1
|
Winand L, Nett M. Whole-cell biocatalysis with Myxococcus xanthus. Methods Enzymol 2025; 714:219-237. [PMID: 40288840 DOI: 10.1016/bs.mie.2025.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Biocatalysis has become an attractive complement to conventional chemical catalysis in the field of organic synthesis. This trend is due to the excellent chemo-, regio- and stereoselectivity of biocatalysis, which typically avoids the formation of unwanted by-products as well as cross-reactivity between reactants. Since the use of isolated enzymes and their cofactors can be associated with high costs, there is a continued interest in whole-cell biocatalysts. Applications range from the production of chiral building blocks to the derivatization of natural products and the generation of new drug candidates for the pharmaceutical and fine chemical industries. The bacterium Myxococcus xanthus is an emerging cell factory, especially for the production of antibiotics and other bioactive natural products. Not only possesses M. xanthus a considerable tolerance toward xenobiotics, but it is also a metabolically versatile host providing important building blocks for natural product biosynthesis. In this chapter, we describe procedures for the whole-cell biocatalysis with M. xanthus. This also involves methods for the construction of expression plasmids and their transfer into M. xanthus.
Collapse
Affiliation(s)
- Lea Winand
- TU Dortmund University, Department of Biochemical and Chemical Engineering, Dortmund, Germany.
| | - Markus Nett
- TU Dortmund University, Department of Biochemical and Chemical Engineering, Dortmund, Germany.
| |
Collapse
|
2
|
Liu J, Wang X, Dai G, Zhang Y, Bian X. Microbial chassis engineering drives heterologous production of complex secondary metabolites. Biotechnol Adv 2022; 59:107966. [PMID: 35487394 DOI: 10.1016/j.biotechadv.2022.107966] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/27/2022]
Abstract
The cryptic secondary metabolite biosynthetic gene clusters (BGCs) far outnumber currently known secondary metabolites. Heterologous production of secondary metabolite BGCs in suitable chassis facilitates yield improvement and discovery of new-to-nature compounds. The two juxtaposed conventional model microorganisms, Escherichia coli, Saccharomyces cerevisiae, have been harnessed as microbial chassis to produce a bounty of secondary metabolites with the help of certain host engineering. In last decade, engineering non-model microbes to efficiently biosynthesize secondary metabolites has received increasing attention due to their peculiar advantages in metabolic networks and/or biosynthesis. The state-of-the-art synthetic biology tools lead the way in operating genetic manipulation in non-model microorganisms for phenotypic optimization or yields improvement of desired secondary metabolites. In this review, we firstly discuss the pros and cons of several model and non-model microbial chassis, as well as the importance of developing broader non-model microorganisms as alternative programmable heterologous hosts to satisfy the desperate needs of biosynthesis study and industrial production. Then we highlight the lately advances in the synthetic biology tools and engineering strategies for optimization of non-model microbial chassis, in particular, the successful applications for efficient heterologous production of multifarious complex secondary metabolites, e.g., polyketides, nonribosomal peptides, as well as ribosomally synthesized and post-translationally modified peptides. Lastly, emphasis is on the perspectives of chassis cells development to access the ideal cell factory in the artificial intelligence-driven genome era.
Collapse
Affiliation(s)
- Jiaqi Liu
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China; Present address: Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Centre for Infection Research (HZI), Saarland University, Campus E8 1, 66123 Saarbrücken, Germany
| | - Xue Wang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Guangzhi Dai
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Youming Zhang
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China
| | - Xiaoying Bian
- Helmholtz International Lab for Anti-Infectives, Shandong University-Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
3
|
Myxobacterial Genomics and Post-Genomics: A Review of Genome Biology, Genome Sequences and Related 'Omics Studies. Microorganisms 2021; 9:microorganisms9102143. [PMID: 34683464 PMCID: PMC8538405 DOI: 10.3390/microorganisms9102143] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 11/27/2022] Open
Abstract
Myxobacteria are fascinating and complex microbes. They prey upon other members of the soil microbiome by secreting antimicrobial proteins and metabolites, and will undergo multicellular development if starved. The genome sequence of the model myxobacterium Myxococcus xanthus DK1622 was published in 2006 and 15 years later, 163 myxobacterial genome sequences have now been made public. This explosion in genomic data has enabled comparative genomics analyses to be performed across the taxon, providing important insights into myxobacterial gene conservation and evolution. The availability of myxobacterial genome sequences has allowed system-wide functional genomic investigations into entire classes of genes. It has also enabled post-genomic technologies to be applied to myxobacteria, including transcriptome analyses (microarrays and RNA-seq), proteome studies (gel-based and gel-free), investigations into protein–DNA interactions (ChIP-seq) and metabolism. Here, we review myxobacterial genome sequencing, and summarise the insights into myxobacterial biology that have emerged as a result. We also outline the application of functional genomics and post-genomic approaches in myxobacterial research, highlighting important findings to emerge from seminal studies. The review also provides a comprehensive guide to the genomic datasets available in mid-2021 for myxobacteria (including 24 genomes that we have sequenced and which are described here for the first time).
Collapse
|
4
|
Osorio-Valeriano M, Altegoer F, Das CK, Steinchen W, Panis G, Connolley L, Giacomelli G, Feddersen H, Corrales-Guerrero L, Giammarinaro PI, Hanßmann J, Bramkamp M, Viollier PH, Murray S, Schäfer LV, Bange G, Thanbichler M. The CTPase activity of ParB determines the size and dynamics of prokaryotic DNA partition complexes. Mol Cell 2021; 81:3992-4007.e10. [PMID: 34562373 DOI: 10.1016/j.molcel.2021.09.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 07/27/2021] [Accepted: 08/31/2021] [Indexed: 01/29/2023]
Abstract
ParB-like CTPases mediate the segregation of bacterial chromosomes and low-copy number plasmids. They act as DNA-sliding clamps that are loaded at parS motifs in the centromere of target DNA molecules and spread laterally to form large nucleoprotein complexes serving as docking points for the DNA segregation machinery. Here, we solve crystal structures of ParB in the pre- and post-hydrolysis state and illuminate the catalytic mechanism of nucleotide hydrolysis. Moreover, we identify conformational changes that underlie the CTP- and parS-dependent closure of ParB clamps. The study of CTPase-deficient ParB variants reveals that CTP hydrolysis serves to limit the sliding time of ParB clamps and thus drives the establishment of a well-defined ParB diffusion gradient across the centromere whose dynamics are critical for DNA segregation. These findings clarify the role of the ParB CTPase cycle in partition complex assembly and function and thus advance our understanding of this prototypic CTP-dependent molecular switch.
Collapse
Affiliation(s)
- Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Florian Altegoer
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Chandan K Das
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Lara Connolley
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Giacomo Giacomelli
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Helge Feddersen
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | | | - Pietro I Giammarinaro
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Juri Hanßmann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Marc Bramkamp
- Institute for General Microbiology, Christian Albrechts University, 24118 Kiel, Germany
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, 1211 Geneva, Switzerland
| | - Seán Murray
- Department of Systems & Synthetic Microbiology, Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Lars V Schäfer
- Theoretical Chemistry, Ruhr University Bochum, 44801 Bochum, Germany
| | - Gert Bange
- Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| |
Collapse
|
5
|
Osorio-Valeriano M, Altegoer F, Steinchen W, Urban S, Liu Y, Bange G, Thanbichler M. ParB-type DNA Segregation Proteins Are CTP-Dependent Molecular Switches. Cell 2020; 179:1512-1524.e15. [PMID: 31835030 DOI: 10.1016/j.cell.2019.11.015] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/22/2019] [Accepted: 11/12/2019] [Indexed: 11/24/2022]
Abstract
During cell division, newly replicated DNA is actively segregated to the daughter cells. In most bacteria, this process involves the DNA-binding protein ParB, which condenses the centromeric regions of sister DNA molecules into kinetochore-like structures that recruit the DNA partition ATPase ParA and the prokaroytic SMC/condensin complex. Here, we report the crystal structure of a ParB-like protein (PadC) that emerges to tightly bind the ribonucleotide CTP. The CTP-binding pocket of PadC is conserved in ParB and composed of signature motifs known to be essential for ParB function. We find that ParB indeed interacts with CTP and requires nucleotide binding for DNA condensation in vivo. We further show that CTP-binding modulates the affinity of ParB for centromeric parS sites, whereas parS recognition stimulates its CTPase activity. ParB proteins thus emerge as a new class of CTP-dependent molecular switches that act in concert with ATPases and GTPases to control fundamental cellular functions.
Collapse
Affiliation(s)
- Manuel Osorio-Valeriano
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany
| | - Florian Altegoer
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Wieland Steinchen
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany
| | - Svenja Urban
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Ying Liu
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Gert Bange
- Department of Chemistry, University of Marburg, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| | - Martin Thanbichler
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Max Planck Institute for Terrestrial Microbiology, 35043 Marburg, Germany; Center for Synthetic Microbiology, 35043 Marburg, Germany.
| |
Collapse
|
6
|
Contreras-Moreno FJ, Muñoz-Dorado J, García-Tomsig NI, Martínez-Navajas G, Pérez J, Moraleda-Muñoz A. Copper and Melanin Play a Role in Myxococcus xanthus Predation on Sinorhizobium meliloti. Front Microbiol 2020; 11:94. [PMID: 32117124 PMCID: PMC7010606 DOI: 10.3389/fmicb.2020.00094] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/15/2022] Open
Abstract
Myxococcus xanthus is a soil myxobacterium that exhibits a complex lifecycle with two multicellular stages: cooperative predation and development. During predation, myxobacterial cells produce a wide variety of secondary metabolites and hydrolytic enzymes to kill and consume the prey. It is known that eukaryotic predators, such as ameba and macrophages, introduce copper and other metals into the phagosomes to kill their prey by oxidative stress. However, the role of metals in bacterial predation has not yet been established. In this work, we have addressed the role of copper during predation of M. xanthus on Sinorhizobium meliloti. The use of biosensors, variable pressure scanning electron microscopy, high-resolution scanning transmission electron microscopy, and energy dispersive X ray analysis has revealed that copper accumulates in the region where predator and prey collide. This accumulation of metal up-regulates the expression of several mechanisms involved in copper detoxification in the predator (the P1B-ATPase CopA, the multicopper oxidase CuoA and the tripartite pump Cus2), and the production by the prey of copper-inducible melanin, which is a polymer with the ability to protect cells from oxidative stress. We have identified two genes in S. meliloti (encoding a tyrosinase and a multicopper oxidase) that participate in the biosynthesis of melanin. Analysis of prey survivability in the co-culture of M. xanthus and a mutant of S. meliloti in which the two genes involved in melanin biosynthesis have been deleted has revealed that this mutant is more sensitive to predation than the wild-type strain. These results indicate that copper plays a role in bacterial predation and that melanin is used by the prey to defend itself from the predator. Taking into consideration that S. meliloti is a nitrogen-fixing bacterium in symbiosis with legumes that coexists in soils with M. xanthus and that copper is a common metal found in this habitat as a consequence of several human activities, these results provide clear evidence that the accumulation of this metal in the soil may influence the microbial ecosystems by affecting bacterial predatory activities.
Collapse
Affiliation(s)
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Natalia Isabel García-Tomsig
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain.,Estación Experimental del Zaidín, Granada, Spain
| | | | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| |
Collapse
|
7
|
Sah GP, Cao P, Wall D. MYXO-CTERM sorting tag directs proteins to the cell surface via the type II secretion system. Mol Microbiol 2020; 113:1038-1051. [PMID: 31975447 DOI: 10.1111/mmi.14473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 11/30/2022]
Abstract
Cells interact with their surrounding environment through surface proteins. However, knowledge gaps remain in understanding how these important types of proteins are transported and anchored on the cell surface. In the Gram-negative social bacterium, Myxococcus xanthus, a putative C-terminal sorting tag (MYXO-CTERM) is predicted to help direct 34 different proteins onto the cell surface. Here we investigate the sorting pathway for MYXO-CTERM proteins by using the TraA cell surface receptor as a paradigm. Deleting this motif from TraA abolishes the cell surface anchoring and results in extracellular secretion. Our findings indicate that conserved cysteines within the MYXO-CTERM are posttranslationally modified and are required for TraA cell surface localization and function. A region immediately upstream of these residues is predicted to be disordered and removing this motif caused a secretion defect and blocked cell surface anchoring. We further show that the type II secretion system is required for translocation across the outer membrane and that a cysteine-rich region directs TraA to the T2SS. Similar results were found with another MYXO-CTERM protein indicating our findings can be generalized. Further, we show the universal distribution of MXYO-CTERM motif across the Myxococcales order and provide a working model for sorting of these proteins.
Collapse
Affiliation(s)
- Govind Prasad Sah
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Pengbo Cao
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| | - Daniel Wall
- Department of Molecular Biology, University of Wyoming, Laramie, WY, USA
| |
Collapse
|
8
|
Pérez J, Muñoz-Dorado J, Moraleda-Muñoz A. The complex global response to copper in the multicellular bacterium Myxococcus xanthus. Metallomics 2019; 10:876-886. [PMID: 29961779 DOI: 10.1039/c8mt00121a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The complex copper response of the multicellular proteobacterium M. xanthus includes structural genes similar to those described in other bacteria, such as P1B-type ATPases, multicopper oxidases, and heavy metal efflux systems. However, the two time-dependent expression profiles of the different copper systems are unique. There are a number of genes responsible for an immediate response, whose expression increases after the addition of copper, but rapidly decreases thereafter to basal levels. The regulatory element that controls this early response is CorE, a novel extracytoplasmic function σ factor that is activated by Cu2+ and inactivated by Cu+. Other genes are part of a maintenance response. These genes show a profile that slows up after the copper addition and reaches a plateau at 24-48 h incubation. Most of the genes involved in this response are encoded by the operon curA, which is regulated by the two-component system CorSR. Moreover, other genes involved in the maintenance response are regulated by different regulatory elements that remain unknown. Additionally, copper activates the transcription of the structural genes for carotenoid synthesis through a mechanism that requires the activation of the σ factor CarQ. Bearing in mind that M. xanthus is not very resistant to copper, it is speculated that the complexity of its copper response might be related to its complex life cycle.
Collapse
Affiliation(s)
- Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, E-18071 Granada, Spain.
| | | | | |
Collapse
|
9
|
Whole transcriptome analysis and gene deletion to understand the chloramphenicol resistance mechanism and develop a screening method for homologous recombination in Myxococcus xanthus. Microb Cell Fact 2019; 18:123. [PMID: 31291955 PMCID: PMC6617876 DOI: 10.1186/s12934-019-1172-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Accepted: 07/02/2019] [Indexed: 11/23/2022] Open
Abstract
Background Myxococcus xanthus DK1622 is a model system for studying multicellular development, predation, cellular differentiation, and evolution. Furthermore, it is a rich source of novel secondary metabolites and is widely used as heterologous expression host of exogenous biosynthetic gene clusters. For decades, genetic modification of M. xanthus DK1622 has mainly relied on kanamycin and tetracycline selection systems. Results Here, we introduce an alternative selection system based on chloramphenicol (Cm) to broaden the spectrum of available molecular tools. A chloramphenicol-resistant growth phase and a chloramphenicol-susceptible growth phase before and after chloramphenicol-induction were prepared, and later sequenced to identify specific genes related to chloramphenicol-repercussion and drug-resistance. A total of 481 differentially expressed genes were revealed in chloramphenicol-resistant Cm5_36h and 1920 differentially expressed genes in chloramphenicol-dormant Cm_8h. Moreover, the gene expression profile in the chloramphenicol-dormant strain Cm_8h was quite different from that of Cm5_36 which had completely adapted to Cm, and 1513 differentially expression genes were identified between these two phenotypes. Besides upregulated acetyltransferases, several transporter encoding genes, including ABC transporters, major facilitator superfamily transporters (MFS), resistance-nodulation-cell division (RND) super family transporters and multidrug and toxic compound extrusion family transporters (MATE) were found to be involved in Cm resistance. After the knockout of the most highly upregulated MXAN_2566 MFS family gene, mutant strain DK-2566 was proved to be sensitive to Cm by measuring the growth curve in the Cm-added condition. A plasmid with a Cm resistance marker was constructed and integrated into chromosomes via homologous recombination and Cm screening. The integration efficiency was about 20% at different concentrations of Cm. Conclusions This study provides a new antibiotic-based selection system, and will help to understand antibiotic resistance mechanisms in M. xanthus DK1622. Electronic supplementary material The online version of this article (10.1186/s12934-019-1172-3) contains supplementary material, which is available to authorized users.
Collapse
|
10
|
Moraleda-Muñoz A, Marcos-Torres FJ, Pérez J, Muñoz-Dorado J. Metal-responsive RNA polymerase extracytoplasmic function (ECF) sigma factors. Mol Microbiol 2019; 112:385-398. [PMID: 31187912 PMCID: PMC6851896 DOI: 10.1111/mmi.14328] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2019] [Indexed: 01/02/2023]
Abstract
In order to survive, bacteria must adapt to multiple fluctuations in their environment, including coping with changes in metal concentrations. Many metals are essential for viability, since they act as cofactors of indispensable enzymes. But on the other hand, they are potentially toxic because they generate reactive oxygen species or displace other metals from proteins, turning them inactive. This dual effect of metals forces cells to maintain homeostasis using a variety of systems to import and export them. These systems are usually inducible, and their expression is regulated by metal sensors and signal‐transduction mechanisms, one of which is mediated by extracytoplasmic function (ECF) sigma factors. In this review, we have focused on the metal‐responsive ECF sigma factors, several of which are activated by iron depletion (FecI, FpvI and PvdS), while others are activated by excess of metals such as nickel and cobalt (CnrH), copper (CarQ and CorE) or cadmium and zinc (CorE2). We focus particularly on their physiological roles, mechanisms of action and signal transduction pathways.
Collapse
Affiliation(s)
- Aurelio Moraleda-Muñoz
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - Francisco Javier Marcos-Torres
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain.,Department of Cell and Molecular Biology, Uppsala University, Uppsala, 751 24, Sweden
| | - Juana Pérez
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| | - José Muñoz-Dorado
- Departamento de Microbiología, Facultad de Ciencias, Universidad de Granada, Avda. Fuentenueva s/n, Granada, E-18071, Spain
| |
Collapse
|
11
|
Yang YJ, Singh RP, Lan X, Zhang CS, Li YZ, Li YQ, Sheng DH. Genome Editing in Model Strain Myxococcus xanthus DK1622 by a Site-Specific Cre/loxP Recombination System. Biomolecules 2018; 8:biom8040137. [PMID: 30404219 PMCID: PMC6316027 DOI: 10.3390/biom8040137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 11/17/2022] Open
Abstract
Myxococcus xanthus DK1622 is a rich source of novel secondary metabolites, and it is often used as an expression host of exogenous biosynthetic gene clusters. However, the frequency of obtaining large genome-deletion variants by using traditional strategies is low, and progenies generated by homologous recombination contain irregular deletions. The present study aims to develop an efficient genome-engineering system for this bacterium based on the Cre/loxP system. We first verified the functionality of the native cre system that was integrated into the chromosome with an inducible promoter PcuoA. Then we assayed the deletion frequency of 8-bp-spacer-sequence mutants in loxP by Cre recombinase which was expressed by suicide vector pBJ113 or self-replicative vector pZJY41. It was found that higher guanine content in a spacer sequence had higher deletion frequency, and the self-replicative vector was more suitable for the Cre/loxP system, probably due to the leaky expression of inducible promoter PcuoA. We also inspected the effects of different antibiotics and the native or synthetic cre gene. Polymerase chain reaction (PCR) and sequencing of new genome joints confirmed that the Cre/loxP system was able to delete a 466 kb fragment in M. xanthus. This Cre/loxP-mediated recombination could serve as an alternative genetic manipulation method.
Collapse
Affiliation(s)
- Ying-Jie Yang
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Raghvendra Pratap Singh
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
- Research and Development Department, Biotechnology, Uttaranchal University, Dehradun 248007, India.
| | - Xin Lan
- Department of Bio-Chemistry, Qingdao Technical College, Qingdao 266555, China.
| | - Cheng-Sheng Zhang
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Yue-Zhong Li
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
| | - Yi-Qiang Li
- Marine Agriculture Research Center, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | - Duo-Hong Sheng
- State Key Laboratory of Microbial Technology, Microbiology Technology Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
12
|
Engineering Pseudochelin Production in Myxococcus xanthus. Appl Environ Microbiol 2018; 84:AEM.01789-18. [PMID: 30217842 DOI: 10.1128/aem.01789-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Accepted: 09/01/2018] [Indexed: 12/15/2022] Open
Abstract
Myxobacteria utilize the catechol natural products myxochelin A and B in order to maintain their iron homeostasis. Recently, the production of these siderophores, along with a new myxochelin derivative named pseudochelin A, was reported for the marine bacterium Pseudoalteromonas piscicida S2040. The latter derivative features a characteristic imidazoline moiety, which was proposed to originate from an intramolecular condensation reaction of the β-aminoethyl amide group in myxochelin B. To identify the enzyme catalyzing this conversion, we compared the myxochelin regulons of two myxobacterial strains that produce solely myxochelin A and B with those of P. piscicida S2040. This approach revealed a gene exclusive to the myxochelin regulon in P. piscicida S2040, coding for an enzyme of the amidohydrolase superfamily. To prove that this enzyme is indeed responsible for the postulated conversion, the reaction was reconstituted in vitro using a hexahistidine-tagged recombinant protein made in Escherichia coli, with myxochelin B as the substrate. To test the production of pseudochelin A under in vivo conditions, the amidohydrolase gene was cloned into the myxobacterial plasmid pZJY156 and placed under the control of a copper-inducible promoter. The resulting vector was introduced into the myxobacterium Myxococcus xanthus DSM 16526, a native producer of myxochelin A and B. Following induction with copper, the myxobacterial expression strain was found to synthesize small quantities of pseudochelin A. Replacement of the copper-inducible promoter with the constitutive pilA promoter led to increased production levels in M. xanthus, which facilitated the isolation and subsequent structural verification of the heterologously produced compound.IMPORTANCE In this study, an enzyme for imidazoline formation in pseudochelin biosynthesis was identified. Evidence for the involvement of this enzyme in the postulated reaction was obtained after in vitro reconstitution. Furthermore, the function of this enzyme was demonstrated in vivo by transferring the corresponding gene into the bacterium Myxococcus xanthus, which thereby became a producer of pseudochelin A. In addition to clarifying the molecular basis of imidazoline formation in siderophore biosynthesis, we describe the heterologous expression of a gene in a myxobacterium without chromosomal integration. Due to its metabolic proficiency, M. xanthus represents an interesting alternative to established host systems for the reconstitution and manipulation of biosynthetic pathways. Since the plasmid used in this study is easily adaptable for the expression of other enzymes as well, we expand the conventional expression strategy for myxobacteria, which is based on the integration of biosynthetic genes into the host genome.
Collapse
|
13
|
Schumacher D, Søgaard-Andersen L. Fluorescence Live-cell Imaging of the Complete Vegetative Cell Cycle of the Slow-growing Social Bacterium Myxococcus xanthus. J Vis Exp 2018. [PMID: 29985348 PMCID: PMC6101962 DOI: 10.3791/57860] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Fluorescence live-cell imaging of bacterial cells is a key method in the analysis of the spatial and temporal dynamics of proteins and chromosomes underlying central cell cycle events. However, imaging of these molecules in slow-growing bacteria represents a challenge due to photobleaching of fluorophores and phototoxicity during image acquisition. Here, we describe a simple protocol to circumvent these limitations in the case of Myxococcus xanthus (which has a generation time of 4 - 6 h). To this end, M. xanthus cells are grown on a thick nutrient-containing agar pad in a temperature-controlled humid environment. Under these conditions, we determine the doubling time of individual cells by following the growth of single cells. Moreover, key cellular processes such as chromosome segregation and cell division can be imaged by fluorescence live-cell imaging of cells containing relevant fluorescently labeled marker proteins such as ParB-YFP, FtsZ-GFP, and mCherry-PomX over multiple cell cycles. Subsequently, the acquired images are processed to generate montages and/or movies.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology
| | | |
Collapse
|
14
|
Fu G, Bandaria JN, Le Gall AV, Fan X, Yildiz A, Mignot T, Zusman DR, Nan B. MotAB-like machinery drives the movement of MreB filaments during bacterial gliding motility. Proc Natl Acad Sci U S A 2018; 115:2484-2489. [PMID: 29463706 PMCID: PMC5877941 DOI: 10.1073/pnas.1716441115] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
MreB is a bacterial actin that is important for cell shape and cell wall biosynthesis in many bacterial species. MreB also plays crucial roles in Myxococcus xanthus gliding motility, but the underlying mechanism remains unknown. Here we tracked the dynamics of single MreB particles in M. xanthus using single-particle tracking photoactivated localization microscopy. We found that a subpopulation of MreB particles moves rapidly along helical trajectories, similar to the movements of the MotAB-like gliding motors. The rapid MreB motion was stalled in the mutants that carried truncated gliding motors. Remarkably, M. xanthus MreB moves one to two orders of magnitude faster than its homologs that move along with the cell wall synthesis machinery in Bacillus subtilis and Escherichia coli, and this rapid movement was not affected by the inhibitors of cell wall biosynthesis. Our results show that in M. xanthus, MreB provides a scaffold for the gliding motors while the gliding machinery drives the movement of MreB filaments, analogous to the interdependent movements of myosin motors and actin in eukaryotic cells.
Collapse
Affiliation(s)
- Guo Fu
- Department of Biology, Texas A&M University, College Station, TX 77843
| | - Jigar N Bandaria
- Department of Physics, University of California, Berkeley, CA 94720
| | - Anne Valérie Le Gall
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille University, 13009 Marseille, France
| | - Xue Fan
- Department of Statistics, Texas A&M University, College Station, TX 77843
| | - Ahmet Yildiz
- Department of Physics, University of California, Berkeley, CA 94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Tâm Mignot
- Laboratoire de Chimie Bactérienne, UMR7283, Institut de Microbiologie de la Méditerranée, CNRS-Aix Marseille University, 13009 Marseille, France
| | - David R Zusman
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720
| | - Beiyan Nan
- Department of Biology, Texas A&M University, College Station, TX 77843;
| |
Collapse
|
15
|
Peng R, Wang Y, Feng WW, Yue XJ, Chen JH, Hu XZ, Li ZF, Sheng DH, Zhang YM, Li YZ. CRISPR/dCas9-mediated transcriptional improvement of the biosynthetic gene cluster for the epothilone production in Myxococcus xanthus. Microb Cell Fact 2018; 17:15. [PMID: 29378572 PMCID: PMC5787926 DOI: 10.1186/s12934-018-0867-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/19/2018] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The CRISPR/dCas9 system is a powerful tool to activate the transcription of target genes in eukaryotic or prokaryotic cells, but lacks assays in complex conditions, such as the biosynthesis of secondary metabolites. RESULTS In this study, to improve the transcription of the heterologously expressed biosynthetic genes for the production of epothilones, we established the CRISPR/dCas9-mediated activation technique in Myxococcus xanthus and analyzed some key factors involving in the CRISPR/dCas9 activation. We firstly optimized the cas9 codon to fit the M. xanthus cells, mutated the gene to inactivate the nuclease activity, and constructed the dCas9-activator system in an epothilone producer. We compared the improvement efficiency of different sgRNAs on the production of epothilones and the expression of the biosynthetic genes. We also compared the improvement effects of different activator proteins, the ω and α subunits of RNA polymerase, and the sigma factors σ54 and CarQ. By using a copper-inducible promoter, we determined that higher expressions of dCas9-activator improved the activation effects. CONCLUSIONS Our results showed that the CRISPR/dCas-mediated transcription activation is a simple and broadly applicable technique to improve the transcriptional efficiency for the production of secondary metabolites in microorganisms. This is the first time to construct the CRISPR/dCas9 activation system in myxobacteria and the first time to assay the CRISPR/dCas9 activations for the biosynthesis of microbial secondary metabolites.
Collapse
Affiliation(s)
- Ran Peng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences, Beijing, 100050 China
| | - Ye Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Wan-wan Feng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xin-jing Yue
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Jiang-he Chen
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Xiao-zhuang Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Duo-hong Sheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - You-ming Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 China
| |
Collapse
|
16
|
Bactofilin-mediated organization of the ParABS chromosome segregation system in Myxococcus xanthus. Nat Commun 2017; 8:1817. [PMID: 29180656 PMCID: PMC5703909 DOI: 10.1038/s41467-017-02015-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 11/01/2017] [Indexed: 12/02/2022] Open
Abstract
In bacteria, homologs of actin, tubulin, and intermediate filament proteins often act in concert with bacteria-specific scaffolding proteins to ensure the proper arrangement of cellular components. Among the bacteria-specific factors are the bactofilins, a widespread family of polymer-forming proteins whose biology is poorly investigated. Here, we study the three bactofilins BacNOP in the rod-shaped bacterium Myxococcus xanthus. We show that BacNOP co-assemble into elongated scaffolds that restrain the ParABS chromosome segregation machinery to the subpolar regions of the cell. The centromere (parS)-binding protein ParB associates with the pole-distal ends of these structures, whereas the DNA partitioning ATPase ParA binds along their entire length, using the newly identified protein PadC (MXAN_4634) as an adapter. The integrity of these complexes is critical for proper nucleoid morphology and chromosome segregation. BacNOP thus mediate a previously unknown mechanism of subcellular organization that recruits proteins to defined sites within the cytoplasm, far off the cell poles. The roles played by bactofilins, a widespread type of bacterial cytoskeletal elements, are unclear. Here, the authors show that the bactofilins BacNOP facilitate proper subcellular localization of the ParABS chromosome segregation system in the model organism Myxococcus xanthus.
Collapse
|
17
|
Schumacher D, Bergeler S, Harms A, Vonck J, Huneke-Vogt S, Frey E, Søgaard-Andersen L. The PomXYZ Proteins Self-Organize on the Bacterial Nucleoid to Stimulate Cell Division. Dev Cell 2017; 41:299-314.e13. [PMID: 28486132 DOI: 10.1016/j.devcel.2017.04.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 04/05/2017] [Accepted: 04/12/2017] [Indexed: 11/29/2022]
Abstract
Cell division site positioning is precisely regulated to generate correctly sized and shaped daughters. We uncover the strategy used by the social bacterium Myxococcus xanthus to position the FtsZ cytokinetic ring at midcell. PomX, PomY, and the nucleoid-binding ParA/MinD ATPase PomZ self-assemble forming a large nucleoid-associated complex that localizes at the division site before FtsZ to directly guide and stimulate division. PomXYZ localization is generated through self-organized biased random motion on the nucleoid toward midcell and constrained motion at midcell. Experiments and theory show that PomXYZ motion is produced by diffusive PomZ fluxes on the nucleoid into the complex. Flux differences scale with the intracellular asymmetry of the complex and are converted into a local PomZ concentration gradient across the complex with translocation toward the higher PomZ concentration. At midcell, fluxes equalize resulting in constrained motion. Flux-based mechanisms may represent a general paradigm for positioning of macromolecular structures in bacteria.
Collapse
Affiliation(s)
- Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Silke Bergeler
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Janet Vonck
- Department of Structural Biology, Max Planck Institute of Biophysics, 60438 Frankfurt am Main, Germany
| | - Sabrina Huneke-Vogt
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstraße 37, 80333 Munich, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Straße 10, 35043 Marburg, Germany.
| |
Collapse
|
18
|
Yang YJ, Wang Y, Li ZF, Gong Y, Zhang P, Hu WC, Sheng DH, Li YZ. Increasing on-target cleavage efficiency for CRISPR/Cas9-induced large fragment deletion in Myxococcus xanthus. Microb Cell Fact 2017; 16:142. [PMID: 28814300 PMCID: PMC5559782 DOI: 10.1186/s12934-017-0758-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/09/2017] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The CRISPR/Cas9 system is a powerful tool for genome editing, in which the sgRNA binds and guides the Cas9 protein for the sequence-specific cleavage. The protocol is employable in different organisms, but is often limited by cell damage due to the endonuclease activity of the introduced Cas9 and the potential off-target DNA cleavage from incorrect guide by the 20 nt spacer. RESULTS In this study, after resolving some critical limits, we have established an efficient CRISPR/Cas9 system for the deletion of large genome fragments related to the biosynthesis of secondary metabolites in Myxococcus xanthus cells. We revealed that the high expression of a codon-optimized cas9 gene in M. xanthus was cytotoxic, and developed a temporally high expression strategy to reduce the cell damage from high expressions of Cas9. We optimized the deletion protocol by using the tRNA-sgRNA-tRNA chimeric structure to ensure correct sgRNA sequence. We found that, in addition to the position-dependent nucleotide preference, the free energy of a 20 nt spacer was a key factor for the deletion efficiency. CONCLUSIONS By using the developed protocol, we achieved the CRISPR/Cas9-induced deletion of large biosynthetic gene clusters for secondary metabolites in M. xanthus DK1622 and its epothilone-producing mutant. The findings and the proposals described in this paper were suggested to be workable in other organisms, for example, other Gram negative bacteria with high GC content.
Collapse
Affiliation(s)
- Ying-jie Yang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ye Wang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Zhi-feng Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Ya Gong
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Peng Zhang
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Wen-chao Hu
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Duo-hong Sheng
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| | - Yue-zhong Li
- State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Jinan, 250100 People’s Republic of China
| |
Collapse
|
19
|
Molecular toolbox for genetic manipulation of the stalked budding bacterium Hyphomonas neptunium. Appl Environ Microbiol 2014; 81:736-44. [PMID: 25398860 DOI: 10.1128/aem.03104-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The alphaproteobacterium Hyphomonas neptunium proliferates by a unique budding mechanism in which daughter cells emerge from the end of a stalk-like extension emanating from the mother cell body. Studies of this species so far have been hampered by the lack of a genetic system and of molecular tools allowing the regulated expression of target genes. Based on microarray analyses, this work identifies two H. neptunium promoters that are activated specifically by copper and zinc. Functional analyses show that they have low basal activity and a high dynamic range, meeting the requirements for use as a multipurpose expression system. To facilitate their application, the two promoters were incorporated into a set of integrative plasmids, featuring a choice of two different selection markers and various fluorescent protein genes. These constructs enable the straightforward generation and heavy metal-inducible synthesis of fluorescent protein fusions in H. neptunium, thereby opening the door to an in-depth analysis of polar growth and development in this species.
Collapse
|
20
|
Iniesta AA. ParABS system in chromosome partitioning in the bacterium Myxococcus xanthus. PLoS One 2014; 9:e86897. [PMID: 24466283 PMCID: PMC3899335 DOI: 10.1371/journal.pone.0086897] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Accepted: 12/17/2013] [Indexed: 12/19/2022] Open
Abstract
Chromosome segregation is an essential cellular function in eukaryotic and prokaryotic cells. The ParABS system is a fundamental player for a mitosis-like process in chromosome partitioning in many bacterial species. This work shows that the social bacterium Myxococcus xanthus also uses the ParABS system for chromosome segregation. Its large prokaryotic genome of 9.1 Mb contains 22 parS sequences near the origin of replication, and it is shown here that M. xanthus ParB binds preferentially to a consensus parS sequence in vitro. ParB and ParA are essential for cell viability in M. xanthus as in Caulobacter crescentus, but unlike in many other bacteria. Absence of ParB results in anucleate cells, chromosome segregation defects and loss of viability. Analysis of ParA subcellular localization shows that it clusters at the poles in all cells, and in some, in the DNA-free cell division plane between two chromosomal DNA masses. This ParA localization pattern depends on ParB but not on FtsZ. ParB inhibits the nonspecific interaction of ParA with DNA, and ParA colocalizes with chromosomal DNA only when ParB is depleted. The subcellular localization of ParB suggests a single ParB-parS complex localized at the edge of the nucleoid, next to a polar ParA cluster, with a second ParB-parS complex migrating after the replication of parS takes place to the opposite nucleoid edge, next to the other polar ParA cluster.
Collapse
Affiliation(s)
- Antonio A. Iniesta
- Departamento de Genética y Microbiología, Área de Genética, Facultad de Biología, Universidad de Murcia, Campus Regional de Excelencia Internacional “Campus Mare Nostrum”, Murcia, Spain
- * E-mail:
| |
Collapse
|
21
|
Harms A, Treuner-Lange A, Schumacher D, Søgaard-Andersen L. Tracking of chromosome and replisome dynamics in Myxococcus xanthus reveals a novel chromosome arrangement. PLoS Genet 2013; 9:e1003802. [PMID: 24068967 PMCID: PMC3778016 DOI: 10.1371/journal.pgen.1003802] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/31/2013] [Indexed: 11/24/2022] Open
Abstract
Cells closely coordinate cell division with chromosome replication and segregation; however, the mechanisms responsible for this coordination still remain largely unknown. Here, we analyzed the spatial arrangement and temporal dynamics of the 9.1 Mb circular chromosome in the rod-shaped cells of Myxococcus xanthus. For chromosome segregation, M. xanthus uses a parABS system, which is essential, and lack of ParB results in chromosome segregation defects as well as cell divisions over nucleoids and the formation of anucleate cells. From the determination of the dynamic subcellular location of six genetic loci, we conclude that in newborn cells ori, as monitored following the ParB/parS complex, and ter regions are localized in the subpolar regions of the old and new cell pole, respectively and each separated from the nearest pole by approximately 1 µm. The bulk of the chromosome is arranged between the two subpolar regions, thus leaving the two large subpolar regions devoid of DNA. Upon replication, one ori region remains in the original subpolar region while the second copy segregates unidirectionally to the opposite subpolar region followed by the rest of the chromosome. In parallel, the ter region of the mother chromosome relocates, most likely passively, to midcell, where it is replicated. Consequently, after completion of replication and segregation, the two chromosomes show an ori-ter-ter-ori arrangement with mirror symmetry about a transverse axis at midcell. Upon completion of segregation of the ParB/parS complex, ParA localizes in large patches in the DNA-free subpolar regions. Using an Ssb-YFP fusion as a proxy for replisome localization, we observed that the two replisomes track independently of each other from a subpolar region towards ter. We conclude that M. xanthus chromosome arrangement and dynamics combine features from previously described systems with new features leading to a novel spatiotemporal arrangement pattern. Work on several model organisms has revealed that bacterial chromosomes are spatially highly arranged throughout the cell cycle in a dynamic yet reproducible manner. These analyses have also demonstrated significant differences between chromosome arrangements and dynamics in different bacterial species. Here, we show that the Myxococcus xanthus genome is arranged about a longitudinal axis with ori in a subpolar region and ter in the opposite subpolar region. Upon replication, one ori remains at the original subpolar region while the second copy in a directed and parABS-dependent manner segregates to the opposite subpolar region followed by the rest of the chromosome. In parallel, ter relocates from a subpolar region to midcell. Replication involves replisomes that track independently of each other from the ori-containing subpolar region towards ter. Moreover, we find that the parABS system is essential in M. xanthus and ParB depletion not only results in chromosome segregation defects but also in cell division defects with cell divisions occurring over nucleoids. In M. xanthus the dynamics of chromosome replication and segregation combine features from previously described systems leading to a novel spatiotemporal arrangement pattern.
Collapse
Affiliation(s)
- Andrea Harms
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Dominik Schumacher
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Lotte Søgaard-Andersen
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
22
|
Flagella stator homologs function as motors for myxobacterial gliding motility by moving in helical trajectories. Proc Natl Acad Sci U S A 2013; 110:E1508-13. [PMID: 23576734 DOI: 10.1073/pnas.1219982110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Many bacterial species use gliding motility in natural habitats because external flagella function poorly on hard surfaces. However, the mechanism(s) of gliding remain elusive because surface motility structures are not apparent. Here, we characterized the dynamics of the Myxococcus xanthus gliding motor protein AglR, a homolog of the Escherichia coli flagella stator protein MotA. We observed that AglR decorated a helical structure, and the AglR helices rotated when cells were suspended in liquid or when cells moved on agar surfaces. With photoactivatable localization microscopy, we found that single molecules of AglR, unlike MotA/MotB, can move laterally within the membrane in helical trajectories. AglR slowed down transiently at gliding surfaces, accumulating in clusters. Our work shows that the untethered gliding motors of M. xanthus, by moving within the membrane, can transform helical motion into linear driving forces that push against the surface.
Collapse
|
23
|
Treuner-Lange A, Aguiluz K, van der Does C, Gómez-Santos N, Harms A, Schumacher D, Lenz P, Hoppert M, Kahnt J, Muñoz-Dorado J, Søgaard-Andersen L. PomZ, a ParA-like protein, regulates Z-ring formation and cell division in Myxococcus xanthus. Mol Microbiol 2012; 87:235-53. [PMID: 23145985 DOI: 10.1111/mmi.12094] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/07/2012] [Indexed: 11/27/2022]
Abstract
Accurate positioning of the division site is essential to generate appropriately sized daughter cells with the correct chromosome number. In bacteria, division generally depends on assembly of the tubulin homologue FtsZ into the Z-ring at the division site. Here, we show that lack of the ParA-like protein PomZ in Myxococcus xanthus resulted in division defects with the formation of chromosome-free minicells and filamentous cells. Lack of PomZ also caused reduced formation of Z-rings and incorrect positioning of the few Z-rings formed. PomZ localization is cell cycle regulated, and PomZ accumulates at the division site at midcell after chromosome segregation but prior to FtsZ as well as in the absence of FtsZ. FtsZ displayed cooperative GTP hydrolysis in vitro but did not form detectable filaments in vitro. PomZ interacted with FtsZ in M. xanthus cell extracts. These data show that PomZ is important for Z-ring formation and is a spatial regulator of Z-ring formation and cell division. The cell cycle-dependent localization of PomZ at midcell provides a mechanism for coupling cell cycle progression and Z-ring formation. Moreover, the data suggest that PomZ is part of a system that recruits FtsZ to midcell, thereby, restricting Z-ring formation to this position.
Collapse
Affiliation(s)
- Anke Treuner-Lange
- Department of Ecophysiology, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch Str. 10, 35043 Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Two systems for conditional gene expression in Myxococcus xanthus inducible by isopropyl-β-D-thiogalactopyranoside or vanillate. J Bacteriol 2012; 194:5875-85. [PMID: 22923595 DOI: 10.1128/jb.01110-12] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Conditional expression of a gene is a powerful tool to study its function and is typically achieved by placing the gene under the control of an inducible promoter. There is, however, a dearth of such inducible systems in Myxococcus xanthus, a well-studied prokaryotic model for multicellular development, cell differentiation, motility, and light response and a promising source of secondary metabolites. The few available systems have limitations, and exogenously based ones are unavailable. Here, we describe two new, versatile inducible systems for conditional expression of genes in M. xanthus. One employs isopropyl-β-d-thiogalactopyranoside (IPTG) as an inducer and is inspired by those successfully applied in some other bacteria. The other requires vanillate as an inducer and is based on the system developed originally for Caulobacter crescentus and recently adapted for mammalian cells. Both systems are robust, with essentially no expression in the absence of an inducer. Depending on the inducer and the amounts added, expression levels can be modulated such that either system can conditionally express genes, including ones that are essential and are required at high levels such as ftsZ. The two systems operate during vegetative growth as well as during M. xanthus development. Moreover, they can be used to simultaneously induce expression of distinct genes within the same cell. The conditional expression systems we describe substantially expand the genetic tool kit available for studying M. xanthus gene function and cellular biology.
Collapse
|