1
|
Kiskó G, Bajramović B, Elzhraa F, Erdei-Tombor P, Dobó V, Mohácsi-Farkas C, Taczman-Brückner A, Belák Á. The Invisible Threat of Antibiotic Resistance in Food. Antibiotics (Basel) 2025; 14:250. [PMID: 40149061 PMCID: PMC11939317 DOI: 10.3390/antibiotics14030250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/29/2025] [Accepted: 02/26/2025] [Indexed: 03/29/2025] Open
Abstract
The continued and improper use of antibiotics has resulted in the emergence of antibiotic resistance (AR). The dissemination of antibiotic-resistant microorganisms occurs via a multitude of pathways, including the food supply. The failure to comply with the regulatory withdrawal period associated with the treatment of domestic animals or the illicit use of antibiotics as growth promoters has contributed to the proliferation of antibiotic-resistant bacteria in meat and dairy products. It was demonstrated that not only do animal and human pathogens act as donors of antibiotic resistance genes, but also that lactic acid bacteria can serve as reservoirs of genes encoding for antibiotic resistance. Consequently, the consumption of fermented foods also presents a potential conduit for the dissemination of AR. This review provides an overview of the potential for the transmission of antibiotic resistance in a range of traditional and novel foods. The literature data reveal that foodborne microbes can be a significant factor in the dissemination of antibiotic resistance.
Collapse
Affiliation(s)
- Gabriella Kiskó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Belma Bajramović
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Fatma Elzhraa
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
- Department of Food Hygiene and Control, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Patrícia Erdei-Tombor
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Viktória Dobó
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Csilla Mohácsi-Farkas
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Andrea Taczman-Brückner
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| | - Ágnes Belák
- Department of Food Microbiology, Hygiene and Safety, Institute of Food Science and Technology, Hungarian University of Agriculture and Life Sciences, H-1118 Budapest, Hungary; (G.K.); (B.B.); (F.E.); (P.E.-T.); (V.D.); (C.M.-F.); (Á.B.)
| |
Collapse
|
2
|
Li Y, Fu S, Klein MS, Wang H. High Prevalence of Antibiotic Resistance in Traditionally Fermented Foods as a Critical Risk Factor for Host Gut Antibiotic Resistome. Microorganisms 2024; 12:1433. [PMID: 39065201 PMCID: PMC11279133 DOI: 10.3390/microorganisms12071433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 06/30/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
This study aimed to assess the suitability of fermented food interventions to replenish damaged gut microbiota. Metagenomic assessment of published sequencing data found that fermented food interventions led to a significant increase in the gut antibiotic resistome in healthy human subjects. Antibiotic resistome and viable antibiotic-resistant (AR) bacteria were further highly prevalent in retail kimchi and artisan cheeses by metagenomic and culture analyses. Representative AR pathogens of importance in nosocomial infections, such as Klebsiella pneumoniae, Serratia marcescens, and vancomycin-resistant Enterococcus (VRE), as well as commensals and lactic acid bacteria, were characterized; some exhibited an extremely high minimum inhibitory concentration (MIC) against antibiotics of clinical significance. Exposing fermented food microbiota to representative antibiotics further led to a boost of the corresponding antibiotic and multidrug-resistance gene pools, as well as disturbed microbiota, including the rise of previously undetectable pathogens. These results revealed an underestimated public health risk associated with fermented food intervention at the current stage, particularly for susceptible populations with compromised gut integrity and immune functions seeking gut microbiota rescue. The findings call for productive intervention of foodborne AR via technology innovation and strategic movements to mitigate unnecessary, massive damages to the host gut microbiota due to orally administered or biliary excreted antibiotics.
Collapse
Affiliation(s)
| | | | | | - Hua Wang
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Court, Columbus, OH 43210, USA (M.S.K.)
| |
Collapse
|
3
|
Guergueb N, Alloui N. Emergence of Tobramycin Escherichia coli resistance in poultry meat linked to biocides overuse during COVID-19. REVISTA CIENTÍFICA DE LA FACULTAD DE CIENCIAS VETERINARIAS 2023. [DOI: 10.52973/rcfcv-e33196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
The effect of excessive use of biocides during the COVID-19, on the resistance of Escherichia coli to Tobramycin in poultry, meat was examined in this observational epidemiological study (Before and after COVID–19). Tobramycin E. coli resistant strains isolated from poultry meat before COVID-19 appearance were compared with those isolated after COVID-19 emergence. Univariable analyses were performed using t-test and chi-squared test. Odds ratios and 95% confidence intervals were used for statistically significant risk factor. Multivariate analysis was done with the binary logistic regression to detect an independent predictor, and with the principal component analysis (PCA), to analyze whether the Tobramycin resistance in E. coli was linked with the COVID-19 outbreak. Statistical significance was set at P<0.05. The frequency of Tobramycin E. coli resistant isolates was more important after COVID-19 emergence (12.5%) than before COVID-19 (2.1%). Graphical representation of PCA qualitative variables shows the interfactor relationship. A significant relationship between Tobramycin E. coli resistance and COVID-19 emergence (P=0.014), and the effect of the emergence of COVID-19 on the Tobramycin E. coli resistance was OR = 6.57 (95% Confidence interval (CI) 1.61-7.94). The probability of Tobramycin E. coli resistance linked with poultry meat bought after COVID-19 was 1.88 times more than before COVID-19 emergence. Poultry meat purchased after COVID-19 found related to Tobramycin resistance in E. coli. It seems possible that the overuse of biocides during COVID-19 increased the risk of Tobramycin E. coli resistance in poultry meat.
Collapse
Affiliation(s)
- Nadjah Guergueb
- The University of Batna 1, Department of Veterinary Medicine. Batna, Algeria
| | - Nadir Alloui
- The University of Batna 1, Department of Veterinary Medicine. Batna, Algeria
| |
Collapse
|
4
|
Tan C, Zhao W, Wen W, Chen X, Ma Z, Yu G. Unraveling the effects of sulfamethoxazole on the composition of gut microbiota and immune responses in Stichopus variegatus. Front Microbiol 2022; 13:1032873. [DOI: 10.3389/fmicb.2022.1032873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
The aim of this work was to reveal the changes in gut microbiota composition and immune responses of sea cucumber (Stichopus variegatus) after being affected by different doses of sulfamethoxazole. In this study, the bacterial 16S rRNA of gut microbiota were analyzed by high-throughput sequencing, and the activities of immune enzymes [lysozyme (LZM), phenoloxidase (PO), alkaline phosphatase (AKP), and acid phosphatase (ACP)] in the gut of S. variegatus were determined. The results showed that the gut microbiota presented a lower richness in the antibiotic treatment groups compared with the control group, and there were significant differences among the dominant bacteria of different concentration treatments. At the genus level, the abundance of Escherichia, Exiguobacterium, Acinetobacter, Pseudomonas, and Thalassotalea were significantly decreased in the 3 mg/L treatment group, while Vibrio was significantly increased. Furthermore, the 6 mg/L treatment group had less effect on these intestinal dominant bacteria, especially Vibrio. The changes in relative abundance of Vibrio at the species level indicated that lower concentrations of sulfamethoxazole could enhance the enrichment of Vibrio mediterranei and Vibrio fortis in S. variegatus more than higher concentrations of sulfamethoxazole. Meanwhile, the 3 mg/L treatment group significantly increased the activities of PO, AKP, and ACP, and decreased the activity of LZM. These results suggested that lower doses of sulfamethoxazole have a greater effect on the gut microbiota composition and immune responses in S. variegatus and may increase the risk of host infection.
Collapse
|
5
|
Ortiz Sanjuán JM, Manzanilla EG, Cabrera-Rubio R, Crispie F, Cotter PD, Garrido JJ, Argüello H. Using Shotgun Sequencing to Describe the Changes Induced by In-Feed Zinc Oxide and Apramycin in the Microbiomes of Pigs One Week Postweaning. Microbiol Spectr 2022; 10:e0159722. [PMID: 35950862 PMCID: PMC9431492 DOI: 10.1128/spectrum.01597-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 07/18/2022] [Indexed: 11/20/2022] Open
Abstract
Postweaning diarrhea (PWD) is a relevant problem associated with early weaning on pig farms. For decades, in-feed antibiotics and therapeutic zinc oxide (ZnO) have been widely used to prevent PWD in piglets. The European Union is banning both strategies in 2022 due to antimicrobial resistance and environmental contamination concerns, respectively. Understanding the effects of these products on the pig microbiome is crucial for correcting potential microbial disbalances that would prompt PWD. Using shotgun sequencing, three trials were carried out to explore the impact of in-feed apramycin and ZnO, combined with different farm hygiene protocols, on the fecal microbiomes of piglets 7 days postweaning. In trial 1, 28-day-old piglets were allocated to one of three groups: control diet (Ct), Ct + ZnO (Zn), and Ct + apramycin (Ab). In trials 2 and 3, piglets were allocated to the same treatments, but the trials also included different cleaning protocols, achieving different hygiene levels. In-feed treatments impacted the richness, diversity, and relative abundance of the piglets' microbiome more than hygiene. Pigs in the Ct group showed higher species richness than pigs in the Ab and Zn groups. A clustering analysis evidenced a link between Enterobacteriaceae in the Ct group; Lactobacillaceae and Veillonellaceae mainly in the Ct group; and Bacteroidaceae, Ruminococcaceae, Oscillospiraceae, Acidaminococcaceae, and Lactobacillaceae in the Ab and Zn groups. Functional data analysis revealed a higher abundance of virulence genes in the Ct group microbiomes and heavy metal and antimicrobial resistance-related functions in the Zn treatment group. The results demonstrate that alternatives to Ab and ZnO should balance the microbial abundance and stimulate the growth of commensals to outcompete potential pathogens. IMPORTANCE Weaning is a critical period for piglets, during which potentially harmful bacteria such as Escherichia coli can increase in abundance in the intestine, creating digestive problems and diarrhea. In-feed antibiotics, the most frequent administration route for antibiotics in livestock, and therapeutic doses of zinc oxide (ZnO) help to control diarrhea but prompt secondary problems such as antimicrobial resistance and soil pollution from heavy metals. Understanding how these strategies impact the gut microbiota is crucial for establishing health biomarkers and designing successful replacement strategies. Using shotgun sequencing, this study compares the microbiota of pigs after early weaning when treated with in-feed antibiotics, ZnO, or treatment-free diets to describe differences that could define the susceptibility to infections, providing the basis for future research on improving intestinal resilience through microbiota-based strategies.
Collapse
Affiliation(s)
- Juan M. Ortiz Sanjuán
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Edgar G. Manzanilla
- Pig Development Department, Teagasc Grassland Research and Innovation Centre, Moorepark, Fermoy, County Cork, Ireland
- School of Veterinary Medicine, University College Dublin, Dublin, Ireland
| | - Raúl Cabrera-Rubio
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, County Cork, Ireland
| | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, County Cork, Ireland
| | - Paul D. Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, County Cork, Ireland
- APC Microbiome Institute, University College Cork, Cork, County Cork, Ireland
- VistaMilk SFI Research Centre, Fermoy, County Cork, Ireland
| | - Juan J. Garrido
- Grupo de Genómica y Mejora Animal, Departamento de Genética, Facultad de Veterinaria, Universidad de Córdoba, Córdoba, Spain
| | - Héctor Argüello
- Animal Health Department, Veterinary Faculty, Universidad de León, León, Spain
| |
Collapse
|
6
|
Nunziata L, Brasca M, Morandi S, Silvetti T. Antibiotic resistance in wild and commercial non-enterococcal Lactic Acid Bacteria and Bifidobacteria strains of dairy origin: An update. Food Microbiol 2022; 104:103999. [DOI: 10.1016/j.fm.2022.103999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 12/19/2022]
|
7
|
Altuğ G, Çardak M, Türetken PSÇ, Kalkan S, Gürün S. Antibiotic and Heavy Metal Resistant Bacteria Isolated from Aegean Sea Water and Sediment in Güllük Bay, Turkey : Quantifying the resistance of identified bacteria species with potential for environmental remediation applications. JOHNSON MATTHEY TECHNOLOGY REVIEW 2020. [DOI: 10.1595/205651320x15953337767424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Heavy metal and antibiotic-resistant bacteria have potential for environmental bioremediation applications. Resistant bacteria were investigated in sediment and seawater samples taken from the Aegean Sea, Turkey, between 2011 and 2013. Bioindicator bacteria in seawater samples were
tested using the membrane filtration technique. The spread plate technique and VITEK® 2 Compact 30 micro identification system were used for heterotrophic aerobic bacteria in the samples. The minimum inhibition concentration method was used for heavy metal-resistant bacteria.
Antibiotic-resistant bacteria were tested using the disk diffusion method. All bacteria isolated from sediment samples showed 100% resistance to rifampicin, sulfonamide, tetracycline and ampicillin. 98% of isolates were resistant against nitrofurantoin and oxytetracycline. Higher antibiotic
and heavy metal resistance was recorded in bacteria isolated from sediment than seawater samples. The highest levels of bacterial metal resistance were recorded against copper (58.3%), zinc (33.8%), lead (32.1%), chromium (31%) and iron (25.2%). The results show that antibiotic and heavy metal
resistance in bacteria from sediment and seawater can be observed as responses to environmental influences including pollution in marine areas.
Collapse
Affiliation(s)
- Gülşen Altuğ
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih Istanbul, 34134, Turkey
| | - Mine Çardak
- Department of Fisheries Technology, Faculty of Çanakkale Applied Sciences, Çanakkale Onsekiz Mart University, Terzioğlu Campus Çanakkale, 17020 Turkey
| | - Pelin Saliha Çiftçi Türetken
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul, 34134 Turkey
| | - Samet Kalkan
- Department of Marine Biology, Faculty of Fisheries and Aquatic Sciences, Recep Tayyip Erdoğan University, Zihni Derin Campus, Rize 53100 Turkey
| | - Sevan Gürün
- Department of Marine Biology, Faculty of Aquatic Sciences, Istanbul University, Balabanağa Mahallesi Ordu Caddesi No 8, Laleli, Fatih, Istanbul 34134 Turkey
| |
Collapse
|
8
|
Liu H, Wang HH. Impact of Microbiota Transplant on Resistome of Gut Microbiota in Gnotobiotic Piglets and Human Subjects. Front Microbiol 2020; 11:932. [PMID: 32508773 PMCID: PMC7248251 DOI: 10.3389/fmicb.2020.00932] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/20/2020] [Indexed: 12/20/2022] Open
Abstract
Microbiota transplant is becoming a popular process to restore or initiate “healthy” gut microbiota and immunity. But, the potential risks of the related practices need to be carefully evaluated. This study retrospectively examined the resistomes of donated fecal microbiota for treating intestinal disorders, vaginal microbiota of pregnant women, and infant fecal microbiota from rural and urban communities, as well as the impact of transplants on the fecal resistome of human and animal recipients. Antibiotic resistance (AR) genes were found to be abundant in all donor microbiota. An overall surge of resistomes with higher prevalence and abundance of AR genes was observed in the feces of all transplanted gnotobiotic pigs as well as in the feces of infant subjects, compared to those in donor fecal and maternal vaginal microbiota. Surprisingly, transplants using rural Amish microbiota led to more instead of less AR genes in the fecal microbiota of gnotobiotic pigs than did transplants using urban microbiota. New AR gene subtypes undetected originally also appeared in gnotobiotic pigs, in Crohn’s Disease (CD) patients after transplant, and in feces of infant subjects. The data illustrated the key role of the host gastrointestinal tract system in amplifying the ever-increasing AR gene pool, even without antibiotic exposure. The data further suggest that the current approaches of microbiota transplant can introduce significant health risk factor(s) to the recipients, and newborn human and animal hosts with naïve gut microbiota were especially susceptible. Given the illustrated public health risks of microbiota transplant, minimizing massive and unnecessary damages to gut microbiota by oral antibiotics and other gut impacting drugs becomes important. Since eliminating risk factors including AR bacteria and opportunistic pathogens directly from donor microbiota is still difficult to achieve, developing microbial cocktails with defined organisms and functions has further become an urgent need, should microbiota transplantation become necessary.
Collapse
Affiliation(s)
- Hu Liu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China.,Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States
| | - Hua H Wang
- Department of Food Science and Technology, The Ohio State University, Columbus, OH, United States.,Department of Microbiology, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
9
|
|
10
|
Ghanbari M, Klose V, Crispie F, Cotter PD. The dynamics of the antibiotic resistome in the feces of freshly weaned pigs following therapeutic administration of oxytetracycline. Sci Rep 2019; 9:4062. [PMID: 30858509 PMCID: PMC6411716 DOI: 10.1038/s41598-019-40496-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 02/18/2019] [Indexed: 01/02/2023] Open
Abstract
In this study, shotgun metagenomics was employed to monitor the effect of oxytetracycline, administered at a therapeutic dose, on the dynamics of the microbiota and resistome in the feces of weaned pigs. Sixteen weaning pigs were assigned to one of two treatments including standard starter diet for 21 days or antibiotic-supplemented diet (10 g oxytetracycline/100 kg body weight/day) for 7 days, followed by 14 days of standard starter diet. Feces were collected from the pigs on days 0, 8, and 21 for microbiota and resistome profiling. Pigs receiving oxytetracycline exhibited a significantly greater richness (ANOVA, P = 0.034) and diversity (ANOVA, P = 0.048) of antibiotic resistance genes (ARGs) than the control pigs. Antibiotic administration significantly enriched the abundances of 41 ARGs, mainly from the tetracycline, betalactam and multidrug resistance classes. Compositional shifts in the bacterial communities were observed following 7 days of antibiotic adminstration, with the medicated pigs showing an increase in Escherichia (Proteobacteria) and Prevotella (Bacteroidetes) populations compared with the nonmedicated pigs. This might be explained by the potential of these taxa to carry ARGs that may be transferred to other susceptible bacteria in the densely populated gut environment. These findings will help in the optimization of therapeutic schemes involving antibiotic usage in swine production.
Collapse
Affiliation(s)
| | | | - Fiona Crispie
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, and APC Microbiome Ireland, Cork, Ireland
| | - Paul D Cotter
- Teagasc Food Research Centre, Moorepark, Fermoy, Cork, and APC Microbiome Ireland, Cork, Ireland
| |
Collapse
|
11
|
Jelinkova P, Splichal Z, Jimenez AMJ, Haddad Y, Mazumdar A, Sur VP, Milosavljevic V, Kopel P, Buchtelova H, Guran R, Zitka O, Richtera L, Hegerova D, Heger Z, Moulick A, Adam V. Novel vancomycin-peptide conjugate as potent antibacterial agent against vancomycin-resistant Staphylococcus aureus. Infect Drug Resist 2018; 11:1807-1817. [PMID: 30349337 PMCID: PMC6190637 DOI: 10.2147/idr.s160975] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background Increase in vancomycin (Van)-resistant bacterial strains including vancomycin-resistant Staphylococcus aureus (VRSA) and lack of new effective antibiotics have become a formidable health problem. Materials and methods We designed a new conjugate composed of Van and a peptide Hecate (Hec; Van/Hec), and its potential antimicrobial activity was evaluated. Results Results from disk diffusion test, time-kill assay, determination of minimum inhibitory concentration (MIC), microscopy, and comet assay showed strong antimicrobial effects of Van/Hec against wild-type, methicillin-resistant Staphylococcus aureus (MRSA) and VRSA. Microscopy revealed that the exposure to Van/Hec results in disruption of bacterial cell integrity in all tested strains, which was not observed in case of Van or Hec alone. Conclusion Overall, we showed that the preparation of conjugates from antibiotics and biologically active peptides could help us to overcome the limitation of the use of antibiotic in the treatment of infections caused by multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Pavlina Jelinkova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic,
| | - Zbynek Splichal
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Ana Maria Jimenez Jimenez
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Yazan Haddad
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Aninda Mazumdar
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Vishma Pratap Sur
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Vedran Milosavljevic
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Pavel Kopel
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Hana Buchtelova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic,
| | - Roman Guran
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Ondrej Zitka
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Lukas Richtera
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Dagmar Hegerova
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Zbynek Heger
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Amitava Moulick
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska, Brno, Czech Republic, .,Central European Institute of Technology, Brno University of Technology, Purkynova, Brno, Czech Republic,
| |
Collapse
|
12
|
Li C, Jiang C, Wu Z, Cheng B, An X, Wang H, Sun Y, Huang M, Chen X, Wang J. Diversity of antibiotic resistance genes and encoding ribosomal protection proteins gene in livestock waste polluted environment. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:423-433. [PMID: 29469609 DOI: 10.1080/03601234.2018.1438836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The rapid development and increase of antibiotic resistance are global phenomena resulting from the extensive use of antibiotics in human clinics and animal feeding operations. Antibiotics can promote the occurrence of antibiotic resistance genes (ARGs), which can be transferred horizontally to humans and animals through water and the food chain. In this study, the presence and abundance of ARGs in livestock waste was monitored by quantitative PCR. A diverse set of bacteria and tetracycline resistance genes encoding ribosomal protection proteins (RPPs) from three livestock farms and a river were analyzed through denaturing gradient gel electrophoresis (DGGE). The abundance of sul(I) was 103 to 105 orders of magnitude higher than that of sul(II). Among 11 tet-ARGs, the most abundant was tet(O). The results regarding bacterial diversity indicated that the presence of antibiotics might have an evident impact on bacterial diversity at every site, particularly at the investigated swine producer. The effect of livestock waste on the bacterial diversity of soil was stronger than that of water. Furthermore, a sequencing analysis showed that tet(M) exhibited two genotypes, while the other RPPs-encoding genes exhibited at least three genotypes. This study showed that various ARGs and RPPs-encoding genes are particularly widespread among livestock.
Collapse
Affiliation(s)
- Chunyan Li
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Cheng Jiang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
- b College of Life Science, Jiamusi University , Jiamusi , Heilongjiang , PR China
| | - Zhiyang Wu
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Binglin Cheng
- c College of First Clinical Medicine of Harbin Medical University , Harbin , Heilongjiang , PR China
| | - Xuejiao An
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Hailan Wang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Yueling Sun
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Mingyan Huang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Xi Chen
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| | - Jinming Wang
- a College of Resource and Environment, Northeast Agricultural University , Harbin , Heilongjiang , PR China
| |
Collapse
|
13
|
Zhan X, Hu G, Wagberg T, Zhang D, Zhou P. A Label-Free Electrochemical Aptasensor for the Rapid Detection of Tetracycline Based on Ordered Mesoporous Carbon–Fe3O4. Aust J Chem 2018. [DOI: 10.1071/ch17503] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A novel aptasensor based on a tetracycline (TET) aptamer immobilized by physical adsorption on an ordered mesoporous carbon–Fe3O4 (OMC-Fe3O4)-modified screen-printed electrode surface was successfully fabricated. OMC-Fe3O4 was characterized by scanning electron microscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The modification procedure of the aptasensor was characterized by cyclic voltammetry. Interaction between the TET aptamer and target was determined by differential pulse voltammetry. Under optimal conditions, the proposed aptasensor exhibited good electrochemical sensitivity to TET in a concentration range of 5 nM to 10 μM, with a detection limit of 0.8 nM (S/N = 3). This aptasensor exhibited satisfactory specificity, reproducibility, and stability.
Collapse
|
14
|
Neyestani M, Dickenson E, McLain J, Robleto E, Rock C, Gerrity D. Impacts of solids retention time on trace organic compound attenuation and bacterial resistance to trimethoprim and sulfamethoxazole. CHEMOSPHERE 2017; 182:149-158. [PMID: 28494359 DOI: 10.1016/j.chemosphere.2017.04.121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Bacteria can grow in the presence of trimethoprim and sulfamethoxazole by expressing antibiotic resistance genes or by acquiring thymine or thymidine from environmental reservoirs to facilitate DNA synthesis. The purpose of this study was to evaluate whether activated sludge serves as a reservoir for thymine or thymidine, potentially impacting the quantification of antibiotic resistant bacteria. This study also assessed the impacts of varying solids retention time (SRT) on trimethoprim and sulfamethoxazole removal during wastewater treatment and single and multi-drug resistance. When assayed in the presence of the antibiotics at standard clinical concentrations, up to 40% increases in the relative prevalence of resistant bacteria were observed with (1) samples manually augmented with reagent-grade thymidine, (2) samples manually augmented with sonicated biomass (i.e., cell lysate), (3) samples manually augmented with activated sludge filtrate, and (4) activated sludge samples collected from reactors with longer SRTs. These observations suggest that longer SRTs may select for antibiotic resistant bacteria and/or result in false positives for antibiotic resistance due to higher concentrations of free thymine, thymidine, or other extracellular constituents.
Collapse
Affiliation(s)
- Majid Neyestani
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States; Greeley and Hansen, 1120 N. Town Center Dr., Suite 120, Las Vegas, NV 89144, United States
| | - Eric Dickenson
- Applied Research and Development Center, Southern Nevada Water Authority, 1299 Burkholder Blvd., Henderson, NV 89015, United States
| | - Jean McLain
- Water Resources Research Center, University of Arizona, 350 N. Campbell Ave., Tucson, AZ 85719, United States
| | - Eduardo Robleto
- School of Life Sciences, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154, United States
| | - Channah Rock
- Department of Soil, Water & Environmental Science, University of Arizona, 1177 E. 4th St., Tucson, AZ 85719, United States
| | - Daniel Gerrity
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, 4505 S. Maryland Parkway, Las Vegas, NV 89154-4015, United States.
| |
Collapse
|
15
|
Jaaffar AKM, Parejko JA, Paulitz TC, Weller DM, Thomashow LS. Sensitivity of Rhizoctonia Isolates to Phenazine-1-Carboxylic Acid and Biological Control by Phenazine-Producing Pseudomonas spp. PHYTOPATHOLOGY 2017; 107:692-703. [PMID: 28383281 DOI: 10.1094/phyto-07-16-0257-r] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Rhizoctonia solani anastomosis groups (AG)-8 and AG-2-1 and R. oryzae are ubiquitous in cereal-based cropping systems of the Columbia Plateau of the Inland Pacific Northwest and commonly infect wheat. AG-8 and R. oryzae, causal agents of Rhizoctonia root rot and bare patch, are most commonly found in fields in the low-precipitation zone, whereas R. solani AG-2-1 is much less virulent on wheat and is distributed in fields throughout the low-, intermediate-, and high-precipitation zones. Fluorescent Pseudomonas spp. that produce the antibiotic phenazine-1-carboxylic acid (PCA) also are abundant in the rhizosphere of crops grown in the low-precipitation zone but their broader geographic distribution and effect on populations of Rhizoctonia is unknown. To address these questions, we surveyed the distribution of PCA producers (Phz+) in 59 fields in cereal-based cropping systems throughout the Columbia Plateau. Phz+ Pseudomonas spp. were detected in 37 of 59 samples and comprised from 0 to 12.5% of the total culturable heterotrophic aerobic rhizosphere bacteria. The frequency with which individual plants were colonized by Phz+ pseudomonads ranged from 0 to 100%. High and moderate colonization frequencies of Phz+ pseudomonads were associated with roots from fields located in the driest areas whereas only moderate and low colonization frequencies were associated with crops where higher annual precipitation occurs. Thus, the geographic distribution of Phz+ pseudomonads overlaps closely with the distribution of R. solani AG-8 but not with that of R. oryzae or R. solani AG-2-1. Moreover, linear regression analysis demonstrated a highly significant inverse relationship between annual precipitation and the frequency of rhizospheres colonized by Phz+ pseudomonads. Phz+ pseudomonads representative of the four major indigenous species (P. aridus, P. cerealis, P. orientalis, and P. synxantha) suppressed Rhizoctonia root rot of wheat when applied as seed treatments. In vitro, mean 50% effective dose values for isolates of AG-8 and AG-2-1 from fields with high and low frequencies of phenazine producers did not differ significantly, nor was there a correlation between virulence of an isolate and sensitivity to PCA, resulting in rejection of the hypothesis that tolerance in Rhizoctonia spp. to PCA develops in nature upon exposure to Phz+ pseudomonads.
Collapse
Affiliation(s)
- Ahmad Kamil Mohd Jaaffar
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - James A Parejko
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - Timothy C Paulitz
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - David M Weller
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| | - Linda S Thomashow
- First and second authors: Department of Plant Pathology, Washington State University, Pullman 99164-6430; and third, fourth, and fifth authors: United States Department of Agriculture-Agricultural Research Service, Wheat Health, Genetics and Quality Research Unit, Pullman, WA 99164-6430
| |
Collapse
|
16
|
Rybarczyk J, Kieckens E, Vanrompay D, Cox E. In vitro and in vivo studies on the antimicrobial effect of lactoferrin against Escherichia coli O157:H7. Vet Microbiol 2017; 202:23-28. [DOI: 10.1016/j.vetmic.2016.05.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 05/11/2016] [Accepted: 05/18/2016] [Indexed: 10/21/2022]
|
17
|
Milanović V, Osimani A, Pasquini M, Aquilanti L, Garofalo C, Taccari M, Cardinali F, Riolo P, Clementi F. Getting insight into the prevalence of antibiotic resistance genes in specimens of marketed edible insects. Int J Food Microbiol 2016; 227:22-8. [DOI: 10.1016/j.ijfoodmicro.2016.03.018] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/24/2016] [Accepted: 03/18/2016] [Indexed: 12/31/2022]
|
18
|
Najjuka CF, Kateete DP, Kajumbula HM, Joloba ML, Essack SY. Antimicrobial susceptibility profiles of Escherichia coli and Klebsiella pneumoniae isolated from outpatients in urban and rural districts of Uganda. BMC Res Notes 2016; 9:235. [PMID: 27113038 PMCID: PMC4843195 DOI: 10.1186/s13104-016-2049-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 04/18/2016] [Indexed: 01/22/2023] Open
Abstract
Background Antimicrobial resistance is a global public health concern contributing to increased morbidity and mortality particularly in low-income countries. Studies on commensal bacteria are important as they reflect the state of antimicrobial susceptibility patterns in populations. However, susceptibility data on potentially pathogenic commensal bacteria from individuals in communities are still limited. The aim of this cross-sectional study was to determine the susceptibility profiles of Escherichia coli and Klebsiella species isolated from clients attending outpatient clinics in Kampala (urban district) and two rural districts of Uganda, Kayunga and Mpigi. Factors associated with such carriage are also reported. Results A total of 1448 participants were recruited into the study with 985 yielding organisms of interest from stool or urine samples (one per client). Most growth occurred from stool samples (636/985, 87 %), of which 620/636 (97 %) grew E. coli while 16 (3 %) were Klebsiella pneumoniae. Growth from urine was 349/985 (35 %) of which 310/349 (89 %) were E. coli while 39 (11 %) K. pneumoniae. High rates of antimicrobial resistance were detected among E. coli and Klebsiella isolates combined: sulphamethoxazole/trimethoprim 70 %, amoxicillin/clavulanate 36 %, chloramphenicol 20 %, ciprofloxacin 11 %, gentamicin 11 %, nitrofurantoin 4 %, ceftriaxone 3 %, piperacillin/tazobactam 27 %, cefoxitin 22 %, and cefepime 15 %. Multidrug resistance was noted in 33 % of the isolates. None of the isolates were resistant to imipenem. Overall, isolates from Kampala were more resistant to antimicrobials. Across the three districts combined, isolates producing beta-lactamase enzymes extended spectrum β-lactamase-(ESBL) and AmpC comprised 5.3 and 13.2 %, respectively. Further, medical procedures involving inoculation were independent risk factors [aOR 50.76 (1.80, 1432.90)] while residing in a rural district and use of sulphamethoxazole/trimethoprim 3 months prior to visiting the outpatient clinics were protective against carriage of multidrug resistant isolates. Furthermore, use of gentamicin was protective against AmpC producing isolates while clients attending HIV/AIDs clinics were less likely to carry such isolates. No factor was independently associated with carriage of ESBL-producing isolates. Conclusion Antimicrobial resistance is prevalent among E. coli and K.pneumoniae carried in the gut of clients attending outpatient clinics in Kampala and two rural districts in Uganda. This could complicate treatment options for community-acquired infections caused by the Enterobacteriaceae. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-2049-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Christine F Najjuka
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.
| | - David P Kateete
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Henry M Kajumbula
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Moses L Joloba
- Department of Medical Microbiology, School of Biomedical Sciences, College of Health Sciences, Makerere University, Kampala, Uganda.,Department of Immunology and Molecular Biology, College of Health Sciences, Makerere University, Kampala, Uganda
| | - Sabiha Y Essack
- Antimicrobial Research Unit, School of Health Sciences, University of KwaZulu-Natal, Westville, Durban, South Africa
| |
Collapse
|
19
|
Wang RX, Wang JY, Sun YC. Antibiotic resistance monitoring in Vibrio spp. isolated from rearing environment and intestines of abalone Haliotis diversicolor. MARINE POLLUTION BULLETIN 2015; 101:701-706. [PMID: 26494250 DOI: 10.1016/j.marpolbul.2015.10.027] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/07/2015] [Accepted: 10/11/2015] [Indexed: 06/05/2023]
Abstract
546 Vibrio isolates from rearing seawater (292 strains) and intestines of abalone (254 strains) were tested to ten antibiotics using Kirby-Bauer diffusion method. Resistant rates of abalone-derived Vibrio isolates to chloramphenicol (C), enrofloxacin (ENX) and norfloxacin (NOR) were <28%, whereas those from seawater showed large fluctuations in resistance to each of the tested antibiotics. Many strains showed higher resistant rates (>40%) to kanamycin (KNA), furazolidone (F), tetracycline (TE), gentamicin (GM) and rifampin (RA). 332 isolates from seawater (n=258) and abalone (n=74) were resistant to more than three antibiotics. Peaked resistant rates of seawater-derived isolates to multiple antibiotics were overlapped in May and August. Statistical analysis showed that pH had an important effect on resistant rates of abalone-derived Vibrio isolates to RA, NOR, and ENX. Salinity and dissolved oxygen were negatively correlated with resistant rates of seawater-derived Vibrio isolates to KNA, RA, and PG.
Collapse
Affiliation(s)
- R X Wang
- College of Life Science, South China Normal University, Guangzhou 510631, China; South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangdong Province, Guangzhou 510300, China
| | - J Y Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangdong Province, Guangzhou 510300, China
| | - Y C Sun
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China
| |
Collapse
|
20
|
Huang Y, Zhang L, Tiu L, Wang HH. Characterization of antibiotic resistance in commensal bacteria from an aquaculture ecosystem. Front Microbiol 2015; 6:914. [PMID: 26441859 PMCID: PMC4561822 DOI: 10.3389/fmicb.2015.00914] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 08/20/2015] [Indexed: 12/03/2022] Open
Abstract
The objective of the study was to improve the understanding of antibiotic resistance (AR) ecology through characterization of antibiotic-resistant commensal isolates associated with an aquaculture production system. A total of 4767 isolates non-susceptible to sulfamethoxazole/trimethoprim (Sul/Tri), tetracycline (Tet), erythromycin (Erm), or cefotaxime (Ctx), originated from fish, feed, and environmental samples of an aquaculture farm with no known history of antibiotic applications were examined. Close to 80% of the isolates exhibited multi-drug resistance in media containing the corresponding antibiotics, and representative AR genes were detected in various isolates by PCR, with feed isolates had the highest positive rate detected. Identified AR gene carriers involved 18 bacterial genera. Selected AR genes led to acquired resistance in other bacteria by transformation. The AR traits in many isolates were stable in the absence of selective pressure. AR-rich feed and possibly environmental factors may contribute to AR in the aquaculture ecosystem. For minimum inhibitory concentration test, brain heart infusion medium was found more suitable for majority of the bacteria examined than cation-adjusted Mueller Hinton broth, with latter being the recommended medium for clinical isolates by standard protocol. The data indicated a need to update the methodology due to genetic diversity of microbiota for better understanding of the AR ecology.
Collapse
Affiliation(s)
- Ying Huang
- Department of Food Science and Technology, The Ohio State University, Columbus, OHUSA
| | - Lu Zhang
- Department of Food Science and Technology, The Ohio State University, Columbus, OHUSA
| | - Laura Tiu
- South Centers, The Ohio State University, Piketon, OHUSA
| | - Hua H. Wang
- Department of Food Science and Technology, The Ohio State University, Columbus, OHUSA
- Department of Microbiology, The Ohio State University, Columbus, OHUSA
- School of Biological Sciences, Fudan University, Yangpu, ShanghaiChina
| |
Collapse
|
21
|
Zhang S, Han B, Gu J, Wang C, Wang P, Ma Y, Cao J, He Z. Fate of antibiotic resistant cultivable heterotrophic bacteria and antibiotic resistance genes in wastewater treatment processes. CHEMOSPHERE 2015; 135:138-145. [PMID: 25950407 DOI: 10.1016/j.chemosphere.2015.04.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 05/29/2023]
Abstract
Antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are emerging contaminants of environmental concern. Heterotrophic bacteria in activated sludge have an important role in wastewater treatment plants (WWTPs). However, the fate of cultivable heterotrophic ARB and ARGs in WWPTs process remains unclear. In the present study, we investigated the antibiotic-resistant phenotypes of cultivable heterotrophic bacteria from influent and effluent water of three WWTPs and analysed thirteen ARGs in ARB and in activated sludge from anoxic, anaerobic and aerobic compartments. From each influent or effluent sample of the three plants, 200 isolates were randomly tested for susceptibility to 12 antibiotics. In these samples, between 5% and 64% isolates showed resistance to >9 antibiotics and the proportion of >9-drug-resistant bacteria was lower in isolates from effluent than from influent. Eighteen genera were identified in 188 isolates from influent (n=94) and effluent (n=94) of one WWTP. Six genera (Aeromonas, Bacillus, Lysinibacillus, Microbacterium, Providencia, and Staphylococcus) were detected in both influent and effluent samples. Gram-negative and -positive isolates dominated in influent and effluent, respectively. The 13 tetracycline-, sulphonamide-, streptomycin- and β-lactam-resistance genes were detected at a higher frequency in ARB from influent than from effluent, except for sulA and CTX-M, while in general, the abundances of ARGs in activated sludge from two of the three plants were higher in aerobic compartments than in anoxic ones, indicating abundant ARGs exit in the excess sledges and/or in uncultivable bacteria. These findings may be useful for elucidating the effect of WWTP on ARB and ARGs.
Collapse
Affiliation(s)
- Songhe Zhang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China; University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA.
| | - Bing Han
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Ju Gu
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Chao Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Peifang Wang
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China.
| | - Yanyan Ma
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Jiashun Cao
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenli He
- University of Florida, Institute of Food and Agricultural Sciences, Indian River Research and Education Center, 2199 South Rock Road, Fort Pierce, FL 34945, USA
| |
Collapse
|
22
|
Zhang SH, Lv X, Han B, Gu X, Wang PF, Wang C, He Z. Prevalence of antibiotic resistance genes in antibiotic-resistant Escherichia coli isolates in surface water of Taihu Lake Basin, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:11412-21. [PMID: 25813640 DOI: 10.1007/s11356-015-4371-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 03/12/2015] [Indexed: 05/12/2023]
Abstract
The rapid development of antibiotic-resistant bacteria (ARB) has been of concern worldwide. In this study, antibiotic resistance genes (ARGs) were investigated in antibiotic-resistant Escherichia coli isolated from surface water samples (rivers, n = 17; Taihu Lake, n = 16) and from human, chicken, swine, and Egretta garzetta sources in the Taihu Basin. E. coli showing resistance to at least five drugs occurred in 31, 67, 58, 27, and 18% of the isolates from surface water (n = 665), chicken (n = 27), swine (n = 29), human (n = 45), and E. garzetta (n = 15) sources, respectively. The mean multi-antibiotic resistance (MAR) index of surface water samples (0.44) was lower than that of chicken (0.64) and swine (0.57) sources but higher than that of human (0.30) and E. garzetta sources (0.15). Ten tetracycline, four sulfonamide, four quinolone, five β-lactamase, and two streptomycin resistance genes were detected in the corresponding antibiotic-resistant isolates. Most antibiotic-resistant E. coli harbored at least two similar functional ARGs. Int-I was detected in at least 57% of MAR E. coli isolates. The results of multiple correspondence analysis and Spearman correlation analysis suggest that antibiotic-resistant E. coli in water samples were mainly originated from swine, chicken, and/or human sources. Most of the ARGs detected in E. garzetta sources were prevalent in other sources. These data indicated that human activities may have contributed to the spread of ARB in the aquatic environment.
Collapse
Affiliation(s)
- Song He Zhang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Xikang Road No. 1, Gulou District, Nanjing, 210098, China,
| | | | | | | | | | | | | |
Collapse
|
23
|
Lei X, Lu J, Liu Z, Tong Y, Li S. Concentration and distribution of antibiotics in water-sediment system of Bosten Lake, Xinjiang. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:1670-1678. [PMID: 24809500 DOI: 10.1007/s11356-014-2994-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2013] [Accepted: 04/30/2014] [Indexed: 06/03/2023]
Abstract
This study investigated the residues of four sulfonamides, four quinolones, and four tetracyclines in surface water as well as surficial sediment samples, of Bosten Lake, in Xinjiang, China. The results showed the presence of 10 out of the 12 selected antibiotics in both water and sediment. Lomefloxacin was not detected in any of the samples. Among the 12 antibiotics considered, ciprofloxacin, with median concentrations of 39.22 ng L(-1) in surface water and 76.51 μg kg(-1) in surficial sediment, was the dominant antibiotic in all samples. The sorption coefficient values presented higher sorption capacities of tetracycline and chlortetracycline than the other antibiotics. The cluster analysis revealed elevated levels of pollution in sampling sites 1, 2, and 3, which were situated in a nearby urban area and in the estuary of Kaidu River. This study demonstrates the necessity of regulating the use of antibiotics and improving the management and treatment of their release.
Collapse
Affiliation(s)
- Xiaoning Lei
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, 832003, Xinjiang, China
| | | | | | | | | |
Collapse
|
24
|
Wang RX, Wang A, Wang JY. Antibiotic resistance monitoring in heterotrophic bacteria from anthropogenic-polluted seawater and the intestines of oyster Crassostrea hongkongensis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2014; 109:27-31. [PMID: 25133348 DOI: 10.1016/j.ecoenv.2014.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/23/2014] [Accepted: 07/24/2014] [Indexed: 06/03/2023]
Abstract
A total of 1,050 strains of heterotrophic bacteria isolated from farming seawater and the intestines of oyster species Crassostrea hongkongensis were tested for resistance to 10 antibiotics by the Kirby-Bauer diffusion method. The resistant rates of seawater-derived bacteria to chloramphenicol, enrofloxacin, and ciprofloxacin were low (less than 20%), whereas the bacteria obtained from oysters showed low resistance to chloramphenicol and enrofloxacin. Many strains showed high resistant rates (more than 40%) to furazolidone, penicillin G, and rifampin. A total of 285 strains from farming seawater and oysters were resistant to more than three antibiotics. Several strains showed resistance to more than nine antibiotics. Furthermore, the peak resistant rates of the seawater-derived strains to multiple antibiotics overlapped in April, June, September, and November, and those of oyster-derived strains overlapped during April, July, and September. The multi-resistant rate patterns of strains from farming seawater and oyster intestines were similar.
Collapse
Affiliation(s)
- Rui Xuan Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangdong Province, Guangzhou 510300, China; Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - AnLi Wang
- Key Laboratory of Ecology and Environment Science in Guangdong Higher Education, Guangdong Provincial Key Laboratory for Healthy and Safe Aquaculture, College of Life Science, South China Normal University, Guangzhou 510631, China
| | - Jiang Yong Wang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangdong Province, Guangzhou 510300, China; Key Laboratory of Fishery Ecology and Environment, Key Laboratory of South China Sea Fishery Resources Exploitation and Utilization, Ministry of Agriculture, Guangdong Province, Guangzhou 510300, China.
| |
Collapse
|
25
|
Molecular identification and quantification of tetracycline and erythromycin resistance genes in Spanish and Italian retail cheeses. BIOMED RESEARCH INTERNATIONAL 2014; 2014:746859. [PMID: 25302306 PMCID: PMC4180643 DOI: 10.1155/2014/746859] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 08/21/2014] [Accepted: 08/27/2014] [Indexed: 11/17/2022]
Abstract
Large antibiotic resistance gene pools in the microbiota of foods may ultimately pose a risk for human health. This study reports the identification and quantification of tetracycline- and erythromycin-resistant populations, resistance genes, and gene diversity in traditional Spanish and Italian cheeses, via culturing, conventional PCR, real-time quantitative PCR (qPCR), and denaturing gradient gel electrophoresis (DGGE). The numbers of resistant bacteria varied widely among the antibiotics and the different cheese varieties; in some cheeses, all the bacterial populations seemed to be resistant. Up to eight antibiotic resistance genes were sought by gene-specific PCR, six with respect to tetracycline, that is, tet(K), tet(L), tet(M), tet(O), tet(S), and tet(W), and two with respect to erythromycin, that is, erm(B) and erm(F). The most common resistance genes in the analysed cheeses were tet(S), tet(W), tet(M), and erm(B). The copy numbers of these genes, as quantified by qPCR, ranged widely between cheeses (from 4.94 to 10.18log10/g). DGGE analysis revealed distinct banding profiles and two polymorphic nucleotide positions for tet(W)-carrying cheeses, though the similarity of the sequences suggests this tet(W) to have a monophyletic origin. Traditional cheeses would therefore appear to act as reservoirs for large numbers of many types of antibiotic resistance determinants.
Collapse
|
26
|
|
27
|
Zhang W, Huang MH, Qi FF, Sun PZ, Van Ginkel SW. Effect of trace tetracycline concentrations on the structure of a microbial community and the development of tetracycline resistance genes in sequencing batch reactors. BIORESOURCE TECHNOLOGY 2013; 150:9-14. [PMID: 24140945 DOI: 10.1016/j.biortech.2013.09.081] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2013] [Revised: 09/16/2013] [Accepted: 09/18/2013] [Indexed: 06/02/2023]
Abstract
The objective of this study was to investigate effects of different concentrations of tetracycline (TC) on the microbial community and development of tetracycline resistance genes (TRGs) of sequencing batch reactors (SBRs). Polymerase chain reaction denaturing gradient gel electrophoresis (PCR-DGGE) analysis of 16S rRNA and real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) were used to detect the structural changes of the microbial community and the variations of eight TC resistance genes tet(A), tet(B), tet(C), tet(E), tet(M), tet(O), tet(S) and tet(X), respectively. The results indicated that, trace TC could substantially change the structure of the microbial community. Bacteria which could not adapt to environment with TC were gradually replaced by those adapting to tetracycline. Shannon's diversity index (H) and Simpson's index (D) reached maximum values when the concentration of TC was 1 μg L(-1). The resistance genes in the activated sludge proliferated under the pressure of trace TC.
Collapse
Affiliation(s)
- Wei Zhang
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | | | | | | | | |
Collapse
|
28
|
Antibiotic administration routes significantly influence the levels of antibiotic resistance in gut microbiota. Antimicrob Agents Chemother 2013; 57:3659-66. [PMID: 23689712 DOI: 10.1128/aac.00670-13] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
This study examined the impact of oral exposure to antibiotic-resistant bacteria and antibiotic administration methods on antibiotic resistance (AR) gene pools and the profile of resistant bacteria in host gastrointestinal (GI) tracts using C57BL/6J mice with natural gut microbiota. Mice inoculated with a mixture of tet(M)-carrying Enterococcus spp. or blaCMY-2-carrying Escherichia coli were treated with different doses of tetracycline hydrochloride (Tet) or ampicillin sodium (Amp) and delivered via either feed or intravenous (i.v.) injection. Quantitative PCR assessment of mouse fecal samples revealed that (i) AR gene pools were below the detection limit in mice without prior inoculation of AR gene carriers regardless of subsequent exposure to corresponding antibiotics; (ii) oral exposure to high doses of Tet and Amp in mice inoculated with AR gene carriers led to rapid enrichment of corresponding AR gene pools in feces; (iii) significantly less or delayed development of AR in the GI tract of the AR carrier-inoculated mice was observed when the same doses of antibiotics were administered via i.v. injection rather than oral administration; and (iv) antibiotic dosage, and maybe the excretion route, affected AR in the GI tract. The shift of dominant AR bacterial populations in the gut microbiota was consistent with the dynamics of AR gene pools. The emergence of endogenous resistant bacteria in the gut microbiota corresponding to drug exposure was also observed. Together, these data suggest that oral administration of antibiotics has a prominent effect on AR amplification and development in gut microbiota, which may be minimized by alternative drug administration approaches, as illustrated by i.v. injection in this study and proper drug selection.
Collapse
|
29
|
Yashiro E, McManus PS. Effect of streptomycin treatment on bacterial community structure in the apple phyllosphere. PLoS One 2012; 7:e37131. [PMID: 22629357 PMCID: PMC3357425 DOI: 10.1371/journal.pone.0037131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 04/17/2012] [Indexed: 11/18/2022] Open
Abstract
We studied the effect of many years of streptomycin use in apple orchards on the proportion of phyllosphere bacteria resistant to streptomycin and bacterial community structure. Leaf samples were collected during early July through early September from four orchards that had been sprayed with streptomycin during spring of most years for at least 10 years and four orchards that had not been sprayed. The percentage of cultured phyllosphere bacteria resistant to streptomycin at non-sprayed orchards (mean of 65%) was greater than at sprayed orchards (mean of 50%) (P = 0.0271). For each orchard, a 16S rRNA gene clone library was constructed from leaf samples. Proteobacteria dominated the bacterial communities at all orchards, accounting for 71 of 104 OTUs (determined at 97% sequence similarity) and 93% of all sequences. The genera Massilia, Methylobacterium, Pantoea, Pseudomonas, and Sphingomonas were shared across all sites. Shannon and Simpson's diversity indices and Pielou's evenness index were similar among orchards regardless of streptomycin use. Analysis of Similarity (ANOSIM) indicated that long-term streptomycin treatment did not account for the observed variability in community structure among orchards (R = -0.104, P = 0.655). Other variables, including time of summer, temperature and time at sampling, and relative distance of the orchards from each other, also had no significant effect on bacterial community structure. We conclude that factors other than streptomycin exposure drive both the proportion of streptomycin-resistant bacteria and phylogenetic makeup of bacterial communities in the apple phyllosphere in middle to late summer.
Collapse
Affiliation(s)
- Erika Yashiro
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia S. McManus
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
30
|
Gao P, Munir M, Xagoraraki I. Correlation of tetracycline and sulfonamide antibiotics with corresponding resistance genes and resistant bacteria in a conventional municipal wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 421-422:173-83. [PMID: 22369865 DOI: 10.1016/j.scitotenv.2012.01.061] [Citation(s) in RCA: 410] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Revised: 01/09/2012] [Accepted: 01/17/2012] [Indexed: 04/14/2023]
Abstract
Antibiotics and corresponding resistance genes and resistant bacteria have been considered as emerging pollutants worldwide. Wastewater treatment plants (WWTPs) are potential reservoirs contributing to the evolution and spread of antibiotic resistance. In this study, total concentrations of tetracycline and sulfonamide antibiotics in final effluent were detected at 652.6 and 261.1ng/L, respectively, and in treated sludge, concentrations were at 1150.0 and 76.0μg/kg dry weight (dw), respectively. The quantities of antibiotic resistance genes and antibiotic resistant bacteria in final effluent were quantified in the range of 9.12×10(5)-1.05×10(6) gene abundances /100mL (genomic copies/100mL) and 1.05×10(1)-3.09×10(3)CFU/mL, respectively. In treated sludge, they were quantified at concentrations of 1.00×10(8)-1.78×10(9) gene abandances/100mL and 7.08×10(6)-1.91×10(8)CFU/100mL, respectively. Significant reductions (2-3 logs, p<0.05) of antibiotic resistance genes and antibiotic resistant bacteria were observed between raw influent and final effluent. The gene abundances of tetO and tetW normalized to that of 16S rRNA genes indicated an apparent decrease as compared to sulI genes, which remained stable along each treatment stage. Significant correlations (R(2)=0.75-0.83, p<0.05) between numbers of resistant bacteria and antibiotic concentrations were observed in raw influent and final effluent. No significance (R(2)=0.15, p>0.05) was found between tet genes (tetO and tetW) with concentration of tetracyclines identified in wastewater, while a significant correlation (R(2)=0.97, p<0.05) was observed for sulI gene and total concentration of sulfonamides. Correlations of the quantities of antibiotic resistance genes and antibiotic resistant bacteria with corresponding concentrations of antibiotics in sludge samples were found to be considerably weak (R(2)=0.003-0.07).
Collapse
Affiliation(s)
- Pin Gao
- College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
| | | | | |
Collapse
|