1
|
Yu J, Li C, Cheng Y, Guo S, Lu H, Xie X, Ji H, Qiao Y. Mechanism and improvement of yeast tolerance to biomass-derived inhibitors: A review. Biotechnol Adv 2025; 81:108562. [PMID: 40107432 DOI: 10.1016/j.biotechadv.2025.108562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 03/11/2025] [Accepted: 03/11/2025] [Indexed: 03/22/2025]
Abstract
Lignocellulosic biomass is regarded as a potentially valuable second-generation biorefinery feedstock. Yeast has the ability to metabolize this substrate and convert it into fuel ethanol and an array of other chemical products. Nevertheless, during the pretreatment of lignocellulosic biomass, inhibitors (furanaldehydes, carboxylic acids, phenolic compounds, etc.) are generated, which impede the growth and metabolic activities of yeast cells. Consequently, developing yeast strains with enhanced tolerance to these inhibitors is a crucial technological objective, as it can significantly enhance the efficiency of lignocellulosic biorefineries. This review provides a concise overview of the process of inhibitor generation and the detrimental effects of these inhibitors on yeast. It also summarizes the current state of research on the mechanisms of yeast tolerance to these inhibitors, focusing specifically on recent advances in enhancing yeast tolerance to these inhibitors by rational and non-rational strategies. Finally, it discusses the current challenges and future research directions.
Collapse
Affiliation(s)
- Jinling Yu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Cuili Li
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Yajie Cheng
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Shaobo Guo
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China
| | - Hongzhao Lu
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China
| | - Xiuchao Xie
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China.
| | - Hao Ji
- Institute of Life Sciences, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Yanming Qiao
- Shaanxi Province Key Laboratory of Bio-Resources, Qinba Mountain Area Collaborative Innovation Center of Bioresources Comprehensive Development, Qinba State Key Laboratory of Biological Resources and Ecological Environment (Incubation), School of Biological Science and Engineering, Shaanxi University of Technology, Hanzhong 723000, China; Engineering Research Center of Quality Improvement and Safety Control of Qinba Special Meat Products, Universities of Shaanxi Province, Shaanxi University of Technology, Hanzhong 723000, China.
| |
Collapse
|
2
|
Zhao J, Zhao Y, Wu L, Yan N, Yang S, Xu L, He D, Li H, Bao X. Development of a Robust Saccharomyces cerevisiae Strain for Efficient Co-Fermentation of Mixed Sugars and Enhanced Inhibitor Tolerance through Protoplast Fusion. Microorganisms 2024; 12:1526. [PMID: 39203368 PMCID: PMC11356107 DOI: 10.3390/microorganisms12081526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/03/2024] Open
Abstract
The economical and efficient commercial production of second-generation bioethanol requires fermentation microorganisms capable of entirely and rapidly utilizing all sugars in lignocellulosic hydrolysates. In this study, we developed a recombinant Saccharomyces cerevisiae strain, BLH510, through protoplast fusion and metabolic engineering to enhance its ability to co-ferment glucose, xylose, cellobiose, and xylooligosaccharides while tolerating various inhibitors commonly found in lignocellulosic hydrolysates. The parental strains, LF1 and BLN26, were selected for their superior glucose/xylose co-fermentation capabilities and inhibitor tolerance, respectively. The fusion strain BLH510 demonstrated efficient utilization of mixed sugars and high ethanol yield under oxygen-limited conditions. Under low inoculum conditions, strain BLH510 could completely consume all four kinds of sugars in the medium within 84 h. The fermentation produced 33.96 g/L ethanol, achieving 84.3% of the theoretical ethanol yield. Despite the challenging presence of mixed inhibitors, BLH510 successfully metabolized all four sugars above after 120 h of fermentation, producing approximately 30 g/L ethanol and reaching 83% of the theoretical yield. Also, strain BLH510 exhibited increased intracellular trehalose content, particularly under conditions with mixed inhibitors, where the intracellular trehalose reached 239.3 mg/g yeast biomass. This elevated trehalose content contributes to the enhanced stress tolerance of BLH510. The study also optimized conditions for protoplast preparation and fusion, balancing high preparation efficiency and satisfactory regeneration efficiency. The results indicate that BLH510 is a promising candidate for industrial second-generation bioethanol production from lignocellulosic biomass, offering improved performance under challenging fermentation conditions. Our work demonstrates the potential of combining protoplast fusion and metabolic engineering to develop superior S. cerevisiae strains for lignocellulosic bioethanol production. This approach can also be extended to develop robust microbial platforms for producing a wide array of lignocellulosic biomass-based biochemicals.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Hongxing Li
- Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, 3501 Daxue Road, Jinan 250353, China; (J.Z.); (Y.Z.); (L.W.); (N.Y.); (S.Y.); (L.X.); (D.H.); (X.B.)
| | | |
Collapse
|
3
|
Soares LB, da Silveira JM, Biazi LE, Longo L, de Oliveira D, Furigo Júnior A, Ienczak JL. An overview on fermentation strategies to overcome lignocellulosic inhibitors in second-generation ethanol production using cell immobilization. Crit Rev Biotechnol 2023; 43:1150-1171. [PMID: 36162829 DOI: 10.1080/07388551.2022.2109452] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 07/06/2022] [Indexed: 11/03/2022]
Abstract
The development of technologies to ferment carbohydrates (mainly glucose and xylose) obtained from the hydrolysis of lignocellulosic biomass for the production of second-generation ethanol (2G ethanol) has many economic and environmental advantages. The pretreatment step of this biomass is industrially performed mainly by steam explosion with diluted sulfuric acid and generates hydrolysates that contain inhibitory compounds for the metabolism of microorganisms, harming the next step of ethanol production. The main inhibitors are: organic acids, furan, and phenolics. Several strategies can be applied to decrease the action of these compounds in microorganisms, such as cell immobilization. Based on data published in the literature, this overview will address the relevant aspects of cell immobilization for the production of 2G ethanol, aiming to evaluate this method as a strategy for protecting microorganisms against inhibitors in different modes of operation for fermentation. This is the first overview to date that shows the relation between inhibitors, cells immobilization, and fermentation operation modes for 2G ethanol. In this sense, the state of the art regarding the main inhibitors in 2G ethanol and the most applied techniques for cell immobilization, besides batch, repeated batch and continuous fermentation using immobilized cells, in addition to co-culture immobilization and co-immobilization of enzymes, are presented in this work.
Collapse
Affiliation(s)
- Lauren Bergmann Soares
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | | | - Luiz Eduardo Biazi
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Liana Longo
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Débora de Oliveira
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Agenor Furigo Júnior
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Jaciane Lutz Ienczak
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
4
|
Sullivan SF, Shetty A, Bharadwaj T, Krishna N, Trivedi VD, Endalur Gopinarayanan V, Chappell TC, Sellers DM, Pravin Kumar R, Nair NU. Towards universal synthetic heterotrophy using a metabolic coordinator. Metab Eng 2023; 79:14-26. [PMID: 37406763 PMCID: PMC10529783 DOI: 10.1016/j.ymben.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 06/13/2023] [Accepted: 07/03/2023] [Indexed: 07/07/2023]
Abstract
Engineering the utilization of non-native substrates, or synthetic heterotrophy, in proven industrial microbes such as Saccharomyces cerevisiae represents an opportunity to valorize plentiful and renewable sources of carbon and energy as inputs to bioprocesses. We previously demonstrated that activation of the galactose (GAL) regulon, a regulatory structure used by this yeast to coordinate substrate utilization with biomass formation during growth on galactose, during growth on the non-native substrate xylose results in a vastly altered gene expression profile and faster growth compared with constitutive overexpression of the same heterologous catabolic pathway. However, this effort involved the creation of a xylose-inducible variant of Gal3p (Gal3pSyn4.1), the sensor protein of the GAL regulon, preventing this semi-synthetic regulon approach from being easily adapted to additional non-native substrates. Here, we report the construction of a variant Gal3pMC (metabolic coordinator) that exhibits robust GAL regulon activation in the presence of structurally diverse substrates and recapitulates the dynamics of the native system. Multiple molecular modeling studies suggest that Gal3pMC occupies conformational states corresponding to galactose-bound Gal3p in an inducer-independent manner. Using Gal3pMC to test a regulon approach to the assimilation of the non-native lignocellulosic sugars xylose, arabinose, and cellobiose yields higher growth rates and final cell densities when compared with a constitutive overexpression of the same set of catabolic genes. The subsequent demonstration of rapid and complete co-utilization of all three non-native substrates suggests that Gal3pMC-mediated dynamic global gene expression changes by GAL regulon activation may be universally beneficial for engineering synthetic heterotrophy.
Collapse
Affiliation(s)
- Sean F Sullivan
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Anuj Shetty
- Kcat Enzymatic Private Limited, Bengaluru, Karnataka, 560005, India
| | - Tharun Bharadwaj
- Kcat Enzymatic Private Limited, Bengaluru, Karnataka, 560005, India
| | - Naveen Krishna
- Kcat Enzymatic Private Limited, Bengaluru, Karnataka, 560005, India
| | - Vikas D Trivedi
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, 02155, USA; Department of Structural Biology and Center for Data Driven Discovery, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Todd C Chappell
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - Daniel M Sellers
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, 02155, USA
| | - R Pravin Kumar
- Kcat Enzymatic Private Limited, Bengaluru, Karnataka, 560005, India
| | - Nikhil U Nair
- Department of Chemical & Biological Engineering, Tufts University, Medford, MA, 02155, USA.
| |
Collapse
|
5
|
Singh B, Kumar A, Saini AK, Saini RV, Thakur R, Mohammed SA, Tuli HS, Gupta VK, Areeshi MY, Faidah H, Jalal NA, Haque S. Strengthening microbial cell factories for efficient production of bioactive molecules. Biotechnol Genet Eng Rev 2023:1-34. [PMID: 36809927 DOI: 10.1080/02648725.2023.2177039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/21/2023] [Indexed: 02/24/2023]
Abstract
High demand of bioactive molecules (food additives, antibiotics, plant growth enhancers, cosmetics, pigments and other commercial products) is the prime need for the betterment of human life where the applicability of the synthetic chemical product is on the saturation due to associated toxicity and ornamentations. It has been noticed that the discovery and productivity of such molecules in natural scenarios are limited due to low cellular yields as well as less optimized conventional methods. In this respect, microbial cell factories timely fulfilling the requirement of synthesizing bioactive molecules by improving production yield and screening more promising structural homologues of the native molecule. Where the robustness of the microbial host can be potentially achieved by taking advantage of cell engineering approaches such as tuning functional and adjustable factors, metabolic balancing, adapting cellular transcription machinery, applying high throughput OMICs tools, stability of genotype/phenotype, organelle optimizations, genome editing (CRISPER/Cas mediated system) and also by developing accurate model systems via machine-learning tools. In this article, we provide an overview from traditional to recent trends and the application of newly developed technologies, for strengthening the systemic approaches and providing future directions for enhancing the robustness of microbial cell factories to speed up the production of biomolecules for commercial purposes.
Collapse
Affiliation(s)
- Bharat Singh
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Ankit Kumar
- TERI-Deakin Nanobiotechnology Centre, TERI Gram, The Energy and Resources Institute, Gurugram, India
| | - Adesh Kumar Saini
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Reena Vohra Saini
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Rahul Thakur
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Shakeel A Mohammed
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Hardeep Singh Tuli
- Department of Biotechnology and Central Research Cell, MMEC, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, India
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Centre, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Mohammed Y Areeshi
- Medical Laboratory Technology Department, College of Applied Medical Sciences, Jazan University, Jazan, Saudi Arabia
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Hani Faidah
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Naif A Jalal
- Department of Microbiology, Faculty of Medicine, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Shafiul Haque
- Research and Scientific Studies Unit, College of Nursing and Allied Health Sciences, Jazan University, Jazan, Saudi Arabia
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut, Lebanon
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| |
Collapse
|
6
|
Tadioto V, Deoti JR, Müller C, de Souza BR, Fogolari O, Purificação M, Giehl A, Deoti L, Lucaroni AC, Matsushika A, Treichel H, Stambuk BU, Alves Junior SL. Prospecting and engineering yeasts for ethanol production under inhibitory conditions: an experimental design analysis. Bioprocess Biosyst Eng 2022:10.1007/s00449-022-02812-x. [DOI: 10.1007/s00449-022-02812-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022]
|
7
|
How adaptive laboratory evolution can boost yeast tolerance to lignocellulosic hydrolyses. Curr Genet 2022; 68:319-342. [PMID: 35362784 DOI: 10.1007/s00294-022-01237-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/01/2022] [Accepted: 03/06/2022] [Indexed: 12/25/2022]
Abstract
The yeast Saccharomyces cerevisiae is an excellent candidate for establishing cell factories to convert lignocellulosic biomass into chemicals and fuels. To enable this technology, yeast robustness must be improved to withstand the fermentation inhibitors (e.g., weak organic acids, phenols, and furan aldehydes) resulting from biomass pretreatment and hydrolysis. Here, we discuss how evolution experiments performed in the lab, a method commonly known as adaptive laboratory evolution (ALE), may contribute to lifting yeast tolerance against the inhibitors of lignocellulosic hydrolysates (LCHs). The key is that, through the combination of whole-genome sequencing and reverse engineering, ALE provides a robust platform for discovering and testing adaptive alleles, allowing to explore the genetic underpinnings of yeast responses to LCHs. We review the insights gained from past evolution experiments with S. cerevisiae in LCH inhibitors and propose experimental designs to optimise the discovery of genetic variants adaptive to biomass toxicity. The knowledge gathered through ALE projects is envisaged as a roadmap to engineer superior yeast strains for biomass-based bioprocesses.
Collapse
|
8
|
Chen HQ, Xing Q, Cheng C, Zhang MM, Liu CG, Champreda V, Zhao XQ. Identification of Kic1p and Cdc42p as Novel Targets to Engineer Yeast Acetic Acid Stress Tolerance. Front Bioeng Biotechnol 2022; 10:837813. [PMID: 35402407 PMCID: PMC8992792 DOI: 10.3389/fbioe.2022.837813] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Robust yeast strains that are tolerant to multiple stress environments are desired for an efficient biorefinery. Our previous studies revealed that zinc sulfate serves as an important nutrient for stress tolerance of budding yeast Saccharomyces cerevisiae. Acetic acid is a common inhibitor in cellulosic hydrolysate, and the development of acetic acid-tolerant strains is beneficial for lignocellulosic biorefineries. In this study, comparative proteomic studies were performed using S. cerevisiae cultured under acetic acid stress with or without zinc sulfate addition, and novel zinc-responsive proteins were identified. Among the differentially expressed proteins, the protein kinase Kic1p and the small rho-like GTPase Cdc42p, which is required for cell integrity and regulation of cell polarity, respectively, were selected for further studies. Overexpression of KIC1 and CDC42 endowed S. cerevisiae with faster growth and ethanol fermentation under the stresses of acetic acid and mixed inhibitors, as well as in corncob hydrolysate. Notably, the engineered yeast strains showed a 12 h shorter lag phase under the three tested conditions, leading to up to 52.99% higher ethanol productivity than that of the control strain. Further studies showed that the transcription of genes related to stress response was significantly upregulated in the engineered strains under the stress condition. Our results in this study provide novel insights in exploring zinc-responsive proteins for applications of synthetic biology in developing a robust industrial yeast.
Collapse
Affiliation(s)
- Hong-Qi Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qi Xing
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Cheng Cheng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Verawat Champreda
- National Center for Genetic Engineering and Biotechnology, Pathumthani, Thailand
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Whole-Genome Transformation of Yeast Promotes Rare Host Mutations with a Single Causative SNP Enhancing Acetic Acid Tolerance. Mol Cell Biol 2022; 42:e0056021. [PMID: 35311587 PMCID: PMC9022575 DOI: 10.1128/mcb.00560-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Whole-genome (WG) transformation (WGT) with DNA from the same or another species has been used to obtain strains with superior traits. Very few examples have been reported in eukaryotes—most apparently involving integration of large fragments of foreign DNA into the host genome. We show that WGT of a haploid acetic acid-sensitive Saccharomyces cerevisiae strain with DNA from a tolerant strain, but not from nontolerant strains, generated many tolerant transformants, some of which were stable upon subculturing under nonselective conditions. The most tolerant stable transformant contained no foreign DNA but only seven nonsynonymous single nucleotide polymorphisms (SNPs), of which none was present in the donor genome. The SNF4 mutation c.[805G→T], generating Snf4E269*, was the main causative SNP. Allele exchange of SNF4E269* or snf4Δ in industrial strains with unrelated genetic backgrounds enhanced acetic acid tolerance during fermentation under industrially relevant conditions. Our work reveals a surprisingly small number of mutations introduced by WGT, which do not bear any sequence relatedness to the genomic DNA (gDNA) of the donor organism, including the causative mutation. Spontaneous mutagenesis under protection of a transient donor gDNA fragment, maintained as extrachromosomal circular DNA (eccDNA), might provide an explanation. Support for this mechanism was obtained by transformation with genomic DNA of a yeast strain containing NatMX and selection on medium with nourseothricin. Seven transformants were obtained that gradually lost their nourseothricin resistance upon subculturing in nonselective medium. Our work shows that WGT is an efficient strategy for rapidly generating and identifying superior alleles capable of improving selectable traits of interest in industrial yeast strains.
Collapse
|
10
|
Li B, Liu N, Zhao X. Response mechanisms of Saccharomyces cerevisiae to the stress factors present in lignocellulose hydrolysate and strategies for constructing robust strains. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:28. [PMID: 35292082 PMCID: PMC8922928 DOI: 10.1186/s13068-022-02127-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
Bioconversion of lignocellulosic biomass to biofuels such as bioethanol and high value-added products has attracted great interest in recent decades due to the carbon neutral nature of biomass feedstock. However, there are still many key technical difficulties for the industrial application of biomass bioconversion processes. One of the challenges associated with the microorganism Saccharomyces cerevisiae that is usually used for bioethanol production refers to the inhibition of the yeast by various stress factors. These inhibitive effects seriously restrict the growth and fermentation performance of the strains, resulting in reduced bioethanol production efficiency. Therefore, improving the stress response ability of the strains is of great significance for industrial production of bioethanol. In this article, the response mechanisms of S. cerevisiae to various hydrolysate-derived stress factors including organic acids, furan aldehydes, and phenolic compounds have been reviewed. Organic acids mainly stimulate cells to induce intracellular acidification, furan aldehydes mainly break the intracellular redox balance, and phenolic compounds have a greater effect on membrane homeostasis. These damages lead to inadequate intracellular energy supply and dysregulation of transcription and translation processes, and then activate a series of stress responses. The regulation mechanisms of S. cerevisiae in response to these stress factors are discussed with regard to the cell wall/membrane, energy, amino acids, transcriptional and translational, and redox regulation. The reported key target genes and transcription factors that contribute to the improvement of the strain performance are summarized. Furthermore, the genetic engineering strategies of constructing multilevel defense and eliminating stress effects are discussed in order to provide technical strategies for robust strain construction. It is recommended that robust S. cerevisiae can be constructed with the intervention of metabolic regulation based on the specific stress responses. Rational design with multilevel gene control and intensification of key enzymes can provide good strategies for construction of robust strains.
Collapse
Affiliation(s)
- Bo Li
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Nan Liu
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China.,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xuebing Zhao
- Key Laboratory of Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, 100084, China. .,Institute of Applied Chemistry, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
11
|
Data mining of Saccharomyces cerevisiae mutants engineered for increased tolerance towards inhibitors in lignocellulosic hydrolysates. Biotechnol Adv 2022; 57:107947. [DOI: 10.1016/j.biotechadv.2022.107947] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/15/2022] [Accepted: 03/15/2022] [Indexed: 12/15/2022]
|
12
|
Liu S, Xu JZ, Zhang WG. Advances and prospects in metabolic engineering of Escherichia coli for L-tryptophan production. World J Microbiol Biotechnol 2022; 38:22. [PMID: 34989926 DOI: 10.1007/s11274-021-03212-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/15/2021] [Indexed: 10/19/2022]
Abstract
As an important raw material for pharmaceutical, food and feed industry, highly efficient production of L-tryptophan by Escherichia coli has attracted a considerable attention. However, there are complicated and multiple layers of regulation networks in L-tryptophan biosynthetic pathway and thus have difficulty to rewrite the biosynthetic pathway for producing L-tryptophan with high efficiency in E. coli. This review summarizes the biosynthetic pathway of L-tryptophan and highlights the main regulatory mechanisms in E. coli. In addition, we discussed the latest metabolic engineering strategies achieved in E. coli to reconstruct the L-tryptophan biosynthetic pathway. Moreover, we also review a few strategies that can be used in E. coli to improve robustness and streamline of L-tryptophan high-producing strains. Lastly, we also propose the potential strategies to further increase L-tryptophan production by systematic metabolic engineering and synthetic biology techniques.
Collapse
Affiliation(s)
- Shuai Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, WuXi, 214122, People's Republic of China.
| |
Collapse
|
13
|
Gao X, Xu K, Ahmad N, Qin L, Li C. Recent advances in engineering of microbial cell factories for intelligent pH regulation and tolerance. Biotechnol J 2021; 16:e2100151. [PMID: 34164941 DOI: 10.1002/biot.202100151] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 11/12/2022]
Abstract
pH regulation is a serious concern in the industrial fermentation process as pH adjustment heavily utilizes acid/base and pollutes the environment. Under pH-stress conditions, microbial growth and production of valuable target products may be severely affected. Furthermore, some strains generating acidic or alkaline products require self pH regulation and increased tolerance against pH-stress. For pH control, synthetic biology has provided advanced engineering approaches to construct robust and more intelligent microbial strains, exhibiting tolerance to pH-stress to cope with limitations of pH regulation. This study reviewed the current progress of advanced strain evolution strategies to engineer pH-stress tolerant strains via synthetic biology. In addition, a large number of pH-responsive elements, including promoters, riboswitches, and some proteins have been investigated and applied for construction of pH-responsive genetic circuits and intelligent pH-responsive microbial strains.
Collapse
Affiliation(s)
- Xiaopeng Gao
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China.,School of Life Science, Yan'an University, Shanxi, PR China
| | - Ke Xu
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China.,Tangshan Key Laboratory of Agricultural Pathogenic Fungi and Toxins, Department of Life Science, Tangshan Normal University, Tangshan, PR China
| | - Nadeem Ahmad
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China
| | - Lei Qin
- Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, PR China.,School of Life Science, Yan'an University, Shanxi, PR China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, PR China
| |
Collapse
|
14
|
Guaragnella N, Bettiga M. Acetic acid stress in budding yeast: From molecular mechanisms to applications. Yeast 2021; 38:391-400. [PMID: 34000094 PMCID: PMC8361955 DOI: 10.1002/yea.3651] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/13/2021] [Accepted: 05/11/2021] [Indexed: 12/20/2022] Open
Abstract
Acetic acid stress represents a frequent challenge to counteract for yeast cells under several environmental conditions and industrial bioprocesses. The molecular mechanisms underlying its response have been mostly elucidated in the budding yeast Saccharomyces cerevisiae, where acetic acid can be either a physiological substrate or a stressor. This review will focus on acetic acid stress and its response in the context of cellular transport, pH homeostasis, metabolism and stress‐signalling pathways. This information has been integrated with the results obtained by multi‐omics, synthetic biology and metabolic engineering approaches aimed to identify major cellular players involved in acetic acid tolerance. In the production of biofuels and renewable chemicals from lignocellulosic biomass, the improvement of acetic acid tolerance is a key factor. In this view, how this knowledge could be used to contribute to the development and competitiveness of yeast cell factories for sustainable applications will be also discussed. Acetic acid stress is a frequent challenge for budding yeast. Signalling pathways dissection and system‐wide approaches reveal a complex picture. Cell fitness and adaptation under acid stress conditions is environment dependent. Tolerance to acetic acid is a key factor in yeast‐based industrial biotechnology. There is no ‘magic bullet’: An integrated approach is advantageous to develop performing yeast cell factories.
Collapse
Affiliation(s)
- Nicoletta Guaragnella
- Department of Biosciences, Biotechnology and Biopharmaceutics, University of Bari A.Moro, Bari, Italy.,Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, National Research Council, Rome, Italy
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.,Bioeconomy Division, EviKrets Biobased Processes Consultants, Landvetter, Sweden
| |
Collapse
|
15
|
Oh EJ, Jin YS. Engineering of Saccharomyces cerevisiae for efficient fermentation of cellulose. FEMS Yeast Res 2021; 20:5698803. [PMID: 31917414 DOI: 10.1093/femsyr/foz089] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/08/2020] [Indexed: 12/18/2022] Open
Abstract
Conversion of lignocellulosic biomass to biofuels using microbial fermentation is an attractive option to substitute petroleum-based production economically and sustainably. The substantial efforts to design yeast strains for biomass hydrolysis have led to industrially applicable biological routes. Saccharomyces cerevisiae is a robust microbial platform widely used in biofuel production, based on its amenability to systems and synthetic biology tools. The critical challenges for the efficient microbial conversion of lignocellulosic biomass by engineered S. cerevisiae include heterologous expression of cellulolytic enzymes, co-fermentation of hexose and pentose sugars, and robustness against various stresses. Scientists developed many engineering strategies for cellulolytic S. cerevisiae strains, bringing the application of consolidated bioprocess at an industrial scale. Recent advances in the development and implementation of engineered yeast strains capable of assimilating lignocellulose will be reviewed.
Collapse
Affiliation(s)
- Eun Joong Oh
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, 4001 Discovery Dr., CO 80303, USA
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, 905 S. Goodwin Ave., IL 61801, USA.,1105 Carl R. Woese Institute for Genomic Biology, 1206 W. Gregory Dr. Urbana, IL 61801. USA.,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, 1206 W. Gregory Dr. Urbana, IL 61801, USA
| |
Collapse
|
16
|
Wawro A. Improvement of Acetic Acid Tolerance in Saccharomyces cerevisiae by Novel Genome Shuffling. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821020198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Shin M, Kim SR. Metabolic Changes Induced by Deletion of Transcriptional Regulator GCR2 in Xylose-Fermenting Saccharomyces cerevisiae. Microorganisms 2020; 8:E1499. [PMID: 33003408 PMCID: PMC7599485 DOI: 10.3390/microorganisms8101499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022] Open
Abstract
Glucose repression has been extensively studied in Saccharomyces cerevisiae, including the regulatory systems responsible for efficient catabolism of glucose, the preferred carbon source. However, how these regulatory systems would alter central metabolism if new foreign pathways are introduced is unknown, and the regulatory networks between glycolysis and the pentose phosphate pathway, the two major pathways in central carbon metabolism, have not been systematically investigated. Here we disrupted gcr2, a key transcriptional regulator, in S. cerevisiae strain SR7 engineered to heterologously express the xylose-assimilating pathway, activating genes involved in glycolysis, and evaluated the global metabolic changes. gcr2 deletion reduced cellular growth in glucose but significantly increased growth when xylose was the sole carbon source. Global metabolite profiling revealed differential regulation of yeast metabolism in SR7-gcr2Δ, especially carbohydrate and nucleotide metabolism, depending on the carbon source. In glucose, the SR7-gcr2Δ mutant showed overall decreased abundance of metabolites, such as pyruvate and sedoheptulose-7-phosphate, associated with central carbon metabolism including glycolysis and the pentose phosphate pathway. However, SR7-gcr2Δ showed an increase in metabolites abundance (ribulose-5-phosphate, sedoheptulose-7-phosphate, and erythrose-4-phosphate) notably from the pentose phosphate pathway, as well as alteration in global metabolism when compared to SR7. These results provide insights into how the regulatory system GCR2 coordinates the transcription of glycolytic genes and associated metabolic pathways.
Collapse
Affiliation(s)
- Minhye Shin
- Department of Agricultural Biotechnology, Research Institute of Agriculture and Life Science, Seoul National University, Seoul 08826, Korea;
| | - Soo Rin Kim
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Korea
| |
Collapse
|
18
|
Stojiljkovic M, Foulquié-Moreno MR, Thevelein JM. Polygenic analysis of very high acetic acid tolerance in the yeast Saccharomyces cerevisiae reveals a complex genetic background and several new causative alleles. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:126. [PMID: 32695222 PMCID: PMC7364526 DOI: 10.1186/s13068-020-01761-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND High acetic acid tolerance is of major importance in industrial yeast strains used for second-generation bioethanol production, because of the high acetic acid content of lignocellulose hydrolysates. It is also important in first-generation starch hydrolysates and in sourdoughs containing significant acetic acid levels. We have previously identified snf4 E269* as a causative allele in strain MS164 obtained after whole-genome (WG) transformation and selection for improved acetic acid tolerance. RESULTS We have now performed polygenic analysis with the same WG transformant MS164 to identify novel causative alleles interacting with snf4 E269* to further enhance acetic acid tolerance, from a range of 0.8-1.2% acetic acid at pH 4.7, to previously unmatched levels for Saccharomyces cerevisiae. For that purpose, we crossed the WG transformant with strain 16D, a previously identified strain displaying very high acetic acid tolerance. Quantitative trait locus (QTL) mapping with pooled-segregant whole-genome sequence analysis identified four major and two minor QTLs. In addition to confirmation of snf4 E269* in QTL1, we identified six other genes linked to very high acetic acid tolerance, TRT2, MET4, IRA2 and RTG1 and a combination of MSH2 and HAL9, some of which have never been connected previously to acetic acid tolerance. Several of these genes appear to be wild-type alleles that complement defective alleles present in the other parent strain. CONCLUSIONS The presence of several novel causative genes highlights the distinct genetic basis and the strong genetic background dependency of very high acetic acid tolerance. Our results suggest that elimination of inferior mutant alleles might be equally important for reaching very high acetic acid tolerance as introduction of rare superior alleles. The superior alleles of MET4 and RTG1 might be useful for further improvement of acetic acid tolerance in specific industrial yeast strains.
Collapse
Affiliation(s)
- Marija Stojiljkovic
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - María R. Foulquié-Moreno
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| | - Johan M. Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Department of Biology, KU Leuven, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
- Center for Microbiology, VIB, Kasteelpark Arenberg 31, 3001 Leuven-Heverlee, Flanders Belgium
| |
Collapse
|
19
|
Recent advances in improving metabolic robustness of microbial cell factories. Curr Opin Biotechnol 2020; 66:69-77. [PMID: 32683192 DOI: 10.1016/j.copbio.2020.06.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/12/2020] [Accepted: 06/17/2020] [Indexed: 12/20/2022]
Abstract
Engineering microbial cell factories has been widely applied to produce compounds spanning from intricate natural products to bulk commodities. In each case, host robustness is essential to ensure the reliable and sustainable production of targeted metabolites. However, it can be negatively affected by metabolic burden, pathway toxicity, and harsh environment, resulting in a decreased titer and productivity. Enhanced robustness enables host to have better production performance under complicated growth circumstances. Here, we review current strategies for boosting host robustness, including metabolic balancing, genetic and phenotype stability enhancement, and tolerance engineering. In addition, we discuss the challenges and future perspectives on microbial host engineering for increased robustness.
Collapse
|
20
|
The Whi2p-Psr1p/Psr2p complex regulates interference competition and expansion of cells with competitive advantage in yeast colonies. Proc Natl Acad Sci U S A 2020; 117:15123-15131. [PMID: 32541056 DOI: 10.1073/pnas.1922076117] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Yeast form complex highly organized colonies in which cells undergo spatiotemporal phenotypic differentiation in response to local gradients of nutrients, metabolites, and specific signaling molecules. Colony fitness depends on cell interactions, cooperation, and the division of labor between differentiated cell subpopulations. Here, we describe the regulation and dynamics of the expansion of papillae that arise during colony aging, which consist of cells that overcome colony regulatory rules and disrupt the synchronized colony structure. We show that papillae specifically expand within the U cell subpopulation in differentiated colonies. Papillae emerge more frequently in some strains than in others. Genomic analyses further revealed that the Whi2p-Psr1p/Psr2p complex (WPPC) plays a key role in papillae expansion. We show that cells lacking a functional WPPC have a sizable interaction-specific fitness advantage attributable to production of and resistance to a diffusible compound that inhibits growth of other cells. Competitive superiority and high relative fitness of whi2 and psr1psr2 strains are particularly pronounced in dense spatially structured colonies and are independent of TORC1 and Msn2p/Msn4p regulators previously associated with the WPPC function. The WPPC function, described here, might be a regulatory mechanism that balances cell competition and cooperation in dense yeast populations and, thus, contributes to cell synchronization, pattern formation, and the expansion of cells with a competitive fitness advantage.
Collapse
|
21
|
Unique genetic basis of the distinct antibiotic potency of high acetic acid production in the probiotic yeast Saccharomyces cerevisiae var. boulardii. Genome Res 2020; 29:1478-1494. [PMID: 31467028 PMCID: PMC6724677 DOI: 10.1101/gr.243147.118] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 06/20/2019] [Indexed: 12/14/2022]
Abstract
The yeast Saccharomyces boulardii has been used worldwide as a popular, commercial probiotic, but the basis of its probiotic action remains obscure. It is considered conspecific with budding yeast Saccharomyces cerevisiae, which is generally used in classical food applications. They have an almost identical genome sequence, making the genetic basis of probiotic potency in S. boulardii puzzling. We now show that S. boulardii produces at 37°C unusually high levels of acetic acid, which is strongly inhibitory to bacterial growth in agar-well diffusion assays and could be vital for its unique application as a probiotic among yeasts. Using pooled-segregant whole-genome sequence analysis with S. boulardii and S. cerevisiae parent strains, we succeeded in mapping the underlying QTLs and identified mutant alleles of SDH1 and WHI2 as the causative alleles. Both genes contain a SNP unique to S. boulardii (sdh1F317Y and whi2S287*) and are fully responsible for its high acetic acid production. S. boulardii strains show different levels of acetic acid production, depending on the copy number of the whi2S287* allele. Our results offer the first molecular explanation as to why S. boulardii could exert probiotic action as opposed to S. cerevisiae. They reveal for the first time the molecular-genetic basis of a probiotic action-related trait in S. boulardii and show that antibacterial potency of a probiotic microorganism can be due to strain-specific mutations within the same species. We suggest that acquisition of antibacterial activity through medium acidification offered a selective advantage to S. boulardii in its ecological niche and for its application as a probiotic.
Collapse
|
22
|
Porras-Agüera JA, Román-Camacho JJ, Moreno-García J, Mauricio JC, Moreno J, García-Martínez T. Effect of endogenous CO 2 overpressure on the yeast "stressome" during the "prise de mousse" of sparkling wine. Food Microbiol 2020; 89:103431. [PMID: 32138989 DOI: 10.1016/j.fm.2020.103431] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 01/08/2020] [Accepted: 01/13/2020] [Indexed: 12/19/2022]
Abstract
Sparkling wines elaboration by the "Champenoise" method involves a second fermentation of a base wine in hermetically sealed bottles and a subsequent aging period. The whole process is known as "prise de mousse". The endogenous CO2 pressure produced during the second fermentation by the yeast Saccharomyces cerevisiae could modify the sub-proteome involved in the response to different stresses, or "stressome", and cell viability thus affecting the wine organoleptic properties. This study focuses on the stressome evolution along the prise de mousse under CO2 overpressure conditions in an industrial S. cerevisiae strain. The results reveal an important effect of endogenous CO2 overpressure on the stress sub-proteome, cell viability and metabolites such as glycerol, reducing sugars and ethanol. Whereas the content of glycerol biosynthesis-related proteins increased in sealed bottle, those involved in the response to toxic metabolites like ROS, ethanol, acetaldehyde and acetic acid, decreased in content. Proteomic profile obtained in this study may be used to select suitable wine yeast strains for sparkling wine elaboration and improve their stress tolerance.
Collapse
Affiliation(s)
- Juan A Porras-Agüera
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan J Román-Camacho
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Jaime Moreno-García
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan C Mauricio
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Juan Moreno
- Department of Agricultural Chemistry, Marie Curie (C3) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| | - Teresa García-Martínez
- Department of Microbiology, Severo Ochoa (C6) Building, Agrifood Campus of International Excellence CeiA3, University of Cordoba, Ctra. N-IV-A Mm 396, 14014, Córdoba, Spain.
| |
Collapse
|
23
|
Shinkawa S, Mitsuzawa S. Feasibility study of on-site solid-state enzyme production by Aspergillus oryzae. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:31. [PMID: 32127918 PMCID: PMC7045521 DOI: 10.1186/s13068-020-1669-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/28/2020] [Indexed: 05/08/2023]
Abstract
BACKGROUND The development of biorefinery systems that use lignocellulosic biomass as a renewable carbon source to produce fuels and chemicals is attracting increasing attention. The process cost of enzymatic saccharification of biomass is a major challenge for commercialization. To decrease this cost, researchers have proposed on-site solid-state fermentation (SSF). This study investigated the feasibility of using Aspergillus oryzae as a host microorganism for SSF recombinant enzyme production with ammonia-treated rice straw as model biomass. Eight A. oryzae strains were tested, all of which are used in the food industry. We evaluated the effects of acetic acid, a fermentation inhibitor. We also developed a platform strain for targeted recombinant enzyme production by gene engineering technologies. RESULTS The SSF validation test showed variation in the visibility of mycelium growth and secreted protein in all eight A. oryzae strains. The strains used to produce shoyu and miso grew better under test conditions. The ammonia-treated rice straw contained noticeable amounts of acetic acid. This acetic acid enhanced the protein production by A. oryzae in a liquid-state fermentation test. The newly developed platform strain successfully secreted three foreign saccharifying enzymes. CONCLUSIONS A. oryzae is a promising candidate as a host microorganism for on-site SSF recombinant enzyme production, which bodes well for the future development of a more cost-efficient saccharifying enzyme production system.
Collapse
Affiliation(s)
- Satoru Shinkawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| | - Shigenobu Mitsuzawa
- Fundamental Technology Center, Honda R&D Co., Ltd., 1-4-1 Chuo, Wako-shi, Saitama, 351-0113 Japan
- Present Address: Honda Research Institute Japan Co., Ltd., 8-1 Honcho, Wako-shi, Saitama, 351-0188 Japan
| |
Collapse
|
24
|
Dahabieh MS, Thevelein JM, Gibson B. Multimodal Microorganism Development: Integrating Top-Down Biological Engineering with Bottom-Up Rational Design. Trends Biotechnol 2019; 38:241-253. [PMID: 31653446 DOI: 10.1016/j.tibtech.2019.09.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 09/28/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022]
Abstract
Biological engineering has unprecedented potential to solve society's most pressing challenges. Engineering approaches must consider complex technical, economic, and social factors. This requires methods that confer gene/pathway-level functionality and organism-level robustness in rapid and cost-effective ways. This article compares foundational engineering approaches - bottom-up, gene-targeted engineering, and top-down, whole-genome engineering - and identifies significant complementarity between them. Cases drawn from engineering Saccharomyces cerevisiae exemplify the synergy of a combined approach. Indeed, multimodal engineering streamlines strain development by leveraging the complementarity of whole-genome and gene-targeted engineering to overcome the gap in design knowledge that restricts rational design. As biological engineers target more complex systems, this dual-track approach is poised to become an increasingly important tool to realize the promise of synthetic biology.
Collapse
Affiliation(s)
- Matthew S Dahabieh
- Renaissance BioScience, 410-2389 Health Sciences Mall, Vancouver, BC V6T1Z3, Canada
| | - Johan M Thevelein
- Laboratory of Molecular Cell Biology, Institute of Botany and Microbiology, Katholieke Universiteit (KU) Leuven, Leuven, Belgium; Center for Microbiology, Vlaams Instituut voor Biotechnologie (VIB), Kasteelpark Arenberg 31, B-3001 Leuven-Heverlee, Flanders, Belgium
| | - Brian Gibson
- VTT Technical Research Centre of Finland, Tietotie 2, VTT, PO Box 1000, FI-02044 Espoo, Finland.
| |
Collapse
|
25
|
Enhanced ethanol production from industrial lignocellulose hydrolysates by a hydrolysate-cofermenting Saccharomyces cerevisiae strain. Bioprocess Biosyst Eng 2019; 42:883-896. [PMID: 30820665 DOI: 10.1007/s00449-019-02090-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 02/11/2019] [Indexed: 10/27/2022]
Abstract
Industrial production of lignocellulosic ethanol requires a microorganism utilizing both hexose and pentose, and tolerating inhibitors. In this study, a hydrolysate-cofermenting Saccharomyces cerevisiae strain was obtained through one step in vivo DNA assembly of pentose-metabolizing pathway genes, followed by consecutive adaptive evolution in pentose media containing acetic acid, and direct screening in biomass hydrolysate media. The strain was able to coferment glucose and xylose in synthetic media with the respective maximal specific rates of glucose and xylose consumption, and ethanol production of 3.47, 0.38 and 1.62 g/g DW/h, with an ethanol titre of 41.07 g/L and yield of 0.42 g/g. Industrial wheat straw hydrolysate fermentation resulted in maximal specific rates of glucose and xylose consumption, and ethanol production of 2.61, 0.54 and 1.38 g/g DW/h, respectively, with an ethanol titre of 54.11 g/L and yield of 0.44 g/g. These are among the best for wheat straw hydrolysate fermentation through separate hydrolysis and cofermentation.
Collapse
|
26
|
Pandey AK, Kumar M, Kumari S, Kumari P, Yusuf F, Jakeer S, Naz S, Chandna P, Bhatnagar I, Gaur NA. Evaluation of divergent yeast genera for fermentation-associated stresses and identification of a robust sugarcane distillery waste isolate Saccharomyces cerevisiae NGY10 for lignocellulosic ethanol production in SHF and SSF. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:40. [PMID: 30858877 PMCID: PMC6391804 DOI: 10.1186/s13068-019-1379-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/15/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Lignocellulosic hydrolysates contain a mixture of hexose (C6)/pentose (C5) sugars and pretreatment-generated inhibitors (furans, weak acids and phenolics). Therefore, robust yeast isolates with characteristics of C6/C5 fermentation and tolerance to pretreatment-derived inhibitors are pre-requisite for efficient lignocellulosic material based biorefineries. Moreover, use of thermotolerant yeast isolates will further reduce cooling cost, contamination during fermentation, and required for developing simultaneous saccharification and fermentation (SSF), simultaneous saccharification and co-fermentation (SScF), and consolidated bio-processing (CBP) strategies. RESULTS In this study, we evaluated thirty-five yeast isolates (belonging to six genera including Saccharomyces, Kluyveromyces, Candida, Scheffersomyces, Ogatea and Wickerhamomyces) for pretreatment-generated inhibitors {furfural, 5-hydroxymethyl furfural (5-HMF) and acetic acid} and thermotolerant phenotypes along with the fermentation performances at 40 °C. Among them, a sugarcane distillery waste isolate, Saccharomyces cerevisiae NGY10 produced maximum 49.77 ± 0.34 g/l and 46.81 ± 21.98 g/l ethanol with the efficiency of 97.39% and 93.54% at 30 °C and 40 °C, respectively, in 24 h using glucose as a carbon source. Furthermore, isolate NGY10 produced 12.25 ± 0.09 g/l and 7.18 ± 0.14 g/l of ethanol with 92.81% and 91.58% efficiency via SHF, and 30.22 g/l and 25.77 g/l ethanol with 86.43% and 73.29% efficiency via SSF using acid- and alkali-pretreated rice straw as carbon sources, respectively, at 40 °C. In addition, isolate NGY10 also produced 92.31 ± 3.39 g/l (11.7% v/v) and 33.66 ± 1.04 g/l (4.26% v/v) ethanol at 40 °C with the yields of 81.49% and 73.87% in the presence of 30% w/v glucose or 4× concentrated acid-pretreated rice straw hydrolysate, respectively. Moreover, isolate NGY10 displayed furfural- (1.5 g/l), 5-HMF (3.0 g/l), acetic acid- (0.2% v/v) and ethanol-(10.0% v/v) tolerant phenotypes. CONCLUSION A sugarcane distillery waste isolate NGY10 demonstrated high potential for ethanol production, C5 metabolic engineering and developing strategies for SSF, SScF and CBP.
Collapse
Affiliation(s)
- Ajay Kumar Pandey
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Mohit Kumar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Sonam Kumari
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Priya Kumari
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Farnaz Yusuf
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Shaik Jakeer
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Sumera Naz
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Piyush Chandna
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Ishita Bhatnagar
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| | - Naseem A. Gaur
- Yeast Biofuel Group, DBT-ICGEB Center for Advanced Bioenergy Research, International Center for Genetic Engineering and Biotechnology (ICGEB), New Delhi, 110067 India
| |
Collapse
|
27
|
Swamy KBS, Zhou N. Experimental evolution: its principles and applications in developing stress-tolerant yeasts. Appl Microbiol Biotechnol 2019; 103:2067-2077. [PMID: 30659332 DOI: 10.1007/s00253-019-09616-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 01/03/2019] [Accepted: 01/03/2019] [Indexed: 10/27/2022]
Abstract
Stress tolerance and resistance in industrial yeast strains are important attributes for cost-effective bioprocessing. The source of stress-tolerant yeasts ranges from extremophilic environments to laboratory engineered strains. However, industrial stress-tolerant yeasts are very rare in nature as the natural environment forces them to evolve traits that optimize survival and reproduction and not the ability to withstand harsh habitat-irrelevant industrial conditions. Experimental evolution is a frequent method used to uncover the mechanisms of evolution and microbial adaption towards environmental stresses. It optimizes biological systems by means of adaptation to environmental stresses and thus has immense power of development of robust stress-tolerant yeasts. This mini-review briefly outlines the basics and implications of evolution experiments and their applications to industrial biotechnology. This work is meant to serve as an introduction to those new to the field of experimental evolution, and as a guide to biologists working in the field of yeast stress response. Future perspectives of experimental evolution for potential biotechnological applications have also been elucidated.
Collapse
Affiliation(s)
| | - Nerve Zhou
- Department of Biological Sciences and Biotechnology, Botswana International University of Science and Technology, P Bag 16, Palapye, Botswana
| |
Collapse
|
28
|
Zhang MM, Xiong L, Tang YJ, Mehmood MA, Zhao ZK, Bai FW, Zhao XQ. Enhanced acetic acid stress tolerance and ethanol production in Saccharomyces cerevisiae by modulating expression of the de novo purine biosynthesis genes. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:116. [PMID: 31168321 PMCID: PMC6509782 DOI: 10.1186/s13068-019-1456-1] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 05/02/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Yeast strains that are tolerant to multiple environmental stresses are highly desired for various industrial applications. Despite great efforts in identifying key genes involved in stress tolerance of budding yeast Saccharomyces cerevisiae, the effects of de novo purine biosynthesis genes on yeast stress tolerance are still not well explored. Our previous studies showed that zinc sulfate addition improved yeast acetic acid tolerance, and key genes involved in yeast stress tolerance were further investigated in this study. RESULTS Three genes involved in de novo purine biosynthesis, namely, ADE1, ADE13, and ADE17, showed significantly increased transcription levels by zinc sulfate supplementation under acetic acid stress, and overexpression of these genes in S. cerevisiae BY4741 enhanced cell growth under various stress conditions. Meanwhile, ethanol productivity was also improved by overexpression of the three ADE genes under stress conditions, among which the highest improvement attained 158.39% by ADE17 overexpression in the presence of inhibitor mixtures derived from lignocellulosic biomass. Elevated levels of adenine-nucleotide pool "AXP" ([ATP] + [ADP] + [AMP]) and ATP content were observed by overexpression of ADE17, both under control condition and under acetic acid stress, and is consistent with the better growth of the recombinant yeast strain. The global intracellular amino acid profiles were also changed by overexpression of the ADE genes. Among the changed amino acids, significant increase of the stress protectant γ-aminobutyric acid (GABA) was revealed by overexpression of the ADE genes under acetic acid stress, suggesting that overexpression of the ADE genes exerts control on both purine biosynthesis and amino acid biosynthesis to protect yeast cells against the stress. CONCLUSION We proved that the de novo purine biosynthesis genes are useful targets for metabolic engineering of yeast stress tolerance. The engineered strains developed in this study with improved tolerance against multiple inhibitors can be employed for efficient lignocellulosic biorefinery to produce biofuels and biochemicals.
Collapse
Affiliation(s)
- Ming-Ming Zhang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Liang Xiong
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, 116024 China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068 China
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237 China
| | - Muhammad Aamer Mehmood
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
- Department of Bioinformatics & Biotechnology, Government College University Faisalabad, Faisalabad, 38000 Pakistan
| | - Zongbao Kent Zhao
- Department of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
29
|
Guo ZP, Khoomrung S, Nielsen J, Olsson L. Changes in lipid metabolism convey acid tolerance in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:297. [PMID: 30450126 PMCID: PMC6206931 DOI: 10.1186/s13068-018-1295-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 10/15/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND The yeast Saccharomyces cerevisiae plays an essential role in the fermentation of lignocellulosic hydrolysates. Weak organic acids in lignocellulosic hydrolysate can hamper the use of this renewable resource for fuel and chemical production. Plasma-membrane remodeling has recently been found to be involved in acquiring tolerance to organic acids, but the mechanisms responsible remain largely unknown. Therefore, it is essential to understand the underlying mechanisms of acid tolerance of S. cerevisiae for developing robust industrial strains. RESULTS We have performed a comparative analysis of lipids and fatty acids in S. cerevisiae grown in the presence of four different weak acids. The general response of the yeast to acid stress was found to be the accumulation of triacylglycerols and the degradation of steryl esters. In addition, a decrease in phosphatidic acid, phosphatidylcholine, phosphatidylserine and phosphatidylethanolamine, and an increase in phosphatidylinositol were observed. Loss of cardiolipin in the mitochondria membrane may be responsible for the dysfunction of mitochondria and the dramatic decrease in the rate of respiration of S. cerevisiae under acid stress. Interestingly, the accumulation of ergosterol was found to be a protective mechanism of yeast exposed to organic acids, and the ERG1 gene in ergosterol biosynthesis played a key in ergosterol-mediated acid tolerance, as perturbing the expression of this gene caused rapid loss of viability. Interestingly, overexpressing OLE1 resulted in the increased levels of oleic acid (18:1n-9) and an increase in the unsaturation index of fatty acids in the plasma membrane, resulting in higher tolerance to acetic, formic and levulinic acid, while this change was found to be detrimental to cells exposed to lipophilic cinnamic acid. CONCLUSIONS Comparison of lipid profiles revealed different remodeling of lipids, FAs and the unsaturation index of the FAs in the cell membrane in response of S. cerevisiae to acetic, formic, levulinic and cinnamic acid, depending on the properties of the acid. In future work, it will be necessary to combine lipidome and transcriptome analysis to gain a better understanding of the underlying regulation network and interactions between central carbon metabolism (e.g., glycolysis, TCA cycle) and lipid biosynthesis.
Collapse
Affiliation(s)
- Zhong-peng Guo
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Present Address: LISBP, INSA, INRA, CNRS, Université de Toulouse, Toulouse, France
| | - Sakda Khoomrung
- Department of Biochemistry and Siriraj Metabolomics and Phenomics Center, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Systems and Synthetic Biology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Building 220, 2800 Kongens Lyngby, Denmark
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Industrial Biotechnology, Chalmers University of Technology, 412 96 Gothenburg, Sweden
| |
Collapse
|
30
|
Gurdo N, Novelli Poisson GF, Juárez ÁB, Rios de Molina MC, Galvagno MA. Improved robustness of an ethanologenic yeast strain through adaptive evolution in acetic acid is associated with its enzymatic antioxidant ability. J Appl Microbiol 2018; 125:766-776. [PMID: 29770550 DOI: 10.1111/jam.13917] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 03/14/2018] [Accepted: 05/02/2018] [Indexed: 01/18/2023]
Abstract
AIMS To investigate multiple tolerance of Saccharomyces cerevisiae obtained through a laboratory strategy of adaptive evolution in acetic acid, its relation with enzymatic ROS detoxification and bioethanol 2G production. METHODS AND RESULTS After adaptive evolution in acetic acid, a clone (Y8A) was selected for its tolerance to high acetic acid concentrations (13 g l-1 ) in batch cultures. Y8A was resistant to multiple stresses: osmotic, thermic, oxidative, saline, ethanol, organic acid, phenolic compounds and slow freeze-thawing cycles. Also, Y8A was able to maintain redox homeostasis under oxidative stress, whereas the isogenic parental strain (Y8) could not, indicating higher basal activity levels of antioxidative enzyme Catalase (CAT) and Gluthatione S-transferase (GST) in Y8A. Y8A reached higher bioethanol levels in a fermentation medium containing up to 8 g l-1 of acetic acid when compared to parental strain Y8. CONCLUSIONS A multiple-stress-tolerant clone was obtained using adaptive evolution in acetic acid. Stress cross-tolerance could be explained by its enzymatic antioxidative capacity, namely CAT and GST. SIGNIFICANCE AND IMPACT OF THE STUDY We demonstrate that adaptive evolution used in S. cerevisiae was a useful strategy to obtain a yeast clone tolerant to multiple stresses. At the same time, our findings support the idea that tolerance to oxidative stress is the common basis for stress cotolerance, which is related to an increase in the specific enzymes CAT and GST but not in Superoxide dismutase, emphasizing the fact that detoxification of H2 O2 and not O2 ˙ is a key condition for multiple stress tolerance in S. cerevisiae.
Collapse
Affiliation(s)
- N Gurdo
- IIB - Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martin, UNSAM - Campus Miguelete, Buenos Aires, San Martin, Argentina
| | - G F Novelli Poisson
- Facultad de Ingeniería, Departamento de Ingeniería Química, Laboratorio de Microbiología Industrial, Pabellón de Industrias, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Á B Juárez
- Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental - IBBEA-CONICET, Departamento de Química Biológica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M C Rios de Molina
- Facultad de Ciencias Exactas y Naturales, Departamento de Química Biológica - IQUIBICEN-CONICET, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - M A Galvagno
- IIB - Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martin, UNSAM - Campus Miguelete, Buenos Aires, San Martin, Argentina.,Facultad de Ingeniería, Departamento de Ingeniería Química, Laboratorio de Microbiología Industrial, Pabellón de Industrias, Ciudad Universitaria, Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
31
|
Co-fermentation of cellobiose and xylose by mixed culture of recombinant Saccharomyces cerevisiae and kinetic modeling. PLoS One 2018; 13:e0199104. [PMID: 29940003 PMCID: PMC6016917 DOI: 10.1371/journal.pone.0199104] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Accepted: 05/31/2018] [Indexed: 11/19/2022] Open
Abstract
Efficient conversion of cellulosic sugars in cellulosic hydrolysates is important for economically viable production of biofuels from lignocellulosic biomass, but the goal remains a critical challenge. The present study reports a new approach for simultaneous fermentation of cellobiose and xylose by using the co-culture consisting of recombinant Saccharomyces cerevisiae specialist strains. The co-culture system can provide competitive advantage of modularity compared to the single culture system and can be tuned to deal with fluctuations in feedstock composition to achieve robust and cost-effective biofuel production. This study characterized fermentation kinetics of the recombinant cellobiose-consuming S. cerevisiae strain EJ2, xylose-consuming S. cerevisiae strain SR8, and their co-culture. The motivation for kinetic modeling was to provide guidance and prediction of using the co-culture system for simultaneous fermentation of mixed sugars with adjustable biomass of each specialist strain under different substrate concentrations. The kinetic model for the co-culture system was developed based on the pure culture models and incorporated the effects of product inhibition, initial substrate concentration and inoculum size. The model simulations were validated by results from independent fermentation experiments under different substrate conditions, and good agreement was found between model predictions and experimental data from batch fermentation of cellobiose, xylose and their mixtures. Additionally, with the guidance of model prediction, simultaneous co-fermentation of 60 g/L cellobiose and 20 g/L xylose was achieved with the initial cell densities of 0.45 g dry cell weight /L for EJ2 and 0.9 g dry cell weight /L SR8. The results demonstrated that the kinetic modeling could be used to guide the design and optimization of yeast co-culture conditions for achieving simultaneous fermentation of cellobiose and xylose with improved ethanol productivity, which is critically important for robust and efficient renewable biofuel production from lignocellulosic biomass.
Collapse
|
32
|
Run S, Tian P. Improved Tolerance of Escherichia coli to Propionic Acid by Overexpression of Sigma Factor RpoS. APPL BIOCHEM MICRO+ 2018. [DOI: 10.1134/s0003683818030122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Pan S, Jia B, Liu H, Wang Z, Chai MZ, Ding MZ, Zhou X, Li X, Li C, Li BZ, Yuan YJ. Endogenous lycopene improves ethanol production under acetic acid stress in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:107. [PMID: 29643937 PMCID: PMC5891932 DOI: 10.1186/s13068-018-1107-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/04/2018] [Indexed: 06/01/2023]
Abstract
BACKGROUND Acetic acid, generated from the pretreatment of lignocellulosic biomass, is a significant obstacle for lignocellulosic ethanol production. Reactive oxidative species (ROS)-mediated cell damage is one of important issues caused by acetic acid. It has been reported that decreasing ROS level can improve the acetic acid tolerance of Saccharomyces cerevisiae. RESULTS Lycopene is known as an antioxidant. In the study, we investigated effects of endogenous lycopene on cell growth and ethanol production of S. cerevisiae in acetic acid media. By accumulating endogenous lycopene during the aerobic fermentation of the seed stage, the intracellular ROS level of strain decreased to 1.4% of that of the control strain during ethanol fermentation. In the ethanol fermentation system containing 100 g/L glucose and 5.5 g/L acetic acid, the lag phase of strain was 24 h shorter than that of control strain. Glucose consumption rate and ethanol titer of yPS002 got to 2.08 g/L/h and 44.25 g/L, respectively, which were 2.6- and 1.3-fold of the control strain. Transcriptional changes of INO1 gene and CTT1 gene confirmed that endogenous lycopene can decrease oxidative stress and improve intracellular environment. CONCLUSIONS Biosynthesis of endogenous lycopene is first associated with enhancing tolerance to acetic acid in S. cerevisiae. We demonstrate that endogenous lycopene can decrease intracellular ROS level caused by acetic acid, thus increasing cell growth and ethanol production. This work innovatively puts forward a new strategy for second generation bioethanol production during lignocellulosic fermentation.
Collapse
Affiliation(s)
- Shuo Pan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bin Jia
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Hong Liu
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Zhen Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Meng-Zhe Chai
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ming-Zhu Ding
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xiao Zhou
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Xia Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Chun Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Bing-Zhi Li
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| | - Ying-Jin Yuan
- Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072 People’s Republic of China
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin, 300072 People’s Republic of China
| |
Collapse
|
34
|
Cunha JT, Costa CE, Ferraz L, Romaní A, Johansson B, Sá-Correia I, Domingues L. HAA1 and PRS3 overexpression boosts yeast tolerance towards acetic acid improving xylose or glucose consumption: unravelling the underlying mechanisms. Appl Microbiol Biotechnol 2018; 102:4589-4600. [PMID: 29607452 DOI: 10.1007/s00253-018-8955-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/12/2018] [Accepted: 03/18/2018] [Indexed: 11/28/2022]
Abstract
Acetic acid tolerance and xylose consumption are desirable traits for yeast strains used in industrial biotechnological processes. In this work, overexpression of a weak acid stress transcriptional activator encoded by the gene HAA1 and a phosphoribosyl pyrophosphate synthetase encoded by PRS3 in a recombinant industrial Saccharomyces cerevisiae strain containing a xylose metabolic pathway was evaluated in the presence of acetic acid in xylose- or glucose-containing media. HAA1 or PRS3 overexpression resulted in superior yeast growth and higher sugar consumption capacities in the presence of 4 g/L acetic acid, and a positive synergistic effect resulted from the simultaneous overexpression of both genes. Overexpressing these genes also improved yeast adaptation to a non-detoxified hardwood hydrolysate with a high acetic acid content. Furthermore, the overexpression of HAA1 and/or PRS3 was found to increase the robustness of yeast cell wall when challenged with acetic acid stress, suggesting the involvement of the modulation of the cell wall integrity pathway. This study clearly shows HAA1 and/or, for the first time, PRS3 overexpression to play an important role in the improvement of industrial yeast tolerance towards acetic acid. The results expand the molecular toolbox and add to the current understanding of the mechanisms involved in higher acetic acid tolerance, paving the way for the further development of more efficient industrial processes.
Collapse
Affiliation(s)
- Joana T Cunha
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Carlos E Costa
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Luís Ferraz
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Aloia Romaní
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Björn Johansson
- Center of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001, Lisbon, Portugal
| | - Lucília Domingues
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal.
| |
Collapse
|
35
|
Enhanced butyric acid production in Clostridium tyrobutyricum by overexpression of rate-limiting enzymes in the Embden-Meyerhof-Parnas pathway. J Biotechnol 2018; 272-273:14-21. [PMID: 29501473 DOI: 10.1016/j.jbiotec.2018.02.012] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 02/23/2018] [Accepted: 02/27/2018] [Indexed: 11/22/2022]
|
36
|
Palma M, Guerreiro JF, Sá-Correia I. Adaptive Response and Tolerance to Acetic Acid in Saccharomyces cerevisiae and Zygosaccharomyces bailii: A Physiological Genomics Perspective. Front Microbiol 2018. [PMID: 29515554 PMCID: PMC5826360 DOI: 10.3389/fmicb.2018.00274] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Acetic acid is an important microbial growth inhibitor in the food industry; it is used as a preservative in foods and beverages and is produced during normal yeast metabolism in biotechnological processes. Acetic acid is also a major inhibitory compound present in lignocellulosic hydrolysates affecting the use of this promising carbon source for sustainable bioprocesses. Although the molecular mechanisms underlying Saccharomyces cerevisiae response and adaptation to acetic acid have been studied for years, only recently they have been examined in more detail in Zygosaccharomyces bailii. However, due to its remarkable tolerance to acetic acid and other weak acids this yeast species is a major threat in the spoilage of acidic foods and beverages and considered as an interesting alternative cell factory in Biotechnology. This review paper emphasizes genome-wide strategies that are providing global insights into the molecular targets, signaling pathways and mechanisms behind S. cerevisiae and Z. bailii tolerance to acetic acid, and extends this information to other weak acids whenever relevant. Such comprehensive perspective and the knowledge gathered in these two yeast species allowed the identification of candidate molecular targets, either for the design of effective strategies to overcome yeast spoilage in acidic foods and beverages, or for the rational genome engineering to construct more robust industrial strains. Examples of successful applications are provided.
Collapse
Affiliation(s)
- Margarida Palma
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Joana F Guerreiro
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
37
|
Perna MDSC, Bastos RG, Ceccato-Antonini SR. Single and combined effects of acetic acid, furfural, and sugars on the growth of the pentose-fermenting yeast Meyerozyma guilliermondii. 3 Biotech 2018; 8:119. [PMID: 29430380 PMCID: PMC5803134 DOI: 10.1007/s13205-018-1143-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/30/2018] [Indexed: 01/25/2023] Open
Abstract
The tolerance of the pentose-fermenting yeast Meyerozyma guilliermondii to the inhibitors released after the biomass hydrolysis, such as acetic acid and furfural, was surveyed. We first verified the effects of acetic acid and cell concentrations and initial pH on the growth of a M. guilliermondii strain in a semi-synthetic medium containing acetic acid as the sole carbon source. Second, the single and combined effects of furfural, acetic acid, and sugars (xylose, arabinose, and glucose) on the sugar uptake, cell growth, and ethanol production were also analysed. Growth inhibition occurred in concentrations higher than 10.5 g l-1 acetic acid and initial pH 3.5. The maximum specific growth rate (µ) was 0.023 h-1 and the saturation constant (ks) was 0.75 g l-1 acetic acid. Initial cell concentration also influenced µ. Acetic acid (initial concentration 5 g l-1) was co-consumed with sugars even in the presence of 20 mg l-1 furfural without inhibition to the yeast growth. The yeast grew and fermented sugars in a sugar-based medium with acetic acid and furfural in concentrations much higher than those usually found in hemicellulosic hydrolysates.
Collapse
Affiliation(s)
- Michelle dos Santos Cordeiro Perna
- Laboratory of Molecular and Agricultural Microbiology, Dept Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, P.O. Box 153, Araras, São Paulo State 13600-970 Brazil
| | - Reinaldo Gaspar Bastos
- Laboratory of Molecular and Agricultural Microbiology, Dept Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, P.O. Box 153, Araras, São Paulo State 13600-970 Brazil
| | - Sandra Regina Ceccato-Antonini
- Laboratory of Molecular and Agricultural Microbiology, Dept Tecnologia Agroindustrial e Sócio-Economia Rural, Centro de Ciências Agrárias, Universidade Federal de São Carlos, P.O. Box 153, Araras, São Paulo State 13600-970 Brazil
| |
Collapse
|
38
|
Zhou X, Wang B, Emerson JM, Ringelberg CS, Gerber SA, Loros JJ, Dunlap JC. A HAD family phosphatase CSP-6 regulates the circadian output pathway in Neurospora crassa. PLoS Genet 2018; 14:e1007192. [PMID: 29351294 PMCID: PMC5800702 DOI: 10.1371/journal.pgen.1007192] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 02/06/2018] [Accepted: 01/08/2018] [Indexed: 01/24/2023] Open
Abstract
Circadian clocks are ubiquitous in eukaryotic organisms where they are used to anticipate regularly occurring diurnal and seasonal environmental changes. Nevertheless, little is known regarding pathways connecting the core clock to its output pathways. Here, we report that the HAD family phosphatase CSP-6 is required for overt circadian clock output but not for the core oscillation. The loss of function Δcsp-6 deletion mutant is overtly arrhythmic on race tubes under free running conditions; however, reporter assays confirm that the FREQUENCY-WHITE COLLAR COMPLEX core circadian oscillator is functional, indicating a discrete block between oscillator and output. CSP-6 physically interacts with WHI-2, Δwhi-2 mutant phenotypes resemble Δcsp-6, and the CSP-6/WHI-2 complex physically interacts with WC-1, all suggesting that WC-1 is a direct target for CSP-6/WHI-2-mediated dephosphorylation and consistent with observed WC-1 hyperphosphorylation in Δcsp-6. To identify the source of the block to output, known clock-controlled transcription factors were screened for rhythmicity in Δcsp-6, identifying loss of circadian control of ADV-1, a direct target of WC-1, as responsible for the loss of overt rhythmicity. The CSP-6/WHI-2 complex thus participates in the clock output pathway by regulating WC-1 phosphorylation to promote proper transcriptional/translational activation of adv-1/ADV-1; these data establish an unexpected essential role for post-translational modification parallel to circadian transcriptional regulation in the early steps of circadian output. Though molecules and components in the core circadian oscillator are well studied in Neurospora, the mechanisms through which output pathways are coupled with core components are less well understood. In this study we investigated a HAD phosphatase, CSP-6; loss-of-function Δcsp-6 strains are overtly arrhythmic but have a functional core circadian oscillation. CSP-6 in association with WHI-2 dephosphorylates the core clock component WC-1 to regulate light-responses and development. To dissect the functions of CSP-6 in core clock and output, we screened known WC-1 targets and found that loss of CSP-6 causes misregulation of transcriptional/translational activation of ADV-1, a key regulator of output. Thus, loss of CSP-6-mediated dephosphorylation of WC-1 leads to loss of ADV-1 activation and is responsible for the complete loss of overt developmental rhythmicity in Δcsp-6.
Collapse
Affiliation(s)
- Xiaoying Zhou
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Bin Wang
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jillian M. Emerson
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Carol S. Ringelberg
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Scott A. Gerber
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Jennifer J. Loros
- Biochemistry and Cell Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
| | - Jay C. Dunlap
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth, Hanover, New Hampshire, United States of America
- * E-mail:
| |
Collapse
|
39
|
Jin YS, Cate JHD. Metabolic engineering of yeast for lignocellulosic biofuel production. Curr Opin Chem Biol 2017; 41:99-106. [DOI: 10.1016/j.cbpa.2017.10.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 10/16/2017] [Accepted: 10/20/2017] [Indexed: 01/04/2023]
|
40
|
Ko JK, Lee SM. Advances in cellulosic conversion to fuels: engineering yeasts for cellulosic bioethanol and biodiesel production. Curr Opin Biotechnol 2017; 50:72-80. [PMID: 29195120 DOI: 10.1016/j.copbio.2017.11.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 11/07/2017] [Accepted: 11/07/2017] [Indexed: 12/22/2022]
Abstract
Cellulosic fuels are expected to have great potential industrial applications in the near future, but they still face technical challenges to become cost-competitive fuels, thus presenting many opportunities for improvement. The economical production of viable biofuels requires metabolic engineering of microbial platforms to convert cellulosic biomass into biofuels with high titers and yields. Fortunately, integrating traditional and novel engineering strategies with advanced engineering toolboxes has allowed the development of more robust microbial platforms, thus expanding substrate ranges. This review highlights recent trends in the metabolic engineering of microbial platforms, such as the industrial yeasts Saccharomyces cerevisiae and Yarrowia lipolytica, for the production of renewable fuels.
Collapse
Affiliation(s)
- Ja Kyong Ko
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Clean Energy and Chemical Engineering, Korea University of Science and Technology, Daejeon 34113, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
41
|
Gong Z, Nielsen J, Zhou YJ. Engineering Robustness of Microbial Cell Factories. Biotechnol J 2017; 12. [DOI: 10.1002/biot.201700014] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 08/13/2017] [Indexed: 12/25/2022]
Affiliation(s)
- Zhiwei Gong
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
- College of Chemistry and Chemical EngineeringWuhan University of Science and Technology947 Heping RoadWuhan 430081P.R. China
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyKemivägen 10 Gothenburg SE‐41296Sweden
| | - Yongjin J. Zhou
- Division of BiotechnologyDalian Institute of Chemical PhysicsCAS457 Zhongshan RoadDalian 116023P.R. China
| |
Collapse
|
42
|
Tian P, Wang J, Shen X, Rey JF, Yuan Q, Yan Y. Fundamental CRISPR-Cas9 tools and current applications in microbial systems. Synth Syst Biotechnol 2017; 2:219-225. [PMID: 29318202 PMCID: PMC5655352 DOI: 10.1016/j.synbio.2017.08.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/07/2017] [Accepted: 08/25/2017] [Indexed: 01/08/2023] Open
Abstract
Derived from the bacterial adaptive immune system, CRISPR technology has revolutionized conventional genetic engineering methods and unprecedentedly facilitated strain engineering. In this review, we outline the fundamental CRISPR tools that have been employed for strain optimization. These tools include CRISPR editing, CRISPR interference, CRISPR activation and protein imaging. To further characterize the CRISPR technology, we present current applications of these tools in microbial systems, including model- and non-model industrial microorganisms. Specially, we point out the major challenges of the CRISPR tools when utilized for multiplex genome editing and sophisticated expression regulation. To address these challenges, we came up with strategies that place emphasis on the amelioration of DNA repair efficiency through CRISPR-Cas9-assisted recombineering. Lastly, multiple promising research directions were proposed, mainly focusing on CRISPR-based construction of microbial ecosystems toward high production of desired chemicals.
Collapse
Affiliation(s)
- Pingfang Tian
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Jia Wang
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaolin Shen
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Justin Forrest Rey
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| | - Qipeng Yuan
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.,State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.,Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yajun Yan
- College of Engineering, The University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
43
|
Suo Y, Luo S, Zhang Y, Liao Z, Wang J. Enhanced butyric acid tolerance and production by Class I heat shock protein-overproducing Clostridium tyrobutyricum ATCC 25755. ACTA ACUST UNITED AC 2017; 44:1145-1156. [DOI: 10.1007/s10295-017-1939-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 03/17/2017] [Indexed: 01/16/2023]
Abstract
Abstract
The response of Clostridium tyrobutyricum to butyric acid stress involves various stress-related genes, and therefore overexpression of stress-related genes can improve butyric acid tolerance and yield. Class I heat shock proteins (HSPs) play an important role in the process of protecting bacteria from sudden changes of extracellular stress by assisting protein folding correctly. The results of quantitative real-time PCR indicated that the Class I HSGs grpE, dnaK, dnaJ, groEL, groES, and htpG were significantly upregulated under butyric acid stress, especially the dnaK and groE operons. Overexpression of groESL and htpG could significantly improve the tolerance of C. tyrobutyricum to butyric acid, while overexpression of dnaK and dnaJ showed negative effects on butyric acid tolerance. Acid production was also significantly promoted by increased GroESL expression levels; the final butyric acid and acetic acid concentrations were 28.2 and 38% higher for C. tyrobutyricum ATCC 25755/groESL than for the wild-type strain. In addition, when fed-batch fermentation was carried out using cell immobilization in a fibrous-bed bioreactor, the butyric acid yield produced by C. tyrobutyricum ATCC 25755/groESL reached 52.2 g/L, much higher than that for the control. The improved butyric acid yield is probably attributable to the high GroES and GroEL levels, which can stabilize the biosynthetic machinery of C. tyrobutyricum under extracellular butyric acid stress.
Collapse
Affiliation(s)
- Yukai Suo
- 0000 0004 1764 3838 grid.79703.3a School of Bioscience & Bioengineering South China University of Technology 510006 Guangzhou China
| | - Sheng Luo
- 0000 0004 1764 3838 grid.79703.3a School of Bioscience & Bioengineering South China University of Technology 510006 Guangzhou China
| | - Yanan Zhang
- 0000 0004 1764 3838 grid.79703.3a School of Bioscience & Bioengineering South China University of Technology 510006 Guangzhou China
| | - Zhengping Liao
- 0000 0004 1764 3838 grid.79703.3a School of Bioscience & Bioengineering South China University of Technology 510006 Guangzhou China
| | - Jufang Wang
- 0000 0004 1764 3838 grid.79703.3a School of Bioscience & Bioengineering South China University of Technology 510006 Guangzhou China
- 0000 0004 1764 3838 grid.79703.3a State Key Laboratory of Pulp and Paper Engineering South China University of Technology 510640 Guangzhou China
| |
Collapse
|
44
|
Geng P, Zhang L, Shi GY. Omics analysis of acetic acid tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 2017; 33:94. [PMID: 28405910 DOI: 10.1007/s11274-017-2259-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2016] [Accepted: 04/01/2017] [Indexed: 12/31/2022]
Abstract
Acetic acid is an inhibitor in industrial processes such as wine making and bioethanol production from cellulosic hydrolysate. It causes energy depletion, inhibition of metabolic enzyme activity, growth arrest and ethanol productivity losses in Saccharomyces cerevisiae. Therefore, understanding the mechanisms of the yeast responses to acetic acid stress is essential for improving acetic acid tolerance and ethanol production. Although 329 genes associated with acetic acid tolerance have been identified in the Saccharomyces genome and included in the database ( http://www.yeastgenome.org/observable/resistance_to_acetic_acid/overview ), the cellular mechanistic responses to acetic acid remain unclear in this organism. Post-genomic approaches such as transcriptomics, proteomics, metabolomics and chemogenomics are being applied to yeast and are providing insight into the mechanisms and interactions of genes, proteins and other components that together determine complex quantitative phenotypic traits such as acetic acid tolerance. This review focuses on these omics approaches in the response to acetic acid in S. cerevisiae. Additionally, several novel strains with improved acetic acid tolerance have been engineered by modifying key genes, and the application of these strains and recently acquired knowledge to industrial processes is also discussed.
Collapse
Affiliation(s)
- Peng Geng
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | - Liang Zhang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China. .,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China.
| | - Gui Yang Shi
- The Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| |
Collapse
|
45
|
Henriques SF, Mira NP, Sá-Correia I. Genome-wide search for candidate genes for yeast robustness improvement against formic acid reveals novel susceptibility (Trk1 and positive regulators) and resistance (Haa1-regulon) determinants. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:96. [PMID: 28428821 PMCID: PMC5395885 DOI: 10.1186/s13068-017-0781-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 04/11/2017] [Indexed: 05/06/2023]
Abstract
BACKGROUND Formic acid is an inhibitory compound present in lignocellulosic hydrolysates. Understanding the complex molecular mechanisms underlying Saccharomyces cerevisiae tolerance to this weak acid at the system level is instrumental to guide synthetic pathway engineering for robustness improvement of industrial strains envisaging their use in lignocellulosic biorefineries. RESULTS This study was performed to identify, at a genome-wide scale, genes whose expression confers protection or susceptibility to formic acid, based on the screening of a haploid deletion mutant collection to search for these phenotypes in the presence of 60, 70 and 80 mM of this acid, at pH 4.5. This chemogenomic analysis allowed the identification of 172 determinants of tolerance and 41 determinants of susceptibility to formic acid. Clustering of genes required for maximal tolerance to this weak acid, based on their biological function, indicates an enrichment of those involved in intracellular trafficking and protein synthesis, cell wall and cytoskeleton organization, carbohydrate metabolism, lipid, amino acid and vitamin metabolism, response to stress, chromatin remodelling, transcription and internal pH homeostasis. Among these genes is HAA1 encoding the main transcriptional regulator of yeast transcriptome reprograming in response to acetic acid and genes of the Haa1-regulon; all demonstrated determinants of acetic acid tolerance. Among the genes that when deleted lead to increased tolerance to formic acid, TRK1, encoding the high-affinity potassium transporter and a determinant of resistance to acetic acid, was surprisingly found. Consistently, genes encoding positive regulators of Trk1 activity were also identified as formic acid susceptibility determinants, while a negative regulator confers protection. At a saturating K+ concentration of 20 mM, the deletion mutant trk1Δ was found to exhibit a much higher tolerance compared with the parental strain. Given that trk1Δ accumulates lower levels of radiolabelled formic acid, compared to the parental strain, it is hypothesized that Trk1 facilitates formic acid uptake into the yeast cell. CONCLUSIONS The list of genes resulting from this study shows a few marked differences from the list of genes conferring protection to acetic acid and provides potentially valuable information to guide improvement programmes for the development of more robust strains against formic acid.
Collapse
Affiliation(s)
- Sílvia F. Henriques
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Nuno P. Mira
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| | - Isabel Sá-Correia
- Institute for Bioengineering and Biosciences, Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisbon, Portugal
| |
Collapse
|
46
|
Sphingolipid biosynthesis upregulation by TOR complex 2-Ypk1 signaling during yeast adaptive response to acetic acid stress. Biochem J 2016; 473:4311-4325. [PMID: 27671892 DOI: 10.1042/bcj20160565] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 09/19/2016] [Accepted: 09/26/2016] [Indexed: 02/07/2023]
Abstract
Acetic acid-induced inhibition of yeast growth and metabolism limits the productivity of industrial fermentation processes, especially when lignocellulosic hydrolysates are used as feedstock in industrial biotechnology. Tolerance to acetic acid of food spoilage yeasts is also a problem in the preservation of acidic foods and beverages. Thus understanding the molecular mechanisms underlying adaptation and tolerance to acetic acid stress is increasingly important in industrial biotechnology and the food industry. Prior genetic screens for Saccharomyces cerevisiae mutants with increased sensitivity to acetic acid identified loss-of-function mutations in the YPK1 gene, which encodes a protein kinase activated by the target of rapamycin (TOR) complex 2 (TORC2). We show in the present study by several independent criteria that TORC2-Ypk1 signaling is stimulated in response to acetic acid stress. Moreover, we demonstrate that TORC2-mediated Ypk1 phosphorylation and activation is necessary for acetic acid tolerance, and occurs independently of Hrk1, a protein kinase previously implicated in the cellular response to acetic acid. In addition, we show that TORC2-Ypk1-mediated activation of l-serine:palmitoyl-CoA acyltransferase, the enzyme complex that catalyzes the first committed step of sphingolipid biosynthesis, is required for acetic acid tolerance. Furthermore, analysis of the sphingolipid pathway using inhibitors and mutants indicates that it is production of certain complex sphingolipids that contributes to conferring acetic acid tolerance. Consistent with that conclusion, promoting sphingolipid synthesis by adding exogenous long-chain base precursor phytosphingosine to the growth medium enhanced acetic acid tolerance. Thus appropriate modulation of the TORC2-Ypk1-sphingolipid axis in industrial yeast strains may have utility in improving fermentations of acetic acid-containing feedstocks.
Collapse
|
47
|
Zhang GC, Kong II, Wei N, Peng D, Turner TL, Sung BH, Sohn JH, Jin YS. Optimization of an acetate reduction pathway for producing cellulosic ethanol by engineered yeast. Biotechnol Bioeng 2016; 113:2587-2596. [DOI: 10.1002/bit.26021] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 01/17/2023]
Affiliation(s)
- Guo-Chang Zhang
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - In Iok Kong
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences; University of Notre Dame; South Bend Indiana
| | - Dairong Peng
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Timothy L. Turner
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| | - Bong Hyun Sung
- Bioenergy and Biochemical Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Jung-Hoon Sohn
- Bioenergy and Biochemical Research Center; Korea Research Institute of Bioscience and Biotechnology; Daejeon Korea
| | - Yong-Su Jin
- Carl R. Woese Institute for Genomic Biology; University of Illinois at Urbana-Champaign; Urbana Illinois 61801
- Department of Food Science and Human Nutrition; University of Illinois at Urbana-Champaign; Urbana Illinois
| |
Collapse
|
48
|
Cheng C, Zhang M, Xue C, Bai F, Zhao X. Development of stress tolerant Saccharomyces cerevisiae strains by metabolic engineering: New aspects from cell flocculation and zinc supplementation. J Biosci Bioeng 2016; 123:141-146. [PMID: 27576171 DOI: 10.1016/j.jbiosc.2016.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 07/29/2016] [Indexed: 10/21/2022]
Abstract
Budding yeast Saccharomyces cerevisiae is widely studied for the production of biofuels from lignocellulosic biomass. However, economic production is currently challenged by the repression of cell growth and compromised fermentation performance of S. cerevisiae strains in the presence of various environmental stresses, including toxic level of final products, inhibitory compounds released from the pretreatment of cellulosic feedstocks, high temperature, and so on. Therefore, it is important to improve stress tolerance of S. cerevisiae to these stressful conditions to achieve efficient and economic production. In this review, the latest advances on development of stress tolerant S. cerevisiae strains are summarized, with the emphasis on the impact of cell flocculation and zinc addition. It was found that cell flocculation affected ethanol tolerance and acetic acid tolerance of S. cerevisiae, and addition of zinc to a suitable level improved stress tolerance of yeast cells to ethanol, high temperature and acetic acid. Further studies on the underlying mechanisms by which cell flocculation and zinc status affect stress tolerance will not only enrich our knowledge on stress response and tolerance mechanisms of S. cerevisiae, but also provide novel metabolic engineering strategies to develop robust yeast strains for biofuels production.
Collapse
Affiliation(s)
- Cheng Cheng
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Mingming Zhang
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Chuang Xue
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China
| | - Fengwu Bai
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian 116024, China; State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xinqing Zhao
- State Key Laboratory of Microbial Metabolism, School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
49
|
Guo W, Chen Y, Wei N, Feng X. Investigate the Metabolic Reprogramming of Saccharomyces cerevisiae for Enhanced Resistance to Mixed Fermentation Inhibitors via 13C Metabolic Flux Analysis. PLoS One 2016; 11:e0161448. [PMID: 27532329 PMCID: PMC4988770 DOI: 10.1371/journal.pone.0161448] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Accepted: 08/07/2016] [Indexed: 11/18/2022] Open
Abstract
The fermentation inhibitors from the pretreatment of lignocellulosic materials, e.g., acetic acid and furfural, are notorious due to their negative effects on the cell growth and chemical production. However, the metabolic reprogramming of the cells under these stress conditions, especially metabolic response for resistance to mixed inhibitors, has not been systematically investigated and remains mysterious. Therefore, in this study, 13C metabolic flux analysis (13C-MFA), a powerful tool to elucidate the intracellular carbon flux distributions, has been applied to two Saccharomyces cerevisiae strains with different tolerances to the inhibitors under acetic acid, furfural, and mixed (i.e., acetic acid and furfural) stress conditions to unravel the key metabolic responses. By analyzing the intracellular carbon fluxes as well as the energy and cofactor utilization under different conditions, we uncovered varied metabolic responses to different inhibitors. Under acetate stress, ATP and NADH production was slightly impaired, while NADPH tended towards overproduction. Under furfural stress, ATP and cofactors (including both NADH and NADPH) tended to be overproduced. However, under dual-stress condition, production of ATP and cofactors was severely impaired due to synergistic stress caused by the simultaneous addition of two fermentation inhibitors. Such phenomenon indicated the pivotal role of the energy and cofactor utilization in resisting the mixed inhibitors of acetic acid and furfural. Based on the discoveries, valuable insights are provided to improve the tolerance of S. cerevisiae strain and further enhance lignocellulosic fermentation.
Collapse
Affiliation(s)
- Weihua Guo
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
| | - Yingying Chen
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
| | - Na Wei
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, IN 46556, United States of America
- * E-mail: (NW); (XF)
| | - Xueyang Feng
- Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, United States of America
- * E-mail: (NW); (XF)
| |
Collapse
|
50
|
Chen Y, Sheng J, Jiang T, Stevens J, Feng X, Wei N. Transcriptional profiling reveals molecular basis and novel genetic targets for improved resistance to multiple fermentation inhibitors in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:9. [PMID: 26766964 PMCID: PMC4710983 DOI: 10.1186/s13068-015-0418-5] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Accepted: 12/15/2015] [Indexed: 05/07/2023]
Abstract
BACKGROUND Lignocellulosic biomass is a promising source of renewable biofuels. However, pretreatment of lignocellulosic biomass generates fermentation inhibitors that adversely affect the growth of industrial microorganisms such as Saccharomyces cerevisiae and prevent economic production of lignocellulosic biofuels. A critical challenge on developing S. cerevisiae with improved inhibitor resistance lies in incomplete understanding of molecular basis for inhibitor stress response and limited information on effective genetic targets for increasing yeast resistance to mixed fermentation inhibitors. In this study, we applied comparative transcriptomic analysis to determine the molecular basis for acetic acid and/or furfural resistance in S. cerevisiae. RESULTS We recently developed a yeast strain YC1 with superior resistance to acetic acid, furfural, and their mixture through inverse metabolic engineering. In this study, we first determined transcriptional changes through RNA sequencing in YC1 versus the wild-type strain S-C1 under three different inhibitor conditions, including acetic acid alone, furfural alone, and mixture of acetic acid and furfural. The genes associated with stress responses of S. cerevisiae to single and mixed inhibitors were revealed. Specifically, we identified 184 consensus genes that were differentially regulated in response to the distinct inhibitor resistance between YC1 and S-C1. Bioinformatic analysis next revealed key transcription factors (TFs) that regulate these consensus genes. The top TFs identified, Sfp1p and Ace2p, were experimentally tested as overexpression targets for strain optimization. Overexpression of the SFP1 gene improved specific ethanol productivity by nearly four times, while overexpression of the ACE2 gene enhanced the rate by three times in the presence of acetic acid and furfural. Overexpression of SFP1 gene in the resistant strain YC1 further resulted in 42 % increase in ethanol productivity in the presence of acetic acid and furfural, suggesting the effect of Sfp1p in optimizing the yeast strain for improved tolerance to mixed fermentation inhibitor. CONCLUSIONS Transcriptional regulation underlying yeast resistance to acetic acid and furfural was determined. Two transcription factors, Sfp1p and Ace2p, were uncovered for the first time for their functions in improving yeast resistance to mixed fermentation inhibitors. The study demonstrated an omics-guided metabolic engineering framework, which could be developed as a promising strategy to improve complex microbial phenotypes.
Collapse
Affiliation(s)
- Yingying Chen
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| | - Jiayuan Sheng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Tao Jiang
- />Department of Civil and Environmental Engineering, University of Pittsburgh, Pittsburgh, PA USA
| | - Joseph Stevens
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Xueyang Feng
- />Department of Biological Systems Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA USA
| | - Na Wei
- />Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, 106E Cushing Hall of Engineering, Notre Dame, South Bend, IN 46556 USA
| |
Collapse
|