1
|
Rasetti-Escargueil C, Palea S. Embracing the Versatility of Botulinum Neurotoxins in Conventional and New Therapeutic Applications. Toxins (Basel) 2024; 16:261. [PMID: 38922155 PMCID: PMC11209287 DOI: 10.3390/toxins16060261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/26/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Botulinum neurotoxins (BoNTs) have been used for almost half a century in the treatment of excessive muscle contractility. BoNTs are routinely used to treat movement disorders such as cervical dystonia, spastic conditions, blepharospasm, and hyperhidrosis, as well as for cosmetic purposes. In addition to the conventional indications, the use of BoNTs to reduce pain has gained increased recognition, giving rise to an increasing number of indications in disorders associated with chronic pain. Furthermore, BoNT-derived formulations are benefiting a much wider range of patients suffering from overactive bladder, erectile dysfunction, arthropathy, neuropathic pain, and cancer. BoNTs are categorised into seven toxinotypes, two of which are in clinical use, and each toxinotype is divided into multiple subtypes. With the development of bioinformatic tools, new BoNT-like toxins have been identified in non-Clostridial organisms. In addition to the expanding indications of existing formulations, the rich variety of toxinotypes or subtypes in the wild-type BoNTs associated with new BoNT-like toxins expand the BoNT superfamily, forming the basis on which to develop new BoNT-based therapeutics as well as research tools. An overview of the diversity of the BoNT family along with their conventional therapeutic uses is presented in this review followed by the engineering and formulation opportunities opening avenues in therapy.
Collapse
Affiliation(s)
| | - Stefano Palea
- Humana Biosciences-Prologue Biotech, 516 Rue Pierre et Marie Curie, 31670 Labège, France;
| |
Collapse
|
2
|
Gardner A, Tepp WH, Bradshaw M, Barbieri JT, Pellett S. Resolution of Two Steps in Botulinum Neurotoxin Serotype A1 Light Chain Localization to the Intracellular Plasma Membrane. Int J Mol Sci 2021; 22:11115. [PMID: 34681775 PMCID: PMC8539409 DOI: 10.3390/ijms222011115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 11/27/2022] Open
Abstract
Botulinum neurotoxin serotype A (BoNT/A) is the most potent protein toxin to humans. BoNT/A light chain (LC/A) cleavage of the membrane-bound SNAP-25 has been well-characterized, but how LC/A traffics to the plasma membrane to target SNAP-25 is unknown. Of the eight BoNT/A subtypes (A1-A8), LC/A3 has a unique short duration of action and low potency that correlate to the intracellular steady state of LC/A, where LC/A1 is associated with the plasma membrane and LC/A3 is present in the cytosol. Steady-state and live imaging of LC/A3-A1 chimeras identified a two-step process where the LC/A N terminus bound intracellular vesicles, which facilitated an internal α-helical-rich domain to mediate LC/A plasma membrane association. The propensity of LC/A variants for membrane association correlated with enhanced BoNT/A potency. Understanding the basis for light chain intracellular localization provides insight to mechanisms underlying BoNT/A potency, which can be extended to applications as a human therapy.
Collapse
Affiliation(s)
- Alexander Gardner
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - William H. Tepp
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| | - Joseph T. Barbieri
- Department of Microbiology and Immunology, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI 53226, USA;
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin-Madison, 1550 Linden Dr, Madison, WI 53706, USA; (W.H.T.); (M.B.)
| |
Collapse
|
3
|
Rasetti-Escargueil C, Popoff MR. Engineering Botulinum Neurotoxins for Enhanced Therapeutic Applications and Vaccine Development. Toxins (Basel) 2020; 13:1. [PMID: 33374954 PMCID: PMC7821915 DOI: 10.3390/toxins13010001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 02/07/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) show increasing therapeutic applications ranging from treatment of locally paralyzed muscles to cosmetic benefits. At first, in the 1970s, BoNT was used for the treatment of strabismus, however, nowadays, BoNT has multiple medical applications including the treatment of muscle hyperactivity such as strabismus, dystonia, movement disorders, hemifacial spasm, essential tremor, tics, cervical dystonia, cerebral palsy, as well as secretory disorders (hyperhidrosis, sialorrhea) and pain syndromes such as chronic migraine. This review summarizes current knowledge related to engineering of botulinum toxins, with particular emphasis on their potential therapeutic applications for pain management and for retargeting to non-neuronal tissues. Advances in molecular biology have resulted in generating modified BoNTs with the potential to act in a variety of disorders, however, in addition to the modifications of well characterized toxinotypes, the diversity of the wild type BoNT toxinotypes or subtypes, provides the basis for innovative BoNT-based therapeutics and research tools. This expanding BoNT superfamily forms the foundation for new toxins candidates in a wider range of therapeutic options.
Collapse
|
4
|
Tables of Toxicity of Botulinum and Tetanus Neurotoxins. Toxins (Basel) 2019; 11:toxins11120686. [PMID: 31771110 PMCID: PMC6950492 DOI: 10.3390/toxins11120686] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
Tetanus and botulinum neurotoxins are the most poisonous substances known, so much so as to be considered for a possible terrorist use. At the same time, botulinum neurotoxin type A1 is successfully used to treat a variety of human syndromes characterized by hyperactive cholinergic nerve terminals. The extreme toxicity of these neurotoxins is due to their neurospecificity and to their metalloprotease activity, which results in the deadly paralysis of tetanus and botulism. Recently, many novel botulinum neurotoxins and some botulinum-like toxins have been discovered. This large number of toxins differs in terms of toxicity and biological activity, providing a potential goldmine for novel therapeutics and for new molecular tools to dissect vesicular trafficking, fusion, and exocytosis. The scattered data on toxicity present in the literature require a systematic organization to be usable by scientists and clinicians. We have assembled here the data available in the literature on the toxicity of these toxins in different animal species. The internal comparison of these data provides insights on the biological activity of these toxins.
Collapse
|
5
|
Moritz MS, Tepp WH, Inzalaco HN, Johnson EA, Pellett S. Comparative functional analysis of mice after local injection with botulinum neurotoxin A1, A2, A6, and B1 by catwalk analysis. Toxicon 2019; 167:20-28. [PMID: 31181297 PMCID: PMC6688953 DOI: 10.1016/j.toxicon.2019.06.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/20/2019] [Accepted: 06/03/2019] [Indexed: 01/10/2023]
Abstract
Botulinum neurotoxins (BoNTs) are potent neurotoxins and are the causative agent of botulism, as well as valuable pharmaceuticals. BoNTs are divided into seven serotypes that comprise over 40 reported subtypes. BoNT/A1 and BoNT/B1 are currently the only subtypes approved for pharmaceutical use in the USA. While several other BoNT subtypes including BoNT/A2 and/A6 have been proposed as promising pharmaceuticals, detailed characterization using in vivo assays are essential to determine their pharmaceutical characteristics compared to the currently used BoNT/A1 and/B1. Several methods for studying BoNTs in mice are being used, but no objective and quantitative assay for assessment of functional outcomes after injection has been described. Here we describe the use of CatWalk XT as a new analytical tool for the objective and quantitative analysis of the paralytic effect after local intramuscular injection of BoNT subtypes A1, A2, A6, and B1. Catwalk is a sophisticated gait and locomotion analysis system that quantitatively analyzes a rodent's paw print dimensions and footfall patterns while traversing a glass plate during unforced walk. Significant changes were observed in several gait parameters in mice after local intramuscular injection of all tested BoNT subtypes, however, no changes were observed in mice injected intraperitoneally with the same BoNTs. While a clear difference in time to peak paralysis was observed between BoNT/A1 and/B1, injection of all four toxins resulted in a deficit in the injected limb with the other limbs functionally compensating and with no qualitative differences between the four BoNT subtypes. The presented data demonstrate the utility of CatWalk as a tool for functional outcomes after local BoNT injection through its ability to collect large amounts of quantitative data and objectively analyze sensitive changes in static and dynamic gait parameters.
Collapse
Affiliation(s)
- Molly S Moritz
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | - William H Tepp
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | | | - Eric A Johnson
- University of Wisconsin-Madison, Dept. of Bacteriology, USA
| | - Sabine Pellett
- University of Wisconsin-Madison, Dept. of Bacteriology, USA.
| |
Collapse
|
6
|
Abstract
Botulinum neurotoxins (BoNTs) have proved to be an effective treatment for a large number of neuropathic conditions. BoNTs comprise a large family of zinc metalloproteases, but BoNT/A1 is used nearly exclusively for pharmaceutical purposes. The genetic inactivation of a second BoNT gene in the native strain enabled expression and isolation of a single BoNT/A6 from cultures. Its characterization indicated that BoNT/A subtype A6 has a long duration of action comparable to A1, while it enters neurons faster and more efficiently and remains more localized after intramuscular injection. These characteristics of BoNT/A6 are of interest for potential use of BoNT/A6 as a novel BoNT-based therapeutic that is effective and has a fast onset, an improved safety profile, and a long duration of action. Use of BoNT/A6 as a pharmaceutical also has the potential to reveal novel treatment motifs compared to currently used treatments. Botulinum neurotoxins (BoNTs), the most potent toxins known to humans and the causative agent of botulism, exert their effect by entering motor neurons and cleaving and inactivating SNARE proteins, which are essential for neurotransmitter release. BoNTs are proven, valuable pharmaceuticals used to treat more than 200 neuronal disorders. BoNTs comprise 7 serotypes and more than 40 isoforms (subtypes). BoNT/A1 is the only A-subtype used clinically due to its high potency and long duration of action. While other BoNT/A subtypes have been purified and described, only BoNT/A2 is being investigated as an alternative to BoNT/A1. Here we describe subtype BoNT/A6 with improved pharmacological properties compared to BoNT/A1. It was isolated from Clostridium botulinum CDC41370, which produces both BoNT/B2 and BoNT/A6. The gene encoding BoNT/B2 was genetically inactivated, and A6 was isolated to greater than 95% purity. A6 was highly potent in cultured primary rodent neuronal cultures and in human induced pluripotent stem cell-derived neurons, requiring 20-fold less toxin to cause 50% SNAP-25 cleavage than A1. Second, A6 entered hiPSCs faster and more efficiently than A1 and yet had a long duration of action similar to BoNT/A1. Third, BoNT/A6 had similar LD50 as BoNT/A1 after intraperitoneal injection in mice; however, local intramuscular injection resulted in less systemic toxicity than BoNT/A1 and a higher (i.m.) LD50, indicating its potential as a safer pharmaceutical. These data suggest novel characteristics of BoNT/A6 and its potential as an improved pharmaceutical due to more efficient neuronal cell entry, greater ability to remain localized at the injection site, and a long duration. IMPORTANCE Botulinum neurotoxins (BoNTs) have proved to be an effective treatment for a large number of neuropathic conditions. BoNTs comprise a large family of zinc metalloproteases, but BoNT/A1 is used nearly exclusively for pharmaceutical purposes. The genetic inactivation of a second BoNT gene in the native strain enabled expression and isolation of a single BoNT/A6 from cultures. Its characterization indicated that BoNT/A subtype A6 has a long duration of action comparable to A1, while it enters neurons faster and more efficiently and remains more localized after intramuscular injection. These characteristics of BoNT/A6 are of interest for potential use of BoNT/A6 as a novel BoNT-based therapeutic that is effective and has a fast onset, an improved safety profile, and a long duration of action. Use of BoNT/A6 as a pharmaceutical also has the potential to reveal novel treatment motifs compared to currently used treatments.
Collapse
|
7
|
Variability of Botulinum Toxins: Challenges and Opportunities for the Future. Toxins (Basel) 2018; 10:toxins10090374. [PMID: 30217070 PMCID: PMC6162648 DOI: 10.3390/toxins10090374] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/03/2018] [Accepted: 09/08/2018] [Indexed: 12/31/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most potent known toxins, and are therefore classified as extremely harmful biological weapons. However, BoNTs are therapeutic drugs that are widely used and have an increasing number of applications. BoNTs show a high diversity and are divided into multiple types and subtypes. Better understanding of the activity at the molecular and clinical levels of the natural BoNT variants as well as the development of BoNT-based chimeric molecules opens the door to novel medical applications such as silencing the sensory neurons at targeted areas and dermal restoration. This short review is focused on BoNTs’ variability and the opportunities or challenges posed for future clinical applications.
Collapse
|
8
|
Light Chain Diversity among the Botulinum Neurotoxins. Toxins (Basel) 2018; 10:toxins10070268. [PMID: 30004421 PMCID: PMC6070880 DOI: 10.3390/toxins10070268] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 06/19/2018] [Accepted: 06/21/2018] [Indexed: 12/30/2022] Open
Abstract
Botulinum neurotoxins (BoNT) are produced by several species of clostridium. There are seven immunologically unique BoNT serotypes (A⁻G). The Centers for Disease Control classifies BoNTs as 'Category A' select agents and are the most lethal protein toxins for humans. Recently, BoNT-like proteins have also been identified in several non-clostridia. BoNTs are di-chain proteins comprised of an N-terminal zinc metalloprotease Light Chain (LC) and a C-terminal Heavy Chain (HC) which includes the translocation and receptor binding domains. The two chains are held together by a disulfide bond. The LC cleaves Soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs). The cleavage of SNAREs inhibits the fusion of synaptic vesicles to the cell membrane and the subsequent release of acetylcholine, which results in flaccid paralysis. The LC controls the catalytic properties and the duration of BoNT action. This review discusses the mechanism for LC catalysis, LC translocation, and the basis for the duration of LC action. Understanding these properties of the LC may expand the applications of BoNT as human therapies.
Collapse
|
9
|
Fonfria E, Maignel J, Lezmi S, Martin V, Splevins A, Shubber S, Kalinichev M, Foster K, Picaut P, Krupp J. The Expanding Therapeutic Utility of Botulinum Neurotoxins. Toxins (Basel) 2018; 10:E208. [PMID: 29783676 PMCID: PMC5983264 DOI: 10.3390/toxins10050208] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/15/2018] [Accepted: 05/16/2018] [Indexed: 12/11/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is a major therapeutic agent that is licensed in neurological indications, such as dystonia and spasticity. The BoNT family, which is produced in nature by clostridial bacteria, comprises several pharmacologically distinct proteins with distinct properties. In this review, we present an overview of the current therapeutic landscape and explore the diversity of BoNT proteins as future therapeutics. In recent years, novel indications have emerged in the fields of pain, migraine, overactive bladder, osteoarthritis, and wound healing. The study of biological effects distal to the injection site could provide future opportunities for disease-tailored BoNT therapies. However, there are some challenges in the pharmaceutical development of BoNTs, such as liquid and slow-release BoNT formulations; and, transdermal, transurothelial, and transepithelial delivery. Innovative approaches in the areas of formulation and delivery, together with highly sensitive analytical tools, will be key for the success of next generation BoNT clinical products.
Collapse
Affiliation(s)
- Elena Fonfria
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Jacquie Maignel
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Stephane Lezmi
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Vincent Martin
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| | - Andrew Splevins
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Saif Shubber
- Ipsen Biopharm Ltd., Wrexham Industrial Estate, 9 Ash Road, Wrexham LL13 9UF, UK.
| | | | - Keith Foster
- Ipsen Bioinnovation, 102 Park Drive, Milton Park, Abingdon, Oxfordshire OX14 4RY, UK.
| | - Philippe Picaut
- Ipsen Bioscience, 650 Kendall Street, Cambridge, MA 02142, USA.
| | - Johannes Krupp
- Ipsen Innovation, 5 Avenue du Canada, 91940 Les Ulis, France.
| |
Collapse
|
10
|
Hackett G, Moore K, Burgin D, Hornby F, Gray B, Elliott M, Mir I, Beard M. Purification and Characterization of Recombinant Botulinum Neurotoxin Serotype FA, Also Known as Serotype H. Toxins (Basel) 2018; 10:E195. [PMID: 29751611 PMCID: PMC5983251 DOI: 10.3390/toxins10050195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
We have purified and characterized recombinant botulinum neurotoxin serotype FA (BoNT/FA). This protein has also been named as a new serotype (serotype H), but the classification has been controversial. A lack of well-characterized, highly pure material has been a roadblock to study. Here we report purification and characterization of enzymatically active, and of inactive nontoxic, recombinant forms of BoNT/FA as tractable alternatives to purifying this neurotoxin from native Clostridium botulinum. BoNT/FA cleaves the same intracellular target proteins as BoNT/F1 and other F serotype BoNTs; the intracellular targets are vesicle associated membrane proteins (VAMP) 1, 2 and 3. BoNT/FA cleaves the same site in VAMP-2 as BoNT/F5, which is different from the cleavage site of other F serotype BoNTs. BoNT/FA has slower enzyme kinetics than BoNT/F1 in a cell-free protease assay and is less potent at inhibiting ex vivo nerve-stimulated skeletal muscle contraction. In contrast, BoNT/FA is more potent at inhibiting neurotransmitter release from cultured neurons.
Collapse
Affiliation(s)
- Gavin Hackett
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Kevin Moore
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - David Burgin
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Fraser Hornby
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Bryony Gray
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Imran Mir
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| |
Collapse
|
11
|
Pellett S, Bradshaw M, Tepp WH, Pier CL, Whitemarsh RCM, Chen C, Barbieri JT, Johnson EA. The Light Chain Defines the Duration of Action of Botulinum Toxin Serotype A Subtypes. mBio 2018; 9:e00089-18. [PMID: 29588398 PMCID: PMC5874905 DOI: 10.1128/mbio.00089-18] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 02/20/2018] [Indexed: 12/26/2022] Open
Abstract
Botulinum neurotoxin (BoNT) is the causative agent of botulism and a widely used pharmaceutical to treat a variety of neurological diseases. BoNTs are 150-kDa protein toxins organized into heavy chain (HC) and light chain (LC) domains linked by a disulfide bond. The HC selectively binds to neurons and aids cell entry of the enzymatically active LC. There are seven immunological BoNT serotypes (A to G); each serotype includes genetic variants, termed subtypes. Only two subtypes, BoNT/A1 and BoNT/B1, are currently used as therapeutics. BoNT serotype A (BoNT/A) subtypes A2 to A8 show distinct potency, duration of action, and pathology relative to BoNT/A1. Specifically, BoNT/A3 possesses shorter duration of action and elicits distinct symptoms in mice at high toxin doses. In this report, we analyzed the roles of LC and HC of BoNT/A3 for duration of action, neuronal cell entry, and mouse pathology by using clostridium-derived recombinant hybrid BoNTs consisting of reciprocal LC and HC (BoNTA1/A3 and BoNTA3/A1). Hybrid toxins were processed in their expression host to a dichain BoNT consisting of LC and HC linked via a disulfide bond. The LC and HC defined BoNT potency in mice and BoNT toxicity for cultured neuronal cells, while the LC defined the duration of BoNT action in cell and mouse models. Protein alignment identified a previously unrecognized region within the LC subtype A3 (LC/A3) relative to the other LC serotype A (LC/A) subtypes (low primary acid homology [LPH]) that correlated to intracellular LC localization. This study shows the utility of recombinant hybrid BoNTs with new therapeutic potential, while remaining sensitive to antitoxins and therapies to native BoNT.IMPORTANCE Botulinum neurotoxins are the most potent protein toxins for humans and potential bioterrorism threats, but they are also widely used as pharmaceuticals. Within the large family of BoNTs, only two subtypes are currently used as pharmaceuticals, with a large number of BoNT subtypes remaining as untapped potential sources for unique pharmaceuticals. Here, two recombinant hybrid toxins were engineered, consisting of domains from two BoNT subtypes that possess distinct duration of action and activity in human neurons and mice. We define the functional domains responsible for BoNT action and demonstrate creation of functional hybrid BoNTs with new therapeutic potential, while remaining sensitive to antitoxins and therapies to native BoNT.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | - Christina L Pier
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| | | | - Chen Chen
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Joseph T Barbieri
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin, Madison, Wisconsin, USA
| |
Collapse
|
12
|
Przedpelski A, Tepp WH, Zuverink M, Johnson EA, Pellet S, Barbieri JT. Enhancing toxin-based vaccines against botulism. Vaccine 2018; 36:827-832. [PMID: 29307477 DOI: 10.1016/j.vaccine.2017.12.064] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 01/25/2023]
Abstract
Botulinum neurotoxins (BoNT) are the most toxic proteins for humans. BoNTs are single chain proteins with an N-terminal light chain (LC) and a C-terminal heavy chain (HC). HC comprises a translocation domain (HCN) and a receptor binding domain (HCC). Currently, there are no approved vaccines against botulism. This study tests a recombinant, full-length BoNT/A1 versus LCHCN/A1 and HCC/A1 as vaccine candidates against botulism. Recombinant, full-length BoNT/A1 was detoxified by engineering 3-amino acid mutations (E224A/R363A/Y366F) (M-BoNT/A1) into the LC to eliminate catalytic activity, which reduced toxicity in a mouse model of botulism by >106-fold relative to native BoNT/A1. As a second step to improve vaccine safety, an additional mutation (W1266A) was engineered in the ganglioside binding pocket, resulting in reduced receptor binding, to produce M-BoNT/A1W. M-BoNT/A1W vaccination protected against challenge by 106 LD50 Units of native BoNT/A1, while M-BoNT/A1 or M-BoNT/A1W vaccination equally protected against challenge by native BoNT/A2, a BoNT subtype. Mice vaccinated with M-BoNT/A1W surviving BoNT challenge had dominant antibody responses to the LCHCN domain, but varied antibody responses to HCC. Sera from mice vaccinated with M-BoNT/A1W also neutralized BoNT/A1 action on cultured neuronal cells. The cell- and mouse-based assays measured different BoNT-neutralizing antibodies, where M-BoNT/A1W elicited a strong neutralizing response in both assays. Overall, M-BoNT/A1W, with defects in multiple toxin functions, elicits a potent immune response to BoNT/A challenge as a vaccine strategy against botulism and other toxin-mediated diseases.
Collapse
Affiliation(s)
- Amanda Przedpelski
- Medical College of Wisconsin, 8701 W Watertown Plank Rd., Microbiology and Immunology, Milwaukee, WI 53226, United States
| | - William H Tepp
- University of Wisconsin-Madison, 6303 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, United States
| | - Madison Zuverink
- Medical College of Wisconsin, 8701 W Watertown Plank Rd., Microbiology and Immunology, Milwaukee, WI 53226, United States
| | - Eric A Johnson
- University of Wisconsin-Madison, 6303 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, United States
| | - Sabine Pellet
- University of Wisconsin-Madison, 6303 Microbial Sciences Building, 1550 Linden Dr., Madison, WI 53706, United States
| | - Joseph T Barbieri
- Medical College of Wisconsin, 8701 W Watertown Plank Rd., Microbiology and Immunology, Milwaukee, WI 53226, United States.
| |
Collapse
|
13
|
Davies JR, Rees J, Liu SM, Acharya KR. High resolution crystal structures of Clostridium botulinum neurotoxin A3 and A4 binding domains. J Struct Biol 2017; 202:113-117. [PMID: 29288126 DOI: 10.1016/j.jsb.2017.12.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 12/20/2017] [Accepted: 12/23/2017] [Indexed: 11/27/2022]
Abstract
Clostridium botulinum neurotoxins (BoNTs) cause the life-threatening condition, botulism. However, while they have the potential to cause serious harm, they are increasingly being utilised for therapeutic applications. BoNTs comprise of seven distinct serotypes termed BoNT/A through BoNT/G, with the most widely characterised being sub-serotype BoNT/A1. Each BoNT consists of three structurally distinct domains, a binding domain (HC), a translocation domain (HN), and a proteolytic domain (LC). The HC domain is responsible for the highly specific targeting of the neurotoxin to neuronal cell membranes. Here, we present two high-resolution structures of the binding domain of subtype BoNT/A3 (HC/A3) and BoNT/A4 (HC/A4) at 1.6 Å and 1.34 Å resolution, respectively. The structures of both proteins share a high degree of similarity to other known BoNT HC domains whilst containing some subtle differences, and are of benefit to research into therapeutic neurotoxins with novel characteristics.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, Claverton Down, University of Bath, Bath BA2 7AY, UK
| | - Jay Rees
- Department of Biology and Biochemistry, Claverton Down, University of Bath, Bath BA2 7AY, UK
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, 102 Park Lane, Milton Park, Abingdon OX14 4RY, UK
| | - K Ravi Acharya
- Department of Biology and Biochemistry, Claverton Down, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
14
|
Mad'arová L, Dorner BG, Schaade L, Donáth V, Avdičová M, Fatkulinová M, Strhársky J, Sedliačiková I, Klement C, Dorner MB. Reoccurrence of botulinum neurotoxin subtype A3 inducing food-borne botulism, Slovakia, 2015. ACTA ACUST UNITED AC 2017; 22:30591. [PMID: 28816652 PMCID: PMC6373608 DOI: 10.2807/1560-7917.es.2017.22.32.30591] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 11/25/2016] [Indexed: 01/10/2023]
Abstract
A case of food-borne botulism occurred in Slovakia in 2015. Clostridium botulinum type A was isolated from three nearly empty commercial hummus tubes. The product, which was sold in Slovakia and the Czech Republic, was withdrawn from the market and a warning was issued immediately through the European Commission's Rapid Alert System for Food and Feed (RASFF). Further investigation revealed the presence of botulinum neurotoxin (BoNT) subtype BoNT/A3, a very rare subtype implicated in only one previous outbreak (Loch Maree in Scotland, 1922). It is the most divergent subtype of BoNT/A with 15.4% difference at the amino acid level compared with the prototype BoNT/A1. This makes it more prone to evading immunological and PCR-based detection. It is recommended that testing laboratories are advised that this subtype has been associated with food-borne botulism for the second time since the first outbreak almost 100 years ago, and to validate their immunological or PCR-based methods against this divergent subtype.
Collapse
Affiliation(s)
- Lucia Mad'arová
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Brigitte G Dorner
- Robert Koch Institute, Consultant laboratory for neurotoxin-producing clostridia (botulism, tetanus), Berlin, Germany.,Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Lars Schaade
- Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| | - Vladimír Donáth
- F. D. Roosevelt Teaching Hospital, Department of Neurology, Slovak Medical University, Banská Bystrica, Slovakia
| | - Mária Avdičová
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Milota Fatkulinová
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Jozef Strhársky
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Ivana Sedliačiková
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia
| | - Cyril Klement
- Regional Authority of Public Health Banská Bystrica, Banská Bystrica, Slovakia.,Slovak Medical University, Faculty of Public Health, Bratislava, Slovakia
| | - Martin B Dorner
- Robert Koch Institute, Consultant laboratory for neurotoxin-producing clostridia (botulism, tetanus), Berlin, Germany.,Robert Koch Institute, Centre for Biological Threats and Special Pathogens, Berlin, Germany
| |
Collapse
|
15
|
Peck MW, Smith TJ, Anniballi F, Austin JW, Bano L, Bradshaw M, Cuervo P, Cheng LW, Derman Y, Dorner BG, Fisher A, Hill KK, Kalb SR, Korkeala H, Lindström M, Lista F, Lúquez C, Mazuet C, Pirazzini M, Popoff MR, Rossetto O, Rummel A, Sesardic D, Singh BR, Stringer SC. Historical Perspectives and Guidelines for Botulinum Neurotoxin Subtype Nomenclature. Toxins (Basel) 2017; 9:toxins9010038. [PMID: 28106761 PMCID: PMC5308270 DOI: 10.3390/toxins9010038] [Citation(s) in RCA: 202] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 11/26/2022] Open
Abstract
Botulinum neurotoxins are diverse proteins. They are currently represented by at least seven serotypes and more than 40 subtypes. New clostridial strains that produce novel neurotoxin variants are being identified with increasing frequency, which presents challenges when organizing the nomenclature surrounding these neurotoxins. Worldwide, researchers are faced with the possibility that toxins having identical sequences may be given different designations or novel toxins having unique sequences may be given the same designations on publication. In order to minimize these problems, an ad hoc committee consisting of over 20 researchers in the field of botulinum neurotoxin research was convened to discuss the clarification of the issues involved in botulinum neurotoxin nomenclature. This publication presents a historical overview of the issues and provides guidelines for botulinum neurotoxin subtype nomenclature in the future.
Collapse
Affiliation(s)
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Istituto Superiore di Sanita, Rome 299-00161, Italy.
| | - John W Austin
- Bureau of Microbial Hazards, Health Canada, Ottawa, ON K1A 0K9, Canada.
| | - Luca Bano
- Istituto Zooprofilattico Sperimentale delle Venezie, Treviso 31020, Italy.
| | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA.
| | - Paula Cuervo
- Área de Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza 450001, Argentina.
| | - Luisa W Cheng
- Foodborne Toxin Detection and Prevention Research Unit, Western Regional Research Center, U.S. Department of Agriculture, Albany, CA 94710, USA.
| | - Yagmur Derman
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | | | - Audrey Fisher
- Applied Physics Laboratory, Johns Hopkins University, Baltimore, MD 21218, USA.
| | - Karen K Hill
- Los Alamos National Laboratories, Los Alamos, NM 87545, USA.
| | - Suzanne R Kalb
- National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, Faculty of Veterinary Medicine, University of Helsinki, Helsinki 00014, Finland.
| | - Florigio Lista
- Army Medical and Veterinary Research Center, Rome 00184, Italy.
| | - Carolina Lúquez
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA.
| | - Christelle Mazuet
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Marco Pirazzini
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Michel R Popoff
- Institut Pasteur, Bactéries anaérobies et Toxines, Paris 75015, France.
| | - Ornella Rossetto
- Biomedical Sciences Department, University of Padova, Padova 35131, Italy.
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover 30623, Germany.
| | - Dorothea Sesardic
- National Institute for Biological Standards and Control, a Centre of Medicines and Healthcare Products Regulatory Agency, Hertfordshire EN6 3QG, UK.
| | - Bal Ram Singh
- Botulinum Research Center, Institute of Advanced Sciences, Dartmouth, MA 02747, USA.
| | | |
Collapse
|
16
|
Entry of Botulinum Neurotoxin Subtypes A1 and A2 into Neurons. Infect Immun 2016; 85:IAI.00795-16. [PMID: 27795365 DOI: 10.1128/iai.00795-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 10/05/2016] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most toxic proteins for humans but also are common therapies for neurological diseases. BoNTs are dichain toxins, comprising an N-terminal catalytic domain (LC) disulfide bond linked to a C-terminal heavy chain (HC) which includes a translocation domain (HN) and a receptor binding domain (HC). Recently, the BoNT serotype A (BoNT/A) subtypes A1 and A2 were reported to possess similar potencies but different rates of cellular intoxication and pathology in a mouse model of botulism. The current study measured HCA1 and HCA2 entry into rat primary neurons and cultured Neuro2A cells. We found that there were two sequential steps during the association of BoNT/A with neurons. The initial step was ganglioside dependent, while the subsequent step involved association with synaptic vesicles. HCA1 and HCA2 entered the same population of synaptic vesicles and entered cells at similar rates. The primary difference was that HCA2 had a higher degree of receptor occupancy for cells and neurons than HcA1. Thus, HCA2 and HCA1 share receptors and entry pathway but differ in their affinity for receptor. The initial interaction of HCA1 and HCA2 with neurons may contribute to the unique pathologies of BoNT/A1 and BoNT/A2 in mouse models.
Collapse
|
17
|
Current status and future directions of botulinum neurotoxins for targeting pain processing. Toxins (Basel) 2015; 7:4519-63. [PMID: 26556371 PMCID: PMC4663519 DOI: 10.3390/toxins7114519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022] Open
Abstract
Current evidence suggests that botulinum neurotoxins (BoNTs) A1 and B1, given locally into peripheral tissues such as skin, muscles, and joints, alter nociceptive processing otherwise initiated by inflammation or nerve injury in animal models and humans. Recent data indicate that such locally delivered BoNTs exert not only local action on sensory afferent terminals but undergo transport to central afferent cell bodies (dorsal root ganglia) and spinal dorsal horn terminals, where they cleave SNAREs and block transmitter release. Increasing evidence supports the possibility of a trans-synaptic movement to alter postsynaptic function in neuronal and possibly non-neuronal (glial) cells. The vast majority of these studies have been conducted on BoNT/A1 and BoNT/B1, the only two pharmaceutically developed variants. However, now over 40 different subtypes of botulinum neurotoxins (BoNTs) have been identified. By combining our existing and rapidly growing understanding of BoNT/A1 and /B1 in altering nociceptive processing with explorations of the specific characteristics of the various toxins from this family, we may be able to discover or design novel, effective, and long-lasting pain therapeutics. This review will focus on our current understanding of the molecular mechanisms whereby BoNTs alter pain processing, and future directions in the development of these agents as pain therapeutics.
Collapse
|
18
|
Pellett S, Tepp WH, Whitemarsh RCM, Bradshaw M, Johnson EA. In vivo onset and duration of action varies for botulinum neurotoxin A subtypes 1-5. Toxicon 2015; 107:37-42. [PMID: 26130522 DOI: 10.1016/j.toxicon.2015.06.021] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Accepted: 06/23/2015] [Indexed: 01/26/2023]
Abstract
To date, over 40 subtypes of botulinum neurotoxins (BoNTs) have been identified. BoNTs are classified into 7 serotypes distinguished primarily by their antigenic properties, but also characterized by their unique SNARE targets and cleavage sites, host specificity, and duration of action. Sequencing efforts in the last decade have identified several subtypes within the serotypes. Subtypes are currently defined as distinct based solely on amino acid sequence comparison, with a similarity cut-off of 2.5% difference. Ten subtypes have been identified for BoNT/A, which is the serotype associated with the most severe human botulism and also the most commonly used serotype for clinical purposes. Analyses of several of these subtypes have revealed distinct characteristics, ranging from differences in cell entry and enzyme kinetics to differences in potency in mice and cell-model specific potency. A long-term activity study in cultured primary neurons has indicated that BoNT/A1, 2, 4, and 5 have a similar duration of action, whereas BoNT/A3 has a significantly shorter duration of action. This report describes an in vivo mouse study, showing that after local injection BoNT/A2 resulted in faster onset of local paralysis than BoNT/A1, 3, 4, and 5, whereas BoNT/A3 resulted in significantly faster recovery of motor-neuron deficiency.
Collapse
Affiliation(s)
- Sabine Pellett
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA.
| | - William H Tepp
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | | | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| | - Eric A Johnson
- Department of Bacteriology, University of Wisconsin - Madison, Madison, WI, USA
| |
Collapse
|
19
|
Kane CD, Nuss JE, Bavari S. Novel therapeutic uses and formulations of botulinum neurotoxins: a patent review (2012 - 2014). Expert Opin Ther Pat 2015; 25:675-90. [PMID: 25842964 DOI: 10.1517/13543776.2015.1030337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION Botulinum neurotoxins (BoNTs) are among the most toxic of known biological molecules and function as acetylcholine release inhibitors and neuromuscular blocking agents. Paradoxically, these properties also make them valuable therapeutic agents for the treatment of movement disorders, urological conditions and hypersecretory disorders. Greater understanding of their molecular mechanism of action and advances in protein engineering has led to significant efforts to improve and expand their function with a view towards broadening their therapeutic potential. AREAS COVERED Searches of Espacenet and Google Patent have revealed a number of patents related to BoNTs. This review will focus on novel therapeutic uses and formulations disclosed during 2012 - 2014. The seven patents discussed will include nanoformulations of FDA-approved BoNTs, additional BoNT subtypes and novel BoNT variants and chimeras created through protein engineering. Supporting patents and related publications are also briefly discussed. EXPERT OPINION The clinical and commercial success of BoNTs has prompted investigation into novel BoNTs or BoNT-mediated chimeras with promising in vitro results. Distinct strategies including the use of nanoformulations and targeted delivery have been implemented to identify new indication and improved functionality. Greater understanding of their systemic exposure, efficacy and safety profiles will be required for further development.
Collapse
|
20
|
Immunoprecipitation of native botulinum neurotoxin complexes from Clostridium botulinum subtype A strains. Appl Environ Microbiol 2014; 81:481-91. [PMID: 25362065 DOI: 10.1128/aem.02817-14] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) naturally exist as components of protein complexes containing nontoxic proteins. The nontoxic proteins impart stability of BoNTs in the gastrointestinal tract and during purification and handling. The two primary neurotoxin complexes (TCs) are (i) TC1, consisting of BoNT, nontoxin-nonhemagglutinin (NTNH), and hemagglutinins (HAs), and (ii) TC2, consisting of BoNT and NTNH (and possibly OrfX proteins). In this study, BoNT/A subtypes A1, A2, A3, and A5 were examined for the compositions of their TCs in culture extracts using immunoprecipitation (IP). IP analyses showed that BoNT/A1 and BoNT/A5 form TC1s, while BoNT/A2 and BoNT/A3 form TC2s. A Clostridium botulinum host strain expressing recombinant BoNT/A4 (normally present as a TC2) from an extrachromosomal plasmid formed a TC1 with complexing proteins from the host strain, indicating that the HAs and NTNH encoded on the chromosome associated with the plasmid-encoded BoNT/A4. Strain NCTC 2916 (A1/silent B1), which carries both an ha silent bont/b cluster and an orfX bont/a1 cluster, was also examined. IP analysis revealed that NCTC 2916 formed only a TC2 containing BoNT/A1 and its associated NTNH. No association between BoNT/A1 and the nontoxic proteins from the silent bont/b cluster was detected, although the HAs were expressed as determined by Western blotting analysis. Additionally, NTNH and HAs from the silent bont/b cluster did not form a complex in NCTC 2916. The stabilities of the two types of TC differed at various pHs and with addition of KCl and NaCl. TC1 complexes were more stable than TC2 complexes. Mouse serum stabilized TC2, while TC1 was unaffected.
Collapse
|
21
|
Holotoxin Activity of Botulinum Neurotoxin Subtype A4 Originating from a Nontoxigenic Clostridium botulinum Expression System. Appl Environ Microbiol 2014; 80:7415-22. [PMID: 25239905 DOI: 10.1128/aem.01795-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022] Open
Abstract
Clostridium botulinum subtype A4 neurotoxin (BoNT/A4) is naturally expressed in the dual-toxin-producing C. botulinum strain 657Ba at 100× lower titers than BoNT/B. In this study, we describe purification of recombinant BoNT/A4 (rBoNT/A4) expressed in a nonsporulating and nontoxigenic C. botulinum expression host strain. The rBoNT/A4 copurified with nontoxic toxin complex components provided in trans by the expression host and was proteolytically cleaved to the active dichain form. Activity of the recombinant BoNT/A4 in mice and in human neuronal cells was about 1,000-fold lower than that of BoNT/A1, and the recombinant BoNT/A4 was effectively neutralized by botulism heptavalent antitoxin. A previous report using recombinant truncated BoNT/A4 light chain (LC) expressed in Escherichia coli has indicated reduced stability and activity of BoNT/A4 LC compared to BoNT/A1 LC, which was surmounted by introduction of a single-amino-acid substitution, I264R. In order to determine whether this mutation would also affect the holotoxin activity of BoNT/A4, a recombinant full-length BoNT/A4 carrying this mutation as well as a second mutation predicted to increase solubility (L260F) was produced in the clostridial expression system. Comparative analyses of the in vitro, cellular, and in vivo activities of rBoNT/A4 and rBoNT/A4-L260F I264R showed 1,000-fold-lower activity than BoNT/A1 in both the mutated and nonmutated BoNT/A4. This indicates that these mutations do not alter the activity of BoNT/A4 holotoxin. In summary, a recombinant BoNT from a dual-toxin-producing strain was expressed and purified in an endogenous clostridial expression system, allowing analysis of this toxin.
Collapse
|
22
|
Whitemarsh RCM, Tepp WH, Johnson EA, Pellett S. Persistence of botulinum neurotoxin a subtypes 1-5 in primary rat spinal cord cells. PLoS One 2014; 9:e90252. [PMID: 24587301 PMCID: PMC3937374 DOI: 10.1371/journal.pone.0090252] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Accepted: 01/30/2014] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are the most poisonous substances known and cause the severe disease botulism. BoNTs have also been remarkably effective as therapeutics in treating many neuronal and neuromuscular disorders. One of the hallmarks of BoNTs, particularly serotype A, is its long persistence of 2-6 months in patients at concentrations as low as fM or pM. The mechanisms for this persistence are currently unclear. In this study we determined the persistence of the BoNT/A subtypes 1 through 5 in primary rat spinal neurons. Remarkably, the duration of intracellular enzymatic activity of BoNT/A1, /A2, /A4 and /A5 was shown to be at least 10 months. Conversely, the effects of BoNT/A3 were observed for up to ∼5 months. An intermittent dosing with BoNT/E showed intracellular activity of the shorter acting BoNT/E for 2–3 weeks, followed by reoccurrence and persistence of BoNT/A-induced SNAP-25 cleavage products.
Collapse
Affiliation(s)
| | - William Howard Tepp
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Eric Arthur Johnson
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin – Madison, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
23
|
Characterization of botulinum neurotoxin A subtypes 1 through 5 by investigation of activities in mice, in neuronal cell cultures, and in vitro. Infect Immun 2013; 81:3894-902. [PMID: 23918782 DOI: 10.1128/iai.00536-13] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Botulinum neurotoxins (BoNTs) are synthesized by Clostridium botulinum and exist as seven immunologically distinct serotypes designated A through G. For most serotypes, several subtypes have now been described based on nominal differences in the amino acid sequences. BoNT/A1 is the most well-characterized subtype of the BoNT/A serotype, and many of its properties, including its potency, its prevalence as a food poison, and its utility as a pharmaceutical, have been thoroughly studied. In contrast, much remains unknown of the other BoNT/A subtypes. In this study, BoNT/A subtype 1 (BoNT/A1) to BoNT/A5 were characterized utilizing a mouse bioassay, an in vitro cleavage assay, and several neuronal cell-based assays. The data indicate that BoNT/A1 to -5 have distinct in vitro and in vivo toxicological properties and that, unlike those for BoNT/A1, the neuronal and mouse results for BoNT/A2 to -5 do not correlate with their enzymatic activity. These results indicate that BoNT/A1 to -5 have distinct characteristics, which are of importance for a greater understanding of botulism and for pharmaceutical applications.
Collapse
|