1
|
Davis M, Midwinter AC, Cosgrove R, Death RG. Detecting genes associated with antimicrobial resistance and pathogen virulence in three New Zealand rivers. PeerJ 2021; 9:e12440. [PMID: 34950535 PMCID: PMC8647715 DOI: 10.7717/peerj.12440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 10/15/2021] [Indexed: 01/08/2023] Open
Abstract
The emergence of clinically significant antimicrobial resistance (AMR) in bacteria is frequently attributed to the use of antimicrobials in humans and livestock and is often found concurrently with human and animal pathogens. However, the incidence and natural drivers of antimicrobial resistance and pathogenic virulence in the environment, including waterways and ground water, are poorly understood. Freshwater monitoring for microbial pollution relies on culturing bacterial species indicative of faecal pollution, but detection of genes linked to antimicrobial resistance and/or those linked to virulence is a potentially superior alternative. We collected water and sediment samples in the autumn and spring from three rivers in Canterbury, New Zealand; sites were above and below reaches draining intensive dairy farming. Samples were tested for loci associated with the AMR-related group 1 CTX-M enzyme production (blaCTX-M) and Shiga toxin producing Escherichia coli (STEC). The blaCTX-M locus was only detected during spring and was more prevalent downstream of intensive dairy farms. Loci associated with STEC were detected in both the autumn and spring, again predominantly downstream of intensive dairying. This cross-sectional study suggests that targeted testing of environmental DNA is a useful tool for monitoring waterways. Further studies are now needed to extend our observations across seasons and to examine the relationship between the presence of these genetic elements and the incidence of disease in humans.
Collapse
Affiliation(s)
- Meredith Davis
- School of Agriculture and the Environment, Massey University, Palmerston North, Manawatu, New Zealand.,Molecular Epidemiology and Veterinary Public Health Laboratory - Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | - Anne C Midwinter
- Molecular Epidemiology and Veterinary Public Health Laboratory - Hopkirk Research Institute, School of Veterinary Science, Massey University, Palmerston North, Manawatu, New Zealand
| | | | - Russell G Death
- School of Agriculture and the Environment, Massey University, Palmerston North, Manawatu, New Zealand
| |
Collapse
|
2
|
Lalhruaipuii K, Dutta TK, Roychoudhury P, Chakraborty S, Subudhi PK, Samanta I, Bandyopadhayay S, Singh SB. Multidrug-Resistant Extended-Spectrum β-Lactamase-Producing Escherichia coli Pathotypes in North Eastern Region of India: Backyard Small Ruminants-Human-Water Interface. Microb Drug Resist 2021; 27:1664-1671. [PMID: 34191610 DOI: 10.1089/mdr.2020.0365] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A total of 648 diarrheagenic Escherichia coli (DEC) were isolated from calves (n = 219), lambs (n = 87), kids (n = 103), human (n = 193), and water (n = 46) samples. The presence of enteropathogenic E. coli (EPEC), enterotoxigenic E. coli (ETEC), and shigatoxigenic E. coli (STEC) was confirmed by PCR-based detection of the Shiga toxin, intimin, hemolysin, and enterotoxin genes. All the isolates were tested for antimicrobial resistance (AMR) by disc diffusion assay. Extended-spectrum β-lactamase (ESBL), carbapenemase, and metallo-beta-lactamase production were determined by double-disk synergy test, modified Hodge test, and combined disk test assays. AMR genes (blaTEM, blaSHV, blaCTX-M, blaCMY-2, blaNDM, blaKPC, blaVIM, and blaIMP) were detected by PCR using specific primers. Majority of the isolates from human and water exhibited resistance (>80%) against amoxicillin, ampicillin, aztreonam, cefotaxime, cefixime, gentamicin, ceftazidime, and cefalexin, and against imipenem (70.98%), doripenem (70.47%), and ertapenem (60.62%). Bovine isolates were sensitive to carbapenems. Many isolates (5.75-24.35%) from human, water, calves, kids, and lambs were multidrug resistant (MDR), with resistance against three or more classes of antimicrobials. A total of 170/648 (26.23%) isolates were classified as STEC (9.88%), EPEC (4.32%), and ETEC (12.04%). The AMR genes, including blaTEM, blaCMY2, blaCTX-M, and blaSHV were detected in the E. coli from all sources. but blaNDM and blaKPC were detected only in the isolates from human and water. Three STEC isolates from human origin possessed multiple ESBLs, carbapenemase and metallo-beta-lactamase genes reported for the first time. ESBLs producing EPEC and ETEC in lambs and kids are also reported under this study. Presence of MDR-DEC in domestic animals and common potable water poses public health concern in this region.
Collapse
Affiliation(s)
| | - Tapan K Dutta
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, India
| | - Parimal Roychoudhury
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, India
| | - Satyaki Chakraborty
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, India
| | - Prasant K Subudhi
- Department of Veterinary Microbiology, Central Agricultural University, Aizawl, India
| | - Indranil Samanta
- Department of Veterinary Microbiology, West Bengal University of Animal & Fishery Sciences, Kolkata, India
| | | | | |
Collapse
|
3
|
Galarce N, Sánchez F, Escobar B, Lapierre L, Cornejo J, Alegría-Morán R, Neira V, Martínez V, Johnson T, Fuentes-Castillo D, Sano E, Lincopan N. Genomic Epidemiology of Shiga Toxin-Producing Escherichia coli Isolated from the Livestock-Food-Human Interface in South America. Animals (Basel) 2021; 11:ani11071845. [PMID: 34206206 PMCID: PMC8300192 DOI: 10.3390/ani11071845] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/20/2022] Open
Abstract
Simple Summary Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens that cause food-borne diseases in humans, where cattle and derived products play a key role as reservoirs and vehicles. We analyzed the genomic data of STEC strains circulating at the livestock-food-human interface in South America, extracting clinically and epidemiologically relevant information (serotypes, virulome, resistance genes, sequence types, and phylogenomics). This study included 130 STEC genomes obtained from cattle (n = 51), beef (n = 48), and human (n = 31) samples. The successful expansion of O157:H7 (ST11) and non-O157 (ST16, ST21, ST223, ST443, ST677, ST679, ST2388) clones is highlighted, suggesting common activities, such as multilateral trade and travel. Circulating STEC strains analyzed exhibit high genomic diversity and harbor several genetic determinants associated with severe illness in humans, highlighting the need to establish official surveillance of this pathogen that should be focused on detecting molecular determinants of virulence and clonal relatedness, in the whole beef production chain. Abstract Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens responsible for causing food-borne diseases in humans. While South America has the highest incidence of human STEC infections, information about the genomic characteristics of the circulating strains is scarce. The aim of this study was to analyze genomic data of STEC strains isolated in South America from cattle, beef, and humans; predicting the antibiotic resistome, serotypes, sequence types (STs), clonal complexes (CCs) and phylogenomic backgrounds. A total of 130 whole genome sequences of STEC strains were analyzed, where 39.2% were isolated from cattle, 36.9% from beef, and 23.8% from humans. The ST11 was the most predicted (20.8%) and included O-:H7 (10.8%) and O157:H7 (10%) serotypes. The successful expansion of non-O157 clones such as ST16/CC29-O111:H8 and ST21/CC29-O26:H11 is highlighted, suggesting multilateral trade and travel. Virulome analyses showed that the predominant stx subtype was stx2a (54.6%); most strains carried ehaA (96.2%), iha (91.5%) and lpfA (77.7%) genes. We present genomic data that can be used to support the surveillance of STEC strains circulating at the livestock-food-human interface in South America, in order to control the spread of critical clones “from farm to table”.
Collapse
Affiliation(s)
- Nicolás Galarce
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Correspondence:
| | - Fernando Sánchez
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Programa de Doctorado en Ciencias Silvoagropecuarias y Veterinarias, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile
| | - Beatriz Escobar
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Lisette Lapierre
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Javiera Cornejo
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Raúl Alegría-Morán
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
- Facultad de Ciencias Agropecuarias y Ambientales, Universidad Pedro de Valdivia, Santiago 8370007, Chile
| | - Víctor Neira
- Departamento de Medicina Preventiva Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (F.S.); (B.E.); (L.L.); (J.C.); (R.A.-M.); (V.N.)
| | - Víctor Martínez
- Departamento de Fomento de la Producción Animal, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile;
| | - Timothy Johnson
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108, USA;
| | - Danny Fuentes-Castillo
- Departamento de Patología, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo 05508-270, Brazil;
| | - Elder Sano
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| | - Nilton Lincopan
- Departamento de Microbiología, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo 05508-900, Brazil; (E.S.); (N.L.)
| |
Collapse
|
4
|
Gentle A, Day MR, Hopkins KL, Godbole G, Jenkins C. Antimicrobial resistance in Shiga toxin-producing Escherichia coli other than serotype O157 : H7 in England, 2014-2016. J Med Microbiol 2020; 69:379-386. [PMID: 32101158 DOI: 10.1099/jmm.0.001146] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Introduction. Despite many ongoing surveillance projects and the recent focus on the veterinary and clinical 'One Health' aspects of antimicrobial resistance (AMR), evidence of the extent of any public health risk posed by animal reservoirs with respect to the transmission of resistant strains of Escherichia coli to humans remains varied and contentious. In the UK, the main zoonotic reservoir for the foodborne pathogen Shiga toxin-producing E. coli (STEC) is cattle and sheep. In this study, we adopt an alternative approach to the risk assessment of transmission of AMR E. coli from animals to humans, involving monitoring AMR in isolates of STEC, an established zoonotic, foodborne pathogen, from human cases of gastrointestinal disease.Aim. The aim of this study was to determine the genome-derived AMR profiles for STEC from human cases to assess the risk of transmission of multidrug-resistant STEC from ruminants to humans.Methodology. STEC belonging to 10 different clonal complexes (CCs) (n=457) isolated from human faecal specimens were sequenced and genome-derived AMR profiles were determined. Phenotypic susceptibility testing was undertaken on all isolates (n=100) predicted to be resistant to at least one class of antimicrobial.Results. Of the 457 isolates, 332 (72.7 %) lacked identifiable resistance genes and were predicted to be fully susceptible to 11 classes of antimicrobials; 125/332 (27.3 %) carried 1 or more resistance genes, of which 83/125 (66.4 %) were resistant to 3 or more classes of antibiotic. The percentage of isolates harbouring AMR determinants varied between CCs, from 4% in CC25 to 100% in CC504. Forty-six different AMR genes were detected, which conferred resistance to eight different antibiotic classes. Resistance to ampicillin, streptomycin, tetracyclines and sulphonamides was most commonly detected. Four isolates were identified as extended-spectrum β-lactamase producers. An overall concordance of 97.7 % (n=1075/1100) was demonstrated between the phenotypic and genotypic methods.Conclusion. This analysis provided an indirect assessment of the risk of transmission of AMR gastrointestinal pathogens from animals to humans, and revealed a subset of human isolates of the zoonotic pathogen STEC were resistant to the antimicrobials used in animal husbandry. However, this proportion has not increased over the last three decades, and thismay provide evidence that guidancepromoting responsible practice has been effective.
Collapse
Affiliation(s)
- Amy Gentle
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Martin R Day
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Katie L Hopkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Gauri Godbole
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Jenkins
- National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
5
|
Furlan JPR, Gallo IFL, de Campos ACLP, Passaglia J, Falcão JP, Navarro A, Nakazato G, Stehling EG. Molecular characterization of multidrug-resistant Shiga toxin-producing Escherichia coli harboring antimicrobial resistance genes obtained from a farmhouse. Pathog Glob Health 2019; 113:268-274. [PMID: 31757195 DOI: 10.1080/20477724.2019.1693712] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) colonize the gastrointestinal tract of animals; however, STEC may also cause severe diarrheal diseases. Food-producing animals have been acting as reservoirs and disseminators of multidrug-resistant (MDR) bacteria and antimicrobial resistance genes (ARGs); however, there are few studies characterizing molecularly bacterial isolates from sheep. Therefore, this study aimed to characterize E. coli isolates obtained from feces of sheep in a Brazilian farmhouse. A total of 14 MDR E. coli isolates were obtained from 100 feces samples, six of which were classified as non-O157 STEC (stx1, stx2 and ehxA). MDR E. coli isolates presented different ARGs [blaCTX-M-Gp9, blaCMY, blaSHV, qnrS, oqxB, aac(6')-Ib, tet(A), tet(B), tet(C), sul1, sul2, and cmlA] and plasmids (IncI1, IncFrepB, IncFIB, IncFIA, IncHI1, IncK, and ColE-like). In addition, mutations in the quinolone-resistance determining region of GyrA (Ser83Leu; Asp87Asn) and ParC (Glu84Asp) were detected. PFGE showed a high genetic diversity (30.9 to 83.9%) and thirteen STs were detected (ST25, ST48, ST155, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST2522, ST3270, ST5036, and ST7100). Subtyping of the fimH gene showed seven fimH-type (25, 32, 38, 41, 54, 61, and 366). The results found in the present study showed high genetic diversity among MDR ARGs-producing E. coli obtained from a farmhouse. This study reports for the first time, the presence of MDR STEC and non-STEC belonging to ST25, ST162, ST642, ST1247, ST1518, ST1725, ST2107, ST3270, ST5036, and ST7100 in sheep, and contributes to the surveillance studies associated with One Health concept.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | | | - Jaqueline Passaglia
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Juliana Pfrimer Falcão
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autônoma de México, Ciudad Universitaria, Mexico City, Mexico
| | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas - Universidade Estadual de Londrina (UEL), Londrina, Brasil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto - Universidade de São Paulo (USP), Ribeirão Preto, Brasil
| |
Collapse
|
6
|
Puii L, Dutta T, Roychoudhury P, Kylla H, Chakraborty S, Mandakini R, Kawlni L, Samanta I, Bandopaddhay S, Singh S. Extended spectrum beta‐lactamase producing Shiga‐toxin producing‐Escherichia coliin piglets, humans and water sources in North East region of India. Lett Appl Microbiol 2019; 69:373-378. [DOI: 10.1111/lam.13216] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 11/27/2022]
Affiliation(s)
- L.H. Puii
- Department of Veterinary Microbiology Central Agricultural University Selesih, Aizawl Mizoram India
| | - T.K. Dutta
- Department of Veterinary Microbiology Central Agricultural University Selesih, Aizawl Mizoram India
| | - P. Roychoudhury
- Department of Veterinary Microbiology Central Agricultural University Selesih, Aizawl Mizoram India
| | - H. Kylla
- Department of Veterinary Microbiology Central Agricultural University Selesih, Aizawl Mizoram India
| | - S. Chakraborty
- Department of Veterinary Microbiology Central Agricultural University Selesih, Aizawl Mizoram India
| | - R. Mandakini
- Department of Veterinary Microbiology Central Agricultural University Selesih, Aizawl Mizoram India
| | - L. Kawlni
- Department of Veterinary Microbiology Central Agricultural University Selesih, Aizawl Mizoram India
| | - I. Samanta
- Department of Veterinary Microbiology West Bengal University of Animal & Fishery Sciences Kolkata West Bengal India
| | - S. Bandopaddhay
- Department of Veterinary Microbiology West Bengal University of Animal & Fishery Sciences Kolkata West Bengal India
| | - S.B. Singh
- Central Agricultural University Imphal Manipur India
| |
Collapse
|
7
|
Furlan JPR, Gallo IFL, de Campos ACLP, Navarro A, Kobayashi RKT, Nakazato G, Stehling EG. Characterization of non-O157 Shiga toxin-producing Escherichia coli (STEC) obtained from feces of sheep in Brazil. World J Microbiol Biotechnol 2019; 35:134. [PMID: 31432266 DOI: 10.1007/s11274-019-2712-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens and may induce severe diarrheagenic diseases in humans and other animals. Non-O157 STEC have been emerging as important pathogens causing outbreaks worldwide. Bacterial resistance to antimicrobials has become a global public health problem, which involves different ecological spheres, including animals. This study aimed to characterize the resistance to antimicrobials, plasmids and virulence, as well as the serotypes and phylogenetic groups in E. coli isolated from sheep in Brazil. A total of 57 isolates were obtained and showed different antimicrobial resistance profiles. Nineteen isolates presented acquired antimicrobial resistance genes (ARGs) (blaCTX-M-Gp9, qnrB, qnrS, oqxB, oqxA, tetA, tetB, tetC, sul1 and sul2) and plasmid families (F, FIA, FIB, I1, K, HI1 and ColE-like). The stx1, stx2 and ehxA virulence genes were detected by PCR, being 50 isolates (87.7%) classified as STEC. A great diversity of serotypes was detected, being O176:HNM the most predominant. Phylogenetic group E was the most prevalent, followed by B1, A and B2. To the best of our knowledge, this is the first report in the world of blaCTX-M-Gp9 (O75, O114, O100, O128ac and O176 serogroups), qnrB and oqxB genes in non-O157 STEC in healthy sheep. The results obtained in the present study call attention to the monitoring of antimicrobial-resistant non-O157 STEC harboring acquired ARGs worldwide and indicate a zoonotic risk due to the profile of virulence, resistance and serotype found.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | - Inara Fernanda Lage Gallo
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil
| | | | - Armando Navarro
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional Autônoma de México, Ciudad Universitaria, Mexico City, Mexico
| | | | - Gerson Nakazato
- Departamento de Microbiologia, Centro de Ciências Biológicas, Universidade Estadual de Londrina (UEL), Londrina, Brazil
| | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Ribeirão Preto, Brazil. .,Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café S/N. Monte Alegre, Ribeirão Preto, SP, 14040-903, Brazil.
| |
Collapse
|
8
|
Swedan S, Abu Alrub H. Antimicrobial Resistance, Virulence Factors, and Pathotypes of Escherichia coli Isolated from Drinking Water Sources in Jordan. Pathogens 2019; 8:E86. [PMID: 31242579 PMCID: PMC6630504 DOI: 10.3390/pathogens8020086] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Revised: 06/19/2019] [Accepted: 06/21/2019] [Indexed: 01/26/2023] Open
Abstract
The study investigated the prevalence of potentially pathogenic and drug resistant Escherichia coli among drinking water sources in Jordan. A total of 109 confirmed E. coli isolates were analyzed. Antimicrobial susceptibility testing was done using the Kirby Bauer disk diffusion method. Phenotypic identification of extended spectrum beta-lactamase (ESBL) and carbapenemase production was done using the double disk synergy test and the modified Hodge test, respectively. Isolates' plasmid profiles were determined by gel electrophoresis. PCR was used for detection of virulence and resistance genes. Overall, 22.0% of the isolates were potentially intestinal pathogenic E. coli (IPEC); namely enteroaggregative E. coli (16.5%), enteropathogenic E. coli (2.8%), enteroinvasive E. coli (1.8%), and enterohemorrhagic E. coli (0.9%). A third of the isolates were multi-drug resistant. The highest rates of antimicrobials resistance were observed against ampicillin (93.6%) and sulfamethoxazole/trimethoprim (41.3%). All isolates were susceptible to imipenem, meropenem, doripenem and tigecycline. The prevalence of ESBL and carbapenemase producers was 54.1% and 2.8%, respectively. BlaVIM was the most prevalent resistance gene (68.8%), followed by blaCTX (50.5%), blaTEM (45.9%), blaNDM (11%), blaKPC (4.6%), and blaSHV (0.9%). Fifty-eight (53.2%) isolates contained one or more plasmid ranging from 1.0 to 8.0 kbp. Overall, high prevalence of potentially pathogenic and resistant isolates was observed.
Collapse
Affiliation(s)
- Samer Swedan
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Heba Abu Alrub
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
9
|
Kikuchi K, Lee K, Ueno H, Tomari K, Kobori S, Kaetsu A, Matsui M, Suzuki S, Sekizuka T, Kuroda M, Miyazaki M, Ohnishi M. Enterohaemorrhagic Escherichia coli O121:H19 acquired an extended-spectrum β-lactamase gene during the development of an outbreak in two nurseries. Microb Genom 2019; 5. [PMID: 31215859 PMCID: PMC6700663 DOI: 10.1099/mgen.0.000278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Enterohaemorrhagic Escherichia coli (EHEC) is an important human pathogen worldwide. Although serotype O157 is currently the most dominant and important EHEC strain, serotypes O26, O111, O91, O103 and O121 are also recognized as serious pathogens that affect public health. EHEC outbreaks often occur in nurseries and elderly care facilities. In 2012, a nursery outbreak of EHEC O121 occurred during which the bacterium acquired a plasmid-borne extended-spectrum β-lactamase (ESBL) gene. ESBL-producing E. coli O86 was concurrently isolated from one of the EHEC patients. Therefore, we investigated the isolates by whole-genome sequence (WGS) analysis to elucidate the transmission dynamics of the EHEC strains and the ESBL plasmid. According to WGS-based phylogeny, all 17 EHEC O121 isolates were clonal, while E. coli O86 was genetically distant from the EHEC O121 isolates. The complete sequence of an ESBL plasmid encoding the CTX-M-55 β-lactamase was determined using S1-PFGE bands, and subsequent mapping of the WGS reads confirmed that the plasmid sequences from EHEC O121 and E. coli O86 were identical. Furthermore, conjugation experiments showed that the plasmid was capable of conjugative transfer. These results support the hypothesis that EHEC O121 acquired an ESBL-producing plasmid from E. coli O86 during the outbreak. This report demonstrates the importance of implementing preventive measures during EHEC outbreaks to control both secondary infection and the spread of antimicrobial resistance factors.
Collapse
Affiliation(s)
- Koji Kikuchi
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Kenichi Lee
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| | - Hiroyuki Ueno
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Kentaro Tomari
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Sumie Kobori
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | | | - Mari Matsui
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Satowa Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Tsuyoshi Sekizuka
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Makoto Kuroda
- Pathogen Genomics Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Motonobu Miyazaki
- Saitama City Institute of Health Science and Research, Saitama, Japan
| | - Makoto Ohnishi
- Department of Bacteriology I, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
10
|
Mir RA, Kudva IT. Antibiotic‐resistant Shiga toxin‐producing
Escherichia coli
: An overview of prevalence and intervention strategies. Zoonoses Public Health 2018; 66:1-13. [DOI: 10.1111/zph.12533] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 10/08/2018] [Indexed: 12/22/2022]
Affiliation(s)
- Raies A. Mir
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service U.S. Department of Agriculture Ames Iowa
- Oak Ridge Institute for Science and Education (ORISE) ARS Research Participation Program Oak Ridge Tennessee
| | - Indira T. Kudva
- Food Safety and Enteric Pathogens Research Unit, National Animal Disease Center, Agricultural Research Service U.S. Department of Agriculture Ames Iowa
| |
Collapse
|
11
|
Dandachi I, Chabou S, Daoud Z, Rolain JM. Prevalence and Emergence of Extended-Spectrum Cephalosporin-, Carbapenem- and Colistin-Resistant Gram Negative Bacteria of Animal Origin in the Mediterranean Basin. Front Microbiol 2018; 9:2299. [PMID: 30323797 PMCID: PMC6172473 DOI: 10.3389/fmicb.2018.02299] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 09/10/2018] [Indexed: 11/13/2022] Open
Abstract
In recent years, extended ESBL and carbapenemase producing Gram negative bacteria have become widespread in hospitals, community settings and the environment. This has been triggered by the few therapeutic options left when infections with these multi-drug resistant organisms occur. The emergence of resistance to colistin, the last therapeutic option against carbapenem-resistant bacteria, worsened the situation. Recently, animals were regarded as potent antimicrobial reservoir and a possible source of infection to humans. Enteric Gram negative bacteria in animals can be easily transmitted to humans by direct contact or indirectly through the handling and consumption of undercooked/uncooked animal products. In the Mediterranean basin, little is known about the current overall epidemiology of multi-drug resistant bacteria in livestock, companion, and domestic animals. This review describes the current epidemiology of ESBL, carbapenemase producers and colistin resistant bacteria of animal origin in this region of the world. The CTX-M group 1 seems to prevail in animals in this area, followed by SHV-12 and CTX-M group 9. The dissemination of carbapenemase producers and colistin resistance remains low. Isolated multi-drug resistant bacteria were often co-resistant to non-beta-lactam antibiotics, frequently used in veterinary medicine as treatment, growth promoters, prophylaxis and in human medicine for therapeutic purposes. Antibiotics used in veterinary medicine in this area include mainly tetracycline, aminoglycosides, fluoroquinolones, and polymyxins. Indeed, it appears that the emergence of ESBL and carbapenemase producers in animals is not related to the use of beta-lactam antibiotics but is, rather, due to the co-selective pressure applied by the over usage of non-beta-lactams. The level of antibiotic consumption in animals should be, therefore, re-considered in the Mediterranean area especially in North Africa and western Asia where no accurate data are available about the level of antibiotic consumption in animals.
Collapse
Affiliation(s)
- Iman Dandachi
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
- Clinical Microbiology Laboratory, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Selma Chabou
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| | - Ziad Daoud
- Clinical Microbiology Laboratory, Faculty of Medicine and Medical Sciences, University of Balamand, Beirut, Lebanon
| | - Jean-Marc Rolain
- IRD, APHM, MEPHI, IHU-Méditerranée Infection, Aix Marseille Université, Marseille, France
| |
Collapse
|
12
|
Extended-spectrum β-lactamase/AmpC- and carbapenemase-producing Enterobacteriaceae in animals: a threat for humans? Clin Microbiol Infect 2017; 23:826-833. [PMID: 28143782 DOI: 10.1016/j.cmi.2017.01.013] [Citation(s) in RCA: 151] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 12/18/2016] [Accepted: 01/19/2017] [Indexed: 11/24/2022]
Abstract
There has been a great and long-term concern that extended-spectrum β-lactamase (ESBL)/AmpC- and carbapenemase-producing Enterobacteriaceae occurring in animals may constitute a public-health issue. A large number of factors with complex interrelations contribute to the spread of those bacteria among animals and humans. ESBL/AmpC- or carbapenemase-encoding genes are most often located on mobile genetic elements favouring their dissemination. Some shared reservoirs of ESBL/AmpC or carbapenemase genes, plasmids or clones have been identified and suggest cross-transmissions. Even though exposure to animals is regarded as a risk factor, evidence for a direct transfer of ESBL/AmpC-producing bacteria from animals to humans through close contacts is limited. Nonetheless, the size of the commensal ESBL/AmpC reservoir in non-human sources is dramatically rising. This may constitute an indirect risk to public health by increasing the gene pool from which pathogenic bacteria can pick up ESBL/AmpC/carbapenemase genes. The extent to which food contributes to potential transmission of ESBL/AmpC producers to humans is also not well established. Overall, events leading to the occurrence of ESBL/AmpC- and carbapenemase-encoding genes in animals seem very much multifactorial. The impact of animal reservoirs on human health still remains debatable and unclear; nonetheless, there are some examples of direct links that have been identified.
Collapse
|
13
|
Day M, Doumith M, Jenkins C, Dallman TJ, Hopkins KL, Elson R, Godbole G, Woodford N. Antimicrobial resistance in Shiga toxin-producing Escherichia coli serogroups O157 and O26 isolated from human cases of diarrhoeal disease in England, 2015. J Antimicrob Chemother 2016; 72:145-152. [PMID: 27678285 DOI: 10.1093/jac/dkw371] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/05/2016] [Accepted: 08/05/2016] [Indexed: 12/31/2022] Open
Abstract
OBJECTIVES Shiga toxin-producing Escherichia coli (STEC) are zoonotic and transmission to humans occurs via contaminated food or contact with infected animals. In this study, WGS data were used to predict antimicrobial resistance (AMR) in STEC from symptomatic human cases to assess the extent of transmission of antibiotic-resistant E. coli from animals to humans. METHODS WGS data from 430 isolates of STEC were mapped to genes known to be associated with phenotypic AMR. Susceptibility testing was performed by a breakpoint method on all viable isolates exhibiting resistance to at least one antimicrobial. RESULTS 327/396 (82.6%) of STEC O157 and 22/34 (64.7%) of STEC O26 lacked identifiable resistance genes and were predicted to be fully susceptible to 11 diverse classes of antimicrobials. For the remaining 81 isolates, 74 were phenotypically tested and there was concordance between WGS-predicted resistance and expression of phenotypic resistance. The most common resistance profile was ampicillin, streptomycin, trimethoprim/sulphonamide and tetracycline occurring in 25 (5.8%) isolates. Resistance to other antimicrobials, including resistance to chloramphenicol (2.1%), resistance to azithromycin (0.2%) and reduced susceptibility to ciprofloxacin (2.6%), was less frequent. Three isolates were identified as ESBL producers. CONCLUSIONS β-Lactams, trimethoprim/sulphonamides and tetracyclines account for the majority of therapeutic antimicrobials sold for veterinary use and this may be a risk factor for the presence of AMR in domestically acquired human clinical isolates of STEC. Isolates that were resistant to ampicillin, streptomycin, sulphonamide, tetracycline and azithromycin and had reduced susceptibility to ciprofloxacin were associated with cases who reported recent travel abroad.
Collapse
Affiliation(s)
- Martin Day
- Bacteriology Reference Department, Reference Microbiology Services, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Michel Doumith
- Bacteriology Reference Department, Reference Microbiology Services, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Claire Jenkins
- Bacteriology Reference Department, Reference Microbiology Services, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Timothy J Dallman
- Bacteriology Reference Department, Reference Microbiology Services, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Katie L Hopkins
- Bacteriology Reference Department, Reference Microbiology Services, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Richard Elson
- Gastrointestinal and Emerging Zoonotic Infections Department, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Gauri Godbole
- Bacteriology Reference Department, Reference Microbiology Services, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| | - Neil Woodford
- Bacteriology Reference Department, Reference Microbiology Services, National Infection Service, Public Health England, 61 Colindale Avenue, London NW9 5EQ, UK
| |
Collapse
|
14
|
Valat C, Forest K, Billet M, Polizzi C, Saras E, Madec JY, Haenni M. Absence of co-localization between pathovar-associated virulence factors and extended-spectrum β-lactamase (blaCTX-M) genes on a single plasmid. Vet Microbiol 2016; 192:163-166. [PMID: 27527778 DOI: 10.1016/j.vetmic.2016.07.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/15/2016] [Accepted: 07/10/2016] [Indexed: 10/21/2022]
Abstract
Extended-spectrum β-lactamases (ESBLs) were reported in virulent food-borne Escherichia coli clones, and numerous genes encoding ESBLs and virulence factors (VFs) are plasmid-mediated. We investigated the plasmidic co-localization of ESBL genes and pathovar-associated VF genes isolated in 18 E. coli isolates from faecal samples of diseased cattle. From the rare ESBL-producing E. coli among the various pathovars, no plasmid co-localization was found between VF and blaCTX-M genes on a single plasmid. However, a link between replicon types and VFs was highlighted: EspP was associated with IncFIB and ToxB with IncB/O. Associations of IncF alleles to VF or CTX-M-types were also identified: CS31A was linked to the allele FIB38 and CTX-M-14 to IncFII2. Also, as illustrated here, IncFII and IncFIB were carried by two different plasmids in a single cell.
Collapse
Affiliation(s)
- Charlotte Valat
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France.
| | - Karine Forest
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Méganne Billet
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Charlène Polizzi
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Estelle Saras
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Jean-Yves Madec
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| | - Marisa Haenni
- Anses, Laboratoire de Lyon, Unité Antibiorésistance et Virulence Bactériennes, Lyon, France
| |
Collapse
|
15
|
Draft Genome Sequences of Enterohemorrhagic Escherichia coli Encoding Extended-Spectrum Beta-Lactamases. GENOME ANNOUNCEMENTS 2016; 4:4/1/e01633-15. [PMID: 26868385 PMCID: PMC4751309 DOI: 10.1128/genomea.01633-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Extended-spectrum beta-lactamases (ESBLs) have rarely been observed among Shiga toxigenic Escherichia coli (STEC), and, to our best knowledge, only three ESBL-positive isolates of the enterohemorrhagic E. coli (EHEC) subpathotype have been reported. Here, we present the first draft genome sequences of two ESBL-positive EHEC isolates belonging to serotypes O111:H8 and O151:H16.
Collapse
|
16
|
Arvand M, Bettge-Weller G, Fruth A, Uphoff H, Pfeifer Y. Extended-spectrum beta-lactamase-producing Shiga toxin gene (stx1)-positive Escherichia coli O91:H14 carrying blaCTX-M-15 on an IncI1-ST31 plasmid isolated from a human patient in Germany. Int J Med Microbiol 2015; 305:404-7. [PMID: 25801683 DOI: 10.1016/j.ijmm.2015.03.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 12/15/2022] Open
Abstract
In 2011, the Shiga toxin- and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli O104:H4 caused a serious outbreak of gastroenteritis in Germany. This strain carried bla(CTX-M-15) and bla(TEM-1) on an IncI1-ST31 plasmid. During screening of individuals at risk for acquisition of the epidemic E. coli O104:H4, we isolated another ESBL-producing and Shiga toxin-positive E. coli belonging to serotype O91:H14 from feces of a human patient. Interestingly, the patient also carried a further ESBL-producing but Shiga toxin-negative E. coli. Both strains harbored bla(CTX-M-15) and bla(TEM-1) on an IncI1-ST31 plasmid, which was indistinguishable regarding size and plasmid restriction pattern from the plasmid of the epidemic E. coli O104:H4 strain. The patient had traveled to India 6 months prior to the isolation of the E. coli strains. This is the first report of an ESBL-producing, Shiga toxin-positive E. coli of serogroup O91. Our data suggest a high propensity of the IncI1-ST31 plasmid to spread in the human and/or animal population.
Collapse
Affiliation(s)
- Mardjan Arvand
- Hesse State Health Office, Centre for Health Protection, Dillenburg, Germany.
| | | | - Angelika Fruth
- Robert Koch Institute, National Reference Centre for Salmonella and other Bacterial Enterics, Wernigerode, Germany
| | - Helmut Uphoff
- Hesse State Health Office, Centre for Health Protection, Dillenburg, Germany
| | - Yvonne Pfeifer
- Robert Koch Institute, FG13 Nosocomial Pathogens and Antibiotic Resistance, Wernigerode, Germany
| |
Collapse
|
17
|
Colello R, Etcheverría AI, Conza JAD, Gutkind GO, Padola NL. Antibiotic resistance and integrons in Shiga toxin-producing Escherichia coli (STEC). Braz J Microbiol 2015; 46:1-5. [PMID: 26221083 PMCID: PMC4512044 DOI: 10.1590/s1517-838246120130698] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Accepted: 06/06/2014] [Indexed: 11/30/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) cause hemorrhagic colitis (HC) and hemolytic-uremic syndrome in humans (HUS). Cattle are the main reservoir of STEC and transmission to humans occurs through contaminated food and water. Antibiotics are used in pig production systems to combat disease and improve productivity and play a key role in the dissemination of antibiotic resistance genes to the bacteria. Integrons have been identified in resistant bacteria allowing for the acquisition and dissemination of antibiotic resistance genes. STEC strains isolated from humans and animals have developed antibiotic resistance. In our laboratory, 21 non-157 STEC strains isolated from pigs were analyzed to detect class 1 and 2 integrons by PCR. Eight carried integrons, 7 of them harbored intl2. In another study 545 STEC strains were also analyzed for the presence of intl1 and intl2 . Strains carrying intl1 belonged to isolates from environment (n = 1), chicken hamburger (n = 2), dairy calves (n = 4) and pigs (n = 8). Two strains isolated from pigs harbored intl2 and only one intl1 / intl2 , highlighting the presence of intl2 in pigs. The selection for multiresistant strains may contribute to the emergence of antibiotic resistant pathogens and facilitate the spreading of the mobile resistance elements to other bacteria.
Collapse
Affiliation(s)
- Rocío Colello
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional the Investigaciones Científicas y Técnicas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Analía I. Etcheverría
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional the Investigaciones Científicas y Técnicas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires, Argentina
| | - Jose A. Di Conza
- Laboratorio de Resistencia Microbiana, Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gabriel O. Gutkind
- Laboratorio de Resistencia Microbiana, Cátedra de Microbiología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora L. Padola
- Laboratorio de Inmunoquímica y Biotecnología, Facultad de Ciencias Veterinarias, Centro de Investigación Veterinaria de Tandil, Consejo Nacional the Investigaciones Científicas y Técnicas, Universidad Nacional del Centro de la Provincia de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
18
|
Bibbal D, Loukiadis E, Kérourédan M, Ferré F, Dilasser F, Peytavin de Garam C, Cartier P, Oswald E, Gay E, Auvray F, Brugère H. Prevalence of carriage of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 among slaughtered adult cattle in France. Appl Environ Microbiol 2015; 81:1397-1405. [PMID: 25527532 PMCID: PMC4309698 DOI: 10.1128/aem.03315-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/10/2014] [Indexed: 11/20/2022] Open
Abstract
The main pathogenic enterohemorrhagic Escherichia coli (EHEC) strains are defined as Shiga toxin (Stx)-producing E. coli (STEC) belonging to one of the following serotypes: O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28. Each of these five serotypes is known to be associated with a specific subtype of the intimin-encoding gene (eae). The objective of this study was to evaluate the prevalence of bovine carriers of these “top five” STEC in the four adult cattle categories slaughtered in France. Fecal samples were collected from 1,318 cattle, including 291 young dairy bulls, 296 young beef bulls, 337 dairy cows, and 394 beef cows. A total of 96 E. coli isolates, including 33 top five STEC and 63 atypical enteropathogenic E. coli (aEPEC) isolates, with the same genetic characteristics as the top five STEC strains except that they lacked an stx gene, were recovered from these samples.O157:H7 was the most frequently isolated STEC serotype. The prevalence of top five STEC (all serotypes included) was 4.5% in young dairy bulls, 2.4% in young beef bulls, 1.8% in dairy cows, and 1.0% in beef cows. It was significantly higher in young dairy bulls (P<0.05) than in the other 3 categories. The basis for these differences between categories remains to be elucidated. Moreover,simultaneous carriage of STEC O26:H11 and STEC O103:H2 was detected in one young dairy bull. Lastly, the prevalence of bovine carriers of the top five STEC, evaluated through a weighted arithmetic mean of the prevalence by categories, was estimated to 1.8% in slaughtered adult cattle in France.
Collapse
Affiliation(s)
- Delphine Bibbal
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Estelle Loukiadis
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
- Université de Lyon, UMR 5557 Microbial Ecology, Université de Lyon 1, CNRS, VetAgro Sup, Research Group on Bacterial Opportunistic Pathogens and Environment, Villeurbanne, France
| | - Monique Kérourédan
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| | - Franck Ferré
- Université de Lyon, VetAgro Sup, LMAP Laboratory, National Reference Laboratory for E. coli (Including VTEC), Marcy l'Etoile, France
| | - Françoise Dilasser
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | | | | | - Eric Oswald
- INSERM UMR1043, INRA USC1360, CHU de Toulouse, Hôpital Purpan, Toulouse, France
| | - Emilie Gay
- Anses, Lyon Laboratory, Epidemiology Unit, Lyon, France
| | - Frédéric Auvray
- Université Paris-Est, Anses, Laboratory for Food Safety, Maisons-Alfort, France
| | - Hubert Brugère
- INSERM UMR1043, INRA USC1360, INP-ENVT ESC, Université de Toulouse, Toulouse, France
| |
Collapse
|
19
|
Mandakini R, Dutta TK, Chingtham S, Roychoudhury P, Samanta I, Joardar SN, Pachauau AR, Chandra R. ESBL-producing Shiga-toxigenic E. coli (STEC) associated with piglet diarrhoea in India. Trop Anim Health Prod 2014; 47:377-81. [DOI: 10.1007/s11250-014-0731-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 11/18/2014] [Indexed: 01/23/2023]
|
20
|
Assessment of Adhesins as an Indicator of Pathovar-Associated Virulence Factors in Bovine Escherichia coli. Appl Environ Microbiol 2014; 80:7230-4. [PMID: 25217019 DOI: 10.1128/aem.02365-14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 09/10/2014] [Indexed: 11/20/2022] Open
Abstract
The CS31A, F17, and F5 adhesins are usually targeted by serology-based methods to detect pathogenic Escherichia coli associated with calf enteritis. However, the virulence traits of the selected isolates are still poorly described. Here, from a set of 349 diarrheagenic E. coli isolates from cattle, we demonstrated a 70.8% concordance rate (Cohen's kappa, 0.599) between serology- and PCR-based approaches for the detection of adhesins under field conditions. A 79% to 82.4% correspondence between the two methods was found for fimbrial adhesins, whereas major discrepancies (33%) were observed for CS31A-type antigens. Various F17A variants were found, such as F17Ac (20K) (50%), F17Aa (FY) (18.9%), F17Ab (8.1%), and F17Ad (111K) (5.4%), including a high proportion (17.6%) of new F17A internal combinations (F17Aab, F17Aac, and F17Abc) or untypeable variants. In addition, the highest proportion of pathovar-associated virulence factor (VF) genes was observed among E. coli isolates that produced F5/F41 adhesins. A specific link between the heat-stable toxins related to the enterotoxigenic E. coli (ETEC) pathovar and adhesins was identified. STa was significantly linked to F5/F41 and EAST1 to CS31A adhesins (P < 0.001), respectively, whereas NTEC was associated with F17 adhesin (P = 0.001). Clustering between phylogroups according to the adhesin types was also observed. Also, few Shiga toxin-producing E. coli (STEC) or enteropathogenic E. coli (EPEC) pathovars were identified. Finally, no statistically significant difference was observed in the occurrence of extended-spectrum beta lactamase (ESBL) production according to the adhesins expressed by the isolates (P = 0.09). Altogether, this study gives new insights into the relationship between adhesins, VF, and antimicrobial resistance in calf enteritis and supports the need for further standardization of methodologies for such approaches.
Collapse
|
21
|
Ewers C, Stamm I, Stolle I, Guenther S, Kopp PA, Fruth A, Wieler LH, Scheufen S, Bauerfeind R, Bethe A, Prenger-Berninghoff E. Detection of Shiga toxin- and extended-spectrum β-lactamase-producing Escherichia coli O145:NM and Ont:NM from calves with diarrhoea. J Antimicrob Chemother 2014; 69:2005-7. [PMID: 24595804 DOI: 10.1093/jac/dku042] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Ivonne Stamm
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany
| | - Inka Stolle
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Sebastian Guenther
- Institute of Microbiology and Epizootics, Free University Berlin, Berlin, Germany
| | - Peter A Kopp
- Vet Med Labor GmbH, Division of IDEXX Laboratories, Ludwigsburg, Germany
| | | | - Lothar H Wieler
- Institute of Microbiology and Epizootics, Free University Berlin, Berlin, Germany
| | - Sandra Scheufen
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Rolf Bauerfeind
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| | - Astrid Bethe
- Institute of Microbiology and Epizootics, Free University Berlin, Berlin, Germany
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Intimin gene (eae) subtype-based real-time PCR strategy for specific detection of Shiga toxin-producing Escherichia coli serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 in cattle feces. Appl Environ Microbiol 2013; 80:1177-84. [PMID: 24296503 DOI: 10.1128/aem.03161-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) strains belonging to serotypes O157:H7, O26:H11, O103:H2, O111:H8, and O145:H28 are known to be associated with particular subtypes of the intimin gene (eae), namely, γ1, β1, ε, θ, and γ1, respectively. This study aimed at evaluating the usefulness of their detection for the specific detection of these five main pathogenic STEC serotypes in cattle feces. Using real-time PCR assays, 58.7% of 150 fecal samples were found positive for at least one of the four targeted eae subtypes. The simultaneous presence of stx, eae, and one of the five O group markers was found in 58.0% of the samples, and the five targeted stx plus eae plus O genetic combinations were detected 143 times. However, taking into consideration the association between eae subtypes and O group markers, the resulting stx plus eae subtype plus O combinations were detected only 46 times. The 46 isolation assays performed allowed recovery of 22 E. coli strains belonging to one of the five targeted STEC serogroups. In contrast, only 2 of 39 isolation assays performed on samples that were positive for stx, eae and an O group marker, but that were negative for the corresponding eae subtype, were successful. Characterization of the 24 E. coli isolates showed that 6 were STEC, including 1 O157:H7, 3 O26:H11, and 2 O145:H28. The remaining 18 strains corresponded to atypical enteropathogenic E. coli (aEPEC). Finally, the more discriminating eae subtype-based PCR strategy described here may be helpful for the specific screening of the five major STEC in cattle feces.
Collapse
|
23
|
Venturini C, Hassan KA, Roy Chowdhury P, Paulsen IT, Walker MJ, Djordjevic SP. Sequences of two related multiple antibiotic resistance virulence plasmids sharing a unique IS26-related molecular signature isolated from different Escherichia coli pathotypes from different hosts. PLoS One 2013; 8:e78862. [PMID: 24223859 PMCID: PMC3817090 DOI: 10.1371/journal.pone.0078862] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/23/2013] [Indexed: 02/07/2023] Open
Abstract
Enterohemorrhagic Escherichia coli (EHEC) and atypical enteropathogenic E. coli (aEPEC) are important zoonotic pathogens that increasingly are becoming resistant to multiple antibiotics. Here we describe two plasmids, pO26-CRL125 (125 kb) from a human O26:H- EHEC, and pO111-CRL115 (115kb) from a bovine O111 aEPEC, that impart resistance to ampicillin, kanamycin, neomycin, streptomycin, sulfathiazole, trimethoprim and tetracycline and both contain atypical class 1 integrons with an identical IS26-mediated deletion in their 3´-conserved segment. Complete sequence analysis showed that pO26-CRL125 and pO111-CRL115 are essentially identical except for a 9.7 kb fragment, present in the backbone of pO26-CRL125 but absent in pO111-CRL115, and several indels. The 9.7 kb fragment encodes IncI-associated genes involved in plasmid stability during conjugation, a putative transposase gene and three imperfect repeats. Contiguous sequence identical to regions within these pO26-CRL125 imperfect repeats was identified in pO111-CRL115 precisely where the 9.7 kb fragment is missing, suggesting it may be mobile. Sequences shared between the plasmids include a complete IncZ replicon, a unique toxin/antitoxin system, IncI stability and maintenance genes, a novel putative serine protease autotransporter, and an IncI1 transfer system including a unique shufflon. Both plasmids carry a derivate Tn21 transposon with an atypical class 1 integron comprising a dfrA5 gene cassette encoding resistance to trimethoprim, and 24 bp of the 3´-conserved segment followed by Tn6026, which encodes resistance to ampicillin, kanymycin, neomycin, streptomycin and sulfathiazole. The Tn21-derivative transposon is linked to a truncated Tn1721, encoding resistance to tetracycline, via a region containing the IncP-1α oriV. Absence of the 5 bp direct repeats flanking Tn3-family transposons, indicates that homologous recombination events played a key role in the formation of this complex antibiotic resistance gene locus. Comparative sequence analysis of these closely related plasmids reveals aspects of plasmid evolution in pathogenic E. coli from different hosts.
Collapse
Affiliation(s)
- Carola Venturini
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Piklu Roy Chowdhury
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
- NSW Department of Primary Industries, Camden, New South Wales, Australia
- The ithree Institute - Infection. Immunity. Innovation, University of Technology, Sydney, New South Wales, Australia
| | - Ian T. Paulsen
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Macquarie Park, New South Wales, Australia
| | - Mark J. Walker
- School of Chemistry and Molecular Biosciences and Australian Infectious Diseases Research Centre, the University of Queensland, Brisbane, Queensland, Australia
| | - Steven P. Djordjevic
- The ithree Institute - Infection. Immunity. Innovation, University of Technology, Sydney, New South Wales, Australia
- * . E-mail:
| |
Collapse
|
24
|
Rehman MU, Rashid M, Sheikh JA, Wani SA, Farooq S. Multi-drug resistance among Shiga toxin producing Escherichia coli isolated from bovines and their handlers in Jammu region, India. Vet World 2013. [DOI: 10.14202/vetworld.2013.655-658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
25
|
Extended-spectrum-β-lactamase-producing Escherichia coli isolate possessing the Shiga toxin gene (stx1) belonging to the O64 serogroup associated with human disease in India. J Clin Microbiol 2013; 51:2008-9. [PMID: 23576543 DOI: 10.1128/jcm.00575-13] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
26
|
Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world? Clin Microbiol Rev 2013; 26:185-230. [PMID: 23554414 PMCID: PMC3623377 DOI: 10.1128/cmr.00059-12] [Citation(s) in RCA: 677] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Hosts and bacteria have coevolved over millions of years, during which pathogenic bacteria have modified their virulence mechanisms to adapt to host defense systems. Although the spread of pathogens has been hindered by the discovery and widespread use of antimicrobial agents, antimicrobial resistance has increased globally. The emergence of resistant bacteria has accelerated in recent years, mainly as a result of increased selective pressure. However, although antimicrobial resistance and bacterial virulence have developed on different timescales, they share some common characteristics. This review considers how bacterial virulence and fitness are affected by antibiotic resistance and also how the relationship between virulence and resistance is affected by different genetic mechanisms (e.g., coselection and compensatory mutations) and by the most prevalent global responses. The interplay between these factors and the associated biological costs depend on four main factors: the bacterial species involved, virulence and resistance mechanisms, the ecological niche, and the host. The development of new strategies involving new antimicrobials or nonantimicrobial compounds and of novel diagnostic methods that focus on high-risk clones and rapid tests to detect virulence markers may help to resolve the increasing problem of the association between virulence and resistance, which is becoming more beneficial for pathogenic bacteria.
Collapse
Affiliation(s)
- Alejandro Beceiro
- Servicio de Microbiología, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña, Spain
| | | | | |
Collapse
|
27
|
Mahanti A, Samanta I, Bandopaddhay S, Joardar SN, Dutta TK, Batabyal S, Sar TK, Isore DP. Isolation, molecular characterization and antibiotic resistance of Shiga Toxin-Producing Escherichia coli (STEC) from buffalo in India. Lett Appl Microbiol 2013; 56:291-8. [PMID: 23350641 DOI: 10.1111/lam.12048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 12/23/2012] [Accepted: 01/18/2013] [Indexed: 11/30/2022]
Abstract
In total, 363 Escherichia coli were isolated from 165 faecal samples of healthy buffaloes in West Bengal, India. Twenty-four of these isolates (6·61%) were found to carry at least one gene characteristic for Shiga toxin-producing Escherichia coli (STEC). These STEC strains belonged to 13 different O-serogroups. The stx1 gene was present in 23 (95·8%) of total STEC isolates, whereas 20 (83·3%) STEC isolates carried the gene stx2. Twelve strains of E. coli (50% of total STEC isolates) possessed enterohaemolysin (ehxA) gene in combination with others. Fourteen (58·33%) isolates found to possess saa gene. However, no E. coli was detected harbouring gene for intimin protein (eaeA). Of 23 stx1 -positive isolates, seven (30·43%) were positive for genes of the stx1C subtype. Of the 20 isolates with the stx2 gene, 25% (5/20) possessed stx2C and 10% (2/20) possessed stx2d gene. The phylogenetic analysis after RAPD of STEC strains revealed six major clusters. The isolated STEC strains were resistant most frequently to erythromycin (95·83%), cephalothin (62·5%), amikacin (54·17%), kanamycin (45·83%) and gentamicin (41·67%) group of antibiotics. No ESBL-producing (blaCTXM , blaTEM , blaSHV ) or quinolone resistance gene (qnrA) was detected in the STEC isolates.
Collapse
Affiliation(s)
- A Mahanti
- Department of Veterinary Microbiology, West Bengal University of Animal and Fishery Sciences, Kolkata, West Bengal, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Liebana E, Carattoli A, Coque TM, Hasman H, Magiorakos AP, Mevius D, Peixe L, Poirel L, Schuepbach-Regula G, Torneke K, Torren-Edo J, Torres C, Threlfall J. Public health risks of enterobacterial isolates producing extended-spectrum β-lactamases or AmpC β-lactamases in food and food-producing animals: an EU perspective of epidemiology, analytical methods, risk factors, and control options. Clin Infect Dis 2012; 56:1030-7. [PMID: 23243183 DOI: 10.1093/cid/cis1043] [Citation(s) in RCA: 201] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The blaESBL and blaAmpC genes in Enterobacteriaceae are spread by plasmid-mediated integrons, insertion sequences, and transposons, some of which are homologous in bacteria from food animals, foods, and humans. These genes have been frequently identified in Escherichia coli and Salmonella from food animals, the most common being blaCTX-M-1, blaCTX-M-14, and blaCMY-2. Identification of risk factors for their occurrence in food animals is complex. In addition to generic antimicrobial use, cephalosporin usage is an important risk factor for selection and spread of these genes. Extensive international trade of animals is a further risk factor. There are no data on the effectiveness of individual control options in reducing public health risks. A highly effective option would be to stop or restrict cephalosporin usage in food animals. Decreasing total antimicrobial use is also of high priority. Implementation of measures to limit strain dissemination (increasing farm biosecurity, controls in animal trade, and other general postharvest controls) are also important.
Collapse
Affiliation(s)
- Ernesto Liebana
- Scientific Unit on Biological Hazards, European Food Safety Authority, Parma, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Phylogenetic grouping and virulence potential of extended-spectrum-β-lactamase-producing Escherichia coli strains in cattle. Appl Environ Microbiol 2012; 78:4677-82. [PMID: 22522692 DOI: 10.1128/aem.00351-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In line with recent reports of extended-spectrum beta-lactamases (ESBLs) in Escherichia coli isolates of highly virulent serotypes, such as O104:H4, we investigated the distribution of phylogroups (A, B1, B2, D) and virulence factor (VF)-encoding genes in 204 ESBL-producing E. coli isolates from diarrheic cattle. ESBL genes, VFs, and phylogroups were identified by PCR and a commercial DNA array (Alere, France). ESBL genes belonged mostly to the CTX-M-1 (65.7%) and CTX-M-9 (27.0%) groups, whereas those of the CTX-M-2 and TEM groups were much less represented (3.9% and 3.4%, respectively). One ESBL isolate was stx(1) and eae positive and belonged to a major enterohemorrhagic E. coli (EHEC) serotype (O111:H8). Two other isolates were eae positive but stx negative; one of these had serotype O26:H11. ESBL isolates belonged mainly to phylogroup A (55.4%) and, to lesser extents, to phylogroups D (25.5%) and B1 (15.6%), whereas B2 strains were quasi-absent (1/204). The number of VFs was significantly higher in phylogroup B1 than in phylogroups A (P = 0.04) and D (P = 0.02). Almost all of the VFs detected were found in CTX-M-1 isolates, whereas only 64.3% and 33.3% of them were found in CTX-M-9 and CTX-M-2 isolates, respectively. These results indicated that the widespread dissemination of the bla(CTX-M) genes within the E. coli population from cattle still spared the subpopulation of EHEC/Shiga-toxigenic E. coli (STEC) isolates. In contrast to other reports on non-ESBL-producing isolates from domestic animals, B1 was not the main phylogroup identified. However, B1 was found to be the most virulent phylogroup, suggesting host-specific distribution of virulence determinants among phylogenetic groups.
Collapse
|