- AVT‑Biochemical Engineering, RWTH Aachen University, Forckenbeckstraße 51, 52074, Aachen, Germany.
| |
Collapse
|
9
|
Abstract
Coevolution of pathogens and host has led to many metabolic strategies employed by intracellular pathogens to deal with the immune response and the scarcity of food during infection. Simply put, bacterial pathogens are just looking for food. As a consequence, the host has developed strategies to limit nutrients for the bacterium by containment of the intruder in a pathogen-containing vacuole and/or by actively depleting nutrients from the intracellular space, a process called nutritional immunity. Since metabolism is a prerequisite for virulence, such pathways could potentially be good targets for antimicrobial therapies. In this chapter, we review the current knowledge about the in vivo diet of Mycobacterium tuberculosis, with a focus on amino acid and cofactors, discuss evidence for the bacilli's nutritionally independent lifestyle in the host, and evaluate strategies for new chemotherapeutic interventions.
Collapse
|
10
|
Posadas GA, Broadway PR, Thornton JA, Carroll JA, Lawrence A, Corley JR, Thompson A, Donaldson JR. Yeast Pro- and Paraprobiotics Have the Capability to Bind Pathogenic Bacteria Associated with Animal Disease. Transl Anim Sci 2017; 1:60-68. [PMID: 32064460 PMCID: PMC7011128 DOI: 10.2527/tas2016.0007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Live yeast probiotics and yeast cell wall components (paraprobiotics) may serve as an alternative to the use of antibiotics in prevention and treatment of infections caused by pathogenic bacteria. Probiotics and paraprobiotics can bind directly to pathogens, which limits binding of the pathogens to the intestinal cells and also facilitates removal from the host. However, knowledge of bacterial binding, specificity, and/or capability is limited with regard to probiotics or paraprobiotics. The goal of this study was to characterize the qualitative and quantitative nature of two Saccharomyces cerevisiae probiotics and three S. cerevisiae paraprobiotics to adhere to thirteen different pathogenic bacteria using scanning electron miscroscopy and filtration assays. On average, the yeast probiotics (LYA and LYB) exhibited overall greater (P < 0.05) adhesion to the pathogenic bacteria tested (41% and 34%) in comparison to paraprobiotics (23%, 21%, and 22%), though variations were observed between pathogens tested. The ability of Salmonella and Listeria to utilize components of the yeast as a nutrient source was also tested. Bacteria were cultured in media with limited carbon and supplemented with cell free extracts of the probiotics and paraprobiotics. Salmonella exhibited growth, indicating these pathogens could utilize the yeast lysates as a carbon source. Listeria monocytogenes had limited growth in only one of the lysates tested. Together, these data indicate that the interaction between probiotics and paraprobiotics occurs in a strain dependent mechanism. Administration of probiotics and paraprobiotics as therapeutics therefore needs to be specific against the bacterial pathogen target.
Collapse
Affiliation(s)
- Gabriel A Posadas
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | | | - Justin A Thornton
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | | | - Amanda Lawrence
- Institute for Imaging and Analytical Technologies, Mississippi State, MS 39762
| | | | - Amber Thompson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | - Janet R Donaldson
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762.,Department of Biological Sciences, The University of Southern Mississippi, Hattiesburg, MS 39402
| |
Collapse
|
11
|
Jarvis NA, O'Bryan CA, Ricke SC, Johnson MG, Crandall PG. A review of minimal and defined media for growth of Listeria monocytogenes. Food Control 2016. [DOI: 10.1016/j.foodcont.2016.02.020] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Metabolic Adaptations of Intracellullar Bacterial Pathogens and their Mammalian Host Cells during Infection ("Pathometabolism"). Microbiol Spectr 2016; 3. [PMID: 26185075 DOI: 10.1128/microbiolspec.mbp-0002-2014] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several bacterial pathogens that cause severe infections in warm-blooded animals, including humans, have the potential to actively invade host cells and to efficiently replicate either in the cytosol or in specialized vacuoles of the mammalian cells. The interaction between these intracellular bacterial pathogens and the host cells always leads to multiple physiological changes in both interacting partners, including complex metabolic adaptation reactions aimed to promote proliferation of the pathogen within different compartments of the host cells. In this chapter, we discuss the necessary nutrients and metabolic pathways used by some selected cytosolic and vacuolar intracellular pathogens and--when available--the links between the intracellular bacterial metabolism and the expression of the virulence genes required for the intracellular bacterial replication cycle. Furthermore, we address the growing evidence that pathogen-specific factors may also trigger metabolic responses of the infected mammalian cells affecting the carbon and nitrogen metabolism as well as defense reactions. We also point out that many studies on the metabolic host cell responses induced by the pathogens have to be scrutinized due to the use of established cell lines as model host cells, as these cells are (in the majority) cancer cells that exhibit a dysregulated primary carbon metabolism. As the exact knowledge of the metabolic host cell responses may also provide new concepts for antibacterial therapies, there is undoubtedly an urgent need for host cell models that more closely reflect the in vivo infection conditions.
Collapse
|
13
|
Häuslein I, Manske C, Goebel W, Eisenreich W, Hilbi H. Pathway analysis using13C-glycerol and other carbon tracers reveals a bipartite metabolism ofLegionella pneumophila. Mol Microbiol 2016; 100:229-46. [DOI: 10.1111/mmi.13313] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2015] [Indexed: 01/17/2023]
Affiliation(s)
- Ina Häuslein
- Lehrstuhl für Biochemie, Technische Universität München; Munich Germany
| | - Christian Manske
- Max von Pettenkofer Institut, Ludwig-Maximilians Universität; Munich Germany
| | - Werner Goebel
- Max von Pettenkofer Institut, Ludwig-Maximilians Universität; Munich Germany
| | | | - Hubert Hilbi
- Max von Pettenkofer Institut, Ludwig-Maximilians Universität; Munich Germany
- Institute of Medical Microbiology, University of Zürich; Switzerland
| |
Collapse
|
14
|
Kutzner E, Kern T, Felsl A, Eisenreich W, Fuchs TM. Isotopologue profiling of the listerial N-metabolism. Mol Microbiol 2016; 100:315-27. [PMID: 26699934 DOI: 10.1111/mmi.13318] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2015] [Indexed: 11/26/2022]
Abstract
The nitrogen (N-) sources and the relative contribution of a nitrogenous nutrient to the N-pool of the gram-positive pathogen Listeria monocytogenes are largely unknown. Therefore, (15) N-isotopologue profiling was established to study the N-metabolism of L. monocytogenes. The pathogen was grown in a defined minimal medium supplemented with potential (15) N-labeled nutrients. The bacteria were harvested and hydrolysed under acidic conditions, and the resulting amino acids were analysed by GC-MS, revealing (15) N-enrichments and isotopomeric compositions of amino acids. The differential (15) N-profiles showed the substantial and simultaneous usage of ammonium, glutamine, methionine, and, to a lower extent, the branched-chain amino acids valine, leucine, and isoleucine for anabolic purposes, with a significant preference for ammonium. In contrast, arginine, histidine and cysteine were directly incorporated into proteins. L. monocytogenes is able to replace glutamine with ethanolamine or glucosamine as amino donors for feeding the core N-metabolism. Perturbations of N-fluxes caused by gene deletions demonstrate the involvement of ethanolamine ammonia lyase, and suggest a role of the regulator GlnK of L. monocytogenes distinct from that of Escherichia coli. The metabolism of nitrogenous nutrients reflects the high flexibility of this pathogenic bacterium in exploiting N-sources that could also be relevant for its proliferation during infection.
Collapse
Affiliation(s)
- Erika Kutzner
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Tanja Kern
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Angela Felsl
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| | - Wolfgang Eisenreich
- Lehrstuhl für Biochemie, Technische Universität München, D-85747, Garching, Germany
| | - Thilo M Fuchs
- Lehrstuhl für Mikrobielle Ökologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München, Weihenstephaner Berg 3, 85354, Freising, Germany
| |
Collapse
|
15
|
Sochocka M, Tomczyk T, Sobczyński M, Szermer-Olearnik B, Boratyński J. The kinetics of Escherichia coli B growth and bacteriophage T4 multiplication in SM-1 novel minimal culture medium. J GEN APPL MICROBIOL 2015; 61:75-81. [DOI: 10.2323/jgam.61.75] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Marta Sochocka
- Laboratory of Biomedical Chemistry and Laboratory of Virology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences
| | - Tomasz Tomczyk
- Laboratory of Biomedical Chemistry and Laboratory of Virology, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences
| | - Maciej Sobczyński
- Faculty of Biotechnology, Department of Genomics, University of Wrocław
| | - Bożena Szermer-Olearnik
- Laboratory of Biomedical Chemistry, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences
| | - Janusz Boratyński
- Laboratory of Biomedical Chemistry, Institute of Immunology and Experimental Therapy, Polish Academy of Sciences
- Departament of Biomedical Sciences, Jan Długosz University
| |
Collapse
|
16
|
Grubmüller S, Schauer K, Goebel W, Fuchs TM, Eisenreich W. Analysis of carbon substrates used by Listeria monocytogenes during growth in J774A.1 macrophages suggests a bipartite intracellular metabolism. Front Cell Infect Microbiol 2014; 4:156. [PMID: 25405102 PMCID: PMC4217532 DOI: 10.3389/fcimb.2014.00156] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 10/14/2014] [Indexed: 01/08/2023] Open
Abstract
Intracellular bacterial pathogens (IBPs) are dependent on various nutrients provided by the host cells. Different strategies may therefore be necessary to adapt the intracellular metabolism of IBPs to the host cells. The specific carbon sources, the catabolic pathways participating in their degradation, and the biosynthetic performances of IBPs are still poorly understood. In this report, we have exploited the technique of (13)C-isotopologue profiling to further study the carbon metabolism of Listeria monocytogenes by using the EGDe wild-type strain and mutants (defective in the uptake and/or catabolism of various carbon compounds) replicating in J774A.1 macrophages. For this goal, the infected macrophages were cultivated in the presence of [1,2-(13)C2]glucose, [U-(13)C3]glycerol, [U-(13)C3]pyruvate, [U-(13)C3]lactate, or a mix of [U-(13)C]amino acids. GC/MS-based isotopologue profiling showed efficient utilization of amino acids, glucose 6-phosphate, glycerol, and (at a low extent) also of lactate but not of pyruvate by the IBPs. Most amino acids imported from the host cells were directly used for bacterial protein biosynthesis and hardly catabolized. However, Asp was de novo synthesized by the IBPs and not imported from the host cell. As expected, glycerol was catabolized via the ATP-generating lower part of the glycolytic pathway, but apparently not used for gluconeogenesis. The intermediates generated from glucose 6-phosphate in the upper part of the glycolytic pathway and the pentose phosphate shunt likely serve primarily for anabolic purposes (probably for the biosynthesis of cell wall components and nucleotides). This bipartite bacterial metabolism which involves at least two major carbon substrates-glycerol mainly for energy supply and glucose 6-phosphate mainly for indispensible anabolic performances-may put less nutritional stress on the infected host cells, thereby extending the lifespan of the host cells to the benefit of the IBPs.
Collapse
Affiliation(s)
| | - Kristina Schauer
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München Freising, Germany
| | - Werner Goebel
- Department for Bacteriology, Max von Pettenkofer Institute, Ludwig-Maximilians-Universität München, Germany
| | - Thilo M Fuchs
- Abteilung Mikrobiologie, Zentralinstitut für Ernährungs- und Lebensmittelforschung (ZIEL), Technische Universität München Freising, Germany
| | | |
Collapse
|
17
|
Tyrovouzis NA, Angelidis AS, Stoforos NG. Bi-phasic growth of Listeria monocytogenes in chemically defined medium at low temperatures. Int J Food Microbiol 2014; 186:110-9. [PMID: 25016210 DOI: 10.1016/j.ijfoodmicro.2014.06.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Revised: 04/16/2014] [Accepted: 06/22/2014] [Indexed: 10/25/2022]
Abstract
The present work reports a novel observation regarding the growth of L. monocytogenes in modified Welshimer's broth (MWB) at low temperatures. Specifically, the direct monitoring of the growth of L. monocytogenes Scott A using plate count data revealed that the pathogen displays a bi-phasic growth pattern in MWB at 7 °C. This bi-phasic growth pattern is masked (not observed) when optical density (OD) measurements are used to monitor growth due to the inability of OD readings to detect L. monocytogenes population density increases up to 10(7) CFU/mL. This bi-phasic growth phenomenon was further investigated as a function of growth temperature (4 °C, 7 °C, 10 °C, 14 °C and 18 °C), medium composition (by altering the MWB composition by ten-fold increases in different sets of medium constituents), inoculum level (10(2), 10(3), 10(4), 10(5), 10(6), and 10(7) CFU/mL) and L. monocytogenes strain (10 strains). The growth of L. monocytogenes Scott A in MWB at 7 °C, 10 °C and 14 °C was consistently bi-phasic and independent of growth rate; at 18 °C, growth was consistently mono-phasic (single-phase, typical sigmoid growth curves), whereas no growth was observed at 4 °C. The tested modifications in the composition of MWB did not influence the bi-phasic nature of L. monocytogenes Scott A growth at 7 °C, and, overall, we could not point out any strain-, or serotype-specific effects. On the other hand, the initial inoculum level appears to affect the form of the growth curve, as there was a shift towards mono-phasic growth in trials with increasing initial inocula. A mathematical model, based on a stepwise response and described through two sequential sigmoid curves, was used to describe bi-phasic growth and estimate the kinetic parameters of L. monocytogenes growth. An alternative hypothesis, based on the assumption of the existence of two subpopulations, possessing different growth kinetics, materialized under the stress imposed on L. monocytogenes cells due to the combined effect of three factors (defined medium, low temperature and low initial inoculum) was also proposed and formulated.
Collapse
Affiliation(s)
- Nikolaos A Tyrovouzis
- Department of Chemical Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Apostolos S Angelidis
- Laboratory of Milk Hygiene and Technology, Department of Food Hygiene and Technology, School of Veterinary Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikolaos G Stoforos
- Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece.
| |
Collapse
|
18
|
Growth of the extremophilic Deinococcus geothermalis DSM 11302 using co-substrate fed-batch culture. Appl Microbiol Biotechnol 2013; 98:1281-90. [PMID: 24323286 DOI: 10.1007/s00253-013-5397-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/08/2013] [Accepted: 11/09/2013] [Indexed: 10/25/2022]
Abstract
Deinococcus geothermalis metabolism has been scarcely studied to date, although new developments on its utilization for bioremediation have been carried out. So, large-scale production of this strain and a better understanding of its physiology are required. A fed-batch experiment was conducted to achieve a high cell density non-limiting culture of D. geothermalis DSM 11302. A co-substrate nutritional strategy using glucose and yeast extract was carried out in a 20-L bioreactor in order to maintain a non-limited growth at a maximal growth rate of 1 h(-1) at 45 °C. Substrate supplies were adjusted by monitoring online culture parameters and physiological data (dissolved oxygen, gas analyses, respiratory quotient, biomass concentration). The results showed that yeast extract could serve as both carbon and nitrogen sources, although glucose and ammonia were consumed too. Yeast extract carbon-specific uptake rate reached a value 4.5 times higher than glucose carbon-specific uptake rate. Cell concentration of 9.6 g L(-1) dry cell weight corresponding to 99 g of biomass was obtained using glucose and yeast extract as carbon and nitrogen sources.
Collapse
|
19
|
Large-scale bioreactor production of the herbicide-degrading Aminobacter sp. strain MSH1. Appl Microbiol Biotechnol 2013; 98:2335-44. [DOI: 10.1007/s00253-013-5202-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 08/16/2013] [Accepted: 08/17/2013] [Indexed: 10/26/2022]
|