1
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
2
|
Ruiz de la Bastida A, Langa S, Curiel JA, Peirotén Á, Landete JM. Effect of Fermented Soy Beverage on Equol Production by Fecal Microbiota. Foods 2024; 13:2758. [PMID: 39272523 PMCID: PMC11394804 DOI: 10.3390/foods13172758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/22/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Soy consumption is associated with health benefits, mainly linked to the ability of the intestinal microbiota to metabolize the glycosylated isoflavones into more bioactive compounds, such as equol. Because Bifidobacterium pseudocatenulatum INIA P815 is able to efficiently deglycosylate daidzin into daidzein, the aim of this work was to confirm the influence of soy beverages fermented by B. pseudocatenulatum INIA P815 for enhancing equol production by fecal microbiota. Firstly, fecal samples from 17 participants were characterized in vitro, and we observed that 35.3% of them were able to produce equol from daidzein. In addition, the kinetics of equol production and degradation by fecal microbiota were evaluated, determining that 30-85% of equol is degraded after 24 h of incubation. Finally, the influence of fermented soy beverage on improving the production of equol by selected equol-producing fecal samples and by the equol-producing strain Slackia isoflavoniconvertens was analyzed through a colonic model. Fermented soy beverage enhanced the equol production from S. isoflavoniconvertens as well as the fecal samples whose microbiota showed high rates of equol degradation. The results obtained confirm that the fermentation of soy beverages with selected bacterial strains improves the functional properties of these beverages in terms of isoflavone metabolism and equol production.
Collapse
Affiliation(s)
- Ana Ruiz de la Bastida
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José Antonio Curiel
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| |
Collapse
|
3
|
Hu YF, Luo S, Wang SQ, Chen KX, Zhong WX, Li BY, Cao LY, Chen HH, Yin YS. Exploring functional genes' correlation with ( S)-equol concentration and new daidzein racemase identification. Appl Environ Microbiol 2024; 90:e0000724. [PMID: 38501861 PMCID: PMC11022573 DOI: 10.1128/aem.00007-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024] Open
Abstract
With its estrogenic activity, (S)-equol plays an important role in maintaining host health and preventing estrogen-related diseases. Exclusive production occurs through the transformation of soy isoflavones by intestinal bacteria, but the reasons for variations in (S)-equol production among different individuals and species remain unclear. Here, fecal samples from humans, pigs, chickens, mice, and rats were used as research objects. The concentrations of (S)-equol, along with the genetic homology and evolutionary relationships of (S)-equol production-related genes [daidzein reductase (DZNR), daidzein racemase (DDRC), dihydrodaidzein reductase (DHDR), tetrahydrodaidzein reductase (THDR)], were analyzed. Additionally, in vitro functional verification of the newly identified DDRC gene was conducted. It was found that approximately 40% of human samples contained (S)-equol, whereas 100% of samples from other species contained (S)-equol. However, there were significant variations in (S)-equol content among the different species: rats > pigs > chickens > mice > humans. The distributions of the four genes displayed species-specific patterns. High detection rates across various species were exhibited by DHDR, THDR, and DDRC. In contrast, substantial variations in detection rates among different species and individuals were observed with respect to DZNR. It appears that various types of DZNR may be associated with different concentrations of (S)-equol, which potentially correspond to the regulatory role during (S)-equol synthesis. This enhances our understanding of individual variations in (S)-equol production and their connection with functional genes in vitro. Moreover, the newly identified DDRC exhibits higher potential for (S)-equol synthesis compared to the known DDRC, providing valuable resources for advancing in vitro (S)-equol production. IMPORTANCE (S)-equol ((S)-EQ) plays a crucial role in maintaining human health, along with its known capacity to prevent and treat various diseases, including cardiovascular diseases, metabolic syndromes, osteoporosis, diabetes, brain-related diseases, high blood pressure, hyperlipidemia, obesity, and inflammation. However, factors affecting individual variations in (S)-EQ production and the underlying regulatory mechanisms remain elusive. This study examines the association between functional genes and (S)-EQ production, highlighting a potential correlation between the DZNR gene and (S)-EQ content. Various types of DZNR may be linked to the regulation of (S)-EQ synthesis. Furthermore, the identification of a new DDRC gene offers promising prospects for enhancing in vitro (S)-EQ production.
Collapse
Affiliation(s)
- Yun-Fei Hu
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Shu Luo
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Sheng-Qi Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Ke-Xin Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Wei-Xuan Zhong
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Bai-Yuan Li
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Lin-Yan Cao
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
| | - Hua-Hai Chen
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| | - Ye-Shi Yin
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, College of Animal Science and Technology, Guangxi University, Nanning, China
- Key Laboratory of Comprehensive Utilization of Advantage Plants Resources in Hunan South, College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou, Hunan, China
| |
Collapse
|
4
|
Hu J, Mesnage R, Tuohy K, Heiss C, Rodriguez-Mateos A. (Poly)phenol-related gut metabotypes and human health: an update. Food Funct 2024; 15:2814-2835. [PMID: 38414364 DOI: 10.1039/d3fo04338j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Dietary (poly)phenols have received great interest due to their potential role in the prevention and management of non-communicable diseases. In recent years, a high inter-individual variability in the biological response to (poly)phenols has been demonstrated, which could be related to the high variability in (poly)phenol gut microbial metabolism existing within individuals. An interplay between (poly)phenols and the gut microbiota exists, with (poly)phenols being metabolised by the gut microbiota and their metabolites modulating gut microbiota diversity and composition. A number of (poly)phenol metabolising phenotypes or metabotypes have been proposed, however, potential metabotypes for most (poly)phenols have not been investigated, and the relationship between metabotypes and human health remains ambiguous. This review presents updated knowledge on the reciprocal interaction between (poly)phenols and the gut microbiome, associated gut metabotypes, and subsequent impact on human health.
Collapse
Affiliation(s)
- Jiaying Hu
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| | - Robin Mesnage
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
- Buchinger Wilhelmi Clinic, Überlingen, Germany
| | - Kieran Tuohy
- School of Food Science and Nutrition, Faculty of Environment, University of Leeds, Leeds, UK
| | - Christian Heiss
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Surrey, UK
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, School of Life Course and Population Sciences, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
5
|
Gong Y, Lv J, Pang X, Zhang S, Zhang G, Liu L, Wang Y, Li C. Advances in the Metabolic Mechanism and Functional Characteristics of Equol. Foods 2023; 12:2334. [PMID: 37372545 DOI: 10.3390/foods12122334] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Equol is the most potent soy isoflavone metabolite and is produced by specific intestinal microorganisms of mammals. It has promising application possibilities for preventing chronic diseases such as cardiovascular disease, breast cancer, and prostate cancer due to its high antioxidant activity and hormone-like activity. Thus, it is of great significance to systematically study the efficient preparation method of equol and its functional activity. This paper elaborates on the metabolic mechanism of equol in humans; focuses on the biological characteristics, synthesis methods, and the currently isolated equol-producing bacteria; and looks forward to its future development and application direction, aiming to provide guidance for the application and promotion of equol in the field of food and health products.
Collapse
Affiliation(s)
- Yining Gong
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Guofang Zhang
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Libo Liu
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunna Wang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, No. 2 Yuan Ming Yuan West Road, Beijing 100193, China
| | - Chun Li
- Key Laboratory of Dairy Sciences, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Green Food Science Research Institute, Harbin 150030, China
| |
Collapse
|
6
|
Wang X, Chen B, Fang X, Zhong Q, Liao Z, Wang J, Wu X, Ma Y, Li P, Feng X, Wang L. Soy isoflavone-specific biotransformation product S-equol in the colon: physiological functions, transformation mechanisms, and metabolic regulatory pathways. Crit Rev Food Sci Nutr 2022; 64:5462-5490. [PMID: 36503364 DOI: 10.1080/10408398.2022.2154744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epidemiological data suggest that regular intake of soy isoflavones may reduce the incidence of estrogen-dependent and aging-associated disorders. Equol is a metabolite of soy isoflavone (SI) produced by specific gut microbiota and has many beneficial effects on human health due to its higher biological activity compared to SI. However, only 1/3 to 1/2 of humans are able to produce equol in the body, which means that not many people can fully benefit from SI. This review summarizes the recent advances in equol research, focusing on the chemical properties, physiological functions, conversion mechanisms in vitro and vivo, and metabolic regulatory pathways affecting S-equol production. Advanced experimental designs and possible techniques in future research plan are also fully discussed. Furthermore, this review provides a fundamental basis for researchers in the field to understand individual differences in S-equol production, the efficiency of metabolic conversion of S-equol, and fermentation production of S-equol in vitro.
Collapse
Affiliation(s)
- Xiaoying Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Baiyan Chen
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Zhenlin Liao
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Jie Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xuejiao Wu
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Yuhao Ma
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Pengzhen Li
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiaoxuan Feng
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
7
|
Li M, Zheng Y, Zhao J, Liu M, Shu X, Li Q, Wang Y, Zhou Y. Polyphenol Mechanisms against Gastric Cancer and Their Interactions with Gut Microbiota: A Review. Curr Oncol 2022; 29:5247-5261. [PMID: 35892986 PMCID: PMC9332243 DOI: 10.3390/curroncol29080417] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/20/2022] [Accepted: 07/22/2022] [Indexed: 12/14/2022] Open
Abstract
The lack of new drugs and resistance to existing drugs are serious problems in gastric cancer(GC) treatment. The research found polyphenols possess anti-Helicobacter pylori(Hp) and antitumor activities and may be used in the research and development of drugs for cancer prevention and treatment. However, polyphenols are affected by their chemical structures and physical properties, which leads to relatively low bioavailability and bioactivity in vivo. The intestinal flora can improve the absorption, utilization, and biological activity of polyphenols, whereas polyphenol compounds can increase the richness of the intestinal flora, reduce the activity of carcinogenic bacteria, stabilize the proportion of core flora, and maintain homeostasis of the intestinal microenvironment. Our review summarizes the gastrointestinal flora-mediated mechanisms of polyphenol against GC.
Collapse
Affiliation(s)
- Matu Li
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Ya Zheng
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Jinyu Zhao
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Meimei Liu
- The First Clinical Medical School, Lanzhou University, Lanzhou 730000, China; (M.L.); (J.Z.); (M.L.)
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Xiaochuang Shu
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Qiang Li
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yuping Wang
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| | - Yongning Zhou
- Department of Gastroenterology, The First Hospital of Lanzhou University, Lanzhou 730000, China; (Y.Z.); (X.S.); (Q.L.)
- Key Laboratory for Gastrointestinal Diseases of Gansu Province, The First Hospital of Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
8
|
Hu Y, Yang C, Song C, Zhong W, Li B, Cao L, Chen H, Zhao C, Yin Y. Characterization and Identification of a New Daidzein Reductase Involved in (S)-Equol Biosynthesis in Clostridium sp. ZJ6. Front Microbiol 2022; 13:901745. [PMID: 35668767 PMCID: PMC9164157 DOI: 10.3389/fmicb.2022.901745] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
(S)-equol (EQ) is an isoflavone with high estrogen-like activity in the human body, and is only produced by some gut bacteria in vivo. It plays an important role in maintaining individual health, however, the dearth of resources associated with (S)-EQ-producing bacteria has seriously restricted the production and application of (S)-EQ. We report here a new functional gene KEC48-07020 (K-07020) that was identified from a chick (S)-EQ-producing bacterium (Clostridium sp. ZJ6, ZJ6). We found that recombinant protein of K-07020 possessed similar function to daidzein reductase (DZNR), which can convert daidzein (DZN) into R/S-dihydrodaidzein (R/S-DHD). Interestingly, K-07020 can reversely convert (R/S)-DHD (DHD oxidase) into DZN even without cofactors under aerobic conditions. Additionally, high concentrations of (S)-EQ can directly promote DHD oxidase but inhibit DZNR activity. Molecular docking and site-directed mutagenesis revealed that the amino acid > Arg75 was the active site of DHD oxidase. Subsequently, an engineered E. coli strain based on K-07020 was constructed and showed higher yield of (S)-EQ than the engineered bacteria from our previous work. Metagenomics analysis and PCR detection surprisingly revealed that K-07020 and related bacteria may be prevalent in the gut of humans and animals. Overall, a new DZNR from ZJ6 was found and identified in this study, and its bidirectional enzyme activities and wide distribution in the gut of humans and animals provide alternative strategies for revealing the individual regulatory mechanisms of (S)-EQ-producing bacteria.
Collapse
|
9
|
Dufault-Thompson K, Hall B, Jiang X. Taxonomic distribution and evolutionary analysis of the equol biosynthesis gene cluster. BMC Genomics 2022; 23:182. [PMID: 35247986 PMCID: PMC8898433 DOI: 10.1186/s12864-022-08426-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/28/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Equol, an isoflavonoid metabolite with possible health benefits in humans, is known to be produced by some human gut bacteria. While the genes encoding the equol production pathway have been characterized in a few bacterial strains, a systematic analysis of the equol production pathway is currently lacking.
Results
This study presents an analysis of the taxonomic distribution and evolutionary history of the gene cluster encoding the equol production pathway. A survey for equol gene clusters within the Genome Taxonomy Database bacterial genomes and human gut metagenomes resulted in the identification of a highly conserved gene cluster found in nine bacterial species from the Eggerthellaceae family. The identified gene clusters from human gut metagenomes revealed potential variations in the equol gene cluster organization and gene content within the equol-producing Eggerthellaceae clades. Subsequent analysis showed that in addition to the four genes directly involved in equol production, multiple other genes were consistently found in the equol gene clusters. These genes were predicted to encode a putative electron transport complex and hydrogenase maturase system, suggesting potential roles for them in the equol production pathway. Analysis of the gene clusters and a phylogenetic reconstruction of a putative NAD kinase gene provided evidence of the recent transfer of the equol gene cluster from a basal Eggerthellaceae species to Slackia_A equolifaciens, Enteroscipio sp000270285, and Lactococcus garvieae 20–92.
Conclusions
This analysis demonstrates that the highly conserved equol gene cluster is taxonomically restricted to the Eggerthellaceae family of bacteria and provides evidence of the role of horizontal gene transfer in the evolutionary history of these genes. These results provide a foundation for future studies of equol production in the human gut and future efforts related to bioengineering and the use of equol-producing bacteria as probiotics.
Collapse
|
10
|
Wang Q, Spenkelink B, Boonpawa R, Rietjens IM. Use of Physiologically Based Pharmacokinetic Modeling to Predict Human Gut Microbial Conversion of Daidzein to S-Equol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:343-352. [PMID: 34855380 PMCID: PMC8759082 DOI: 10.1021/acs.jafc.1c03950] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/12/2021] [Accepted: 11/18/2021] [Indexed: 06/01/2023]
Abstract
A physiologically based pharmacokinetic (PBPK) model was developed for daidzein and its metabolite S-equol. Anaerobic in vitro incubations of pooled fecal samples from S-equol producers and nonproducers allowed definition of the kinetic constants. PBPK model-based predictions for the maximum daidzein plasma concentration (Cmax) were comparable to literature data. The predictions also revealed that the Cmax of S-equol in producers was only up to 0.22% that of daidzein, indicating that despite its higher estrogenicity, S-equol is likely to contribute to the overall estrogenicity upon human daidzein exposure to a only limited extent. An interspecies comparison between humans and rats revealed that the catalytic efficiency for S-equol formation in rats was 210-fold higher than that of human S-equol producers. The described in vitro-in silico strategy provides a proof-of-principle on how to include microbial metabolism in humans in PBPK modeling as part of the development of new approach methodologies (NAMs).
Collapse
Affiliation(s)
- Qianrui Wang
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| | - Bert Spenkelink
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| | - Rungnapa Boonpawa
- Faculty
of Natural Resources and Agro-Industry, Kasetsart University Chalermphrakiat Sakon Nakhon Province Campus, 47000 Sakon Nakhon, Thailand
| | - Ivonne M.C.M. Rietjens
- Division
of Toxicology, Wageningen University and
Research, 6708WE Wageningen, The Netherlands
| |
Collapse
|
11
|
Abstract
Dietary polyphenols can significantly benefit human health, but their bioavailability is metabolically controlled by human gut microbiota. To facilitate the study of polyphenol metabolism for human gut health, we have manually curated experimentally characterized polyphenol utilization proteins (PUPs) from published literature. This resulted in 60 experimentally characterized PUPs (named seeds) with various metadata, such as species and substrate. Further database search found 107,851 homologs of the seeds from UniProt and UHGP (Unified Human Gastrointestinal Protein) databases. All PUP seeds and homologs were classified into protein classes, families and subfamilies based on Enzyme Commission (EC) numbers, Pfam (protein family) domains and sequence similarity networks. By locating PUP homologs in the genomes of UHGP, we have identified 1,074 physically linked PUP gene clusters (PGCs), which are potentially involved in polyphenol metabolism in the human gut. The gut microbiome of Africans was consistently ranked the top in terms of the abundance and prevalence of PUP homologs and PGCs among all geographical continents. This reflects the fact that dietary polyphenols are more commonly consumed by African population than other populations such as Europeans and North Americans. A case study of the Hadza hunter-gatherer microbiome verified the feasibility of using dbPUP to profile metagenomic data for biologically meaningful discovery, suggesting an association between diet and PUP abundance. A Pfam domain enrichment analysis of PGCs identified a number of putatively novel PUP families. Lastly, a user-friendly web interface (https://bcb.unl.edu/dbpup/) provides all the data online to facilitate the research of polyphenol metabolism for improved human health. Importance Long-term consumption of polyphenol-rich foods have been shown to lower the risk of various human diseases such as cardiovascular diseases, cancers, and metabolic diseases. Raw polyphenols are often enzymatically processed by gut microbiome, which encode various polyphenol utilization proteins (PUPs) to produce metabolites with much higher bioaccessibility to gastrointestinal cells. This study delivered dbPUP as an online database for experimentally characterized PUPs and their homologs in human gut microbiome. This work also performed a systematic classification of PUPs into enzyme classes, families, and subfamilies. The signature Pfam domains were identified for PUP families, enabling conserved domain-based PUP annotation. This standardized sequence similarity-based PUP classification system offered a guideline for the future inclusion of new experimentally characterized PUPs and the creation of new PUP families. An in-depth data analysis was further conducted on PUP homologs and physically linked PUP gene clusters (PGCs) in gut microbiomes of different human populations.
Collapse
|
12
|
Metabolism of Daidzein and Genistein by Gut Bacteria of the Class Coriobacteriia. Foods 2021; 10:foods10112741. [PMID: 34829025 PMCID: PMC8618169 DOI: 10.3390/foods10112741] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 11/17/2022] Open
Abstract
The intake of isoflavones is presumed to be associated with health benefits in humans, but also potential adverse effects of isoflavones are controversially discussed. Isoflavones can be metabolized by gut bacteria leading to modulation of the bioactivity, such as estrogenic effects. Especially bacterial strains of the Eggerthellaceae, a well-known bacterial family of the human gut microbiota, are able to convert the isoflavone daidzein into equol. In addition, metabolization of genistein is also described for strains of the Eggerthellaceae. The aim of this study was to identify and investigate gut bacterial strains of the family Eggerthellaceae as well as the narrowly related family Coriobacteriaceae which are able to metabolize daidzein and genistein. This study provides a comprehensive, polyphasic approach comprising in silico analysis of the equol gene cluster, detection of genes associated with the daidzein, and genistein metabolism via PCR and fermentation of these isoflavones. The in silico search for protein sequences that are associated with daidzein metabolism identified sequences with high similarity values in already well-known equol-producing strains. Furthermore, protein sequences that are presumed to be associated with daidzein and genistein metabolism were detected in the two type strains 'Hugonella massiliensis' and Senegalimassilia faecalis which were not yet described to metabolize these isoflavones. An alignment of these protein sequences showed that the equol gene cluster is highly conserved. In addition, PCR amplification supported the presence of genes associated with daidzein and genistein metabolism. Furthermore, the metabolism of daidzein and genistein was investigated in fermentations of pure bacterial cultures under strictly anaerobic conditions and proofed the metabolism of daidzein and genistein by the strains 'Hugonella massiliensis' DSM 101782T and Senegalimassilia faecalis KGMB04484T.
Collapse
|
13
|
Flavonoid-Modifying Capabilities of the Human Gut Microbiome-An In Silico Study. Nutrients 2021; 13:nu13082688. [PMID: 34444848 PMCID: PMC8398226 DOI: 10.3390/nu13082688] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 02/06/2023] Open
Abstract
Flavonoids are a major group of dietary plant polyphenols and have a positive health impact, but their modification and degradation in the human gut is still widely unknown. Due to the rise of metagenome data of the human gut microbiome and the assembly of hundreds of thousands of bacterial metagenome-assembled genomes (MAGs), large-scale screening for potential flavonoid-modifying enzymes of human gut bacteria is now feasible. With sequences of characterized flavonoid-transforming enzymes as queries, the Unified Human Gastrointestinal Protein catalog was analyzed and genes encoding putative flavonoid-modifying enzymes were quantified. The results revealed that flavonoid-modifying enzymes are often encoded in gut bacteria hitherto not considered to modify flavonoids. The enzymes for the physiologically important daidzein-to-equol conversion, well studied in Slackiaisoflavoniconvertens, were encoded only to a minor extent in Slackia MAGs, but were more abundant in Adlercreutzia equolifaciens and an uncharacterized Eggerthellaceae species. In addition, enzymes with a sequence identity of about 35% were encoded in highly abundant MAGs of uncultivated Collinsella species, which suggests a hitherto uncharacterized daidzein-to-equol potential in these bacteria. Of all potential flavonoid modification steps, O-deglycosylation (including derhamnosylation) was by far the most abundant in this analysis. In contrast, enzymes putatively involved in C-deglycosylation were detected less often in human gut bacteria and mainly found in Agathobacter faecis (formerly Roseburia faecis). Homologs to phloretin hydrolase, flavanonol/flavanone-cleaving reductase and flavone reductase were of intermediate abundance (several hundred MAGs) and mainly prevalent in Flavonifractor plautii. This first comprehensive insight into the black box of flavonoid modification in the human gut highlights many hitherto overlooked and uncultured bacterial genera and species as potential key organisms in flavonoid modification. This could lead to a significant contribution to future biochemical-microbiological investigations on gut bacterial flavonoid transformation. In addition, our results are important for individual nutritional recommendations and for biotechnological applications that rely on novel enzymes catalyzing potentially useful flavonoid modification reactions.
Collapse
|
14
|
Guadamuro L, Azcárate-Peril MA, Tojo R, Mayo B, Delgado S. Impact of Dietary Isoflavone Supplementation on the Fecal Microbiota and Its Metabolites in Postmenopausal Women. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18157939. [PMID: 34360231 PMCID: PMC8345437 DOI: 10.3390/ijerph18157939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/23/2022]
Abstract
Isoflavones are metabolized by components of the gut microbiota and can also modulate their composition and/or activity. This study aimed to analyze the modifications of the fecal microbial populations and their metabolites in menopausal women under dietary treatment with soy isoflavones for one month. Based on the level of urinary equol, the women had been stratified previously as equol-producers (n = 3) or as equol non-producers (n = 5). The composition of the fecal microbiota was assessed by high-throughput sequencing of 16S rRNA gene amplicons and the changes in fatty acid excretion in feces were analyzed by gas chromatography. A greater proportion of sequence reads of the genus Slackia was detected after isoflavone supplementation. Sequences of members of the family Lachnospiraceae and the genus Pseudoflavonifractor were significantly increased in samples from equol-producing women. Multivariable analysis showed that, after isoflavone treatment, the fecal microbial communities of equol producers were more like each other. Isoflavone supplementation increased the production of caproic acid, suggesting differential microbial activity, leading to a high fecal excretion of this compound. However, differences between equol producers and non-producers were not scored. These results may contribute to characterizing the modulating effect of isoflavones on the gut microbiota, which could lead to unravelling of their beneficial health effects.
Collapse
Affiliation(s)
- Lucía Guadamuro
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Departament of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.G.); (B.M.)
| | - M. Andrea Azcárate-Peril
- Division of Gastroenterology and Hepatology, and Microbiome Core, School of Medicine, Department of Medicine, University of North Carolina (UNC), Chapel Hill, NC 2759, USA;
| | - Rafael Tojo
- Gastroenterology Department, Cabueñes University Hospital, 33203 Gijón, Spain;
| | - Baltasar Mayo
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Departament of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.G.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
| | - Susana Delgado
- Instituto de Productos Lácteos de Asturias (IPLA-CSIC), Departament of Microbiology and Biochemistry of Dairy Products, Paseo Río Linares s/n, 33300 Villaviciosa, Spain; (L.G.); (B.M.)
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain
- Correspondence:
| |
Collapse
|
15
|
Ruiz de la Bastida A, Peirotén Á, Langa S, Arqués JL, Landete JM. Heterologous production of equol by lactic acid bacteria strains in culture medium and food. Int J Food Microbiol 2021; 360:109328. [PMID: 34281716 DOI: 10.1016/j.ijfoodmicro.2021.109328] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022]
Abstract
The isoflavones daidzin and genistin, present in soybeans, can be transformed by the intestinal microbiota into equol and 5-hydroxy-equol, compounds with enhanced availability and bioactivity, although these are only produced by a fraction of the population. Hence, there is an interest in the production of these compounds, although, to date, few bacteria with biotechnological interest and applicability in food have been found able to produce equol. In order to obtain lactic acid bacteria able to produce equol, the daidzein reductase (dzr), dihydrodaidzein reductase (ddr), tetrahydrodaidzein reductase (tdr) and dihydrodaidzein racemase (ifcA) genes, from Slackia isoflavoniconvertens DSM22006, were cloned into the vector pNZ:TuR, under a strong constitutive promoter (TuR). Lactococcus lactis MG1363, Lacticaseibacillus casei BL23, Lactiplantibacillus plantarum WCFS1, Limosilactobacillus fermentum INIA 584L and L. fermentum INIA 832L, harbouring pNZ:TuR.tdr.ddr, were able to produce equol from dihydrodaidzein, while L. fermentum strains showed also production of 5-hydroxy-equol from dihydrogenistein. The metabolization of daidzein and genistein by the combination of strains harbouring pNZ:TuR.dzr and pNZ:TuR.tdr.ddr showed similar results, and the addition of the correspondent strain harbouring pNZ:TuR.ifcA resulted in an increase of equol production, but only in the L. fermentum strains. This pattern of equol and 5-hydroxy-equol production by L. fermentum strains was also confirmed in cow's milk supplemented with daidzein and genistein and incubated with the different combination of strains harbouring the constructed plasmids. Bacteria generally recognized as safe (GRAS), such as the lactic acid bacteria species used in this work, harbouring these plasmids, would be of value for the development of fermented vegetal foods enriched in equol and 5-hydroxy-equol.
Collapse
Affiliation(s)
- Ana Ruiz de la Bastida
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Ángela Peirotén
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Susana Langa
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - Juan Luis Arqués
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain
| | - José María Landete
- Departamento de Tecnología de Alimentos, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Carretera de La Coruña Km 7.5, 28040 Madrid, Spain.
| |
Collapse
|
16
|
Aboushanab SA, Khedr SM, Gette IF, Danilova IG, Kolberg NA, Ravishankar GA, Ambati RR, Kovaleva EG. Isoflavones derived from plant raw materials: bioavailability, anti-cancer, anti-aging potentials, and microbiome modulation. Crit Rev Food Sci Nutr 2021; 63:261-287. [PMID: 34251921 DOI: 10.1080/10408398.2021.1946006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Isoflavones are secondary metabolites that represent the most abundant category of plant polyphenols. Dietary soy, kudzu, and red clover contain primarily genistein, daidzein, glycitein, puerarin, formononetin, and biochanin A. The structural similarity of these compounds to β-estradiol has demonstrated protection against age-related and hormone-dependent diseases in both genders. Demonstrative shreds of evidence confirmed the fundamental health benefits of the consumption of these isoflavones. These relevant activities are complex and largely driven by the source, active ingredients, dose, and administration period of the bioactive compounds. However, the preclinical and clinical studies of these compounds are greatly variable, controversial, and still with no consensus due to the non-standardized research protocols. In addition, absorption, distribution, metabolism, and excretion studies, and the safety profile of isoflavones have been far limited. This highlights a major gap in understanding the potentially critical role of these isoflavones as prospective replacement therapy. Our general review exclusively focuses attention on the crucial role of isoflavones derived from these plant materials and critically highlights their bioavailability, possible anticancer, antiaging potentials, and microbiome modulation. Despite their fundamental health benefits, plant isoflavones reveal prospective therapeutic effects that worth further standardized analysis.
Collapse
Affiliation(s)
- Saied A Aboushanab
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| | - Shaimaa M Khedr
- Pharmaceutical and Fermentation Industries Development Center (PFIDC), City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Irina F Gette
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Irina G Danilova
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia.,Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Sciences, Yekaterinburg, Russia
| | - Natalia A Kolberg
- Integrated Laboratory Complex, Ural State University of Economics, Yekaterinburg, Russia
| | - Gokare A Ravishankar
- C. D. Sagar Centre for Life Sciences, Dayananda Sagar College of Engineering, Dayananda Sagar Institutions, Bangalore, Karnataka, India
| | - Ranga Rao Ambati
- Department of Biotechnology, Vignan's Foundation of Science, Technology and Research, Guntur, Andhra Pradesh, India
| | - Elena G Kovaleva
- Institute of Chemical Engineering, Ural Federal University named after the first President of Russia B. N. Yeltsin, Yekaterinburg, Russia
| |
Collapse
|
17
|
Vázquez L, Flórez AB, Rodríguez J, Mayo B. Heterologous expression of equol biosynthesis genes from Adlercreutzia equolifaciens. FEMS Microbiol Lett 2021; 368:6309895. [PMID: 34173644 PMCID: PMC8266531 DOI: 10.1093/femsle/fnab082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 06/29/2021] [Indexed: 12/23/2022] Open
Abstract
Equol is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. It is produced from daidzein by fastidious and oxygen-susceptible intestinal bacteria, which hinders their use at an industrial scale. Therefore, expressing the equol production machinery into easily-cultivable hosts would expedite the heterologous production of this compound. In this work, four genes (racemase, tdr, ddr and dzr) coding for key enzymes involved in equol production in Adlercreutzia equolifaciens DSM19450T were synthesized and cloned in a pUC-derived vector (pUC57-equol) that was introduced in Escherichia coli. Recombinant clones of E. coli produced equol in cultures supplemented with daidzein (equol precursor) and dihydrodaidzein (intermediate compound). To check whether equol genes were expressed in Gram-positive bacteria, the pUC57-equol construct was cloned into the low-copy-number vector pIL252, and the new construct (pIL252-pUC57-equol) introduced into model strains of Lacticaseibacillus casei and Lactococcus lactis. L. casei clones carrying pIL252-pUC57-equol produced a small amount of equol from dihydrodaidzein but not from daidzein, while L. lactis recombinant clones produced no equol from either of the substrates. This is the first time that A. equolifaciens equol genes have been cloned and expressed in heterologous hosts. E. coli clones harboring pUC57-equol could be used for biotechnological production of equol.
Collapse
Affiliation(s)
- Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| | - Javier Rodríguez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300-Villaviciosa, Spain.,Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011-Oviedo, Spain
| |
Collapse
|
18
|
Guo Y, Zhao L, Fang X, Zhong Q, Liang H, Liang W, Wang L. Isolation and identification of a human intestinal bacterium capable of daidzein conversion. FEMS Microbiol Lett 2021; 368:6261181. [PMID: 33930123 DOI: 10.1093/femsle/fnab046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/28/2021] [Indexed: 12/21/2022] Open
Abstract
Equol, which produced from daidzein (one of the principal isoflavones), is recognized to be the most resultful in stimulating an estrogenic and antioxidant response. The daidzein transformation was studied during fermentation of five growth media inoculated with feces from a healthy human, and a daidzein conversion strain was isolated. To enrich the bacterial population involved in daidzein metabolism in a complex mixture, fecal samples were treated with antibiotics. The improved propidium monoazide combined with the quantitative polymerase chain reaction (PMAxx-qPCR) assay showed that the ampicillin treatment of samples did result in a reduction of the total visible bacteria counts by 52.2% compared to the treatment without antibiotics. On this basis, the newly isolated rod-shaped, Gram-positive anaerobic bacterium, named strain Y11 (MN560033), was able to metabolize daidzein to equol under anaerobic conditions, with a conversion ratio (equol ratio: the amount of equol produced/amount of supplemented daizein) of 0.56 over 120 h. The 16S rRNA partial sequence of the strain Y11 exhibited 99.8% identity to that of Slackia equolifaciens strain DZE (NR116295). This study will provide new insights into the biotransformation of equol from daidzein by intestinal microbiota from the strain-level and explore the possibility of probiotic interventions.
Collapse
Affiliation(s)
- Yingyu Guo
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Lichao Zhao
- College of Food Science, South China Agricultural University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, Guangzhou, China
| | - Xiang Fang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Qingping Zhong
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Huijun Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Wenou Liang
- College of Food Science, South China Agricultural University, Guangzhou, China
| | - Li Wang
- College of Food Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
19
|
Metabolism of Soy Isoflavones by Intestinal Bacteria: Genome Analysis of an Adlercreutzia Equolifaciens Strain That Does Not Produce Equol. Biomolecules 2020; 10:biom10060950. [PMID: 32586036 PMCID: PMC7355428 DOI: 10.3390/biom10060950] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/05/2020] [Accepted: 06/20/2020] [Indexed: 12/16/2022] Open
Abstract
Isoflavones are transformed in the gut into more estrogen-like compounds or into inactive molecules. However, neither the intestinal microbes nor the pathways leading to the synthesis of isoflavone-derived metabolites are fully known. In the present work, 73 fecal isolates from three women with an equol-producing phenotype were considered to harbor equol-related genes by qPCR. After typing, 57 different strains of different taxa were tested for their ability to act on the isoflavones daidzein and genistein. Strains producing small to moderate amounts of dihydrodaidzein and/or O-desmethylangolensin (O-DMA) from daidzein and dihydrogenistein from genistein were recorded. However, either alone or in several strain combinations, equol producers were not found, even though one of the strains, W18.34a (also known as IPLA37004), was identified as Adlercreutzia equolifaciens, a well-described equol-producing species. Analysis and comparison of A. equolifaciens W18.34a and A. equolifaciens DSM19450T (an equol producer bacterium) genome sequences suggested a deletion in the former involving a large part of the equol operon. Furthermore, genome comparison of A. equolifaciens and Asaccharobacter celatus (other equol-producing species) strains from databases indicated many of these also showed deletions within the equol operon. The present results contribute to our knowledge to the activity of gut bacteria on soy isoflavones.
Collapse
|
20
|
Seyed Hameed AS, Rawat PS, Meng X, Liu W. Biotransformation of dietary phytoestrogens by gut microbes: A review on bidirectional interaction between phytoestrogen metabolism and gut microbiota. Biotechnol Adv 2020; 43:107576. [PMID: 32531317 DOI: 10.1016/j.biotechadv.2020.107576] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/12/2022]
Abstract
Phytoestrogens are a class of plant produced polyphenolic compounds with diphenolic structure, which is similar to 17β-estradiol. These phytoestrogens preferentially bind to estrogen receptors, however, with weak affinity. Recently, many studies have found that these phytoestrogens can be transformed by gut microbiota through novel enzymatic reactions into metabolites with altered bioactivity. Recent studies have also implied that these metabolites could possibly modulate the host gut ecosystem, gene expression, metabolism and the immune system. Thus, isolating gut microbes capable of biotransforming phytoestrogens and characterizing the novel enzymatic reactions involved are principal to understand the mechanisms of beneficial effects brought by gut microbiota and their metabolism on phytoestrogens, and to provide the theoretical knowledge for the development of functional probiotics. In the present review, we summarized works on gut microbial biotransformation of phytoestrogens, including daidzin (isoflavone), phenylnaringenin (prenylflavonoid), lignans, resveratrol (stilbene) and ellagitannins. We mainly focus on gut bacterial isolation, metabolic pathway characterization, and the bidirectional interaction of phytoestrogens with gut microbes to illustrate the novel metabolic capability of gut microbiota and the methods used in these studies.
Collapse
Affiliation(s)
- Ahkam Saddam Seyed Hameed
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Parkash Singh Rawat
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| | - Xiangfeng Meng
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China.
| | - Weifeng Liu
- State Key Laboratory of Microbial Technology, Microbial Technology Institute, Shandong University, No.72 Binhai Road, Qingdao 266237, PR China
| |
Collapse
|
21
|
Modulation of equol production via different dietary regimens in an artificial model of the human colon. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.103819] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
22
|
Wang Q, Spenkelink B, Boonpawa R, Rietjens IMCM, Beekmann K. Use of Physiologically Based Kinetic Modeling to Predict Rat Gut Microbial Metabolism of the Isoflavone Daidzein to S-Equol and Its Consequences for ERα Activation. Mol Nutr Food Res 2020; 64:e1900912. [PMID: 32027771 PMCID: PMC7154660 DOI: 10.1002/mnfr.201900912] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 11/06/2019] [Indexed: 12/13/2022]
Abstract
SCOPE To predict gut microbial metabolism of xenobiotics and the resulting plasma concentrations of metabolites formed, an in vitro-in silico-based testing strategy is developed using the isoflavone daidzein and its gut microbial metabolite S-equol as model compounds. METHODS AND RESULTS Anaerobic rat fecal incubations are optimized and performed to derive the apparent maximum velocities (Vmax ) and Michaelis-Menten constants (Km ) for gut microbial conversion of daidzein to dihydrodaidzein, S-equol, and O-desmethylangolensin, which are input as parameters for a physiologically based kinetic (PBK) model. The inclusion of gut microbiota in the PBK model allows prediction of S-equol concentrations and slightly reduced predicted maximal daidzein concentrations from 2.19 to 2.16 µm. The resulting predicted concentrations of daidzein and S-equol are comparable to in vivo concentrations reported. CONCLUSION The optimized in vitro approach to quantify kinetics for gut microbial conversions, and the newly developed PBK model for rats that includes gut microbial metabolism, provide a unique tool to predict the in vivo consequences of daidzein microbial metabolism for systemic exposure of the host to daidzein and its metabolite S-equol. The predictions reveal a dominant role for daidzein in ERα-mediated estrogenicity despite the higher estrogenic potency of its microbial metabolite S-equol.
Collapse
Affiliation(s)
- Qianrui Wang
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Bert Spenkelink
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
| | - Rungnapa Boonpawa
- Faculty of Natural Resources and Agro‐IndustryKasetsart University Chalermphrakiat Sakon Nakhon Province CampusSakon Nakhon47000Thailand
| | | | - Karsten Beekmann
- Division of ToxicologyWageningen University and ResearchWageningen6708 WEThe Netherlands
- Present address:
Wageningen Food Safety ResearchP. O. Box 2306700 AEWageningenThe Netherlands
| |
Collapse
|
23
|
Affiliation(s)
- Bing‐Juan Li
- Tianjin Key Laboratory of Food and Biotechnology Department of Biotechnology and Food Science Tianjin University of Commerce Tianjin China
| |
Collapse
|
24
|
Mayo B, Vázquez L, Flórez AB. Equol: A Bacterial Metabolite from The Daidzein Isoflavone and Its Presumed Beneficial Health Effects. Nutrients 2019; 11:E2231. [PMID: 31527435 PMCID: PMC6770660 DOI: 10.3390/nu11092231] [Citation(s) in RCA: 243] [Impact Index Per Article: 40.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/05/2019] [Accepted: 09/11/2019] [Indexed: 12/11/2022] Open
Abstract
Epidemiological data suggest that regular intake of isoflavones from soy reduces the incidence of estrogen-dependent and aging-associated disorders, such as menopause symptoms in women, osteoporosis, cardiovascular diseases and cancer. Equol, produced from daidzein, is the isoflavone-derived metabolite with the greatest estrogenic and antioxidant activity. Consequently, equol has been endorsed as having many beneficial effects on human health. The conversion of daidzein into equol takes place in the intestine via the action of reductase enzymes belonging to incompletely characterized members of the gut microbiota. While all animal species analyzed so far produce equol, only between one third and one half of human subjects (depending on the community) are able to do so, ostensibly those that harbor equol-producing microbes. Conceivably, these subjects might be the only ones who can fully benefit from soy or isoflavone consumption. This review summarizes current knowledge on the microorganisms involved in, the genetic background to, and the biochemical pathways of, equol biosynthesis. It also outlines the results of recent clinical trials and meta-analyses on the effects of equol on different areas of human health and discusses briefly its presumptive mode of action.
Collapse
Affiliation(s)
- Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| | - Ana Belén Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias (IPLA), Consejo Superior de Investigaciones Científicas (CSIC), Paseo Río Linares s/n, 33300 Villaviciosa, Spain.
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Avenida de Roma s/n, 33011 Oviedo, Spain.
| |
Collapse
|
25
|
Transcriptional Regulation of the Equol Biosynthesis Gene Cluster in Adlercreutzia equolifaciens DSM19450 T. Nutrients 2019; 11:nu11050993. [PMID: 31052328 PMCID: PMC6566806 DOI: 10.3390/nu11050993] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/26/2019] [Accepted: 04/30/2019] [Indexed: 02/06/2023] Open
Abstract
Given the emerging evidence of equol’s benefit to human health, understanding its synthesis and regulation in equol-producing bacteria is of paramount importance. Adlercreutzia equolifaciens DSM19450T is a human intestinal bacterium—for which the whole genome sequence is publicly available—that produces equol from the daidzein isoflavone. In the present work, daidzein (between 50 to 200 μM) was completely metabolized by cultures of A. equolifaciens DSM19450T after 10 h of incubation. However, only about one third of the added isoflavone was transformed into dihydrodaidzein and then into equol. Transcriptional analysis of the ORFs and intergenic regions of the bacterium’s equol gene cluster was therefore undertaken using RT-PCR and RT-qPCR techniques with the aim of identifying the genetic elements of equol biosynthesis and its regulation mechanisms. Compared to controls cultured without daidzein, the expression of all 13 contiguous genes in the equol cluster was enhanced in the presence of the isoflavone. Depending on the gene and the amount of daidzein in the medium, overexpression varied from 0.5- to about 4-log10 units. Four expression patterns of transcription were identified involving genes within the cluster. The genes dzr, ddr and tdr, which code for daidzein reductase, dihydrodaidzein reductase and tetrahydrodaidzein reductase respectively, and which have been shown involved in equol biosynthesis, were among the most strongly expressed genes in the cluster. These expression patterns correlated with the location of four putative ρ-independent terminator sequences in the cluster. All the intergenic regions were amplified by RT-PCR, indicating the operon to be transcribed as a single RNA molecule. These findings provide new knowledge on the metabolic transformation of daidzein into equol by A. equolifaciens DSM19450T, which might help in efforts to increase the endogenous formation of this compound and/or its biotechnological production.
Collapse
|
26
|
Abstract
Covering: up to the end of 2017 The human body is composed of an equal number of human and microbial cells. While the microbial community inhabiting the human gastrointestinal tract plays an essential role in host health, these organisms have also been connected to various diseases. Yet, the gut microbial functions that modulate host biology are not well established. In this review, we describe metabolic functions of the human gut microbiota that involve metalloenzymes. These activities enable gut microbial colonization, mediate interactions with the host, and impact human health and disease. We highlight cases in which enzyme characterization has advanced our understanding of the gut microbiota and examples that illustrate the diverse ways in which metalloenzymes facilitate both essential and unique functions of this community. Finally, we analyze Human Microbiome Project sequencing datasets to assess the distribution of a prominent family of metalloenzymes in human-associated microbial communities, guiding future enzyme characterization efforts.
Collapse
|
27
|
Lee PG, Lee UJ, Song H, Choi KY, Kim BG. Recent advances in the microbial hydroxylation and reduction of soy isoflavones. FEMS Microbiol Lett 2018; 365:5089968. [PMID: 30184116 DOI: 10.1093/femsle/fny195] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Accepted: 08/31/2018] [Indexed: 12/17/2023] Open
Abstract
Soy isoflavones are naturally occurring phytochemicals, which are biotransformed into functional derivatives through oxidative and reductive metabolic pathways of diverse microorganisms. Such representative derivatives, ortho-dihydroxyisoflavones (ODIs) and equols, have attracted great attention for their versatile health benefits since they were found from soybean fermented foods and human intestinal fluids. Recently, scientists in food technology, nutrition and microbiology began to understand their correct biosynthetic pathways and nutraceutical values, and have attempted to produce the valuable bioactive compounds using microbial fermentation and whole-cell/enzyme-based biotransformation. Furthermore, artificial design of microbial catalysts and/or protein engineering of oxidoreductases were also conducted to enhance production efficiency and regioselectivity of products. This minireview summarizes and introduces the past year's studies and recent advances in notable production of ODIs and equols, and provides information on available microbial species and their catalytic performance with perspectives on industrial application.
Collapse
Affiliation(s)
- Pyung-Gang Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Uk-Jae Lee
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Hanbit Song
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental Engineering, College of Engineering, Ajou University, Suwon 16499, Republic of Korea
| | - Byung-Gee Kim
- School of Chemical and Biological Engineering, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul 08826, Republic of Korea
- Bioengineering Institute, Seoul National University, Seoul 08826, South Korea
- Institute of Bioengineering Research, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
28
|
Kawada Y, Goshima T, Sawamura R, Yokoyama SI, Yanase E, Niwa T, Ebihara A, Inagaki M, Yamaguchi K, Kuwata K, Kato Y, Sakurada O, Suzuki T. Daidzein reductase of Eggerthella sp. YY7918, its octameric subunit structure containing FMN/FAD/4Fe-4S, and its enantioselective production of R-dihydroisoflavones. J Biosci Bioeng 2018; 126:301-309. [PMID: 29699942 DOI: 10.1016/j.jbiosc.2018.03.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 03/20/2018] [Accepted: 03/23/2018] [Indexed: 12/29/2022]
Abstract
S-Equol is a metabolite of daidzein, a type of soy isoflavone, and three reductases are involved in the conversion of daidzein by specific intestinal bacteria. S-Equol is thought to prevent hormone-dependent diseases. We previously identified the equol producing gene cluster (eqlABC) of Eggerthella sp. YY7918. Daidzein reductase (DZNR), encoded by eqlA, catalyzes the reduction of daidzein to dihydrodaidzein (the first step of equol synthesis), which was confirmed using a recombinant enzyme produced in Escherichia coli. Here, we purified recombinant DZNR to homogeneity and analyzed its enzymological properties. DZNR contained FMN, FAD, and one 4Fe-4S cluster per 70-kDa subunit as enzymatic cofactors. DZNR reduced the CC bond between the C-2 and C-3 positions of daidzein, genistein, glycitein, and formononetin in the presence of NADPH. R-Dihydrodaidzein and R-dihydrogenistein were highly stereo-selectively produced from daidzein and genistein. The Km and kcat for daidzein were 11.9 μM and 6.7 s-1, and these values for genistein were 74.1 μM and 28.3 s-1, respectively. This enzyme showed similar kinetic parameters and wide substrate specificity for isoflavone molecules. Thus, this enzyme appears to be an isoflavone reductase. Gel filtration chromatography and chemical cross-linking analysis of the active form of DZNR suggested that the enzyme consists of an octameric subunit structure. We confirmed this by small-angle X-ray scattering and transmission electron microscopy at a magnification of ×200,000. DZNR formed a globular four-petal cloverleaf structure with a central vertical hole. The maximum particle size was 173 Å.
Collapse
Affiliation(s)
- Yuika Kawada
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tomoko Goshima
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Rie Sawamura
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shin-Ichiro Yokoyama
- Department of Food Technology, Industrial Technology Center, Gifu Prefectural Government, 47 Kitaoyobi, Kasamatsu, Hashima, Gifu 501-6064, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshio Niwa
- Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi 491-0938, Japan
| | - Akio Ebihara
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Mizuho Inagaki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Keiichi Yamaguchi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Kazuo Kuwata
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Center for Highly Advanced Integration of Nano and Life Sciences, Gifu University (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Yuta Kato
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Osamu Sakurada
- Faculty of Engineering, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Tohru Suzuki
- United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan; Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan.
| |
Collapse
|
29
|
Murota K, Nakamura Y, Uehara M. Flavonoid metabolism: the interaction of metabolites and gut microbiota. Biosci Biotechnol Biochem 2018; 82:600-610. [DOI: 10.1080/09168451.2018.1444467] [Citation(s) in RCA: 311] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Abstract
Several dietary flavonoids exhibit anti-oxidative, anti-inflammatory, and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Dietary flavonoids (glycoside forms) are enzymatically hydrolyzed and absorbed in the intestine, and are conjugated to their glucuronide/sulfate forms by phase II enzymes in epithelial cells and the liver. The intestinal microbiota plays an important role in the metabolism of flavonoids found in foods. Some specific products of bacterial transformation, such as ring-fission products and reduced metabolites, exhibit enhanced properties. Studies on the metabolism of flavonoids by the intestinal microbiota are crucial for understanding the role of these compounds and their impact on our health. This review focused on the metabolic pathways, bioavailability, and physiological role of flavonoids, especially metabolites of quercetin and isoflavone produced by the intestinal microbiota.
Collapse
Affiliation(s)
- Kaeko Murota
- Faculty of Science and Technology, Department of Life Science, Kindai University, Osaka, Japan
| | - Yoshimasa Nakamura
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mariko Uehara
- Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety, Tokyo University of Agriculture, Tokyo, Japan
| |
Collapse
|
30
|
Braune A, Blaut M. Evaluation of inter-individual differences in gut bacterial isoflavone bioactivation in humans by PCR-based targeting of genes involved in equol formation. J Appl Microbiol 2017; 124:220-231. [PMID: 29055162 DOI: 10.1111/jam.13616] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/26/2017] [Accepted: 10/17/2017] [Indexed: 02/06/2023]
Abstract
AIM To identify human subjects harbouring intestinal bacteria that bioactivate daidzein to equol using a targeted PCR-based approach. METHODS AND RESULTS In a pilot study including 17 human subjects, equol formation was determined in faecal slurries. In parallel, faecal DNA was amplified by PCR using degenerate primers that target highly conserved regions of dihydrodaidzein reductase and tetrahydrodaidzein reductase genes. PCR products of the expected size were observed for six of the eight subjects identified as equol producers. Analysis of clone libraries revealed the amplification of sequences exclusively related to Adlercreutzia equolifaciens in four of the subjects tested positive for equol formation, whereas in three of the equol producers, only sequences related to Slackia isoflavoniconvertens were observed. No amplicons were obtained for one equol-forming subject, thus suggesting the presence of nontargeted alternative genes. Amplicons were only sporadically observed in the nonequol producers. CONCLUSION The majority of human subjects who produced equol were also detected with the developed PCR-based approach. SIGNIFICANCE AND IMPACT OF THE STUDY The obtained results shed light on the distribution and the diversity of known equol-forming bacterial species in the study group and indicate the presence of as yet unknown equol-forming bacteria.
Collapse
Affiliation(s)
- A Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - M Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
31
|
Lee PG, Kim J, Kim EJ, Lee SH, Choi KY, Kazlauskas RJ, Kim BG. Biosynthesis of (-)-5-Hydroxy-equol and 5-Hydroxy-dehydroequol from Soy Isoflavone, Genistein Using Microbial Whole Cell Bioconversion. ACS Chem Biol 2017; 12:2883-2890. [PMID: 28985044 DOI: 10.1021/acschembio.7b00624] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Equols are isoflavandiols formed by reduction of soy isoflavones such as daidzein and genistein by gut microorganisms. These phytoestrogens are of interest for their various biological effects. We report biosynthesis from genistein to (-)-5-hydroxy-equol in recombinant E. coli expressing three reductases (daidzein reductase DZNR, dihidrodaidzein reductase DHDR, tetrahydrodaidzein reductase THDR) and a racemase (dihydrodaidzein racemase, DDRC) originating from the gut bacterium, Slackia isoflavoniconvertens. The biosynthesized 5-hydroxy-equol proved as an optically negative enantiomer, nonetheless it displayed an inverse circular dichroism spectrum to (S)-equol. Compartmentalized expression of DZNR and DDRC in one E. coli strain and DHDR and THDR in another increased the yield to 230 mg/L and the productivity to 38 mg/L/h. If the last reductase was missing, the intermediate spontaneously dehydrated to 5-hydroxy-dehydroequol in up to 99 mg/L yield. This novel isoflavene, previously not known to be synthesized in nature, was also detected in this biotransformation system. Although (S)-equol favors binding to human estrogen receptor (hER) β over hERα, (-)-5-hydroxy-equol showed the opposite preference. This study provides elucidation of the biosynthetic route of (-)-5-hydroxy-equol and measurement of its potent antagonistic character as a phytoestrogen for the first time.
Collapse
Affiliation(s)
- Pyung-Gang Lee
- School of Chemical
and Biological Engineering, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
- Institute
of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Joonwon Kim
- School of Chemical
and Biological Engineering, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
- Institute
of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Eun-Jung Kim
- Institute
of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Sang-Hyuk Lee
- School of Chemical
and Biological Engineering, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
- Institute
of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
| | - Kwon-Young Choi
- Department of Environmental
Engineering, College of Engineering, Ajou University, Suwon, Republic of Korea
| | - Romas J. Kazlauskas
- Department of Biochemistry, Molecular Biology & Biophysics and The Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota 55108, United States
| | - Byung-Gee Kim
- School of Chemical
and Biological Engineering, Institute of Engineering Research, Seoul National University, Seoul, Republic of Korea
- Institute
of Molecular Biology and Genetics, Seoul National University, Seoul, Republic of Korea
- Institute
of Bioengineering, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
32
|
Vázquez L, Guadamuro L, Giganto F, Mayo B, Flórez AB. Development and Use of a Real-Time Quantitative PCR Method for Detecting and Quantifying Equol-Producing Bacteria in Human Faecal Samples and Slurry Cultures. Front Microbiol 2017; 8:1155. [PMID: 28713336 PMCID: PMC5491606 DOI: 10.3389/fmicb.2017.01155] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/07/2017] [Indexed: 12/23/2022] Open
Abstract
This work introduces a novel real-time quantitative PCR (qPCR) protocol for detecting and quantifying equol-producing bacteria. To this end, two sets of primers targeting the dihydrodaidzein reductase (ddr) and tetrahydrodaidzein reductase (tdr) genes, which are involved in the synthesis of equol, were designed. The primers showed high specificity and sensitivity when used to examine DNA from control bacteria, such as Slackia isoflavoniconvertens, Slackia equolifaciens, Asaccharobacter celatus, Adlercreutzia equolifaciens, and Enterorhabdus mucosicola. To demonstrate the validity and reliability of the protocol, it was used to detect and quantify equol-producing bacteria in human faecal samples and their derived slurry cultures. These samples were provided by 18 menopausal women under treatment of menopause symptoms with a soy isoflavone concentrate, among whom three were known to be equol-producers given the prior detection of the molecule in their urine. The tdr gene was detected in the faeces of all these equol-producing women at about 4–5 log10 copies per gram of faeces. In contrast, the ddr gene was only amplified in the faecal samples of two of these three women, suggesting the presence in the non-amplified sample of reductase genes unrelated to those known to be involved in equol formation and used for primer design in this study. When tdr and ddr were present in the same sample, similar copy numbers of the two genes were recorded. However, no significant increase in the copy number of equol-related genes along isoflavone treatment was observed. Surprisingly, positive amplification for both tdr and ddr genes was obtained in faecal samples and derived slurry cultures from two non-equol producing women, suggesting the genes could be non-functional or the daidzein metabolized to other compounds in samples from these two women. This novel qPCR tool provides a technique for monitoring gut microbes that produce equol in humans. Monitoring equol-producing bacteria in the human gut could provide a means of evaluating strategies aimed at increasing the endogenous formation of this bioactive compound.
Collapse
Affiliation(s)
- Lucía Vázquez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Lucía Guadamuro
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Froilán Giganto
- Servicio Digestivo, Hospital Universitario Central de AsturiasOviedo, Spain
| | - Baltasar Mayo
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| | - Ana B Flórez
- Departamento de Microbiología y Bioquímica, Instituto de Productos Lácteos de Asturias, Consejo Superior de Investigaciones Científicas, IPLA-CSICVillaviciosa, Spain
| |
Collapse
|
33
|
Akaza H, Onozawa M, Hinotsu S. Prostate cancer trends in Asia. World J Urol 2016; 35:859-865. [PMID: 27644231 DOI: 10.1007/s00345-016-1939-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/14/2016] [Indexed: 12/30/2022] Open
Abstract
INTRODUCTION Differences in the incidence and mortality rates for prostate cancer between East and West are clearly defined, with higher rates in the West and lower rates in the East. Treatment methods are generally selected in accordance with general practice guidelines, but the current reality in Asia is that there is not sufficient clinical data to set Asia-specific guidelines for treatment. This leads to a situation whereby for the large part guidelines based on scientific evidence accumulated in Western countries are followed, but from time to time cases are encountered when such guidelines may not be considered to be the most appropriate for the case at hand. METHODS AND RESULTS Although there is a relatively large volume of clinical evidence relating to endocrine therapy in Asia, the treatment choices and effects differ to those in the West. These regional differences are thought to be due to various factors, including not only differences in genetic background, but also distinct differences in the living and healthcare environments. If the differences between East and West in terms of trends in prostate cancer could be examined, with positive aspects being adopted and negative aspects being improved, this could also be expected to be of use in developing a better treatment strategy for prostate cancer. The exchanging of information on a broader, global level will enable improvements in prevention, diagnosis and treatment of prostate cancer. CONCLUSION It is in pursuit of this objective that it is important to promote high-quality clinical trials and joint epidemiological studies in Asia and work to accumulate data that are comparable to data available in Western countries.
Collapse
Affiliation(s)
- Hideyuki Akaza
- Strategic Investigation on Comprehensive Cancer Network, Interfaculty Initiative in Information Studies, Graduate School of Interdisciplinary Information Studies, The University of Tokyo, Tokyo, Japan.
| | - Mizuki Onozawa
- Department of Urology, Tokyo-Kita Medical Center, Tokyo, Japan
| | - Shiro Hinotsu
- Center of Innovative Clinical Medicine, Okayama University, Okayama, Japan
| |
Collapse
|
34
|
Fujii S, Takahashi N, Inoue H, Katsumata SI, Kikkawa Y, Machida M, Ishimi Y, Uehara M. A combination of soy isoflavones and cello-oligosaccharides changes equol/O-desmethylangolensin production ratio and attenuates bone fragility in ovariectomized mice. Biosci Biotechnol Biochem 2016; 80:1632-5. [PMID: 27191709 DOI: 10.1080/09168451.2016.1184559] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 04/22/2016] [Indexed: 10/21/2022]
Abstract
We examined the cooperative effects of isoflavones and cello-oligosaccharides on daidzein metabolism and bone fragility in ovariectomized mice. Cello-oligosaccharides increased urinary equol and decreased O-desmethylangolensin. A combination of isoflavones and cello-oligosaccharides attenuated decreases in bone breaking force and stiffness caused by ovariectomy. Combination treatment with isofalvones and cello-oligosaccharides increases urinary equol/O-desmethylangolensin production ratio and prevents ovariectomy-induced abnormalities in bone strength.
Collapse
Affiliation(s)
- Shungo Fujii
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| | - Nobuyuki Takahashi
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| | - Hirofumi Inoue
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| | - Shin-Ichi Katsumata
- b Faculty of Applied Bioscience, Department of Nutritional Science , Tokyo University of Agriculture , Tokyo , Japan
| | - Yuji Kikkawa
- c Nippon Paper Industries Co., Ltd. , Tokyo , Japan
| | | | - Yoshiko Ishimi
- d Department of Food Function and Labeling , National Institute of Health and Nutrition , Tokyo , Japan
| | - Mariko Uehara
- a Faculty of Applied Bioscience, Department of Nutritional Science and Food Safety , Tokyo University of Agriculture , Tokyo , Japan
| |
Collapse
|
35
|
Stevens JF, Maier CS. The Chemistry of Gut Microbial Metabolism of Polyphenols. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:425-444. [PMID: 27274718 PMCID: PMC4888912 DOI: 10.1007/s11101-016-9459-z] [Citation(s) in RCA: 154] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Accepted: 03/02/2016] [Indexed: 05/18/2023]
Abstract
Gut microbiota contribute to the metabolism of dietary polyphenols and affect the bioavailability of both the parent polyphenols and their metabolites. Although there is a large number of reports of specific polyphenol metabolites, relatively little is known regarding the chemistry and enzymology of the metabolic pathways utilized by specific microbial species and taxa, which is the focus of this review. Major classes of dietary polyphenols include monomeric and oligomeric catechins (proanthocyanidins), flavonols, flavanones, ellagitannins, and isoflavones. Gut microbial metabolism of representatives of these polyphenol classes can be classified as A- and C-ring cleavage (retro Claisen reactions), C-ring cleavage mediated by dioxygenases, dehydroxylations (decarboxylation or reduction reactions followed by release of H2O molecules), and hydrogenations of alkene moieties in polyphenols, such as resveratrol, curcumin, and isoflavones (mediated by NADPH-dependent reductases). The qualitative and quantitative metabolic output of the gut microbiota depends to a large extent on the metabolic capacity of individual taxa, which emphasizes the need for assessment of functional analysis in conjunction with determinations of gut microbiota compositions.
Collapse
Affiliation(s)
- Jan F Stevens
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97330; Linus Pauling Institute, Oregon State University, Corvallis, Oregon 97330
| |
Collapse
|
36
|
Cho GS, Ritzmann F, Eckstein M, Huch M, Briviba K, Behsnilian D, Neve H, Franz CMAP. Quantification of Slackia and Eggerthella spp. in Human Feces and Adhesion of Representatives Strains to Caco-2 Cells. Front Microbiol 2016; 7:658. [PMID: 27242689 PMCID: PMC4860493 DOI: 10.3389/fmicb.2016.00658] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 04/20/2016] [Indexed: 12/21/2022] Open
Abstract
Eggerthella and Slackia spp. are gut associated bacteria that have been suggested to play roles in host lipid and xenobiotic metabolism. A quantitative PCR method for the selective enumeration of bacteria belonging to either the genus Eggerthella or Slackia was developed in order to establish the numbers of these bacteria occurring in human feces. The primers developed for selective amplification of these genera were tested first in conventional PCR to test for their specificity. Representative species of Eggerthella and Slackia, as well as closely related genera of the Coriobacteriia, were included in the investigation. The selected primers were shown to be capable of specific amplification of species of the genera Eggerthella and Slackia, but not all species of the genera may be amplified by the respective primers. Their use in qPCR experiments to assess the levels of Slackia equolifaciens and Eggerthella lenta in the feces of 19 human volunteers showed they occurred at mean counts of 7 × 10(5) and 3.1 × 10(5) CFU/g for Eggerthella spp. and Slackia spp., respectively. Electron microscopy investigations showed that while E. lenta cells exhibited slender and very regular shaped rods, Slackia cells showed a remarkably pleomorphic phenotype. Both species did not appear to have fimbriae or pili. Some S. equolifaciens cells showed a characteristic "ribbon" of presumably extracellular material around the cells, particularly at the areas of cell division. The two species also differed markedly in their adhesion behavior to Caco-2 cells in cell culture, as E. lenta DSMZ 15644 showed a high adhesion capacity of 74.2% adherence of the bacterial cells added to Caco-2 cells, while S. equolifaciens DSM 24851(T) on the other hand showed only low adhesion capability, as 6.1% of bacterial cells remained bound. Speculatively, this may imply that the ecological compartments where these bacteria reside in the gut may be different, i.e., E. lenta may be associated more with the gut wall, while Slackia may be free living in the lumen.
Collapse
Affiliation(s)
- Gyu-Sung Cho
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Kiel, Germany
| | - Felix Ritzmann
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Karlsruhe, Germany
| | - Marie Eckstein
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Karlsruhe, Germany
| | - Melanie Huch
- Department of Safety and Quality of Fruit and Vegetables, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Karlsruhe, Germany
| | - Karlis Briviba
- Department of Physiology and Biochemistry of Nutrition, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Karlsruhe, Germany
| | - Diana Behsnilian
- Department of Food Technology and Bioprocess Engineering, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Karlsruhe, Germany
| | - Horst Neve
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Kiel, Germany
| | - Charles M A P Franz
- Department of Microbiology and Biotechnology, Max Rubner-Institut, Federal Research Institute of Nutrition and Food Kiel, Germany
| |
Collapse
|
37
|
Braune A, Blaut M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016; 7:216-34. [PMID: 26963713 PMCID: PMC4939924 DOI: 10.1080/19490976.2016.1158395] [Citation(s) in RCA: 315] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 02/19/2016] [Indexed: 02/03/2023] Open
Abstract
The gut microbiota plays a crucial role in the conversion of dietary flavonoids and thereby affects their health-promoting effects in the human host. The identification of the bacteria involved in intestinal flavonoid conversion has gained increasing interest. This review summarizes available information on the so far identified human intestinal flavonoid-converting bacterial species and strains as well as their enzymes catalyzing the underlying reactions. The majority of described species involved in flavonoid transformation are capable of carrying out the O-deglycosylation of flavonoids. Other bacteria cleave the less common flavonoid-C-glucosides and/or further degrade the aglycones of flavonols, flavanonols, flavones, flavanones, dihydrochalcones, isoflavones and monomeric flavan-3-ols. To increase the currently limited knowledge in this field, identification of flavonoid-converting bacteria should be continued using culture-dependent screening or isolation procedures and molecular approaches based on sequence information of the involved enzymes.
Collapse
Affiliation(s)
- Annett Braune
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Michael Blaut
- Department of Gastrointestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
38
|
Kawada Y, Yokoyama S, Yanase E, Niwa T, Suzuki T. The production of S-equol from daidzein is associated with a cluster of three genes in Eggerthella sp. YY7918. BIOSCIENCE OF MICROBIOTA FOOD AND HEALTH 2016; 35:113-21. [PMID: 27508112 PMCID: PMC4965515 DOI: 10.12938/bmfh.2015-023] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 03/02/2016] [Indexed: 01/28/2023]
Abstract
Daidzein (DZN) is converted to equol (EQL) by intestinal bacteria. We previously reported that
Eggerthella sp. YY7918, which is found in human feces, is an EQL-producing bacterium and
analyzed its whole genomic sequence. We found three coding sequences (CDSs) in this bacterium that showed 99%
similarity to the EQL-producing enzymes of Lactococcus sp. 20-92. These identified CDSs were
designated eqlA, eqlB, and eqlC and thought to encode
daidzein reductase (DZNR), dihydrodaidzein reductase (DHDR), and tetrahydrodaidzein reductase (THDR),
respectively. These genes were cloned into pColdII. Recombinant plasmids were then introduced into
Escherichia coli BL21 (DE3) and DZNR, DHDR, and THDR were expressed and purified by
6×His-Tag chromatography. We confirmed that these three enzymes were involved in the conversion of DZN to EQL.
Purified DZNR converted DZN to dihydrodaizein (DHD) in the presence of NADPH. DHDR converted DHD to
tetrahydrodaizein (THD) in the presence of NADPH. Neither enzyme showed activities with NADH. THDR converted
THD in the absence of cofactors, NAD(P)H, and also produced DHD as a by-product. Thus, we propose that THDR is
not a reductase but a new type of dismutase. The GC content of these clusters was 64%, similar to the overall
genomic GC content for Eggerthella and Coriobacteriaceae (56–60%), and higher than that for
Lactococcus garvieae (39%), even though the gene cluster showed 99% similarity to that in
Lactococcus sp. 20-92. Taken together, our results indicate that the gene cluster
associated with EQL production evolved in high-GC bacteria including Coriobacteriaceae and was then laterally
transferred to Lactococcus sp. 20-92.
Collapse
Affiliation(s)
- Yuika Kawada
- The United Graduate School of Agricultural Science, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Shinichiro Yokoyama
- Department of Food Technology, Industrial Technology Center, Gifu Prefectural Government, 47 Kitaoyobi, Kasamatsu, Hashima, Gifu 501-6064, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Toshio Niwa
- Faculty of Health and Nutrition, Shubun University, 6 Nikko-cho, Ichinomiya, Aichi 491-0938, Japan
| | - Tohru Suzuki
- Faculty of Applied Biological Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| |
Collapse
|
39
|
Abstract
This report summarises talks given at the 8th International Yakult Symposium, held on 23-24 April 2015 in Berlin. Two presentations explored different aspects of probiotic intervention: the small intestine as a probiotic target and inclusion of probiotics into integrative approaches to gastroenterology. Probiotic recommendations in gastroenterology guidelines and current data on probiotic efficacy in paediatric patients were reviewed. Updates were given on probiotic and gut microbiota research in obesity and obesity-related diseases, the gut-brain axis and development of psychobiotics, and the protective effects of equol-producing strains for prostate cancer. Recent studies were presented on probiotic benefit for antibiotic-associated diarrhoea and people with HIV, as well as protection against the adverse effects of a short-term high-fat diet. Aspects of probiotic mechanisms of activity were discussed, including immunomodulatory mechanisms and metabolite effects, the anti-inflammatory properties of Faecalibacterium prausnitzii, the relationship between periodontitis, microbial production of butyrate in the oral cavity and ageing, and the pathogenic mechanisms of Campylobacter. Finally, an insight was given on a recent expert meeting, which re-examined the probiotic definition, advised on the appropriate use and scope of the term and outlined different probiotic categories and the prevalence of different mechanisms of activity.
Collapse
|
40
|
P212A Mutant of Dihydrodaidzein Reductase Enhances (S)-Equol Production and Enantioselectivity in a Recombinant Escherichia coli Whole-Cell Reaction System. Appl Environ Microbiol 2016; 82:1992-2002. [PMID: 26801575 DOI: 10.1128/aem.03584-15] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 01/07/2016] [Indexed: 01/28/2023] Open
Abstract
(S)-Equol, a gut bacterial isoflavone derivative, has drawn great attention because of its potent use for relieving female postmenopausal symptoms and preventing prostate cancer. Previous studies have reported on the dietary isoflavone metabolism of several human gut bacteria and the involved enzymes for conversion of daidzein to (S)-equol. However, the anaerobic growth conditions required by the gut bacteria and the low productivity and yield of (S)-equol limit its efficient production using only natural gut bacteria. In this study, the low (S)-equol biosynthesis of gut microorganisms was overcome by cloning the four enzymes involved in the biosynthesis from Slackia isoflavoniconvertens into Escherichia coli BL21(DE3). The reaction conditions were optimized for (S)-equol production from the recombinant strain, and this recombinant system enabled the efficient conversion of 200 μM and 1 mM daidzein to (S)-equol under aerobic conditions, achieving yields of 95% and 85%, respectively. Since the biosynthesis of trans-tetrahydrodaidzein was found to be a rate-determining step for (S)-equol production, dihydrodaidzein reductase (DHDR) was subjected to rational site-directed mutagenesis. The introduction of the DHDR P212A mutation increased the (S)-equol productivity from 59.0 mg/liter/h to 69.8 mg/liter/h in the whole-cell reaction. The P212A mutation caused an increase in the (S)-dihydrodaidzein enantioselectivity by decreasing the overall activity of DHDR, resulting in undetectable activity for (R)-dihydrodaidzein, such that a combination of the DHDR P212A mutant with dihydrodaidzein racemase enabled the production of (3S,4R)-tetrahydrodaidzein with an enantioselectivity of >99%.
Collapse
|
41
|
The role of colonic bacteria in the metabolism of the natural isoflavone daidzin to equol. Metabolites 2015; 5:56-73. [PMID: 25594250 PMCID: PMC4381290 DOI: 10.3390/metabo5010056] [Citation(s) in RCA: 146] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Accepted: 01/07/2015] [Indexed: 12/18/2022] Open
Abstract
Isoflavones are found in leguminous plants, especially soybeans. They have a structural similarity to natural estrogens, which enables them to bind to estrogen receptors and elicit biological activities similar to natural estrogens. They have been suggested to be beneficial for the prevention and therapy of hormone-dependent diseases. After soy products are consumed, the bacteria of the intestinal microflora metabolize isoflavones to metabolites with altered absorption, bioavailability, and estrogenic characteristics. Variations in the effect of soy products have been correlated with the isoflavone metabolites found in plasma and urine samples of the individuals consuming soy products. The beneficial effects of the soy isoflavone daidzin, the glycoside of daidzein, have been reported in individuals producing equol, a reduction product of daidzein produced by specific colonic bacteria in individuals called equol producers. These individuals comprise 30% and 60% of populations consuming Western and soy-rich Asian diets, respectively. Since the higher percentage of equol producers in populations consuming soy-rich diets is correlated with a lower incidence of hormone-dependent diseases, considerable efforts have been made to detect the specific colonic bacteria involved in the metabolism of daidzein to the more estrogenic compound, equol, which should facilitate the investigation of the metabolic activities related to this compound.
Collapse
|
42
|
Sugiyama Y, Nagata Y, Fukuta F, Takayanagi A, Masumori N, Tsukamoto T, Akasaka H, Ohnishi H, Saito S, Miura T, Moriyama K, Tsuji H, Akaza H, Mori M. Counts of Slackia sp. strain NATTS in intestinal flora are correlated to serum concentrations of equol both in prostate cancer cases and controls in Japanese men. Asian Pac J Cancer Prev 2015; 15:2693-7. [PMID: 24761887 DOI: 10.7314/apjcp.2014.15.6.2693] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Isoflavones, which are included in soybeans, have been suggested to protect against prostate cancer. Equol, one of isoflavones, is an intestinally derived bacterial metabolite of daidzein. A newly identified equol-producing bacterium, Slackia sp. strain NATTS, with a high equol-producing activity was isolated from human feces in Japanese adults. Counts of Slackia sp. strain NATTS in intestinal flora have not been assessed with regard to prostate cancer risk. In this study, we investigated the association of serum isoflavones and counts of Slackia sp. strain NATTS with prostate cancer risk in a case-control study. MATERIALS AND METHODS Concentrations of isoflavones and counts of Slackia sp. strain NATTS in feces were measured from 44 patients with prostate cancer and 28 hospital controls. The risk of prostate cancer was evaluated in terms of odds ratios (ORs) and 95% confidence intervals (CIs) by the logistic regression analysis. RESULTS The detection proportions of Slackia sp. strain NATTS in cases and controls were 34.1% and 25.0%, respectively. Counts of Slackia sp. strain NATTS were significantly correlated with serum concentrations of equol both in cases and controls (Spearman correlation coefficients, rs=0.639 and rs=0.572, p<0.01, respectively). Serum concentrations of genistein, daidzein, glycitein, and equol were not significantly associated with risk of prostate cancer. CONCLUSIONS This study found that counts of Slackia sp. strain NATTS correlated with serum concentrations of equol both in prostate cancer cases and controls, but serum isoflavone concentrations were not associated with risk of prostate cancer in our patients.
Collapse
Affiliation(s)
- Yukiko Sugiyama
- Department of Public Health, Sapporo Medical University School of Medicine, Sapporo, Japan E-mail :
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Carmody RN, Turnbaugh PJ. Host-microbial interactions in the metabolism of therapeutic and diet-derived xenobiotics. J Clin Invest 2014; 124:4173-81. [PMID: 25105361 DOI: 10.1172/jci72335] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Our associated microbial communities play a critical role in human health and predisposition to disease, but the degree to which they also shape therapeutic interventions is not well understood. Here, we integrate results from classic and current studies of the direct and indirect impacts of the gut microbiome on the metabolism of therapeutic drugs and diet-derived bioactive compounds. We pay particular attention to microbial influences on host responses to xenobiotics, adding to the growing consensus that treatment outcomes reflect our intimate partnership with the microbial world, and providing an initial framework from which to consider a more comprehensive view of pharmacology and nutrition.
Collapse
|
44
|
Kim M, Han J. Chiroptical study and absolute configuration of (-)-O-DMA produced from daidzein metabolism. Chirality 2014; 26:434-7. [PMID: 24519947 DOI: 10.1002/chir.22295] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 12/11/2013] [Indexed: 11/07/2022]
Abstract
To elucidate the hitherto unknown absolute configuration of (-)-O-desmethylangolensin ((-)-O-DMA), an intestinal bacterial metabolite produced from daidzein, chiroptical study, including specific optical rotation and electronic circular dichroism (ECD), of (R)-O-DMA was carried out by Time-Dependent Density Functional Theory (TD-DFT) calculations. Intramolecular hydrogen bonding between 2'-OH and carbonyl oxygen at 1-C of O-DMA was a governing factor for O-DMA to form the stable conformations. Total energy values of four possible conformers were calculated in the framework of DFT using the B3LYP exchange correlation functional at the 6-31++G basis set level. The theoretical specific rotation and ECD spectra of all conformers in ethanol were obtained by TD-DFT calculation using B3LYP functional at the 6-311++G basis set level, and compared to the experimental data. Chiroptical properties of (R)-O-DMA showed a good agreement with the biological (-)-O-DMA. Therefore, the stereospecific biosynthetic pathway of (-)-O-DMA was proposed as daidzein → (R)-dihydrodaidzein ↔ (S)-dihydrodaizein → (R)-O-DMA.
Collapse
Affiliation(s)
- Mihyang Kim
- Metalloenzyme Research Group and Department of Systems Biotechnology, Chung-Ang University, Anseong, Republic of Korea
| | | |
Collapse
|
45
|
Abiru Y, Ueno T, Uchiyama S. Isolation and characterization of novel S-equol-producing bacteria from brines of stinky tofu, a traditional fermented soy food in Taiwan. Int J Food Sci Nutr 2013; 64:936-43. [PMID: 23869769 DOI: 10.3109/09637486.2013.816936] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Six strains capable of transforming daidzein to S-equol were isolated from the fermented brines of stinky tofu purchased in Taiwan. Daidzein was completely converted into S-equol within 24h of incubation in five strains. All the strains were gram-positive, rod-shaped, obligately anaerobic, non-motile, and non-spore-forming. In a phylogenetic analysis based on 16S rRNA gene sequences, the strains distributed into three groups in the family Coriobacteriaceae. SNR40-432 (Group I) showed 98.6% 16S rRNA gene similarity and 48-49% DNA-DNA relatedness with Paraeggerthella hongkongensis HKU10(T), suggesting the possibility that SNR40-432 represents a new species in the genus Paraeggerthella. SNR48-44 (Group II) and SNR44-10, SNR45-571, SNR46-41, SNR48-350 (Group III) showed a maximum of 92.2 and 92.1% 16S rRNA gene similarities with Eggerthella sinensis HKU14(T) and Eggerthella lenta JCM9979(T), respectively, which denotes that each group may represent a novel genus and species in the family Coriobacteriaceae. This is the first report isolating equol-producing bacteria from food.
Collapse
Affiliation(s)
- Yasuhiro Abiru
- Saga Nutraceuticals Research Institute, Otsuka Pharmaceutical Co., Ltd , Saga , Japan
| | | | | |
Collapse
|
46
|
Uehara M. Isoflavone metabolism and bone-sparing effects of daidzein-metabolites. J Clin Biochem Nutr 2013; 52:193-201. [PMID: 23704808 PMCID: PMC3652301 DOI: 10.3164/jcbn.13-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 02/21/2013] [Indexed: 12/20/2022] Open
Abstract
Several dietary phytochemicals exhibit anti-oxidative, anti-inflammatory and anti-osteoporotic activities relevant to prevention of chronic diseases, including lifestyle-related diseases. Soybean isoflavones are similar in structure to estrogen and have received considerable attention as potential alternatives to hormone replacement therapy. Daidzein, a major isoflavone found in soybean, is metabolized to equol by intestinal microflora; this metabolite exhibits stronger estrogenic activity than daidzein. Recent studies suggest that the clinical effectiveness of isoflavones might be due to their ability to produce equol in the gut. This review focused on the metabolic pathway of equol and possible bioactivities of equol and O-desmethylangolensin, another metabolite of daidzein, with regard to bone metabolism and the status of intestinal microflora. Furthermore, we considered risk-benefit analyses of isoflavones and their metabolites.
Collapse
Affiliation(s)
- Mariko Uehara
- Department of Nutritional Science, Faculty of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya-ku. Tokyo 156-8502, Japan
| |
Collapse
|
47
|
Identification and expression of genes involved in the conversion of daidzein and genistein by the equol-forming bacterium Slackia isoflavoniconvertens. Appl Environ Microbiol 2013; 79:3494-502. [PMID: 23542626 DOI: 10.1128/aem.03693-12] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Gut bacteria play a key role in the metabolism of dietary isoflavones, thereby influencing the availability and bioactivation of these polyphenols in the intestine. The human intestinal bacterium Slackia isoflavoniconvertens converts the main soybean isoflavones daidzein and genistein to equol and 5-hydroxy-equol, respectively. Cell extracts of S. isoflavoniconvertens catalyzed the conversion of daidzein via dihydrodaidzein to equol and that of genistein to dihydrogenistein. Growth of S. isoflavoniconvertens in the presence of daidzein led to the induction of several proteins as observed by two-dimensional difference gel electrophoresis. Based on determined peptide sequences, we identified a cluster of eight genes encoding the daidzein-induced proteins. Heterologous expression of three of these genes in Escherichia coli and enzyme activity tests with the resulting cell extracts identified the corresponding gene products as a daidzein reductase (DZNR), a dihydrodaidzein reductase (DHDR), and a tetrahydrodaidzein reductase (THDR). The recombinant DZNR also converted genistein to dihydrogenistein at higher rates than were observed for the conversion of daidzein to dihydrodaidzein. Higher rates were also observed with cell extracts of S. isoflavoniconvertens. The recombinant DHDR and THDR catalyzed the reduction of dihydrodaidzein to equol, while the corresponding conversion of dihydrogenistein to 5-hydroxy-equol was not observed. The DZNR, DHDR, and THDR were expressed as Strep-tag fusion proteins and subsequently purified by affinity chromatography. The purified enzymes were further characterized with regard to their activity, stereochemistry, quaternary structure, and content of flavin cofactors.
Collapse
|
48
|
Haiser HJ, Turnbaugh PJ. Developing a metagenomic view of xenobiotic metabolism. Pharmacol Res 2012; 69:21-31. [PMID: 22902524 DOI: 10.1016/j.phrs.2012.07.009] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/20/2012] [Accepted: 07/25/2012] [Indexed: 12/16/2022]
Abstract
The microbes residing in and on the human body influence human physiology in many ways, particularly through their impact on the metabolism of xenobiotic compounds, including therapeutic drugs, antibiotics, and diet-derived bioactive compounds. Despite the importance of these interactions and the many possibilities for intervention, microbial xenobiotic metabolism remains a largely underexplored component of pharmacology. Here, we discuss the emerging evidence for both direct and indirect effects of the human gut microbiota on xenobiotic metabolism, and the initial links that have been made between specific compounds, diverse members of this complex community, and the microbial genes responsible. Furthermore, we highlight the many parallels to the now well-established field of environmental bioremediation, and the vast potential to leverage emerging metagenomic tools to shed new light on these important microbial biotransformations.
Collapse
Affiliation(s)
- Henry J Haiser
- Faculty of Arts and Sciences Center for Systems Biology, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|