1
|
Zerbo KBF, Yameogo F, Wonni I, Somda I. Analysis of the Genetic Variation and Geographic Distribution Patterns of Xanthomonas citri pv. citri Strains in Citrus Production in Burkina Faso. PHYTOPATHOLOGY 2024; 114:2024-2032. [PMID: 38829919 DOI: 10.1094/phyto-04-24-0121-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
It is essential to have a thorough knowledge of the genetic variation among different strains of Xanthomonas citri pv. citri, which is responsible for causing citrus bacterial canker. This understanding is important for studying disease characteristics, population structure, and evolution and ultimately for developing sustainable methods of control. A total of 48 strains obtained from citrus production areas in Burkina Faso in 2012, 2020, and 2021 were subjected to Polymerase Chain reaction (PCR) tests using specific primers. The aim was to examine the distribution of type 3 effectors and determine the geographical origins of the strains. The examination of the distribution of type 3 non-transcription-activator-like effectors (TALEs) revealed a broader range of strains obtained in 2020 and 2021 than in 2012. However, all the strains possessed a shared set of three genes, specifically, XopE2, XopN, and AvrBs2. Furthermore, all examined effectors were observed in the Bobo-Dioulasso region. Regarding the characterization of TALEs, two profiles containing two to three TALEs were discovered. Profile 1, consisting of two TALEs, was found in 37 X. citri pv. citri strains, whereas Profile 2, comprising three TALEs, was detected in 11 strains. Among the three TALEs (A, B, and C) that were identified, TALEs B and C were present in all the strains. The correlation matrix indicated a positive association between the type 3 effector content of strains and the duration of their isolation. Principal component analysis revealed a limited organization of the strains under investigation. [Formula: see text] Copyright © 2024 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Kevin Ben Fabrice Zerbo
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| | - Florence Yameogo
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| | - Issa Wonni
- Centre National de la Recherche Scientifique et Technologique/Institut de l'Environnement et de Recherches Agricoles (INERA)/Laboratoire Mixte International/Observatoire des Agents Pathogènes, Biosécurité et Biodiversité (LMI PathoBios), 01 BP 910, Bobo-Dioulasso, Burkina Faso
| | - Irénée Somda
- Université Nazi BONI/Clinique des Plantes, 01 BP1091, Bobo-Dioulasso, Burkina Faso
| |
Collapse
|
2
|
Dimaria G, Mosca A, Russo M, Cubero J, Pothier JF, Koebnik R, Catara V. Draft genome sequence of Xanthomonas arboricola pv. pruni PVCT 262.1 isolated from Prunus dulcis in italy. Microbiol Resour Announc 2024; 13:e0027324. [PMID: 38860797 PMCID: PMC11256848 DOI: 10.1128/mra.00273-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/16/2024] [Indexed: 06/12/2024] Open
Abstract
Here, we report the draft genome sequence of Xanthomonas arboricola pv. pruni strain PVCT 262.1, isolated from almond (Prunus dulcis) leaves affected by bacterial spots in Italy in 2020. Genome size is 5,076,418 bp and G+C content is 65.44%. A total of 4,096 protein-coding genes and 92 RNAs are predicted.
Collapse
Affiliation(s)
- Giulio Dimaria
- Department of Agriculture, Food, and Environment, University of Catania, Catania, Italy
| | - Alexandros Mosca
- Department of Agriculture, Food, and Environment, University of Catania, Catania, Italy
| | | | - Jaime Cubero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria/Consejo Superior de Investigaciones Científicas (INIA/CSIC), Madrid, Spain
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Vittoria Catara
- Department of Agriculture, Food, and Environment, University of Catania, Catania, Italy
| |
Collapse
|
3
|
Zarei S, Taghavi SM, Rahimi T, Mafakheri H, Potnis N, Koebnik R, Fischer-Le Saux M, Pothier JF, Palacio Bielsa A, Cubero J, Portier P, Jacques MA, Osdaghi E. Taxonomic Refinement of Xanthomonas arboricola. PHYTOPATHOLOGY 2022; 112:1630-1639. [PMID: 35196068 DOI: 10.1094/phyto-12-21-0519-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Xanthomonas arboricola comprises a number of economically important fruit tree pathogens classified within different pathovars. Dozens of nonpathogenic and taxonomically unvalidated strains are also designated as X. arboricola, leading to a complicated taxonomic status in the species. In this study, we have evaluated the whole-genome resources of all available Xanthomonas spp. strains designated as X. arboricola in the public databases to refine the members of the species based on DNA similarity indexes and core genome-based phylogeny. Our results show that, of the nine validly described pathovars within X. arboricola, pathotype strains of seven pathovars are taxonomically genuine, belonging to the core clade of the species regardless of their pathogenicity on the host of isolation (thus the validity of pathovar status). However, strains of X. arboricola pv. guizotiae and X. arboricola pv. populi do not belong to X. arboricola because of the low DNA similarities between the type strain of the species and the pathotype strains of these two pathovars. Thus, we propose to elevate the two pathovars to the rank of a species as X. guizotiae sp. nov. with the type strain CFBP 7408T and X. populina sp. nov. with the type strain CFBP 3123T. In addition, other mislabeled strains of X. arboricola were scattered within Xanthomonas spp. that belong to previously described species or represent novel species that await formal description.
Collapse
Affiliation(s)
- Sadegh Zarei
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Touraj Rahimi
- Department of Agronomy and Plant Breeding, Shahr-e-Qods Branch, Islamic Azad University, Tehran, Iran
| | - Hamzeh Mafakheri
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, Iran
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| | - Neha Potnis
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, U.S.A
| | - Ralf Koebnik
- Plant Health Institute of Montpellier, University of Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | | | - Joël F Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Ana Palacio Bielsa
- Departamento de Protección Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón-IA2 (CITA-Universidad de Zaragoza), Zaragoza, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Centro Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Madrid, Spain
| | - Perrine Portier
- Institut Agro, Université de Angers, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Marie-Agnes Jacques
- Institut Agro, Université de Angers, INRAE, IRHS, SFR QUASAV, CIRM-CFBP, Angers, France
| | - Ebrahim Osdaghi
- Department of Plant Protection, College of Agriculture, University of Tehran, Karaj, Iran
| |
Collapse
|
4
|
Kałużna M, Fischer‐Le Saux M, Pothier JF, Jacques M, Obradović A, Tavares F, Stefani E. Xanthomonas arboricola pv. juglandis and pv. corylina: Brothers or distant relatives? Genetic clues, epidemiology, and insights for disease management. MOLECULAR PLANT PATHOLOGY 2021; 22:1481-1499. [PMID: 34156749 PMCID: PMC8578823 DOI: 10.1111/mpp.13073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 05/31/2023]
Abstract
BACKGROUND The species Xanthomonas arboricola comprises up to nine pathovars, two of which affect nut crops: pv. juglandis, the causal agent of walnut bacterial blight, brown apical necrosis, and the vertical oozing canker of Persian (English) walnut; and pv. corylina, the causal agent of the bacterial blight of hazelnut. Both pathovars share a complex population structure, represented by different clusters and several clades. Here we describe our current understanding of symptomatology, population dynamics, epidemiology, and disease control. TAXONOMIC STATUS Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Lysobacterales (earlier synonym of Xanthomonadales); Family Lysobacteraceae (earlier synonym of Xanthomonadaceae); Genus Xanthomonas; Species X. arboricola; Pathovars: pv. juglandis and pv. corylina. HOST RANGE AND SYMPTOMS The host range of each pathovar is not limited to a single species, but each infects mainly one plant species: Juglans regia (X. arboricola pv. juglandis) and Corylus avellana (X. arboricola. pv. corylina). Walnut bacterial blight is characterized by lesions on leaves and fruits, and cankers on twigs, branches, and trunks; brown apical necrosis symptoms consist of apical necrosis originating at the stigmatic end of the fruit. A peculiar symptom, the vertical oozing canker developing along the trunk, is elicited by a particular genetic lineage of the bacterium. Symptoms of hazelnut bacterial blight are visible on leaves and fruits as necrotic lesions, and on woody parts as cankers. A remarkable difference is that affected walnuts drop abundantly, whereas hazelnuts with symptoms do not. DISTRIBUTION Bacterial blight of walnut has a worldwide distribution, wherever Persian (English) walnut is cultivated; the bacterial blight of hazelnut has a more limited distribution, although disease outbreaks are currently more frequently reported. X. arboricola pv. juglandis is regulated almost nowhere, whereas X. arboricola pv. corylina is regulated in most European and Mediterranean Plant Protection Organization (EPPO) countries. EPIDEMIOLOGY AND CONTROL For both pathogens infected nursery material is the main pathway for their introduction and spread into newly cultivated areas; additionally, infected nursery material is the source of primary inoculum. X. arboricola pv. juglandis is also disseminated through pollen. Disease control is achieved through the phytosanitary certification of nursery material (hazelnut), although approved certification schemes are not currently available. Once the disease is present in walnut/hazelnut groves, copper compounds are widely used, mostly in association with dithiocarbamates; where allowed, antibiotics (preferably kasugamycin) are sprayed. The emergence of strains highly resistant to copper currently represents the major threat for effective management of the bacterial blight of walnut. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTJU, https://gd.eppo.int/taxon/XANTCY, https://www.euroxanth.eu, http://www.xanthomonas.org.
Collapse
Affiliation(s)
- Monika Kałużna
- The National Institute of Horticultural ResearchSkierniewicePoland
| | | | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research GroupInstitute for Natural Resource SciencesZurich University of Applied SciencesWädenswilSwitzerland
| | | | | | - Fernando Tavares
- Centro de Investigação em Biodiversidade e Recursos GenéticosLaboratório Associado (CIBIO‐InBIO)Universidade do PortoPortugal
- Faculdade de CiênciasDepartamento de BiologiaUniversidade do PortoPortoPortugal
| | - Emilio Stefani
- Department of Life SciencesUniversity of Modena and Reggio EmiliaReggio EmiliaItaly
| |
Collapse
|
5
|
Hu M, Li C, Zhou X, Xue Y, Wang S, Hu A, Chen S, Mo X, Zhou J. Microbial Diversity Analysis and Genome Sequencing Identify Xanthomonas perforans as the Pathogen of Bacterial Leaf Canker of Water Spinach ( Ipomoea aquatic). Front Microbiol 2021; 12:752760. [PMID: 34777306 PMCID: PMC8579042 DOI: 10.3389/fmicb.2021.752760] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Ipomoea aquatica is a leafy vegetable widely cultivated in tropical Asia, Africa, and Oceania. Bacterial leaf canker disease has been attacking the planting fields and seriously affecting the quality of I. aquatica in epidemic areas in China. This study examined the microbial composition of I. aquatica leaves with classical symptoms of spot disease. The results showed that Xanthomonas was overwhelmingly dominant in all four diseased leaf samples but rarely present in rhizospheric soil or irrigation water samples. In addition, Pantoea was also detected in two of the diseased leaf samples. Pathogen isolation, identification, and inoculation revealed that both Xanthomonas sp. TC2-1 and P. ananatis were pathogenic to the leaves of I. aquatic, causing crater-shaped ulcerative spots and yellowing with big brown rot lesions on leaves, respectively. We further sequenced the whole genome of strain TC2-1 and showed that it is a member of X. perforans. Overall, this study identified X. perforans as the causal pathogen of I. aquatica bacterial leaf canker, and P. ananatis as a companion pathogen causing yellowing and brown rot on leaves. The correct identification of the pathogens will provide important basis for future efforts to formulate targeted application strategy for bacterial disease control.
Collapse
Affiliation(s)
- Ming Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Chuhao Li
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiaofan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Yang Xue
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Si Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Anqun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Shanshan Chen
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| | - Xiuwen Mo
- Agricultural Technology Service Centre of Daojiao Town, Dongguan, China
| | - Jianuan Zhou
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Fernandes C, Martins L, Teixeira M, Blom J, Pothier JF, Fonseca NA, Tavares F. Comparative Genomics of Xanthomonas euroxanthea and Xanthomonas arboricola pv. juglandis Strains Isolated from a Single Walnut Host Tree. Microorganisms 2021; 9:microorganisms9030624. [PMID: 33803052 PMCID: PMC8003016 DOI: 10.3390/microorganisms9030624] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 11/20/2022] Open
Abstract
The recent report of distinct Xanthomonas lineages of Xanthomonas arboricola pv. juglandis and Xanthomonas euroxanthea within the same walnut tree revealed that this consortium of walnut-associated Xanthomonas includes both pathogenic and nonpathogenic strains. As the implications of this co-colonization are still poorly understood, in order to unveil niche-specific adaptations, the genomes of three X. euroxanthea strains (CPBF 367, CPBF 424T, and CPBF 426) and of an X. arboricola pv. juglandis strain (CPBF 427) isolated from a single walnut tree in Loures (Portugal) were sequenced with two different technologies, Illumina and Nanopore, to provide consistent single scaffold chromosomal sequences. General genomic features showed that CPBF 427 has a genome similar to other X. arboricola pv. juglandis strains, regarding its size, number, and content of CDSs, while X. euroxanthea strains show a reduction regarding these features comparatively to X. arboricola pv. juglandis strains. Whole genome comparisons revealed remarkable genomic differences between X. arboricola pv. juglandis and X. euroxanthea strains, which translates into different pathogenicity and virulence features, namely regarding type 3 secretion system and its effectors and other secretory systems, chemotaxis-related proteins, and extracellular enzymes. Altogether, the distinct genomic repertoire of X. euroxanthea may be particularly useful to address pathogenicity emergence and evolution in walnut-associated Xanthomonas.
Collapse
Affiliation(s)
- Camila Fernandes
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; (L.M.); (M.T.); (N.A.F.)
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Unidade Estratégica de Investigação e Serviços de Sistemas Agrários e Florestais e Sanidade Vegetal, INIAV, Avenida da República, Quinta do Marquês, 2780-157 Oeiras, Portugal
- Correspondence: (C.F.); (F.T.)
| | - Leonor Martins
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; (L.M.); (M.T.); (N.A.F.)
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Miguel Teixeira
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; (L.M.); (M.T.); (N.A.F.)
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig University Giessen, Ludwigstraße 23, 35390 Giessen, Germany;
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology Research Group, Institute for Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Einsiedlerstrasse 31, 8820 Wädenswil, Switzerland;
| | - Nuno A. Fonseca
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; (L.M.); (M.T.); (N.A.F.)
| | - Fernando Tavares
- CIBIO—Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO-Laboratório Associado, Universidade do Porto, Rua Padre Armando Quintas 7, 4485-661 Vairão, Portugal; (L.M.); (M.T.); (N.A.F.)
- FCUP—Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
- Correspondence: (C.F.); (F.T.)
| |
Collapse
|
7
|
Martins L, Fernandes C, Blom J, Dia NC, Pothier JF, Tavares F. Xanthomonas euroxanthea sp. nov., a new xanthomonad species including pathogenic and non-pathogenic strains of walnut. Int J Syst Evol Microbiol 2020; 70:6024-6031. [PMID: 32924921 PMCID: PMC8049493 DOI: 10.1099/ijsem.0.004386] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 07/27/2020] [Indexed: 11/18/2022] Open
Abstract
We describe a novel species isolated from walnut (Juglans regia) which comprises non-pathogenic and pathogenic strains on walnut. The isolates, obtained from a single ornamental walnut tree showing disease symptoms, grew on yeast extract-dextrose-carbonate agar as mucoid yellow colonies characteristic of Xanthomonas species. Pathogenicity assays showed that while strain CPBF 424T causes disease in walnut, strain CPBF 367 was non-pathogenic on walnut leaves. Biolog GEN III metabolic profiles disclosed some differences between strains CPBF 367 and CPBF 424T and other xanthomonads. Multilocus sequence analysis with seven housekeeping genes (fyuA, gyrB, rpoD, atpD, dnaK, efp, glnA) grouped these strains in a distinct cluster from Xanthomonas arboricola pv. juglandis and closer to Xanthomonas prunicola and Xanthomonas arboricola pv. populi. Average nucleotide identity (ANI) analysis results displayed similarity values below 93 % to X. arboricola strains. Meanwhile ANI and digital DNA-DNA hybridization similarity values were below 89 and 50 % to non-arboricola Xanthomonas strains, respectively, revealing that they do not belong to any previously described Xanthomonas species. Furthermore, the two strains show over 98 % similarity to each other. Genomic analysis shows that strain CPBF 424T harbours a complete type III secretion system and several type III effector proteins, in contrast with strain CPBF 367, shown to be non-pathogenic in plant bioassays. Taking these data altogether, we propose that strains CPBF 367 and CPBF 424T belong to a new species herein named Xanthomonas euroxanthea sp. nov., with CPBF 424T (=LMG 31037T=CCOS 1891T=NCPPB 4675T) as the type strain.
Collapse
Affiliation(s)
- Leonor Martins
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- FCUP, Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal
| | - Camila Fernandes
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- FCUP, Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal
- INIAV, Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, Quinta do Marquês, Oeiras, Portugal
| | - Jochen Blom
- Bioinformatics and Systems Biology, Justus-Liebig-University Giessen, Giessen, Germany
| | - Nay C. Dia
- Environmental Genomics and Systems Biology, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
- Molecular Plant Breeding, Institute of Agricultural Sciences, ETH Zurich, Zurich, Switzerland
| | - Joël F. Pothier
- Environmental Genomics and Systems Biology, Institute of Natural Resource Sciences, Zurich University of Applied Sciences (ZHAW), Wädenswil, Switzerland
| | - Fernando Tavares
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
- FCUP, Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Rua do Campo Alegre s/n, Porto, Portugal
| |
Collapse
|
8
|
Kyrova EI, Dzhalilov FS, Ignatov AN. The role of epiphytic populations in pathogenesis of the genus Xanthomonas bacteria. BIO WEB OF CONFERENCES 2020. [DOI: 10.1051/bioconf/20202303010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Global climate warming and involvement of new regions with endemic populations of microorganisms in commercial seed production have led to an increase in the diversity of phytopathogenic bacteria that are affecting major crops, including the fruit trees. As a rule, emergence of new pathogens is associated with importation of infected seeds and planting material, cultivation of new species and varieties of plants, and expansion of agricultural trade with foreign countries. One of the leaders in diversity among phytopathogens is the genus Xanthomonas bacteria, affecting more than 400 plant species. Among the characteristic signs of xanthomonads is the high frequency of horizontal gene transfer both within the genus and between phylogenetically removed bacterial taxa – up to 25% of the genes are of this origin. In this paper, we consider another source of increasing the number of phytopathogenic species – by the epiphytic populations. These bacteria are the likely ancestral form of the phytopathogenic bacteria of the genus Xanthomonas.
Collapse
|
9
|
Méline V, Brin C, Lebreton G, Ledroit L, Sochard D, Hunault G, Boureau T, Belin E. A Computation Method Based on the Combination of Chlorophyll Fluorescence Parameters to Improve the Discrimination of Visually Similar Phenotypes Induced by Bacterial Virulence Factors. FRONTIERS IN PLANT SCIENCE 2020; 11:213. [PMID: 32174949 PMCID: PMC7055487 DOI: 10.3389/fpls.2020.00213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 02/11/2020] [Indexed: 05/24/2023]
Abstract
Phenotyping biotic stresses in plant-pathogen interactions studies is often hindered by phenotypes that can hardly be discriminated by visual assessment. Particularly, single gene mutants in virulence factors could lack visible phenotypes. Chlorophyll fluorescence (CF) imaging is a valuable tool to monitor plant-pathogen interactions. However, while numerous CF parameters can be measured, studies on plant-pathogen interactions often focus on a restricted number of parameters. It could result in limited abilities to discriminate visually similar phenotypes. In this study, we assess the ability of the combination of multiple CF parameters to improve the discrimination of such phenotypes. Such an approach could be of interest for screening and discriminating the impact of bacterial virulence factors without prior knowledge. A computation method was developed, based on the combination of multiple CF parameters, without any parameter selection. It involves histogram Bhattacharyya distance calculations and hierarchical clustering, with a normalization approach to take into account the inter-leaves and intra-phenotypes heterogeneities. To assess the efficiency of the method, two datasets were analyzed the same way. The first dataset featured single gene mutants of a Xanthomonas strain which differed only by their abilities to secrete bacterial virulence proteins. This dataset displayed expected phenotypes at 6 days post-inoculation and was used as ground truth dataset to setup the method. The efficiency of the computation method was demonstrated by the relevant discrimination of phenotypes at 3 days post-inoculation. A second dataset was composed of transient expression (agrotransformation) of Type 3 Effectors. This second dataset displayed phenotypes that cannot be discriminated by visual assessment and no prior knowledge can be made on the respective impact of each Type 3 Effectors on leaf tissues. Using the computation method resulted in clustering the leaf samples according to the Type 3 Effectors, thereby demonstrating an improvement of the discrimination of the visually similar phenotypes. The relevant discrimination of visually similar phenotypes induced by bacterial strains differing only by one virulence factor illustrated the importance of using a combination of CF parameters to monitor plant-pathogen interactions. It opens a perspective for the identification of specific signatures of biotic stresses.
Collapse
Affiliation(s)
- Valérian Méline
- Emersys, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Chrystelle Brin
- Emersys, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Guillaume Lebreton
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Lydie Ledroit
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Daniel Sochard
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Gilles Hunault
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Laboratoire HIFIH, UPRES EA 3859, SFR 4208, Université d'Angers, Angers, France
| | - Tristan Boureau
- Emersys, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
| | - Etienne Belin
- ImHorPhen, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Phenotic Platform, SFR 4207 QUASAV, IRHS, UMR1345, Université d'Angers, Angers, France
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes, Université d'Angers, Angers, France
| |
Collapse
|
10
|
Jiang S, Balan B, Assis RDAB, Sagawa CHD, Wan X, Han S, Wang L, Zhang L, Zaini PA, Walawage SL, Jacobson A, Lee SH, Moreira LM, Leslie CA, Dandekar AM. Genome-Wide Profiling and Phylogenetic Analysis of the SWEET Sugar Transporter Gene Family in Walnut and Their Lack of Responsiveness to Xanthomonas arboricola pv. juglandis Infection. Int J Mol Sci 2020; 21:ijms21041251. [PMID: 32070009 PMCID: PMC7072939 DOI: 10.3390/ijms21041251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/10/2020] [Accepted: 02/10/2020] [Indexed: 12/12/2022] Open
Abstract
Following photosynthesis, sucrose is translocated to sink organs, where it provides the primary source of carbon and energy to sustain plant growth and development. Sugar transporters from the SWEET (sugar will eventually be exported transporter) family are rate-limiting factors that mediate sucrose transport across concentration gradients, sustain yields, and participate in reproductive development, plant senescence, stress responses, as well as support plant-pathogen interaction, the focus of this study. We identified 25 SWEET genes in the walnut genome and distinguished each by its individual gene structure and pattern of expression in different walnut tissues. Their chromosomal locations, cis-acting motifs within their 5' regulatory elements, and phylogenetic relationship patterns provided the first comprehensive analysis of the SWEET gene family of sugar transporters in walnut. This family is divided into four clades, the analysis of which suggests duplication and expansion of the SWEET gene family in Juglans regia. In addition, tissue-specific gene expression signatures suggest diverse possible functions for JrSWEET genes. Although these are commonly used by pathogens to harness sugar products from their plant hosts, little was known about their role during Xanthomonas arboricola pv. juglandis (Xaj) infection. We monitored the expression profiles of the JrSWEET genes in different tissues of "Chandler" walnuts when challenged with pathogen Xaj417 and concluded that SWEET-mediated sugar translocation from the host is not a trigger for walnut blight disease development. This may be directly related to the absence of type III secretion system-dependent transcription activator-like effectors (TALEs) in Xaj417, which suggests different strategies are employed by this pathogen to promote susceptibility to this major aboveground disease of walnuts.
Collapse
Affiliation(s)
- Shijiao Jiang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
- College of Life Sciences, China West Normal University, Nanchong 637000, China
| | - Bipin Balan
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
- Dipartimento di Scienze Agrarie Alimentari Forestali, Università di Palermo, Viale delle Scienze Ed. 4, 90128 Palermo, Italy
| | - Renata de A. B. Assis
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Cintia H. D. Sagawa
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
| | - Xueqin Wan
- Department of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (S.H.)
| | - Shan Han
- Department of Forestry, Sichuan Agricultural University, Chengdu 611130, China; (X.W.); (S.H.)
| | - Le Wang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
| | - Lanlan Zhang
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
- Department of Horticulture, College of Agriculture and Food Science, Zhejiang A&F University, Lin’an, Hangzhou 311300, China
| | - Paulo A. Zaini
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
| | - Sriema L. Walawage
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
| | - Aaron Jacobson
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
| | - Steven H. Lee
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
| | - Leandro M. Moreira
- Departamento de Ciências Biológicas, Instituto de Ciências Exatas e Biológicas, Núcleo de Pesquisas em Ciências Biológicas, Universidade Federal de Ouro Preto, Ouro Preto 35400-000, Brazil;
| | - Charles A. Leslie
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
| | - Abhaya M. Dandekar
- Department of Plant Sciences, University of California, Davis, CA 95616, USA; (S.J.); (B.B.); (R.d.A.B.A.); (C.H.D.S.); (L.W.); (L.Z.); (P.A.Z.); (S.L.W.); (A.J.); (S.H.L.); (C.A.L.)
- Correspondence:
| |
Collapse
|
11
|
Martins L, Fernandes C, Albuquerque P, Tavares F. Assessment of Xanthomonas arboricola pv. juglandis Bacterial Load in Infected Walnut Fruits by Quantitative PCR. PLANT DISEASE 2019; 103:2577-2586. [PMID: 31347945 DOI: 10.1094/pdis-12-18-2253-re] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Xanthomonas arboricola pv. juglandis is the etiologic agent of important walnut (Juglans regia L.) diseases, causing severe fruit drop and high economic losses in walnut production regions. Rapid diagnostics and knowledge of bacterial virulence fitness are key to hinder disease progression and apply timely phytosanitary measures. This work describes an X. arboricola pv. juglandis-specific real-time quantitative PCR (qPCR) using X. arboricola pv. juglandis-specific DNA markers to quantify the bacterial load in infected walnut plant tissues. Method validation was achieved using calibration curves obtained with serial dilutions of X. arboricola pv. juglandis chromosomal DNA and standard curves obtained from walnut samples spiked with X. arboricola pv. juglandis cells. High correlations (R2 > 0.990 and > 0.995) and low limits of detection (35 chromosomes/qPCR reaction and 2.7 CFU/qPCR reaction) were obtained for both markers considering the calibration and standard curves, respectively. Assessment of qPCR repeatability, reproducibility, and specificity allowed us to demonstrate the reliability and consistency of the method. Furthermore, in planta quantification of X. arboricola pv. juglandis bacterial load using infected walnut fruit samples showed a higher detection resolution compared with standard PCR detection. By allowing quantification of virulence fitness of distinct X. arboricola pv. juglandis strains in planta, the proposed qPCR method may contribute to assertive risk assessment of walnut diseases caused by X. arboricola pv. juglandis and ultimately help to improve phytosanitary practices.
Collapse
Affiliation(s)
- Leonor Martins
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| | - Camila Fernandes
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Quinta do Marquês, Oeiras, Portugal
| | - Pedro Albuquerque
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| | - Fernando Tavares
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO - Laboratório Associado, Universidade do Porto, Vairão, Portugal
- FCUP - Faculdade de Ciências, Departamento de Biologia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
12
|
Tan X, Qiu H, Li F, Cheng D, Zheng X, Wang B, Huang M, Li W, Li Y, Sang K, Song B, Du J, Chen H, Xie C. Complete Genome Sequence of Sequevar 14M Ralstonia solanacearum Strain HA4-1 Reveals Novel Type III Effectors Acquired Through Horizontal Gene Transfer. Front Microbiol 2019; 10:1893. [PMID: 31474968 PMCID: PMC6703095 DOI: 10.3389/fmicb.2019.01893] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 07/31/2019] [Indexed: 01/08/2023] Open
Abstract
Ralstonia solanacearum, which causes bacterial wilt in a broad range of plants, is considered a "species complex" due to its significant genetic diversity. Recently, we have isolated a new R. solanacearum strain HA4-1 from Hong'an county in Hubei province of China and identified it being phylotype I, sequevar 14M (phylotype I-14M). Interestingly, we found that it can cause various disease symptoms among different potato genotypes and display different pathogenic behavior compared to a phylogenetically related strain, GMI1000. To dissect the pathogenic mechanisms of HA4-1, we sequenced its whole genome by combined sequencing technologies including Illumina HiSeq2000, PacBio RS II, and BAC-end sequencing. Genome assembly results revealed the presence of a conventional chromosome, a megaplasmid as well as a 143 kb plasmid in HA4-1. Comparative genome analysis between HA4-1 and GMI1000 shows high conservation of the general virulence factors such as secretion systems, motility, exopolysaccharides (EPS), and key regulatory factors, but significant variation in the repertoire and structure of type III effectors, which could be the determinants of their differential pathogenesis in certain potato species or genotypes. We have identified two novel type III effectors that were probably acquired through horizontal gene transfer (HGT). These novel R. solanacearum effectors display homology to several YopJ and XopAC family members. We named them as RipBR and RipBS. Notably, the copy of RipBR on the plasmid is a pseudogene, while the other on the megaplasmid is normal. For RipBS, there are three copies located in the megaplasmid and plasmid, respectively. Our results have not only enriched the genome information on R. solanacearum species complex by sequencing the first sequevar 14M strain and the largest plasmid reported in R. solanacearum to date but also revealed the variation in the repertoire of type III effectors. This will greatly contribute to the future studies on the pathogenic evolution, host adaptation, and interaction between R. solanacearum and potato.
Collapse
Affiliation(s)
- Xiaodan Tan
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Huishan Qiu
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Feng Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Dong Cheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Xueao Zheng
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Bingsen Wang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Mengshu Huang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Wenhao Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Yanping Li
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Kangqi Sang
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
| | - Botao Song
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Juan Du
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Huilan Chen
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| | - Conghua Xie
- Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan, China
- National Center for Vegetable Improvement (Central China), Wuhan, China
| |
Collapse
|
13
|
Garita-Cambronero J, Sena-Vélez M, Ferragud E, Sabuquillo P, Redondo C, Cubero J. Xanthomonas citri subsp. citri and Xanthomonas arboricola pv. pruni: Comparative analysis of two pathogens producing similar symptoms in different host plants. PLoS One 2019; 14:e0219797. [PMID: 31318915 PMCID: PMC6639005 DOI: 10.1371/journal.pone.0219797] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 07/01/2019] [Indexed: 01/06/2023] Open
Abstract
Comparative studies in Xanthomonas have provided a vast amount of data that enabled to deepen in the knowledge of those factors associated with virulence and Xanthomonas plant interaction. The species of this genus present a wide range of host plants and a large number of studies have been focused to elucidate which mechanism are involved in this characteristic. In this study, comparative genomic and phenotypic analysis were performed between X. citri subsp. citri (Xcc), one of the most studied pathogens within Xanthomonas, and X. arboricola pv. pruni (Xap), a pathogen which has aroused great interest in recent time. The work was aimed to find those elements that contribute to their host divergence despite the convergence in the symptoms that each species cause on Citrus spp. and Prunus spp., respectively. This study reveals a set of genes that could be putatively associated with the adaptation of these pathogens to their hosts, being the most remarkable those involved in environmental sensing systems such as the case of the TonB-dependent transporters, the sensors of the two-component system and the methyl accepting chemotaxis proteins. Other important variants were found in processes related to the decomposition of the cell wall as could be appreciated by their dissimilar set of cell-wall degrading enzymes. Type three effectors, as one of the most important factors in delineating the host specificity in Xanthomonas, also showed a different array when comparing both species, being some of them unique to each pathogen. On the other hand, only small variations could be connected to other features such as the motility appendages and surface adhesion proteins, but these differences were accompanied by a dissimilar capacity to attach on host and non-host leaf surface. The molecular factors found in this work provide the basis to perform a more in-depth functional analyses that unveil those actual factors associated with pathogenesis and host specificity in Xcc and Xap.
Collapse
Affiliation(s)
- Jerson Garita-Cambronero
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain.,Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo, Leon, Spain
| | - Marta Sena-Vélez
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain.,Department of Biological Science, Florida State University, Tallahassee, Florida, United States of America
| | - Elisa Ferragud
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| | - Pilar Sabuquillo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| | - Cristina Redondo
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Laboratorio Bacteriología, Instituto Nacional de Investigación y Tecnología Agraria (INIA), Madrid, Spain
| |
Collapse
|
14
|
Roach R, Mann R, Gambley CG, Chapman T, Shivas RG, Rodoni B. Genomic sequence analysis reveals diversity of Australian Xanthomonas species associated with bacterial leaf spot of tomato, capsicum and chilli. BMC Genomics 2019; 20:310. [PMID: 31014247 PMCID: PMC6480910 DOI: 10.1186/s12864-019-5600-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 03/12/2019] [Indexed: 01/03/2023] Open
Abstract
Background The genetic diversity in Australian populations of Xanthomonas species associated with bacterial leaf spot in tomato, capsicum and chilli were compared to worldwide bacterial populations. The aim of this study was to confirm the identities of these Australian Xanthomonas species and classify them in comparison to overseas isolates. Analysis of whole genome sequence allows for the investigation of bacterial population structure, pathogenicity and gene exchange, resulting in better management strategies and biosecurity. Results Phylogenetic analysis of the core genome alignments and SNP data grouped strains in distinct clades. Patterns observed in average nucleotide identity, pan genome structure, effector and carbohydrate active enzyme profiles reflected the whole genome phylogeny and highlight taxonomic issues in X. perforans and X. euvesicatoria. Circular sequences with similarity to previously characterised plasmids were identified, and plasmids of similar sizes were isolated. Potential false positive and false negative plasmid assemblies were discussed. Effector patterns that may influence virulence on host plant species were analysed in pathogenic and non-pathogenic xanthomonads. Conclusions The phylogeny presented here confirmed X. vesicatoria, X. arboricola, X. euvesicatoria and X. perforans and a clade of an uncharacterised Xanthomonas species shown to be genetically distinct from all other strains of this study. The taxonomic status of X. perforans and X. euvesicatoria as one species is discussed in relation to whole genome phylogeny and phenotypic traits. The patterns evident in enzyme and plasmid profiles indicate worldwide exchange of genetic material with the potential to introduce new virulence elements into local bacterial populations. Electronic supplementary material The online version of this article (10.1186/s12864-019-5600-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- R Roach
- Department of Agriculture and Fisheries, Ecosciences Precinct, Brisbane, QLD, Australia. .,Agriculture Victoria Research Division, Department of Economic Development, Jobs, Transport & Resources, AgriBio, La Trobe University, Bundoora, Victoria, 3083, Australia.
| | - R Mann
- Agriculture Victoria Research Division, Department of Economic Development, Jobs, Transport & Resources, AgriBio, La Trobe University, Bundoora, Victoria, 3083, Australia
| | - C G Gambley
- Department of Agriculture and Fisheries, Applethorpe Research Facility, Applethorpe, QLD, Australia
| | - T Chapman
- Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - R G Shivas
- Centre for Crop Health, University of Southern Queensland, Toowoomba, QLD, Australia
| | - B Rodoni
- Agriculture Victoria Research Division, Department of Economic Development, Jobs, Transport & Resources, AgriBio, La Trobe University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
15
|
Meline V, Delage W, Brin C, Li‐Marchetti C, Sochard D, Arlat M, Rousseau C, Darrasse A, Briand M, Lebreton G, Portier P, Fischer‐Le Saux M, Durand K, Jacques M, Belin E, Boureau T. Role of the acquisition of a type 3 secretion system in the emergence of novel pathogenic strains of Xanthomonas. MOLECULAR PLANT PATHOLOGY 2019; 20:33-50. [PMID: 30076773 PMCID: PMC6430459 DOI: 10.1111/mpp.12737] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Cases of emergence of novel plant-pathogenic strains are regularly reported that reduce the yields of crops and trees. However, the molecular mechanisms underlying such emergence are still poorly understood. The acquisition by environmental non-pathogenic strains of novel virulence genes by horizontal gene transfer has been suggested as a driver for the emergence of novel pathogenic strains. In this study, we tested such an hypothesis by transferring a plasmid encoding the type 3 secretion system (T3SS) and four associated type 3 secreted proteins (T3SPs) to the non-pathogenic strains of Xanthomonas CFBP 7698 and CFBP 7700, which lack genes encoding T3SS and any previously known T3SPs. The resulting strains were phenotyped on Nicotiana benthamiana using chlorophyll fluorescence imaging and image analysis. Wild-type, non-pathogenic strains induced a hypersensitive response (HR)-like necrosis, whereas strains complemented with T3SS and T3SPs suppressed this response. Such suppression depends on a functional T3SS. Amongst the T3SPs encoded on the plasmid, Hpa2, Hpa1 and, to a lesser extent, XopF1 collectively participate in suppression. Monitoring of the population sizes in planta showed that the sole acquisition of a functional T3SS by non-pathogenic strains impairs growth inside leaf tissues. These results provide functional evidence that the acquisition via horizontal gene transfer of a T3SS and four T3SPs by environmental non-pathogenic strains is not sufficient to make strains pathogenic. In the absence of a canonical effector, the sole acquisition of a T3SS seems to be counter-selective, and further acquisition of type 3 effectors is probably needed to allow the emergence of novel pathogenic strains.
Collapse
Affiliation(s)
- Valérian Meline
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Wesley Delage
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Chrystelle Brin
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Camille Li‐Marchetti
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Daniel Sochard
- Platform PHENOTICIRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Matthieu Arlat
- INRAUMR 441, Laboratoire des Interactions Plantes Micro‐organismes (LIPM)F‐31326Castanet‐TolosanFrance
| | - Céline Rousseau
- Platform PHENOTICIRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Armelle Darrasse
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Martial Briand
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Guillaume Lebreton
- Platform PHENOTICIRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Perrine Portier
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
- CIRM‐CFBP French Collection for Plant‐associated BacteriaIRHSUMR 1345INRA‐ACO‐UA42 rue Georges Morel49070Beaucouzé CedexFrance
| | - Marion Fischer‐Le Saux
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
- CIRM‐CFBP French Collection for Plant‐associated BacteriaIRHSUMR 1345INRA‐ACO‐UA42 rue Georges Morel49070Beaucouzé CedexFrance
| | - Karine Durand
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Marie‐Agnès Jacques
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| | - Etienne Belin
- Platform PHENOTICIRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
- Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS)Université d’AngersF‐49000AngersFrance
| | - Tristan Boureau
- IRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
- Platform PHENOTICIRHSINRA, Université d’AngersAgrocampus‐OuestSFR 4207 QuaSav49071BeaucouzéFrance
| |
Collapse
|
16
|
Garita‐Cambronero J, Palacio‐Bielsa A, Cubero J. Xanthomonas arboricola pv. pruni, causal agent of bacterial spot of stone fruits and almond: its genomic and phenotypic characteristics in the X. arboricola species context. MOLECULAR PLANT PATHOLOGY 2018; 19:2053-2065. [PMID: 29575564 PMCID: PMC6638108 DOI: 10.1111/mpp.12679] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 03/13/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Xanthomonas arboricola pv. pruni (Xap) causes bacterial spot of stone fruits and almond, an important disease that may reduce the yield and vigour of the trees, as well as the marketability of affected fruits. Xap lies within the Xanthomonas genus, which has been intensively studied because of its strain specialization and host range complexity. Here, we summarize the recent advances in our understanding of the complexities of Xap, including studies of the molecular features that result after comparative phenotypic and genomic analyses, in order to obtain a clearer overview of the bacterial behaviour and infection mechanism in the context of the X. arboricola species. TAXONOMIC STATUS Bacteria; Phylum Proteobacteria; Class Gammaproteobacteria; Order Xanthomonadales; Family Xanthomonadaceae; Genus Xanthomonas; Species X. arboricola; Pathovar pruni. HOST RANGE AND SYMPTOMS Xap infects most Prunus species, including apricot, peach, nectarine, plum and almond, and occasionally cherry. Symptoms are found on leaves, fruits, twigs and branches or trunks. In severe infections, defoliation and fruit dropping may occur. DISTRIBUTION Bacterial spot of stone fruits and almond is worldwide in distribution, with Xap being isolated in Africa, North and South America, Asia, Europe and Oceania. It is a common disease in geographical areas in which stone fruits and almonds are grown. Xap is listed as a quarantine organism in several areas of the world. GENOME The genomes of six isolates from Xap have been publicly released. The genome consists of a single chromosome of around 5 000 000 bp with 65 mol% GC content and an extrachromosomal plasmid element of around 41 000 bp with 62 mol% GC content. Genomic comparative studies in X. arboricola have allowed the identification of putative virulence components associated with the infection process of bacterial spot of stone fruits and almond. DISEASE CONTROL Management of bacterial spot of stone fruits and almond is based on an integrated approach that comprises essential measures to avoid Xap introduction in a production zone, as well as the use of tolerant or resistant plant material and chemical treatments, mainly based on copper compounds. Management programmes also include the use of appropriate cultivation practices when the disease is already established. Finally, for the effective control of the disease, appropriate detection and characterization methods are needed for use in symptomatic or asymptomatic samples as a first approach for pathogen exclusion. USEFUL WEBSITES: https://gd.eppo.int/taxon/XANTPR; http://www.cost.eu/COST_Actions/ca/CA16107; http://www.xanthomonas.org.
Collapse
Affiliation(s)
- Jerson Garita‐Cambronero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
- Centro de Investigación de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Villarejo de Órbigo 24358LeónSpain
| | - Ana Palacio‐Bielsa
- Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón‐IA2 ‐ (CITA ‐ Universidad de Zaragoza)Zaragoza 50059Spain
| | - Jaime Cubero
- Departamento de Protección VegetalInstituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA)Madrid 28040Spain
| |
Collapse
|
17
|
Identification of virulence factors and type III effectors of phylotype I, Indian Ralstonia solanacearum strains Rs-09-161 and Rs-10-244. J Genet 2018. [DOI: 10.1007/s12041-018-0894-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Asolkar T, Ramesh R. Identification of virulence factors and type III effectors of phylotype I, Indian Ralstonia solanacearum strains Rs-09-161 and Rs-10-244. J Genet 2018; 97:55-66. [PMID: 29666325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ralstonia solanacearum is a well-known phytopathogen causing bacterial wilt in a large number of agriculturally important crops. The pathogenicity of R. solanacearum is expressed due to the presence of various virulence factors and effector proteins. In this study, various virulence factors and type III effector proteins of R. solanacearum that are present in the strains Rs-09-161 and Rs-10-244 were identified through bioinformatics approach and compared with other reference strains. R. solanacearum strains, Rs-09-161 and Rs-10-244 belong to the phylotype I, biovar3, and are the only sequenced strains from India infecting solanaceous vegetables. Similarity matrix obtained by comparing the sequences of virulence genes of Rs-09-161 and Rs-10-244 with other reference strains indicated that Rs-09-161 and Rs-10-244 share more than 99% similarity between them and are closely related to GMI1000. The virulence factors in R. solanacearum appear to be highly conserved in the R. solanacearum species complex. Rs-09-161 has 72 type III effectors whereas Rs-10-244 has 77. Comparison of the complete genes of type III effectors of Rs-09-161,Rs-10-244 andGMI1000 revealed the presence of 60 common effectors within them. Further,Rs-09-161 has two unique effectors and Rs-10-244 has four unique effectors. Phylogenetic trees of RipA, RipG, RipH and RipS effector sequences resulted in the grouping of the isolates based on their phylotypes. Group 1 consists of strains that belong to phylotype I including Rs-09-161 and Rs-10-244. Phylotype III strain CMR15 forms a group closely associated with phylotype I. The strains belonging to phylotypes II and IV have separated to form two different groups.
Collapse
Affiliation(s)
- Trupti Asolkar
- Department of Microbiology, Goa University, Taleigao Plateau 403 206, India.
| | | |
Collapse
|
19
|
High-Quality Draft Genome Sequences of Five Xanthomonas arboricola pv. fragariae Isolates. GENOME ANNOUNCEMENTS 2018; 6:6/7/e01585-17. [PMID: 29449402 PMCID: PMC5814503 DOI: 10.1128/genomea.01585-17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xanthomonas arboricola pv. fragariae was described in 2001 as the causal agent of strawberry bacterial leaf blight. We report here the first draft whole-genome sequences of five X. arboricola pv. fragariae isolates from Italy and France.
Collapse
|
20
|
Fernandes C, Albuquerque P, Sousa R, Cruz L, Tavares F. Multiple DNA Markers for Identification of Xanthomonas arboricola pv. juglandis Isolates and its Direct Detection in Plant Samples. PLANT DISEASE 2017; 101:858-865. [PMID: 30682925 DOI: 10.1094/pdis-10-16-1481-re] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Xanthomonas arboricola pv. juglandis (Xaj) is the etiological agent of walnut (Juglans regia L.) bacterial blight (WBB), and has been associated to other walnut emerging diseases, namely brown apical necrosis (BAN) and vertical oozing canker (VOC), altogether severely affecting the walnut production worldwide. Despite the research efforts carried out to disclose Xaj genetic diversity, reliable molecular methods for rapid identification of Xaj isolates and culture-independent detection of Xaj in infected plant samples are still missing. In this work, we propose nine novel specific DNA markers (XAJ1 to XAJ9) selected by dedicated in silico approaches to identify Xaj isolates and detect these bacteria in infected plant material. To confirm the efficacy and specificity of these markers, dot blot hybridization was carried out across a large set of xanthomonads. This analysis, which confirmed the pathovar specificity of these markers, allowed to identify four broad-range markers (XAJ1, XAJ4, XAJ6, and XAJ8) and five narrow-range markers (XAJ2, XAJ3, XAJ5, XAJ7, and XAJ9), originating 12 hybridization patterns (HP1 to HP12). No evident relatedness was observed between these hybridization patterns and the geographic origin from which the isolates were obtained. Interestingly, four isolates that clustered together according the gyrB phylogenetic analysis (CPBF 1507, 1508, 1514, and 1522) presented the same hybridization pattern (HP11), suggesting that these nine markers might be informative to rapidly discriminate and identify different Xaj lineages. Taking into account that a culture-independent detection of Xaj in plant material has never been described, a multiplex PCR was optimized using markers XAJ1, XAJ6, and XAJ8. This triplex PCR, besides confirming the dot blot data for each of the 52 Xaj, was able to detect Xaj in field infected walnut leaves and fruits. Altogether, these nine Xaj-specific markers allow conciliating the specificity of DNA-detection assays with typing resolution, contributing to rapid detection and identification of potential emergent and acutely virulent Xaj genotypes, infer their distribution, disclose the presence of this phytopathogen on potential alternative host species and improve phytosanitary control.
Collapse
Affiliation(s)
- Camila Fernandes
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal; INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, Quinta do Marquês, Oeiras, Portugal; and FCUP - Faculdade de Ciências, Departamento de Biologia, Rua do Campo Alegre S/n° Universidade do Porto, Porto, Portugal
| | - Pedro Albuquerque
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal
| | - Rui Sousa
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Polo de Alcobaça, Estrada de Leiria, Alcobaça, Portugal
| | - Leonor Cruz
- INIAV - Instituto Nacional de Investigação Agrária e Veterinária, Av. da República, Quinta do Marquês, Oeiras, Portugal; and BioISI - Instituto de Biossistemas e Ciências Integrativas, Campus da FCUL, Campo Grande, Lisboa, Portugal
| | - Fernando Tavares
- CIBIO - Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO, Laboratório Associado, Universidade do Porto, Vairão, Portugal; and FCUP - Faculdade de Ciências, Departamento de Biologia, Rua do Campo Alegre S/n° Universidade do Porto, Porto, Portugal
| |
Collapse
|
21
|
Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors. Front Microbiol 2017; 8:573. [PMID: 28450852 PMCID: PMC5389983 DOI: 10.3389/fmicb.2017.00573] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 01/17/2023] Open
Abstract
Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus.
Collapse
Affiliation(s)
- Jerson Garita-Cambronero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Palacio-Bielsa
- Unidad de Sanidad Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón, Universidad de ZaragozaZaragoza, Spain
| | - María M. López
- Departamento de Bacteriología, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| |
Collapse
|
22
|
Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Pan-Genomic Analysis Permits Differentiation of Virulent and Non-virulent Strains of Xanthomonas arboricola That Cohabit Prunus spp. and Elucidate Bacterial Virulence Factors. Front Microbiol 2017; 8:573. [PMID: 28450852 DOI: 10.3389/fmicb.2017.00573.ecollection2017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/20/2017] [Indexed: 05/24/2023] Open
Abstract
Xanthomonas arboricola is a plant-associated bacterial species that causes diseases on several plant hosts. One of the most virulent pathovars within this species is X. arboricola pv. pruni (Xap), the causal agent of bacterial spot disease of stone fruit trees and almond. Recently, a non-virulent Xap-look-a-like strain isolated from Prunus was characterized and its genome compared to pathogenic strains of Xap, revealing differences in the profile of virulence factors, such as the genes related to the type III secretion system (T3SS) and type III effectors (T3Es). The existence of this atypical strain arouses several questions associated with the abundance, the pathogenicity, and the evolutionary context of X. arboricola on Prunus hosts. After an initial characterization of a collection of Xanthomonas strains isolated from Prunus bacterial spot outbreaks in Spain during the past decade, six Xap-look-a-like strains, that did not clustered with the pathogenic strains of Xap according to a multi locus sequence analysis, were identified. Pathogenicity of these strains was analyzed and the genome sequences of two Xap-look-a-like strains, CITA 14 and CITA 124, non-virulent to Prunus spp., were obtained and compared to those available genomes of X. arboricola associated with this host plant. Differences were found among the genomes of the virulent and the Prunus non-virulent strains in several characters related to the pathogenesis process. Additionally, a pan-genomic analysis that included the available genomes of X. arboricola, revealed that the atypical strains associated with Prunus were related to a group of non-virulent or low virulent strains isolated from a wide host range. The repertoire of the genes related to T3SS and T3Es varied among the strains of this cluster and those strains related to the most virulent pathovars of the species, corylina, juglandis, and pruni. This variability provides information about the potential evolutionary process associated to the acquisition of pathogenicity and host specificity in X. arboricola. Finally, based in the genomic differences observed between the virulent and the non-virulent strains isolated from Prunus, a sensitive and specific real-time PCR protocol was designed to detect and identify Xap strains. This method avoids miss-identifications due to atypical strains of X. arboricola that can cohabit Prunus.
Collapse
Affiliation(s)
- Jerson Garita-Cambronero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| | - Ana Palacio-Bielsa
- Unidad de Sanidad Vegetal, Centro de Investigación y Tecnología Agroalimentaria de Aragón, Instituto Agroalimentario de Aragón, Universidad de ZaragozaZaragoza, Spain
| | - María M López
- Departamento de Bacteriología, Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones AgrariasValencia, Spain
| | - Jaime Cubero
- Departamento de Protección Vegetal, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadrid, Spain
| |
Collapse
|
23
|
YopJ Family Effectors Promote Bacterial Infection through a Unique Acetyltransferase Activity. Microbiol Mol Biol Rev 2016; 80:1011-1027. [PMID: 27784797 DOI: 10.1128/mmbr.00032-16] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Gram-negative bacterial pathogens rely on the type III secretion system to inject virulence proteins into host cells. These type III secreted "effector" proteins directly manipulate cellular processes to cause disease. Although the effector repertoires in different bacterial species are highly variable, the Yersinia outer protein J (YopJ) effector family is unique in that its members are produced by diverse animal and plant pathogens as well as a nonpathogenic microsymbiont. All YopJ family effectors share a conserved catalytic triad that is identical to that of the C55 family of cysteine proteases. However, an accumulating body of evidence demonstrates that many YopJ effectors modify their target proteins in hosts by acetylating specific serine, threonine, and/or lysine residues. This unique acetyltransferase activity allows the YopJ family effectors to affect the function and/or stability of their targets, thereby dampening innate immunity. Here, we summarize the current understanding of this prevalent and evolutionarily conserved type III effector family by describing their enzymatic activities and virulence functions in animals and plants. In particular, the molecular mechanisms by which representative YopJ family effectors subvert host immunity through posttranslational modification of their target proteins are discussed.
Collapse
|
24
|
Merda D, Bonneau S, Guimbaud JF, Durand K, Brin C, Boureau T, Lemaire C, Jacques MA, Fischer-Le Saux M. Recombination-prone bacterial strains form a reservoir from which epidemic clones emerge in agroecosystems. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:572-581. [PMID: 27059897 DOI: 10.1111/1758-2229.12397] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acquisition of virulence-related genes through horizontal gene transfer can modify the pathogenic profiles of strains and lead to the emergence of new diseases. Xanthomonas arboricola is a bacterial species largely known for the damage it causes to stone and nut fruit trees worldwide. In addition to these host-specific populations called pathovars, many nonpathogenic strains have been identified in this species. Their evolutionary significance in the context of pathogen emergence is unknown. We looked at seven housekeeping genes amplified from 187 pathogenic and nonpathogenic strains isolated from various plants worldwide to analyze population genetics and recombination dynamics. We also examined the dynamics of the gains and losses of genes associated with life history traits (LHTs) during X. arboricola evolution. We discovered that X. arboricola presents an epidemic population structure. Successful pathovars of trees (i.e. pruni, corylina and juglandis) are epidemic clones whose emergence appears to be linked to the acquisition of eight genes coding for Type III effectors. The other strains of this species are part of a recombinant network, within which LHT-associated genes might have been lost. We suggest that nonpathogenic strains, because of their high genetic diversity and propensity for recombination, may promote the emergence of pathogenic strains.
Collapse
Affiliation(s)
- Déborah Merda
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Sophie Bonneau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Jean-François Guimbaud
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Karine Durand
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Chrystelle Brin
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Tristan Boureau
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Christophe Lemaire
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marie-Agnès Jacques
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Marion Fischer-Le Saux
- IRHS, Agrocampus-Ouest, INRA, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
25
|
Comparative Genomic and Phenotypic Characterization of Pathogenic and Non-Pathogenic Strains of Xanthomonas arboricola Reveals Insights into the Infection Process of Bacterial Spot Disease of Stone Fruits. PLoS One 2016; 11:e0161977. [PMID: 27571391 PMCID: PMC5003339 DOI: 10.1371/journal.pone.0161977] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/15/2016] [Indexed: 02/07/2023] Open
Abstract
Xanthomonas arboricola pv. pruni is the causal agent of bacterial spot disease of stone fruits, a quarantinable pathogen in several areas worldwide, including the European Union. In order to develop efficient control methods for this disease, it is necessary to improve the understanding of the key determinants associated with host restriction, colonization and the development of pathogenesis. After an initial characterization, by multilocus sequence analysis, of 15 strains of X. arboricola isolated from Prunus, one strain did not group into the pathovar pruni or into other pathovars of this species and therefore it was identified and defined as a X. arboricola pv. pruni look-a-like. This non-pathogenic strain and two typical strains of X. arboricola pv. pruni were selected for a whole genome and phenotype comparative analysis in features associated with the pathogenesis process in Xanthomonas. Comparative analysis among these bacterial strains isolated from Prunus spp. and the inclusion of 15 publicly available genome sequences from other pathogenic and non-pathogenic strains of X. arboricola revealed variations in the phenotype associated with variations in the profiles of TonB-dependent transporters, sensors of the two-component regulatory system, methyl accepting chemotaxis proteins, components of the flagella and the type IV pilus, as well as in the repertoire of cell-wall degrading enzymes and the components of the type III secretion system and related effectors. These variations provide a global overview of those mechanisms that could be associated with the development of bacterial spot disease. Additionally, it pointed out some features that might influence the host specificity and the variable virulence observed in X. arboricola.
Collapse
|
26
|
Jacques MA, Arlat M, Boulanger A, Boureau T, Carrère S, Cesbron S, Chen NWG, Cociancich S, Darrasse A, Denancé N, Fischer-Le Saux M, Gagnevin L, Koebnik R, Lauber E, Noël LD, Pieretti I, Portier P, Pruvost O, Rieux A, Robène I, Royer M, Szurek B, Verdier V, Vernière C. Using Ecology, Physiology, and Genomics to Understand Host Specificity in Xanthomonas. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:163-87. [PMID: 27296145 DOI: 10.1146/annurev-phyto-080615-100147] [Citation(s) in RCA: 120] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
How pathogens coevolve with and adapt to their hosts are critical to understanding how host jumps and/or acquisition of novel traits can lead to new disease emergences. The Xanthomonas genus includes Gram-negative plant-pathogenic bacteria that collectively infect a broad range of crops and wild plant species. However, individual Xanthomonas strains usually cause disease on only a few plant species and are highly adapted to their hosts, making them pertinent models to study host specificity. This review summarizes our current understanding of the molecular basis of host specificity in the Xanthomonas genus, with a particular focus on the ecology, physiology, and pathogenicity of the bacterium. Despite our limited understanding of the basis of host specificity, type III effectors, microbe-associated molecular patterns, lipopolysaccharides, transcriptional regulators, and chemotactic sensors emerge as key determinants for shaping host specificity.
Collapse
Affiliation(s)
- Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Matthieu Arlat
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Alice Boulanger
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
- Université de Toulouse, Université Paul Sabatier, F-31062 Toulouse, France
| | - Tristan Boureau
- Université Angers, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Sébastien Carrère
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
| | - Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas W G Chen
- Agrocampus Ouest, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France;
| | - Stéphane Cociancich
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Armelle Darrasse
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Nicolas Denancé
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Marion Fischer-Le Saux
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Lionel Gagnevin
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Ralf Koebnik
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Emmanuelle Lauber
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Laurent D Noël
- INRA, UMR 441 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France; , , , ,
- CNRS, UMR 2594 Laboratoire des Interactions Plantes Micro-organismes (LIPM), F-31326 Castanet-Tolosan, France
| | - Isabelle Pieretti
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Perrine Portier
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences (IRHS), F-49071 Beaucouzé, France; , , , , ,
| | - Olivier Pruvost
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Adrien Rieux
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Isabelle Robène
- CIRAD, UMR Peuplements Végétaux et Bioagresseurs en Milieu Tropical (PVBMT), F-97410 Saint-Pierre, La Réunion, France; , ,
| | - Monique Royer
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| | - Boris Szurek
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Valérie Verdier
- IRD, CIRAD, University of Montpellier, Interactions Plantes Micro-organismes Environnement (IPME), F-34394 Montpellier, France; , , ,
| | - Christian Vernière
- CIRAD, UMR Biologie et Génétique des Interactions Plante-Parasite (BGPI), F-34398 Montpellier, France; , , ,
| |
Collapse
|
27
|
Garita-Cambronero J, Palacio-Bielsa A, López MM, Cubero J. Draft genome sequence for virulent and avirulent strains of Xanthomonas arboricola isolated from Prunus spp. in Spain. Stand Genomic Sci 2016; 11:12. [PMID: 26823958 PMCID: PMC4730658 DOI: 10.1186/s40793-016-0132-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 12/01/2015] [Indexed: 11/10/2022] Open
Abstract
Xanthomonas arboricola is a species in genus Xanthomonas which is mainly comprised of plant pathogens. Among the members of this taxon, X. arboricola pv. pruni, the causal agent of bacterial spot disease of stone fruits and almond, is distributed worldwide although it is considered a quarantine pathogen in the European Union. Herein, we report the draft genome sequence, the classification, the annotation and the sequence analyses of a virulent strain, IVIA 2626.1, and an avirulent strain, CITA 44, of X. arboricola associated with Prunus spp. The draft genome sequence of IVIA 2626.1 consists of 5,027,671 bp, 4,720 protein coding genes and 50 RNA encoding genes. The draft genome sequence of strain CITA 44 consists of 4,760,482 bp, 4,250 protein coding genes and 56 RNA coding genes. Initial comparative analyses reveals differences in the presence of structural and regulatory components of the type IV pilus, the type III secretion system, the type III effectors as well as variations in the number of the type IV secretion systems. The genome sequence data for these strains will facilitate the development of molecular diagnostics protocols that differentiate virulent and avirulent strains. In addition, comparative genome analysis will provide insights into the plant-pathogen interaction during the bacterial spot disease process.
Collapse
Affiliation(s)
| | - Ana Palacio-Bielsa
- />Centro de Investigación y Tecnología Agroalimentaria de Aragón, Zaragoza, Spain
| | - María M. López
- />Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain
| | - Jaime Cubero
- />Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Madrid, Spain
| |
Collapse
|
28
|
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. FRONTIERS IN PLANT SCIENCE 2015; 6:1126. [PMID: 26734033 DOI: 10.3389/fpls.2015.01126.ecollection2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/27/2015] [Indexed: 05/24/2023]
Abstract
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Martial Briand
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Salwa Essakhi
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Sophie Gironde
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | - Tristan Boureau
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et Semences Angers, France
| | - Charles Manceau
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| | | | - Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et Semences Beaucouzé, France
| |
Collapse
|
29
|
Essakhi S, Cesbron S, Fischer-Le Saux M, Bonneau S, Jacques MA, Manceau C. Phylogenetic and Variable-Number Tandem-Repeat Analyses Identify Nonpathogenic Xanthomonas arboricola Lineages Lacking the Canonical Type III Secretion System. Appl Environ Microbiol 2015; 81:5395-410. [PMID: 26048944 PMCID: PMC4510168 DOI: 10.1128/aem.00835-15] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 05/21/2015] [Indexed: 01/13/2023] Open
Abstract
Xanthomonas arboricola is conventionally known as a taxon of plant-pathogenic bacteria that includes seven pathovars. This study showed that X. arboricola also encompasses nonpathogenic bacteria that cause no apparent disease symptoms on their hosts. The aim of this study was to assess the X. arboricola population structure associated with walnut, including nonpathogenic strains, in order to gain a better understanding of the role of nonpathogenic xanthomonads in walnut microbiota. A multilocus sequence analysis (MLSA) was performed on a collection of 100 X. arboricola strains, including 27 nonpathogenic strains isolated from walnut. Nonpathogenic strains grouped outside clusters defined by pathovars and formed separate genetic lineages. A multilocus variable-number tandem-repeat analysis (MLVA) conducted on a collection of X. arboricola strains isolated from walnut showed that nonpathogenic strains clustered separately from clonal complexes containing Xanthomonas arboricola pv. juglandis strains. Some nonpathogenic strains of X. arboricola did not contain the canonical type III secretion system (T3SS) and harbored only one to three type III effector (T3E) genes. In the nonpathogenic strains CFBP 7640 and CFBP 7653, neither T3SS genes nor any of the analyzed T3E genes were detected. This finding raises a question about the origin of nonpathogenic strains and the evolution of plant pathogenicity in X. arboricola. T3E genes that were not detected in any nonpathogenic isolates studied represent excellent candidates to be those responsible for pathogenicity in X. arboricola.
Collapse
Affiliation(s)
- Salwa Essakhi
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Sophie Cesbron
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | | | - Sophie Bonneau
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Marie-Agnès Jacques
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Charles Manceau
- INRA, UMR 1345, Institut de Recherche en Horticulture et Semences, Beaucouzé, France Anses, Laboratoire de la Santé des Végétaux, Unité Expertise-Risques Biologiques, Angers, France
| |
Collapse
|
30
|
Fischer-Le Saux M, Bonneau S, Essakhi S, Manceau C, Jacques MA. Aggressive Emerging Pathovars of Xanthomonas arboricola Represent Widespread Epidemic Clones Distinct from Poorly Pathogenic Strains, as Revealed by Multilocus Sequence Typing. Appl Environ Microbiol 2015; 81:4651-68. [PMID: 25934623 PMCID: PMC4551192 DOI: 10.1128/aem.00050-15] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 04/25/2015] [Indexed: 12/11/2022] Open
Abstract
Deep and comprehensive knowledge of the genetic structure of pathogenic species is the cornerstone on which the design of precise molecular diagnostic tools is built. Xanthomonas arboricola is divided into pathovars, some of which are classified as quarantine organisms in many countries and are responsible for diseases on nut and stone fruit trees that have emerged worldwide. Recent taxonomic studies of the genus Xanthomonas showed that strains isolated from other hosts should be classified in X. arboricola, extending the host range of the species. To investigate the genetic structure of X. arboricola and the genetic relationships between highly pathogenic strains and strains apparently not relevant to plant health, we conducted multilocus sequence analyses on a collection of strains representative of the known diversity of the species. Most of the pathovars were clustered in separate monophyletic groups. The pathovars pruni, corylina, and juglandis, responsible for pandemics in specific hosts, were highly phylogenetically related and clustered in three distinct clonal complexes. In contrast, strains with no or uncertain pathogenicity were represented by numerous unrelated singletons scattered in the phylogenic tree. Depending on the pathovar, intra- and interspecies recombination played contrasting roles in generating nucleotide polymorphism. This work provides a population genetics framework for molecular epidemiological surveys of emerging plant pathogens within X. arboricola. Based on our results, we propose to reclassify three former pathovars of Xanthomonas campestris as X. arboricola pv. arracaciae comb. nov., X. arboricola pv. guizotiae comb. nov., and X. arboricola pv. zantedeschiae comb. nov. An emended description of X. arboricola Vauterin et al. 1995 is provided.
Collapse
Affiliation(s)
- Marion Fischer-Le Saux
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Sophie Bonneau
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Salwa Essakhi
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Charles Manceau
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| | - Marie-Agnès Jacques
- INRA, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Université d'Angers, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France Agrocampus Ouest, UMR1345 IRHS Institut de Recherche en Horticulture et Semences, Beaucouzé, France
| |
Collapse
|
31
|
Lamichhane JR, Venturi V. Synergisms between microbial pathogens in plant disease complexes: a growing trend. FRONTIERS IN PLANT SCIENCE 2015; 6:385. [PMID: 26074945 PMCID: PMC4445244 DOI: 10.3389/fpls.2015.00385] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 05/13/2015] [Indexed: 05/20/2023]
Abstract
Plant diseases are often thought to be caused by one species or even by a specific strain. Microbes in nature, however, mostly occur as part of complex communities and this has been noted since the time of van Leeuwenhoek. Interestingly, most laboratory studies focus on single microbial strains grown in pure culture; we were therefore unaware of possible interspecies and/or inter-kingdom interactions of pathogenic microbes in the wild. In human and animal infections, it is now being recognized that many diseases are the result of multispecies synergistic interactions. This increases the complexity of the disease and has to be taken into consideration in the development of more effective control measures. On the other hand, there are only a few reports of synergistic pathogen-pathogen interactions in plant diseases and the mechanisms of interactions are currently unknown. Here we review some of these reports of synergism between different plant pathogens and their possible implications in crop health. Finally, we briefly highlight the recent technological advances in diagnostics as these are beginning to provide important insights into the microbial communities associated with complex plant diseases. These examples of synergistic interactions of plant pathogens that lead to disease complexes might prove to be more common than expected and understanding the underlying mechanisms might have important implications in plant disease epidemiology and management.
Collapse
Affiliation(s)
| | - Vittorio Venturi
- International Centre for Genetic Engineering and BiotechnologyTrieste, Italy
| |
Collapse
|
32
|
Ailloud F, Lowe T, Cellier G, Roche D, Allen C, Prior P. Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genomics 2015; 16:270. [PMID: 25888333 PMCID: PMC4396162 DOI: 10.1186/s12864-015-1474-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/20/2015] [Indexed: 12/02/2022] Open
Abstract
Background Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains. Results These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences. Conclusions This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1474-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Florent Ailloud
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France. .,Anses - Plant Health Laboratory, F-97410, Saint-Pierre, La Réunion, France.
| | - Tiffany Lowe
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gilles Cellier
- Anses - Plant Health Laboratory, F-97410, Saint-Pierre, La Réunion, France.
| | - David Roche
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA), Evry, Paris, France.
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Philippe Prior
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France. .,Département de Santé des Plantes et Environnement, (SPE) Inra, Paris, France.
| |
Collapse
|
33
|
Ailloud F, Lowe T, Cellier G, Roche D, Allen C, Prior P. Comparative genomic analysis of Ralstonia solanacearum reveals candidate genes for host specificity. BMC Genomics 2015. [PMID: 25888333 DOI: 10.1186/s12864-015-1474-1478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Ralstonia solanacearum is a vascular soil-borne plant pathogen with an unusually broad host range. This economically destructive and globally distributed bacterium has thousands of distinct lineages within a heterogeneous and taxonomically disputed species complex. Some lineages include highly host-adapted strains (ecotypes), such as the banana Moko disease-causing strains, the cold-tolerant potato brown rot strains (also known as R3bv2) and the recently emerged Not Pathogenic to Banana (NPB) strains. RESULTS These distinct ecotypes offer a robust model to study host adaptation and the emergence of ecotypes because the polyphyletic Moko strains include lineages that are phylogenetically close to the monophyletic brown rot and NPB strains. Draft genomes of eight new strains belonging to these three model ecotypes were produced to complement the eleven publicly available R. solanacearum genomes. Using a suite of bioinformatics methods, we searched for genetic and evolutionary features that distinguish ecotypes and propose specific hypotheses concerning mechanisms of host adaptation in the R. solanacearum species complex. Genome-wide, few differences were identified, but gene loss events, non-synonymous polymorphisms, and horizontal gene transfer were identified among type III effectors and were associated with host range differences. CONCLUSIONS This extensive comparative genomics analysis uncovered relatively few divergent features among closely related strains with contrasting biological characteristics; however, several virulence factors were associated with the emergence of Moko, NPB and brown rot and could explain host adaptation.
Collapse
Affiliation(s)
- Florent Ailloud
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France.
- Anses - Plant Health Laboratory, F-97410, Saint-Pierre, La Réunion, France.
| | - Tiffany Lowe
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Gilles Cellier
- Anses - Plant Health Laboratory, F-97410, Saint-Pierre, La Réunion, France.
| | - David Roche
- Institut de Génomique, Genoscope, Commissariat à l'Energie Atomique (CEA), Evry, Paris, France.
| | - Caitilyn Allen
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Philippe Prior
- CIRAD, UMR PVBMT, F-97410, Saint-Pierre, La Réunion, France.
- Département de Santé des Plantes et Environnement, (SPE) Inra, Paris, France.
| |
Collapse
|
34
|
Ignatov AN, Kyrova EI, Vinogradova SV, Kamionskaya AM, Schaad NW, Luster DG. Draft Genome Sequence of Xanthomonas arboricola Strain 3004, a Causal Agent of Bacterial Disease on Barley. GENOME ANNOUNCEMENTS 2015; 3:e01572-14. [PMID: 25700410 PMCID: PMC4335334 DOI: 10.1128/genomea.01572-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2015] [Accepted: 01/08/2015] [Indexed: 11/20/2022]
Abstract
We report here the annotated genome sequence of Xanthomonas arboricola strain 3004, isolated from barley leaves with symptoms of streak and capable of infecting other plant species. We sequenced the genome of X. arboricola strain 3004 to improve the understanding of molecular mechanisms of the pathogenesis and evolution of the genus Xanthomonas.
Collapse
Affiliation(s)
- Alexander N Ignatov
- Center Bioengineering, Russian Academy of Sciences, Moscow, Russian Federation Russian Research Institute of Phytopathology, Bolshie Vyazemy, Russian Federation Peoples' Friendship University of Russia, Moscow, Russia Federation
| | - Elena I Kyrova
- Peoples' Friendship University of Russia, Moscow, Russia Federation
| | | | | | - Norman W Schaad
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, Maryland, USA
| | - Douglas G Luster
- U.S. Department of Agriculture, Agricultural Research Service, Foreign Disease-Weed Science Research Unit, Ft. Detrick, Maryland, USA
| |
Collapse
|
35
|
Cesbron S, Briand M, Essakhi S, Gironde S, Boureau T, Manceau C, Fischer-Le Saux M, Jacques MA. Comparative Genomics of Pathogenic and Nonpathogenic Strains of Xanthomonas arboricola Unveil Molecular and Evolutionary Events Linked to Pathoadaptation. FRONTIERS IN PLANT SCIENCE 2015; 6:1126. [PMID: 26734033 PMCID: PMC4686621 DOI: 10.3389/fpls.2015.01126] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 11/27/2015] [Indexed: 05/03/2023]
Abstract
The bacterial species Xanthomonas arboricola contains plant pathogenic and nonpathogenic strains. It includes the pathogen X. arboricola pv. juglandis, causing the bacterial blight of Juglans regia. The emergence of a new bacterial disease of J. regia in France called vertical oozing canker (VOC) was previously described and the causal agent was identified as a distinct genetic lineage within the pathovar juglandis. Symptoms on walnut leaves and fruits are similar to those of a bacterial blight but VOC includes also cankers on trunk and branches. In this work, we used comparative genomics and physiological tests to detect differences between four X. arboricola strains isolated from walnut tree: strain CFBP 2528 causing walnut blight (WB), strain CFBP 7179 causing VOC and two nonpathogenic strains, CFBP 7634 and CFBP 7651, isolated from healthy walnut buds. Whole genome sequence comparisons revealed that pathogenic strains possess a larger and wider range of mobile genetic elements than nonpathogenic strains. One pathogenic strain, CFBP 7179, possessed a specific integrative and conjugative element (ICE) of 95 kb encoding genes involved in copper resistance, transport and regulation. The type three effector repertoire was larger in pathogenic strains than in nonpathogenic strains. Moreover, CFBP 7634 strain lacked the type three secretion system encoding genes. The flagellar system appeared incomplete and nonfunctional in the pathogenic strain CFBP 2528. Differential sets of chemoreceptor and different repertoires of genes coding adhesins were identified between pathogenic and nonpathogenic strains. Besides these differences, some strain-specific differences were also observed. Altogether, this study provides valuable insights to highlight the mechanisms involved in ecology, environment perception, plant adhesion and interaction, leading to the emergence of new strains in a dynamic environment.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
- *Correspondence: Sophie Cesbron
| | - Martial Briand
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Salwa Essakhi
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Sophie Gironde
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | - Tristan Boureau
- Université d'Angers, UMR 1345 Institut de Recherche en Horticulture et SemencesAngers, France
| | - Charles Manceau
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| | | | - Marie-Agnès Jacques
- INRA, UMR 1345 Institut de Recherche en Horticulture et SemencesBeaucouzé, France
| |
Collapse
|
36
|
Bull CT, Koike ST. Practical benefits of knowing the enemy: modern molecular tools for diagnosing the etiology of bacterial diseases and understanding the taxonomy and diversity of plant-pathogenic bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2015; 53:157-80. [PMID: 26002289 DOI: 10.1146/annurev-phyto-080614-120122] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Knowing the identity of bacterial plant pathogens is essential to strategic and sustainable disease management in agricultural systems. This knowledge is critical for growers, diagnosticians, extension agents, and others dealing with crops. However, such identifications are linked to bacterial taxonomy, a complicated and changing discipline that depends on methods and information that are often not used by those who are diagnosing field problems. Modern molecular tools for fingerprinting and sequencing allow for pathogen identification in the absence of distinguishing or conveniently tested phenotypic characteristics. These methods are also useful in studying the etiology and epidemiology of phytopathogenic bacteria from epidemics, as was done in numerous studies conducted in California's Salinas Valley. Multilocus and whole-genome sequence analyses are becoming the cornerstones of studies of microbial diversity and bacterial taxonomy. Whole-genome sequence analysis needs to become adequately accessible, automated, and affordable in order to be used routinely for identification and epidemiology. The power of molecular tools in accurately identifying bacterial pathogenesis is therefore of value to the farmer, diagnostician, phytobacteriologist, and taxonomist.
Collapse
Affiliation(s)
- Carolee T Bull
- United States Department of Agriculture, Agricultural Research Service, Salinas, California 93905;
| | | |
Collapse
|
37
|
Lamichhane JR. Xanthomonas arboricola Diseases of Stone Fruit, Almond, and Walnut Trees: Progress Toward Understanding and Management. PLANT DISEASE 2014; 98:1600-1610. [PMID: 30703892 DOI: 10.1094/pdis-08-14-0831-fe] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Stone fruit (Prunus spp.: apricot, cherry, peach, nectarine, plum, and sloe), almond (Prunus spp.), and walnut (Juglans spp.) crops are among the most economically important tree crops worldwide and are cultivated to a different extent on all continents. The number of countries growing these crops has increased in the last decade with a subsequent increase in acreage globally. Throughout the range of cultivation, Prunus spp. and Juglans spp. are often subjected to pathogen attack. Among them, Xanthomonas arboricola has become markedly important over the last decade. The putative pathovars of X. arboricola, pv. pruni and pv. juglandis, cause bacterial canker and spot and bacterial blight on stone fruits and almond, and on walnut, respectively. In recent years, disease outbreaks caused by X. arboricola on Prunus and on Juglans have increased, as has international concern. The rate at which these outbreaks are occurring suggests the possibility of future epidemics. To address the consequences of such disease emergences, it is important to understand the epidemiology of these diseases, about which little is known to date. The objectives of this review are to provide an overview of X. arboricola diseases of stone fruit, almond, and walnut trees, and to discuss current and future management strategies.
Collapse
Affiliation(s)
- Jay Ram Lamichhane
- French National Institute for Agricultural Research (INRA), UAR 1240 Eco-Innov Research Unit, 78850 Thiverval-Grignon, France
| |
Collapse
|
38
|
Wasukira A, Coulter M, Al-Sowayeh N, Thwaites R, Paszkiewicz K, Kubiriba J, Smith J, Grant M, Studholme DJ. Genome Sequencing of Xanthomonas vasicola Pathovar vasculorum Reveals Variation in Plasmids and Genes Encoding Lipopolysaccharide Synthesis, Type-IV Pilus and Type-III Secretion Effectors. Pathogens 2014; 3:211-37. [PMID: 25437615 PMCID: PMC4235730 DOI: 10.3390/pathogens3010211] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 02/10/2014] [Accepted: 03/03/2014] [Indexed: 01/01/2023] Open
Abstract
Xanthomonas vasicola pathovar vasculorum (Xvv) is the bacterial agent causing gumming disease in sugarcane. Here, we compare complete genome sequences for five isolates of Xvv originating from sugarcane and one from maize. This identified two distinct types of lipopolysaccharide synthesis gene clusters among Xvv isolates: one is similar to that of Xanthomonas axonopodis pathovar citri (Xac) and is probably the ancestral type, while the other is similar to those of the sugarcane-inhabiting species, Xanthomonas sacchari. Four of six Xvv isolates harboured sequences similar to the Xac plasmid, pXAC47, and showed a distinct Type-IV pilus (T4P) sequence type, whereas the T4P locus of the other two isolates resembled that of the closely related banana pathogen, Xanthomonas campestris pathovar musacearum (Xcm). The Xvv isolate from maize has lost a gene encoding a homologue of the virulence effector, xopAF, which was present in all five of the sugarcane isolates, while xopL contained a premature stop codon in four out of six isolates. These findings shed new light on evolutionary events since the divergence of Xvv and Xcm, as well as further elucidating the relationships between the two closely related pathogens.
Collapse
Affiliation(s)
- Arthur Wasukira
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Max Coulter
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Noorah Al-Sowayeh
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Richard Thwaites
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Konrad Paszkiewicz
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - Jerome Kubiriba
- National Crops Resources Research Institute (NaCRRI), Kampala 7084, Uganda.
| | - Julian Smith
- The Food and Environment Research Agency, Sand Hutton, York YO41 1LZ, UK.
| | - Murray Grant
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| | - David J Studholme
- Biosciences, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
39
|
Cesbron S, Pothier J, Gironde S, Jacques MA, Manceau C. Development of multilocus variable-number tandem repeat analysis (MLVA) for Xanthomonas arboricola pathovars. J Microbiol Methods 2014; 100:84-90. [PMID: 24631558 DOI: 10.1016/j.mimet.2014.02.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/27/2014] [Accepted: 02/28/2014] [Indexed: 11/19/2022]
Abstract
Xanthomonas arboricola is an important bacterial species, the pathovars of which are responsible for bacterial blight diseases on stone fruit, hazelnut, Persian walnut, poplar, strawberry, poinsettia and banana. In this study, we evaluated variable number tandem repeats (VNTR) as a molecular typing tool for assessing the genetic diversity within pathovars of X. arboricola. Screening of the X. arboricola pv. pruni genome sequence (CFBP5530 strain) predicted 51 candidate VNTR loci. Primer pairs for polymerase chain reaction (PCR) amplification of all 51 loci were designed, and their discriminatory power was initially evaluated with a core collection of 8 X. arboricola strains representative of the different pathovars. Next, the 26 polymorphic VNTR loci present in all strains were used for genotyping a collection of 61 strains. MLVA is a typing method that clearly differentiates X. arboricola strains. The MLVA scheme described in this study is a rapid and reliable molecular typing tool that can be used for further epidemiological studies of bacterial diseases caused by X. arboricola pathovars.
Collapse
Affiliation(s)
- Sophie Cesbron
- INRA, UMR1345 IRHS, F-49071 Beaucouzé, France; AGROCAMPUS OUEST, UMR1345 IRHS, F-49071 Beaucouzé, France; Université d'Angers, UMR1345 IRHS, SFR 4207 QUASAV, PRES L'UNAM, F-49071 Beaucouzé, France.
| | - Joel Pothier
- Agroscope Changins-Wädenswil Research Station ACW, Plant Protection Division, Schloss 1, CH-8820 Wädenswil, Switzerland
| | - Sophie Gironde
- INRA, UMR1345 IRHS, F-49071 Beaucouzé, France; AGROCAMPUS OUEST, UMR1345 IRHS, F-49071 Beaucouzé, France; Université d'Angers, UMR1345 IRHS, SFR 4207 QUASAV, PRES L'UNAM, F-49071 Beaucouzé, France
| | - Marie-Agnès Jacques
- INRA, UMR1345 IRHS, F-49071 Beaucouzé, France; AGROCAMPUS OUEST, UMR1345 IRHS, F-49071 Beaucouzé, France; Université d'Angers, UMR1345 IRHS, SFR 4207 QUASAV, PRES L'UNAM, F-49071 Beaucouzé, France
| | - Charles Manceau
- INRA, UMR1345 IRHS, F-49071 Beaucouzé, France; AGROCAMPUS OUEST, UMR1345 IRHS, F-49071 Beaucouzé, France; Université d'Angers, UMR1345 IRHS, SFR 4207 QUASAV, PRES L'UNAM, F-49071 Beaucouzé, France
| |
Collapse
|
40
|
Monteil CL, Cai R, Liu H, Llontop MEM, Leman S, Studholme DJ, Morris CE, Vinatzer BA. Nonagricultural reservoirs contribute to emergence and evolution of Pseudomonas syringae crop pathogens. THE NEW PHYTOLOGIST 2013; 199:800-11. [PMID: 23692644 DOI: 10.1111/nph.12316] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Accepted: 04/02/2013] [Indexed: 05/10/2023]
Abstract
While the existence of environmental reservoirs of human pathogens is well established, less is known about the role of nonagricultural environments in emergence, evolution, and spread of crop pathogens. Here, we analyzed phylogeny, virulence genes, host range, and aggressiveness of Pseudomonas syringae strains closely related to the tomato pathogen P. syringae pv. tomato (Pto), including strains isolated from snowpack and streams. The population of Pto relatives in nonagricultural environments was estimated to be large and its diversity to be higher than that of the population of Pto and its relatives on crops. Ancestors of environmental strains, Pto, and other genetically monomorphic crop pathogens were inferred to have frequently recombined, suggesting an epidemic population structure for P. syringae. Some environmental strains have repertoires of type III-secreted effectors very similar to Pto, are almost as aggressive on tomato as Pto, but have a wider host range than typical Pto strains. We conclude that crop pathogens may have evolved through a small number of evolutionary events from a population of less aggressive ancestors with a wider host range present in nonagricultural environments.
Collapse
Affiliation(s)
- Caroline L Monteil
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA, USA
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Escalon A, Javegny S, Vernière C, Noël LD, Vital K, Poussier S, Hajri A, Boureau T, Pruvost O, Arlat M, Gagnevin L. Variations in type III effector repertoires, pathological phenotypes and host range of Xanthomonas citri pv. citri pathotypes. MOLECULAR PLANT PATHOLOGY 2013; 14:483-96. [PMID: 23437976 PMCID: PMC6638789 DOI: 10.1111/mpp.12019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
The mechanisms determining the host range of Xanthomonas are still undeciphered, despite much interest in their potential roles in the evolution and emergence of plant pathogenic bacteria. Xanthomonas citri pv. citri (Xci) is an interesting model of host specialization because of its pathogenic variants: pathotype A strains infect a wide range of Rutaceous species, whereas pathotype A*/A(W) strains have a host range restricted to Mexican lime (Citrus aurantifolia) and alemow (Citrus macrophylla). Based on a collection of 55 strains representative of Xci worldwide diversity assessed by amplified fragment length polymorphism (AFLP), we investigated the distribution of type III effectors (T3Es) in relation to host range. We examined the presence of 66 T3Es from xanthomonads in Xci and identified a repertoire of 28 effectors, 26 of which were shared by all Xci strains, whereas two (xopAG and xopC1) were present only in some A*/A(W) strains. We found that xopAG (=avrGf1) was present in all A(W) strains, but also in three A* strains genetically distant from A(W) , and that all xopAG-containing strains induced the hypersensitive response (HR) on grapefruit and sweet orange. The analysis of xopAD and xopAG suggested horizontal transfer between X. citri pv. bilvae, another citrus pathogen, and some Xci strains. A strains were genetically less diverse, induced identical phenotypic responses and possessed indistinguishable T3E repertoires. Conversely, A*/A(W) strains exhibited a wider genetic diversity in which clades correlated with geographical origin and T3E repertoire, but not with pathogenicity, according to T3E deletion experiments. Our data outline the importance of taking into account the heterogeneity of Xci A*/A(W) strains when analysing the mechanisms of host specialization.
Collapse
Affiliation(s)
- Aline Escalon
- UMR PVBMT, CIRAD, F-97410 Saint-Pierre, La Réunion, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Genome Sequence of Xanthomonas arboricola pv. Corylina, Isolated from Turkish Filbert in Colorado. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00246-13. [PMID: 23704178 PMCID: PMC3662818 DOI: 10.1128/genomea.00246-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previously, we reported the isolation of a bacterium producing leaf spots in Turkish filbert. Here, we present the draft genome assembly of the bacterium identified as Xanthomonas arboricola pv. corylina. To our knowledge, this is the first published genome of this pathovar of X. arboricola.
Collapse
|
43
|
Current World Literature. Curr Opin Support Palliat Care 2013; 7:116-28. [DOI: 10.1097/spc.0b013e32835e749d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Kimbrel JA, Thomas WJ, Jiang Y, Creason AL, Thireault CA, Sachs JL, Chang JH. Mutualistic co-evolution of type III effector genes in Sinorhizobium fredii and Bradyrhizobium japonicum. PLoS Pathog 2013; 9:e1003204. [PMID: 23468637 PMCID: PMC3585131 DOI: 10.1371/journal.ppat.1003204] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/08/2013] [Indexed: 12/16/2022] Open
Abstract
Two diametric paradigms have been proposed to model the molecular co-evolution of microbial mutualists and their eukaryotic hosts. In one, mutualist and host exhibit an antagonistic arms race and each partner evolves rapidly to maximize their own fitness from the interaction at potential expense of the other. In the opposing model, conflicts between mutualist and host are largely resolved and the interaction is characterized by evolutionary stasis. We tested these opposing frameworks in two lineages of mutualistic rhizobia, Sinorhizobium fredii and Bradyrhizobium japonicum. To examine genes demonstrably important for host-interactions we coupled the mining of genome sequences to a comprehensive functional screen for type III effector genes, which are necessary for many Gram-negative pathogens to infect their hosts. We demonstrate that the rhizobial type III effector genes exhibit a surprisingly high degree of conservation in content and sequence that is in contrast to those of a well characterized plant pathogenic species. This type III effector gene conservation is particularly striking in the context of the relatively high genome-wide diversity of rhizobia. The evolution of rhizobial type III effectors is inconsistent with the molecular arms race paradigm. Instead, our results reveal that these loci are relatively static in rhizobial lineages and suggest that fitness conflicts between rhizobia mutualists and their host plants have been largely resolved.
Collapse
Affiliation(s)
- Jeffrey A. Kimbrel
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - William J. Thomas
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Yuan Jiang
- Department of Statistics, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
| | - Allison L. Creason
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
| | - Caitlin A. Thireault
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
| | - Joel L. Sachs
- Department of Biology, University of California-Riverside, Riverside, California, United States of America
| | - Jeff H. Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, United States of America
- Molecular and Cellular Biology Program, Oregon State University, Corvallis, Oregon, United States of America
- Center for Genome Research and Biocomputing, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
45
|
Socquet-Juglard D, Kamber T, Pothier JF, Christen D, Gessler C, Duffy B, Patocchi A. Comparative RNA-seq analysis of early-infected peach leaves by the invasive phytopathogen Xanthomonas arboricola pv. pruni. PLoS One 2013; 8:e54196. [PMID: 23342103 PMCID: PMC3544827 DOI: 10.1371/journal.pone.0054196] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2012] [Accepted: 12/11/2012] [Indexed: 11/19/2022] Open
Abstract
Xanthomonas arboricola pv. pruni is a quarantine bacterial pathogen that threatens peach production by causing necrotic spots on leaves and fruits, thus with the potential of severely reducing yields. The current understanding of the host plant defense responses to the pathogen is very limited. Using whole transcriptome sequencing, differential gene expression was analyzed at two time points, 2 h and 12 h post inoculation (hpi), by comparing the inoculated samples to their respective controls. On the total of 19,781 known peach genes that were expressed in all time points and conditions, 34 and 263 were differentially expressed at 2 and 12 hpi, respectively. Of those, 82% and 40% were up-regulated, respectively; and 18% and 60% were down-regulated, respectively. The functional annotation based on gene ontology (GO) analysis highlighted that genes involved in metabolic process and response to stress were particularly represented at 2 hpi whereas at 12 hpi cellular and metabolic processes were the categories with the highest number of genes differentially expressed. Of particular interest among the differentially expressed genes identified were several pathogen-associated molecular pattern (PAMP) receptors, disease resistance genes including several RPM1-like and pathogenesis related thaumatin encoding genes. Other genes involved in photosynthesis, in cell wall reorganization, in hormone signaling pathways or encoding cytochrome were also differentially expressed. In addition, novel transcripts were identified, providing another basis for further characterization of plant defense-related genes. Overall, this study gives a first insight of the peach defense mechanisms during the very early stages of infection with a bacterial disease in the case of a compatible interaction.
Collapse
Affiliation(s)
- Didier Socquet-Juglard
- Phytopathology, Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
- Plant Pathology, Swiss Federal Institute of Technology (ETH Zürich), IBZ, Zürich, Switzerland
| | - Tim Kamber
- Phytopathology, Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
| | - Joël F. Pothier
- Phytopathology, Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
| | - Danilo Christen
- Berries, Medicinal Plants, Greenhouse Crops and Apricots Group, Research Station Agroscope Changins-Wädenswil, Conthey Research Centre, Conthey, Switzerland
| | - Cesare Gessler
- Plant Pathology, Swiss Federal Institute of Technology (ETH Zürich), IBZ, Zürich, Switzerland
| | - Brion Duffy
- Phytopathology, Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
| | - Andrea Patocchi
- Phytopathology, Research Station Agroscope Changins-Wädenswil (ACW), Wädenswil, Switzerland
- * E-mail:
| |
Collapse
|
46
|
Boureau T, Kerkoud M, Chhel F, Hunault G, Darrasse A, Brin C, Durand K, Hajri A, Poussier S, Manceau C, Lardeux F, Saubion F, Jacques MA. A multiplex-PCR assay for identification of the quarantine plant pathogen Xanthomonas axonopodis pv. phaseoli. J Microbiol Methods 2012; 92:42-50. [PMID: 23142341 DOI: 10.1016/j.mimet.2012.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Revised: 10/25/2012] [Accepted: 10/28/2012] [Indexed: 11/26/2022]
Abstract
In this study we developed an algorithm to screen for all exact molecular signatures of the quarantine pathogen Xanthomonas axonopodis pv. phaseoli (Xap), based on available data of the presence or absence of virulence-associated genes. The simultaneous presence of genes avrBsT and xopL is specific to Xap. Therefore we developed a multiplex PCR assay targeting avrBsT and xopL for the molecular identification of Xap. The specificity of this multiplex was validated by comparison to that of other molecular identification assays aimed at Xap, on a wide collection of reference strains. This multiplex was further validated on a blind collection of Xanthomonas isolates for which pathogenicity was assayed by stem wounding and by dipping leaves into calibrated inocula. This multiplex was combined to the previously described X4c/X4e molecular identification assay for Xap. Such a combination enables the molecular identification of all strains of Xanthomonas pathogenic on bean. Results also show that assay by stem wounding does not give reliable results in the case of Xap, and that pathogenicity assays by dipping should be preferred.
Collapse
Affiliation(s)
- T Boureau
- Université d'Angers, UMR1345 IRHS, Institut de Recherches en Horticulture et Semences, SFR4207 QUASAV, PRES L'UNAM, F-49071 Beaucouze Cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|