1
|
Salama S, Habib MH, Hatti-Kaul R, Gaber Y. Reviewing a plethora of oxidative-type reactions catalyzed by whole cells of Streptomyces species. RSC Adv 2022; 12:6974-7001. [PMID: 35424663 PMCID: PMC8982256 DOI: 10.1039/d1ra08816e] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/17/2022] [Indexed: 11/21/2022] Open
Abstract
Selective oxidation reactions represent a challenging task for conventional organic chemistry. Whole-cell biocatalysis provides a very convenient, easy to apply method to carry out different selective oxidation reactions including chemo-, regio-, and enantio-selective reactions. Streptomyces species are important biocatalysts as they can catalyze these selective reactions very efficiently owing to the wide diversity of enzymes and enzymatic cascades in their cell niche. In this review, we present and analyze most of the examples reported to date of oxidative reactions catalyzed by Streptomyces species as whole-cell biocatalysts. We discuss 33 different Streptomyces species and strains and the role they play in different oxidative reactions over the past five decades. The oxidative reactions have been classified into seven categories that include: hydroxylation of steroids/non-steroids, asymmetric sulfoxidations, oxidation of aldehydes, multi-step oxidations, oxidative cleavage, and N-oxidations. The role played by Streptomyces species as recombinant hosts catalyzing bio-oxidations has also been highlighted.
Collapse
Affiliation(s)
- Sara Salama
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University Beni-Suef 62517 Egypt
| | - Mohamed H Habib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University Cairo 11562 Egypt
| | - Rajni Hatti-Kaul
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University Sweden
| | - Yasser Gaber
- Department of Pharmaceutical Microbiology and Immunology, Faculty of Pharmacy, Beni-Suef University Beni-Suef 62511 Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Mutah University Al-Karak 61710 Jordan
| |
Collapse
|
2
|
Biotransformation of Daidzein, Genistein, and Naringenin by Streptomyces Species Isolated from High-Altitude Soil of Nepal. Int J Microbiol 2021; 2021:9948738. [PMID: 34249126 PMCID: PMC8238566 DOI: 10.1155/2021/9948738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/04/2021] [Accepted: 06/14/2021] [Indexed: 11/18/2022] Open
Abstract
Flavonoids have achieved widespread importance in pharmaceutical, food, and cosmetics industries. Furthermore, modification of these naturally occurring flavonoids to structurally diverse compounds through whole cell biotransformation with enhanced biological activities has numerous biotechnological applications. The present study investigated the biotransformation potential of Streptomyces species isolated from a high-altitude-soil sample towards selected flavonoid molecules. The biotransformed metabolites were confirmed by comparing the HPLC chromatogram with authentic compounds and LC-MS/MS analysis. Of these isolates, Streptomyces species G-18 (Accession number: MW663767.1) catalyzed isoflavone molecules daidzein and genistein to produce hydroxylated products at 24 h of reaction condition in a whole cell system. The hydroxylation of daidzein (4′,7-dihydroxyisoflavone) was confirmed at 3′-position of the B ring to produce 3′,4′,7-trihydroxyisoflavone. In addition, Streptomyces species G-14 (Accession number: MW663770.1) and Streptomyces species S4L (Accession number: MW663769.1) also revealed the transformation of daidzein (4′,7-dihydroxyisoflavone) to hydroxy daidzein at a distinct position than that of G-18 isolates, whereas thee Streptomyces species S4L reaction mixture with naringenin as a substrate also revealed the hydroxylated product. Our results demonstrated that microorganisms isolated from different ecological niches have broad application.
Collapse
|
3
|
Ambreen, Haque S, Singh V, Katiyar D, Ali Khan MT, Tripathi V, El Enshasy H, Pasupuleti M, Mishra BN. Biotransformation of newly synthesized coumarin derivatives by Candida albicans as potential antibacterial, antioxidant and cytotoxic agents. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.08.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Feng WY, Wen J, Stauber K. In vitro Drug Metabolism Investigation of 7-Ethoxycoumarin in Human, Monkey, Dog and Rat Hepatocytes by High Resolution LC-MS/MS. Drug Metab Lett 2018; 12:33-53. [PMID: 29669508 PMCID: PMC6416465 DOI: 10.2174/1872312812666180418142056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/18/2018] [Accepted: 04/12/2018] [Indexed: 11/22/2022]
Abstract
Background: Recently, it has been an increasing concern on the bioactivation and adverse re-actions associated with consumption of herbal and nature products. 7-Ethoxycoumarin is one of coumarin family compounds, but little information is available regarding its potential reactive metabolites. Method: 7-ethoxylcoumarin was incubated individually with human, monkey, dog and rat hepatocytes for 2 hr, metabolites were detected, identified and characterized using high resolution liquid chromagraphy – tandem mass spectrometry. Results: Twenty-eight metabolites (M1 - M28) were detected and identified. O-deethylation, glucuronida-tion, sulfation, oxygenation, oxidative ring-opening, hydrogenation, glutathionation, dehydrogenation, cysteination, glucosidation, methylation, and hydrolysis were observed. At least sixteen metabolites not reported previously, were newly identified. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3 (O-deethylation and glucuronidation), M5 (hydrolysis and mono-oxygenation), M14 (O-deethylation), M16 (hydrolysis), M22 (oxidative ring-opening and oxygenation) and M27 (mono-oxygenation) exhibited high mass spectrometric responses in human hepatocytes. M3, M5, M8, M13 (mono-oxygenation), M14, M16, M18 (O-deethylation and sulfation), M22 and M27 exhibited high mass spectrometric responses in monkey hepatocytes. M14, M16, M18, M20 (glutathionation and dehy-drogenation) and M27 exhibited high mass spectrometric responses in dog hepatocytes. M1 (O-deethylation, mono-oxygenation and glucuronidation), M3, M5, M13, M14, M16, M17 (cysteination), M18, M20, and M22 exhibited high mass spectrometric responses in rat hepatocytes. Conclusion: Most of new metabolites via oxidative ring-opening and glutathionation were identified. Species differences in metabolism of 7-ethoxylcoumarin in hepatocytes were observed. The analysis of metabolites suggests that 7-ethoxylcoumarin may undergo 3,4-epoxidation responsible for formation of glutathione and its derived cysteine conjugates, carboxylic acid and its glucuronides, glucosides and sul-fate.
Collapse
Affiliation(s)
- Wan-Yong Feng
- Drug Metabolism and Pharmacokinetics, Dart NeuroScience, San Diego, CA 92131, United States
| | - Jenny Wen
- Drug Metabolism and Pharmacokinetics, Dart NeuroScience, San Diego, CA 92131, United States
| | - Kathe Stauber
- Drug Metabolism and Pharmacokinetics, Dart NeuroScience, San Diego, CA 92131, United States
| |
Collapse
|
5
|
Pérez M, García M, Ruiz D, Autino JC, Romanelli G, Blustein G. Antifouling activity of green-synthesized 7-hydroxy-4-methylcoumarin. MARINE ENVIRONMENTAL RESEARCH 2016; 113:134-140. [PMID: 26713560 DOI: 10.1016/j.marenvres.2015.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 06/05/2023]
Abstract
In the search for new environmental-friendly antifoulants for replace metallic biocides, 7-hydroxy-4-methylcoumarin was synthesized according to green chemistry procedures. This compound was characterized by current organic analysis and its antifouling properties were firstly evaluated on the bivalve Mytilus edulis platensis in the laboratory. In the second stage, a soluble matrix antifouling coating formulated with this compound was assayed in marine environment. Laboratory experiments showed that 7-hydroxy-4-methylcoumarin was effective in inhibiting both the settlement as well as the byssogenesis of mussels. In addition, after exposure time in the sea, painted panels containing this compound showed strong antifouling effect on conspicuous species of the fouling community of Mar el Plata harbor. In conclusion, green-synthesized coumarin could be a suitable antifoulant candidate for marine protective coatings.
Collapse
Affiliation(s)
- Miriam Pérez
- Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), Calle 52 e/ 121 y 122, 1900 La Plata, Argentina; Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, Calle 60 y 122, 1900 La Plata, Argentina
| | - Mónica García
- Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), Calle 52 e/ 121 y 122, 1900 La Plata, Argentina
| | - Diego Ruiz
- Centro de Investigación en Sanidad Vegetal (CISaV), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calle 60 y 119, 1900 La Plata, Argentina
| | - Juan Carlos Autino
- Centro de Investigación en Sanidad Vegetal (CISaV), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calle 60 y 119, 1900 La Plata, Argentina
| | - Gustavo Romanelli
- Centro de Investigación en Sanidad Vegetal (CISaV), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calle 60 y 119, 1900 La Plata, Argentina; Centro de Investigación y Desarrollo en Ciencias Aplicadas (CINDECA), Departamento de Química, Facultad de Ciencias Exactas, UNLP-CCT-CONICET, Calle 47 N °257, 1900 La Plata, Argentina
| | - Guillermo Blustein
- Centro de Investigación y Desarrollo en Tecnología de Pinturas (CIDEPINT), Calle 52 e/ 121 y 122, 1900 La Plata, Argentina; Centro de Investigación en Sanidad Vegetal (CISaV), Facultad de Ciencias Agrarias y Forestales, Universidad Nacional de La Plata, Calle 60 y 119, 1900 La Plata, Argentina.
| |
Collapse
|
6
|
Drug metabolism in microorganisms. Biotechnol Lett 2014; 37:19-28. [DOI: 10.1007/s10529-014-1653-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 08/21/2014] [Indexed: 11/26/2022]
|
7
|
New limonoids and a dihydrobenzofuran norlignan from the roots of Toona sinensis. Molecules 2013; 18:2840-50. [PMID: 23455673 PMCID: PMC6269753 DOI: 10.3390/molecules18032840] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2012] [Revised: 01/28/2013] [Accepted: 01/30/2013] [Indexed: 11/29/2022] Open
Abstract
Two new limonoids, toonins A (1) and B (2), and one new dihydrobenzofuran norlignan, toonin C (3), were isolated from the roots of Toona sinensis together with the ten known compounds 4-methoxy-6-(2′,4′-dihydroxy-6′-methylphenyl)-pyran-2-one (4), bourjotinolone A (5), proceranone (6), matairesinol (7), 4-hydroxy-3-methoxybenzene-ethanol (8), syringic acid (9), isoscopoletin (10), lyoniresinol (11), aloeemodin (12), and β-sitosterol (13). Their structures were elucidated on the basis of one- and two-dimensional spectroscopic analysis. Isolation of compounds 4, 6–13 from this plant is reported here for the first time.
Collapse
|
8
|
Gopishetty SR, Heinemann J, Deshpande M, Rosazza JP. Aromatic oxidations by Streptomyces griseus: Biotransformations of naphthalene to 4-hydroxy-1-tetralone. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.11.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Das S, Rosazza JPN. Microbial and enzymatic transformations of flavonoids. JOURNAL OF NATURAL PRODUCTS 2006; 69:499-508. [PMID: 16562863 DOI: 10.1021/np0504659] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Flavonoids are among the most ubiquitous phenolic compounds found in nature. These compounds have diverse physiological and pharmacological activities such as estrogenic, antitumor, antimicrobial, antiallergic, and anti-inflammatory effects. They are well-known antioxidants and metal ion-chelators. In the present review, biotransformations of numerous flavonoids catalyzed mainly by microbes and few plant enzymes are described in four different flavonoid classes, viz., chalcones, isoflavones, catechins, and flavones. Both phase I (oxidative) and phase II (conjugative) biotransformations representing a variety of reactions including condensation, cyclization, hydroxylation, dehydroxylation, alkylation, O-dealkylation, halogenation, dehydrogenation, double-bond reduction, carbonyl reduction, glycosylation, sulfation, dimerization, or different types of ring degradations are elaborated here. In some cases, the observed microbial transformations mimic mammalian and/or plant metabolism. This review recognizes Norman Farnsworth, who through his fascination and hard work in pharmacognosy has fostered the excitement of discovery by numerous students and faculty far and beyond the halls of the University of Illinois at Chicago. It is with grateful thanks for these efforts that we dedicate this review to him.
Collapse
Affiliation(s)
- Shuvendu Das
- Center for Biocatalysis and Bioprocessing, Oakdale Research Park, University of Iowa, Iowa City, 52242-5000, USA
| | | |
Collapse
|
10
|
Lamb DC, Guengerich FP, Kelly SL, Waterman MR. ExploitingStreptomyces coelicolorA3(2) P450s as a model for application in drug discovery. Expert Opin Drug Metab Toxicol 2006; 2:27-40. [PMID: 16863466 DOI: 10.1517/17425255.2.1.27] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
One of the surprising discoveries about the genomics of the cytochrome P450 (CYP) superfamily is the large number of CYPs in the bacterial class of actinomycetes. It had previously been imagined that bacteria have small numbers of CYPs or none at all. Particularly intriguing is that the bacterial genus Streptomyces, which produce a large number of secondary metabolites with important medical application, has a large CYP complement reflecting the ecological niche that the organism finds itself in. In 2001 the first complete Streptomyces species genome (Streptomyces coelicolor A3[2]) was published, revealing the presence of 18 CYP genes. Subsequently, genomes for Streptomyces avermitilis, with 33 CYPs, and Streptomyces peucetius, with 15 CYPs, have been reported. Although a certain number of these CYPs have known functions in secondary metabolism, as identified biochemically or through gene locus organisation, in the vast majority of Streptomyces species, CYP functions are unknown. The first detailed analysis of the CYP complement from a Streptomyces species genome has begun in the laboratories of Waterman et al. The long-term goal of this effort is to identify orphan CYP function, to establish their high resolution structure and to establish a strategy for producing novel secondary metabolites that have new biomedical function. This chapter provides an overview of CYP systems in Streptomyces species and provides a plan of how new drugs might be generated from streptomycetes by modifying the structure of specific CYPs.
Collapse
Affiliation(s)
- David C Lamb
- Swansea Medical School, University of Wales Swansea, Swansea, UK
| | | | | | | |
Collapse
|
11
|
Kelly SL, Lamb DC, Jackson CJ, Warrilow AG, Kelly DE. The biodiversity of microbial cytochromes P450. Adv Microb Physiol 2003; 47:131-86. [PMID: 14560664 DOI: 10.1016/s0065-2911(03)47003-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The cytochrome P450 (CYP) superfamily of genes and proteins are well known for their involvement in pharmacology and toxicology, but also increasingly for their importance and diversity in microbes. The extent of diversity has only recently become apparent with the emergence of data from whole genome sequencing projects and the coming years will reveal even more information on the diversity in microbial eukaryotes. This review seeks to describe the historical development of these studies and to highlight the importance of the genes and proteins. CYPs are deeply involved in the development of strategies for deterrence and attraction as well as detoxification. As such, there is intense interest in pathways of secondary metabolism that include CYPs in oxidative tailoring of antibiotics, sometimes influencing potency as bioactive compounds. Further to this is interest in CYPs in metabolism of xenobiotics for use as carbon sources for microbial growth and as biotransformation agents or in bioremediation. CYPs are also current and potential drug targets; compounds inhibiting CYP are antifungal and anti-protozoan agents, and potentially similar compounds may be useful against some bacterial diseases such as tuberculosis. Of note is the diversity of CYP requirements within an organism, ranging from Escherichia coli that has no CYPs as in many bacteria, to Mycobacterium smegmatis that has 40 representing 1% of coding genes. The basidiomycete fungus Phanerochaete chrysosporium surprised all when it was found to contain a hundred or more CYPs. The functional genomic investigation of these orphan CYPs is a major challenge for the future.
Collapse
Affiliation(s)
- Steven L Kelly
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Wales, UK
| | | | | | | | | |
Collapse
|
12
|
Hussain HA, Ward JM. Ferredoxin reductase enhances heterologously expressed cytochrome CYP105D1 in Escherichia coli and Streptomyces lividans. Enzyme Microb Technol 2003. [DOI: 10.1016/s0141-0229(03)00047-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Lamb DC, Skaug T, Song HL, Jackson CJ, Podust LM, Waterman MR, Kell DB, Kelly DE, Kelly SL. The cytochrome P450 complement (CYPome) of Streptomyces coelicolor A3(2). J Biol Chem 2002; 277:24000-5. [PMID: 11943767 DOI: 10.1074/jbc.m111109200] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study we describe the complete cytochrome P450 complement, the "CYPome," of Streptomyces coelicolor A3(2). Eighteen cytochromes P450 (CYP) are described, in contrast to the absence of CYPs in Escherichia coli, and the twenty observed in Mycobacterium tuberculosis. Here we confirm protein identity as cytochromes P450 by heterologous expression in E. coli and measurement of reduced carbon monoxide difference spectra. We also report on their arrangement in the linear chromosome and relatedness to other CYPs in the superfamily. The future development of manipulation of antibiotic pathways and the use of streptomycetes in bioremediation and biotransformations will involve many of the new CYP forms identified here.
Collapse
Affiliation(s)
- David C Lamb
- Wolfson Laboratory of P450 Biodiversity, Institute of Biological Sciences, University of Wales Aberystwyth, Aberystwyth, Wales SY23 3DA, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Hosny M, Dhar K, Rosazza JP. Hydroxylations and methylations of quercetin, fisetin, and catechin by Streptomyces griseus. JOURNAL OF NATURAL PRODUCTS 2001; 64:462-465. [PMID: 11325228 DOI: 10.1021/np000457m] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Preparative-scale biotransformation of quercetin (1), fisetin (7), and (+)-catechin (12) with Streptomyces griseus (ATCC 13273) resulted in the isolation and characterization of nine known hydroxylated and/or methylated (2--6, 8, 9, 11, 13a) metabolites and two previously unknown (10 and 14) metabolites. S.griseus catalyzed aromatic hydroxylations of rings A and B of quercetin and fisetin. Mono- and dimethoxy ring-B metabolites were obtained with all three substrates. Methylation appeared to occur only when catechol functional groups were present. Metabolite structures were established by FABMS, EIMS, and 1D and 2D NMR analysis.
Collapse
Affiliation(s)
- M Hosny
- Division of Medicinal and Natural Products Chemistry, Center for Biocatalysis and Bioprocessing, College of Pharmacy, The University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|
15
|
Dhar K, Rosazza JP. Purification and characterization of Streptomyces griseus catechol O-methyltransferase. Appl Environ Microbiol 2000; 66:4877-82. [PMID: 11055938 PMCID: PMC92394 DOI: 10.1128/aem.66.11.4877-4882.2000] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A soluble (100,000 x g supernatant) methyltransferase catalyzing the transfer of the methyl group of S-adenosyl-L-methionine to catechols was present in cell extracts of Streptomyces griseus. A simple, general, and rapid catechol-based assay method was devised for enzyme purification and characterization. The enzyme was purified 141-fold by precipitation with ammonium sulfate and successive chromatography over columns of DEAE-cellulose, DEAE-Sepharose, and Sephacryl S-200. The purified cytoplasmic enzyme required 10 mM magnesium for maximal activity and was catalytically optimal at pH 7. 5 and 35 degrees C. The methyltransferase had an apparent molecular mass of 36 kDa for both the native and denatured protein, with a pI of 4.4. Novel N-terminal and internal amino acid sequences were determined as DFVLDNEGNPLENNGGYXYI and RPDFXLEPPYTGPXKARIIRYFY, respectively. For this enzyme, the K(m) for 6,7-dihydroxycoumarin was 500 +/- 21.5 microM, and that for S-adenosyl-L-methionine was 600 +/- 32.5 microM. Catechol, caffeic acid, and 4-nitrocatechol were methyltransferase substrates. Homocysteine was a competitive inhibitor of S-adenosyl-L-methionine, with a K(i) of 224 +/- 20.6 microM. Sinefungin and S-adenosylhomocysteine inhibited methylation, and the enzyme was inactivated by Hg(2+), p-chloromercuribenzoic acid, and N-ethylmaleimide.
Collapse
Affiliation(s)
- K Dhar
- Division of Medicinal and Natural Products Chemistry, Center for Biocatalysis and Bioprocessing, College of Pharmacy, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
16
|
Biotransformations of 4-Methyl umbelliferone derivatives - Fungal mediated O-dealkylations. RECENT ADVANCES IN BASIC AND APPLIED ASPECTS OF INDUSTRIAL CATALYSIS, PROCEEDINGS OF 13TH NATIONAL SYMPOSIUM AND SILVER JUBILEE SYMPOSIUM OF CATALYSIS OF INDIA 1998. [DOI: 10.1016/s0167-2991(98)80329-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Trower MK, Lenstra R, Omer C, Buchholz SE, Sariaslani FS. Cloning, nucleotide sequence determination and expression of the genes encoding cytochrome P-450soy (soyC) and ferredoxinsoy (soyB) from Streptomyces griseus. Mol Microbiol 1992; 6:2125-34. [PMID: 1406253 DOI: 10.1111/j.1365-2958.1992.tb01386.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Xenobiotic transformation by Streptomyces griseus (ATCC13273) is catalysed by a cytochrome P-450, designated cytochrome P-450soy. A DNA segment carrying the structural gene encoding P-450soy (soyC) was cloned using an oligonucleotide probe constructed from the protein sequence of a tryptic peptide. Following DNA sequencing the deduced amino acid sequence of P-450soy was compared with that for P-450cam, revealing conservation of important structural components including the haem pocket. Expression of the cloned soyC gene product was demonstrated in Streptomyces lividans by reduced CO:difference spectral analysis and Western blotting. Downstream of soyC, a gene encoding a putative [3Fe-4S] ferredoxin (soyB), named ferredoxinsoy, was identified.
Collapse
Affiliation(s)
- M K Trower
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Inc., Experimental Station, Wilmington, Delaware 19880-0228
| | | | | | | | | |
Collapse
|
18
|
Andersen JF, Hutchinson CR. Characterization of Saccharopolyspora erythraea cytochrome P-450 genes and enzymes, including 6-deoxyerythronolide B hydroxylase. J Bacteriol 1992; 174:725-35. [PMID: 1732208 PMCID: PMC206148 DOI: 10.1128/jb.174.3.725-735.1992] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Previous studies of erythromycin biosynthesis have indicated that a cytochrome P-450 monooxygenase system is responsible for hydroxylation of 6-deoxyerythronolide B to erythronolide B as part of erythromycin biosynthesis in Saccharopolyspora erythraea (A. Shafiee and C. R. Hutchinson, Biochemistry 26:6204-6210 1987). The enzyme was previously purified to apparent homogeneity and found to have a catalytic turnover number of approximately 10(-3) min-1. More recently, disruption of a P-450-encoding sequence (eryF) in the region of ermE, the erythromycin resistance gene of S. erythraea, produced a 6-deoxyerythronolide B hydroxylation-deficient mutant (J. M. Weber, J. O. Leung, S. J. Swanson, K. B. Idler, and J. B. McAlpine, Science 252:114-116, 1991). In this study we purified the catalytically active cytochrome P-450 fraction from S. erythraea and found by using sodium dodecyl sulfate-polyacrylamide gel electrophoresis that it consists of a major and a minor P-450 species. The gene encoding the major species (orf405) was cloned from genomic DNA and found to be distinct from eryF. Both the orf405 and eryF genes were expressed in Escherichia coli, and the properties of the proteins were compared. Heterologously expressed EryF and Orf405 both reacted with antisera prepared against the 6-deoxyerythronolide B hydroxylase described by Shafiee and Hutchinson (1987), and the EryF polypeptide comigrated with the minor P-450 species from S. erythraea on sodium dodecyl sulfate-polyacrylamide gel electrophoresis gels. In comparisons of enzymatic activity, EryF hydroxylated a substrate with a turnover number of 53 min-1, whereas Orf405 showed no detectable activity with a 6-deoxyerythronolide B analog. Both enzymes showed weak activity in the O-dealkylation of 7-ethoxycoumarin. We conclude that the previously isolated 6-deoxyerythronolide B hydroxylase was a mixture of two P-450 enzymes and that only the minor form shows 6-deoxyerythronolide B hydroxylase activity.
Collapse
Affiliation(s)
- J F Andersen
- School of Pharmacy, University of Wisconsin, Madison 53706
| | | |
Collapse
|
19
|
Männistö PT, Ulmanen I, Lundström K, Taskinen J, Tenhunen J, Tilgmann C, Kaakkola S. Characteristics of catechol O-methyl-transferase (COMT) and properties of selective COMT inhibitors. PROGRESS IN DRUG RESEARCH. FORTSCHRITTE DER ARZNEIMITTELFORSCHUNG. PROGRES DES RECHERCHES PHARMACEUTIQUES 1992; 39:291-350. [PMID: 1475365 DOI: 10.1007/978-3-0348-7144-0_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- P T Männistö
- Department of Pharmacology and Toxicology, University of Helsinki, Finland
| | | | | | | | | | | | | |
Collapse
|
20
|
Ramachandra M, Seetharam R, Emptage MH, Sariaslani FS. Purification and characterization of a soybean flour-inducible ferredoxin reductase of Streptomyces griseus. J Bacteriol 1991; 173:7106-12. [PMID: 1938912 PMCID: PMC209216 DOI: 10.1128/jb.173.22.7106-7112.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We have purified an NADH-dependent ferredoxin reductase from crude extracts of Streptomyces griseus cells grown in soybean flour-enriched medium. The purified protein has a molecular weight of 60,000 as determined by sodium dodecyl sulfate gel electrophoresis. The enzyme requires Mg2+ ion for catalytic activity in reconstituted assays, and its spectral properties resemble those of many other flavin adenine dinucleotide-containing flavoproteins. A relatively large number of hydrophobic amino acid residues are found by amino acid analysis, and beginning with residue 7, a consensus flavin adenine dinucleotide binding sequence, GXGXXGXXXA, is revealed in this protein. In the presence of NADH, the ferredoxin reductase reduces various electron acceptors such as cytochrome c, potassium ferricyanide, dichlorophenolindophenol, and nitroblue tetrazolium. However, only cytochrome c reduction by the ferredoxin reductase is enhanced by the addition of ferredoxin. In the presence of NADH, S. griseus ferredoxin and cytochrome P-450soy, the ferredoxin reductase mediates O dealkylation of 7-ethoxycoumarin.
Collapse
Affiliation(s)
- M Ramachandra
- Central Research & Development, E.I. du Pont de Nemours & Company, Wilmington, Delaware
| | | | | | | |
Collapse
|
21
|
Trower MK, Emptage MH, Sariaslani FS. Purification and characterization of a 7Fe ferredoxin from Streptomyces griseus. BIOCHIMICA ET BIOPHYSICA ACTA 1990; 1037:281-9. [PMID: 2155656 DOI: 10.1016/0167-4838(90)90026-c] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A ferredoxin has been purified from Streptomyces griseus grown in soybean flour-containing medium. The homogeneous protein has a molecular weight near 14,000 as determined by both PAGE and size exclusion chromatography. The iron and labile sulfide content is 6-7 atoms/mole protein. EPR spectroscopy of native S. griseus ferredoxin shows an isotropic signal at g = 2.01 which is typical of [3Fe-4S]1+ clusters and which quantitates to 0.9 spin/mole. Reduction of the ferredoxin by excess dithionite at pH 8.0 produces an EPR silent state with a small amount of a g = 1.95 type signal. Photoreduction in the presence of deazaflavin generates a signal typical of [4Fe-4S]1+ clusters at much higher yields (0.4-0.5 spin/mole) with major features at g-values of 2.06, 1.94, 1.90 and 1.88. This latter EPR signal is most similar to that seen for reduced 7Fe ferredoxins, which contain both a [3Fe-4S] and [4Fe-4S] cluster. In vitro reconstitution experiments demonstrate the ability of the S. griseus ferredoxin to couple electron transfer between spinach ferredoxin reductase and S. griseus cytochrome P-450soy for NADPH-dependent substrate oxidation. This represents a possible physiological function for the S. griseus ferredoxin, which if true, would be the first functional role demonstrated for a 7Fe ferredoxin.
Collapse
Affiliation(s)
- M K Trower
- E.I. du Pont de Nemours & Company Inc., Central Research and Development Department, Wilmington, DE 19880-0228
| | | | | |
Collapse
|
22
|
Trower MK, Sariaslani FS, O'Keefe DP. Purification and characterization of a soybean flour-induced cytochrome P-450 from Streptomyces griseus. J Bacteriol 1989; 171:1781-7. [PMID: 2495263 PMCID: PMC209822 DOI: 10.1128/jb.171.4.1781-1787.1989] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
A soybean flour-induced, soluble cytochrome P-450 (P-450soy) was purified 130-fold to homogeneity from Streptomyces griseus. Native cytochrome P-450soy is a single polypeptide, with a molecular weight of 47,500, in association with one ferriprotoporphyrin IX prosthetic group. Oxidized P-450soy exhibited visible absorption maxima at 394, 514, and 646 nm, characteristic of a high-spin cytochrome P-450. The CO-reduced difference spectrum of P-450soy had a Soret maximum at 448 nm. When reconstituted with spinach ferredoxin and spinach ferredoxin:NADP+ oxidoreductase, purified cytochrome P-450soy catalyzed the NADPH-dependent oxidation of the xenobiotic substrates precocene II and 7-ethoxycoumarin. In vitro proteolysis of cytochrome P-450soy generated a stable and catalytically active cytochrome P-450, designated P-450soy delta.
Collapse
Affiliation(s)
- M K Trower
- E. I. du Pont de Nemours and Company, Central Research and Development Department, Wilmington, Delaware 19880-0228
| | | | | |
Collapse
|
23
|
Trower MK, Sariaslani FS, Kitson FG. Xenobiotic oxidation by cytochrome P-450-enriched extracts of Streptomyces griseus. Biochem Biophys Res Commun 1988; 157:1417-22. [PMID: 3144975 DOI: 10.1016/s0006-291x(88)81033-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Crude extracts of Streptomyces griseus grown on soybean flour-enriched medium contain high levels of cytochrome P-450. The cytochrome P-450-enriched fractions, obtained by ammonium sulfate fractionation (30-50% saturation), catalyze the NADPH-dependent oxidation of a variety of xenobiotics when complemented with both spinach ferredoxin:NADP+ oxidoreductase and spinach ferredoxin. Reactions observed are aromatic, benzylic and alicyclic hydroxylations, O-dealkylation, non-aromatic double bond epoxidation, N-oxidation and N-acetylation.
Collapse
Affiliation(s)
- M K Trower
- E.I. Du Pont de Nemours & Co. (Inc.), Central Research and Development Department, Wilmington, DE 19880-0228
| | | | | |
Collapse
|
24
|
Sariaslani FS, McGee LR, Ovenall DW. Microbial transformation of precocene II: oxidative reactions by Streptomyces griseus. Appl Environ Microbiol 1987; 53:1780-4. [PMID: 3116933 PMCID: PMC203998 DOI: 10.1128/aem.53.8.1780-1784.1987] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Various species of "Streptomyces," "Aspergillus," "Rhodotorula," "Brevilegnia," "Syncephalastrum," and "Stysanus" were found to transform precocene II to three major metabolites. These major biotransformation products were isolated from a preparative-scale incubation of precocene II with Streptomyces griseus and were conclusively identified as (-)cis- and (+)trans-precocene II-3,4-dihydrodiols and (+)-3-chromenol. 18O2 incorporation studies indicated the involvement of a monooxygenase enzyme system in precocene II transformation by S. griseus. A mechanism is proposed for the formation of (+)-3-chromenol.
Collapse
Affiliation(s)
- F S Sariaslani
- Central Research and Development Department, E. I. du Pont de Nemours and Company, Wilmington, Delaware 19898
| | | | | |
Collapse
|
25
|
Sariaslani FS, Kunz DA. Induction of cytochrome P-450 in Streptomyces griseus by soybean flour. Biochem Biophys Res Commun 1986; 141:405-10. [PMID: 3099785 DOI: 10.1016/s0006-291x(86)80187-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Soybean flour and the isoflavonoid genistein, were found to induce cytochrome P-450 in Streptomyces griseus. The chromophore was found in the 105,000xg supernatant and gave a reduced CO-difference spectrum with an absorption maximum of 448 nm. Almost 70% of the P-450 could be precipitated at 35-45% ammonium sulfate saturation. SDS-gel electrophoresis revealed the presence of a 45,000 dalton polypeptide in extracts induced by either soybean or genistein. S. griseus generated the free isoflavonoids genistein and daidzein when grown on soybean flour medium.
Collapse
|
26
|
Allard AS, Remberger M, Neilson AH. Bacterial O-Methylation of Chloroguaiacols: Effect of Substrate Concentration, Cell Density, and Growth Conditions. Appl Environ Microbiol 1985; 49:279-88. [PMID: 16346715 PMCID: PMC238394 DOI: 10.1128/aem.49.2.279-288.1985] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
O-methylation of chloroguaiacols has been examined in a number of gram-positive and gram-negative bacteria to elucidate the effects of substrate concentration, growth conditions, and cell density. Substrate concentrations between 0.1 and 20.0 mg liter
−1
were used, and it was found that (i) yields of the O-methylated products were significantly higher at the lowest concentrations and (ii) rates of O-methylation were not linear functions of concentration. With 3,4,5-trichloroguaiacol, the nature of the metabolites also changed with concentration. During growth with a range of substrates, O-methylation of chloroguaiacols also took place. With vanillate, however, de-O-methylation occurred: the chlorocatechol formed from 4,5,6-trichloroguaiacol was successively O-methylated to 3,4,5-trichloroguaiacol and 3,4,5-trichloroveratrole, whereas that produced from 4,5-dichloroguaiacol was degraded without O-methylation. Effective O-methylation in nonproliferating suspensions occurred at cell densities as low as 10
5
cells ml
−1
, although both the yields and the rates were lower than in more dense cultures. By using disk assays, it was shown that, compared with their precursors, all of the O-methylated metabolites were virtually nontoxic to the strains examined. It is therefore proposed that O-methylation functions as a detoxification mechanism for cells exposed to chloroguaiacols and chlorophenols. In detail, significant differences were observed in the response of gram-positive and gram-negative cell strains to chloroguaiacols. It is concluded that bacterial O-methylation is to be expected in the natural environment subjected to discharge of chloroguaiacols.
Collapse
Affiliation(s)
- A S Allard
- Swedish Environmental Research Institute, Box 21060, S-100 31 Stockholm, Sweden
| | | | | |
Collapse
|
27
|
|
28
|
|