1
|
A processive GH9 family endoglucanase of Bacillus licheniformis and the role of its carbohydrate-binding domain. Appl Microbiol Biotechnol 2022; 106:6059-6075. [PMID: 35948851 DOI: 10.1007/s00253-022-12117-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 11/02/2022]
Abstract
One of the critical steps in lignocellulosic deconstruction is the hydrolysis of crystalline cellulose by cellulases. Endoglucanases initially facilitate the breakdown of cellulose in lignocellulosic biomass and are further aided by other cellulases to produce fermentable sugars. Furthermore, if the endoglucanase is processive, it can adsorb to the smooth surface of crystalline cellulose and release soluble sugars during repeated cycles of catalysis before dissociating. Most glycoside hydrolase family 9 (GH9) endoglucanases have catalytic domains linked to a CBM (carbohydrate-binding module) (mostly CBM3) and present the second-largest cellulase family after GH5. GH9 endoglucanases are relatively less characterized. Bacillus licheniformis is a mesophilic soil bacterium containing many glycoside hydrolase (GH) enzymes. We identified an endoglucanase gene, gh9A, encoding the GH9 family enzyme H1AD14 in B. licheniformis and cloned and overexpressed H1AD14 in Escherichia coli. The purified H1AD14 exhibited very high enzymatic activity on endoglucanase substrates, such as β-glucan, lichenan, Avicel, CMC-Na (sodium carboxymethyl cellulose) and PASC (phosphoric acid swollen cellulose), across a wide pH range. The enzyme is tolerant to 2 M sodium chloride and retains 74% specific activity on CMC after 10 days, the highest amongst the reported GH9 endoglucanases. The full-length H1AD14 is a processive endoglucanase and efficiently saccharified sugarcane bagasse. The deletion of the CBM reduces the catalytic activity and processivity. The results add to the sparse knowledge of GH9 endoglucanases and offer the possibility of characterizing and engineering additional enzymes from B. licheniformis toward developing a cellulase cocktail for improved biomass deconstruction. KEY POINTS: • H1AD14 is a highly active and processive GH9 endoglucanase from B. licheniformis. • H1AD14 is thermostable and has a very long half-life. • H1AD14 showed higher saccharification efficiency than commercial endoglucanase.
Collapse
|
2
|
Chang J, Yao X, Zuo C, Qi Y, Chen D, Ma W. The gut bacterial diversity of sheep associated with different breeds in Qinghai province. BMC Vet Res 2020; 16:254. [PMID: 32703277 PMCID: PMC7376942 DOI: 10.1186/s12917-020-02477-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 07/13/2020] [Indexed: 01/16/2023] Open
Abstract
Background Gut microbiota play important roles in their co-evolution with mammals. However, little is understood about gut bacterial community of Tibetan sheep compared with other sheep breeds. In this study, we investigated the gut bacterial community in 4 different sheep breeds living in the Qinghai-Tibetan Plateau (QTP) of China using high-throughput sequencing (HTS) technique. Results The results suggested that bacterial community abundance and breeds diversity of Tibetan sheep (TS) were significantly lower than that of the other three breeds of sheep [Dorset sheep (DrS), Dorper sheep (DrS) and Small Tail Han sheep (STHS)] (p < 0.05). Principal coordinates analysis (PCoA) and nonmetric multidimensional scaling (NMDS) analysis indicated that microbiome composition of TS was significantly different from that of other three sheep breeds (p < 0.01). Firmicutes was the most predominant microbial phylum in the gut, followed by Bacteroidetes. The gut bacterial community of TS showed higher proportions of phylum Spirochaetes, Proteobacteria and Verrucomicrobia, compared to the other three sheep breeds, but the Deferribacteres was absent in TS. At the genus level, Treponema, Succinivibrio, 5-7 N15 and Prevotella showed significantly higher abundance in TS than in the other three sheep breeds (p < 0.05). Conclusions In this study, we first employed HTS to understand the gut microbiomes among different sheep breeds in QTP of China.
Collapse
Affiliation(s)
- Jianjun Chang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, Qinghai Province, China. .,College of Agriculture and Animal Husbandry, Qinghai University, Xining, 810016, Qinghai Province, China.
| | - Xiaoting Yao
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Chenxiang Zuo
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Yuxu Qi
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, China
| | - Dekun Chen
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| | - Wentao Ma
- College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, Shaanxi Province, China.
| |
Collapse
|
3
|
Jin W, Wang Y, Li Y, Cheng Y, Zhu W. Temporal changes of the bacterial community colonizing wheat straw in the cow rumen. Anaerobe 2018; 50:1-8. [PMID: 29330119 DOI: 10.1016/j.anaerobe.2018.01.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 01/03/2018] [Accepted: 01/07/2018] [Indexed: 01/26/2023]
Abstract
This study used Miseq pyrosequencing and scanning electron microscopy to investigate the temporal changes in the bacterial community tightly attached to wheat straw in the cow rumen. The wheat straw was incubated in the rumens and samples were recovered at various times. The wheat straw degradation exhibited three phases: the first degradation phase occurred within 0.5 h, and the second degradation phase occurred after 6 h, with a stalling phase occurring between 0.5 and 6 h. Scanning electron microscopy revealed the colonization of the microorganisms on the wheat straw over time. The bacterial communities at 0.5, 6, 24, and 72 h were determined, corresponding to the degradation phases. Firmicutes and Bacteroidetes were the two most dominant phyla in the bacterial communities at the four time points. Principal coordinate analysis (PCoA) showed that the bacterial communities at the four time points were distinct from each other. The wheat straw-associated bacteria stabilized at the phylum level after 0.5 h of rumen incubation, and only modest phylum-level and family-level changes were observed for most taxa between 0.5 h and 72 h. The relative abundance of the dominant genera, Butyrivibrio, Coprococcus, Ruminococcus, Succiniclasticum, Clostridium, Prevotella, YRC22, CF231, and Treponema, changed significantly over time (P < .05). However, at the genus level, unclassified taxa accounted for 70.3% ± 6.1% of the relative abundance, indicating their probable importance in the degradation of wheat straw as well as in the temporal changes of the bacterial community. Thus, understanding the function of these unclassified taxa is of great importance for targeted improvement of forage use efficiency in ruminants. Collectively, our results revealed distinct degradation phases of wheat straw and corresponding changes in the colonized bacterial community.
Collapse
Affiliation(s)
- Wei Jin
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Ying Wang
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yuanfei Li
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yanfen Cheng
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China.
| | - Weiyun Zhu
- Jiangsu Province Key Laboratory of Gastrointestinal Nutrition and Animal Health, Laboratory of Gastrointestinal Microbiology, College of Animal Science and Technology, Nanjing Agricultural University, 210095, Nanjing, China
| |
Collapse
|
4
|
Generation and Characterization of Acid Tolerant Fibrobacter succinogenes S85. Sci Rep 2017; 7:2277. [PMID: 28536480 PMCID: PMC5442110 DOI: 10.1038/s41598-017-02628-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 04/20/2017] [Indexed: 01/13/2023] Open
Abstract
Microorganisms are key components for plant biomass breakdown within rumen environments. Fibrobacter succinogenes have been identified as being active and dominant cellulolytic members of the rumen. In this study, F. succinogenes type strain S85 was adapted for steady state growth in continuous culture at pH 5.75 and confirmed to grow in the range of pH 5.60–5.65, which is lower than has been reported previously. Wild type and acid tolerant strains digested corn stover with equal efficiency in batch culture at low pH. RNA-seq analysis revealed 268 and 829 genes were differentially expressed at pH 6.10 and 5.65 compared to pH 6.70, respectively. Resequencing analysis identified seven single nucleotide polymorphisms (SNPs) in the sufD, yidE, xylE, rlmM, mscL and dosC genes of acid tolerant strains. Due to the absence of a F. succinogenes genetic system, homologues in Escherichia coli were mutated and complemented and the resulting strains were assayed for acid survival. Complementation with wild-type or acid tolerant F. succinogenes sufD restored E. coli wild-type levels of acid tolerance, suggesting a possible role in acid homeostasis. Recent genetic engineering developments need to be adapted and applied in F. succinogenes to further our understanding of this bacterium.
Collapse
|
5
|
Monitoring of gene expression in Fibrobacter succinogenes S85 under the co-culture with non-fibrolytic ruminal bacteria. Arch Microbiol 2014; 197:269-76. [PMID: 25354721 DOI: 10.1007/s00203-014-1049-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 09/22/2014] [Accepted: 10/13/2014] [Indexed: 10/24/2022]
Abstract
Fibrobacter succinogenes is one of the most pivotal fibrolytic bacterial species in the rumen. In a previous study, we confirmed enhancement of fiber digestion in a co-culture of F. succinogenes S85 with non-fibrolytic ruminal strains R-25 and/or Selenomonas ruminantium S137. In the present study, mRNA expression level of selected functional genes in the genome of F. succinogenes S85 was monitored by real-time RT-PCR. Growth profile of F. succinogenes S85 was similar in both the monoculture and co-cultures with non-fibrolytics. However, expression of 16S rRNA gene of F. succinogenes S85 in the co-culture was higher (P < 0.01) than that of the monoculture. This finding suggests that metabolic activity of F. succinogenes S85 was enhanced by coexistence with strains R-25 and/or S. ruminantium S137. The mRNA expression of fumarate reductase and glycoside hydrolase genes was up-regulated (P < 0.01) when F. succinogenes S85 was co-cultured with non-fibrolytics. These results indicate the enhancement of succinate production and fiber hydrolysis by F. succinogenes S85 in co-cultures of S. ruminantium and R-25 strains.
Collapse
|
6
|
Gong X, Gruninger RJ, Qi M, Paterson L, Forster RJ, Teather RM, McAllister TA. Cloning and identification of novel hydrolase genes from a dairy cow rumen metagenomic library and characterization of a cellulase gene. BMC Res Notes 2012; 5:566. [PMID: 23062472 PMCID: PMC3545987 DOI: 10.1186/1756-0500-5-566] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 10/08/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Interest in cellulose degrading enzymes has increased in recent years due to the expansion of the ellulosic biofuel industry. The rumen is a highly adapted environment for the degradation of cellulose and a promising source of enzymes for industrial use. To identify cellulase enzymes that may be of such use we have undertaken a functional metagenomic screen to identify cellulase enzymes from the bacterial community in the rumen of a grass-hay fed dairy cow. RESULTS Twenty five clones specifying cellulose activity were identified. Subcloning and sequence analysis of a subset of these hydrolase-positive clones identified 10 endoglucanase genes. Preliminary characterization of the encoded cellulases was carried out using crude extracts of each of the subclones. Zymogram analysis using carboxymethylcellulose as a substrate showed a single positive band for each subclone, confirming that only one functional cellulase gene was present in each. One cellulase gene, designated Cel14b22, was expressed at a high level in Escherichia coli and purified for further characterization. The purified recombinant enzyme showed optimal activity at pH 6.0 and 50°C. It was stable over a broad pH range, from pH 4.0 to 10.0. The activity was significantly enhanced by Mn2+ and dramatically reduced by Fe3+ or Cu2+. The enzyme hydrolyzed a wide range of beta-1,3-, and beta-1,4-linked polysaccharides, with varying activities. Activities toward microcrystalline cellulose and filter paper were relatively high, while the highest activity was toward Oat Gum. CONCLUSION The present study shows that a functional metagenomic approach can be used to isolate previously uncharacterized cellulases from the rumen environment.
Collapse
Affiliation(s)
- Xia Gong
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
- Feed Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Robert J Gruninger
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Meng Qi
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Lyn Paterson
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Robert J Forster
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Ron M Teather
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| | - Tim A McAllister
- Agriculture and Agri-Food Canada, Lethbridge Research Centre, Lethbridge, Alberta, T1J 4B1, Canada
| |
Collapse
|
7
|
Liu D, Zhang R, Yang X, Xu Y, Tang Z, Tian W, Shen Q. Expression, purification and characterization of two thermostable endoglucanases cloned from a lignocellulosic decomposing fungi Aspergillus fumigatus Z5 isolated from compost. Protein Expr Purif 2011; 79:176-86. [DOI: 10.1016/j.pep.2011.06.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 06/08/2011] [Accepted: 06/09/2011] [Indexed: 11/27/2022]
|
8
|
Suen G, Weimer PJ, Stevenson DM, Aylward FO, Boyum J, Deneke J, Drinkwater C, Ivanova NN, Mikhailova N, Chertkov O, Goodwin LA, Currie CR, Mead D, Brumm PJ. The complete genome sequence of Fibrobacter succinogenes S85 reveals a cellulolytic and metabolic specialist. PLoS One 2011; 6:e18814. [PMID: 21526192 PMCID: PMC3079729 DOI: 10.1371/journal.pone.0018814] [Citation(s) in RCA: 147] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2010] [Accepted: 03/11/2011] [Indexed: 11/17/2022] Open
Abstract
Fibrobacter succinogenes is an important member of the rumen microbial community that converts plant biomass into nutrients usable by its host. This bacterium, which is also one of only two cultivated species in its phylum, is an efficient and prolific degrader of cellulose. Specifically, it has a particularly high activity against crystalline cellulose that requires close physical contact with this substrate. However, unlike other known cellulolytic microbes, it does not degrade cellulose using a cellulosome or by producing high extracellular titers of cellulase enzymes. To better understand the biology of F. succinogenes, we sequenced the genome of the type strain S85 to completion. A total of 3,085 open reading frames were predicted from its 3.84 Mbp genome. Analysis of sequences predicted to encode for carbohydrate-degrading enzymes revealed an unusually high number of genes that were classified into 49 different families of glycoside hydrolases, carbohydrate binding modules (CBMs), carbohydrate esterases, and polysaccharide lyases. Of the 31 identified cellulases, none contain CBMs in families 1, 2, and 3, typically associated with crystalline cellulose degradation. Polysaccharide hydrolysis and utilization assays showed that F. succinogenes was able to hydrolyze a number of polysaccharides, but could only utilize the hydrolytic products of cellulose. This suggests that F. succinogenes uses its array of hemicellulose-degrading enzymes to remove hemicelluloses to gain access to cellulose. This is reflected in its genome, as F. succinogenes lacks many of the genes necessary to transport and metabolize the hydrolytic products of non-cellulose polysaccharides. The F. succinogenes genome reveals a bacterium that specializes in cellulose as its sole energy source, and provides insight into a novel strategy for cellulose degradation.
Collapse
Affiliation(s)
- Garret Suen
- DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Béra-Maillet C, Arthaud L, Abad P, Rosso MN. Biochemical characterization of MI-ENG1, a family 5 endoglucanase secreted by the root-knot nematode Meloidogyne incognita. EUROPEAN JOURNAL OF BIOCHEMISTRY 2000; 267:3255-63. [PMID: 10824111 DOI: 10.1046/j.1432-1327.2000.01356.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A beta-1,4-endoglucanase named MI-ENG1, homologous to the family 5 glycoside hydrolases, was previously isolated from the plant parasitic root-knot nematode Meloidogyne incognita. We describe here the detection of the enzyme in the nematode homogenate and secretion and its complete biochemical characterization. This study is the first comparison of the enzymatic properties of an animal glycoside hydrolase with plant and microbial enzymes. MI-ENG1 shares many enzymatic properties with known endoglucanases from plants, free-living or rumen-associated microorganisms and phytopathogens. In spite of the presence of a cellulose-binding domain at the C-terminus, the ability of MI-ENG1 to bind cellulose could not be demonstrated, whatever the experimental conditions used. The biochemical characterization of the enzyme is a first step towards the understanding of the molecular events taking place during the plant-nematode interaction.
Collapse
Affiliation(s)
- C Béra-Maillet
- INRA, Unité Santé Végétale et Environnement, Antibes, France
| | | | | | | |
Collapse
|
10
|
Molecular cloning, expression, and characterization of a new endoglucanase gene fromFibrobacter succinogenes S85. Curr Microbiol 1994. [DOI: 10.1007/bf01575979] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Cavicchioli R, East PD, Watson K. endAFS, a novel family E endoglucanase gene from Fibrobacter succinogenes AR1. J Bacteriol 1991; 173:3265-8. [PMID: 1708767 PMCID: PMC207928 DOI: 10.1128/jb.173.10.3265-3268.1991] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The complete nucleotide sequence of endAFS, an endoglucanase gene isolated from the ruminal anaerobe Fibrobacter succinogenes AR1, was determined. endAFS encodes two overlapping open reading frames (ORF1 and ORF2), and it was proposed that a -1 ribosomal frameshift was required to allow contiguous synthesis of a 453-amino-acid endoglucanase. A proline- and threonine-rich region at the C terminus of ORF1 and rare codons for arginine and threonine were coincident with the proposed frameshift site. ENDAFS is proposed to be a member of subgroup 1 of family E endoglucanases, of which endoglucanases from Thermomonospora fusca and Persea americana (avocado) are also members. Endoglucanases from Clostridium thermocellum and Pseudomonas fluorescens form subgroup 2.
Collapse
Affiliation(s)
- R Cavicchioli
- Department of Biochemistry, Microbiology and Nutrition, University of New England, Armidale, New South Wales, Australia
| | | | | |
Collapse
|