1
|
Veldmann KH, Dachwitz S, Risse JM, Lee JH, Sewald N, Wendisch VF. Bromination of L-tryptophan in a Fermentative Process With Corynebacterium glutamicum. Front Bioeng Biotechnol 2019; 7:219. [PMID: 31620432 PMCID: PMC6759940 DOI: 10.3389/fbioe.2019.00219] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 08/27/2019] [Indexed: 01/22/2023] Open
Abstract
Brominated compounds such as 7-bromo-l-tryptophan (7-Br-Trp) occur in Nature. Many synthetic and natural brominated compounds have applications in the agriculture, food, and pharmaceutical industries, for example, the 20S-proteasome inhibitor TMC-95A that may be derived from 7-Br-Trp. Mild halogenation by cross-linked enzyme aggregates containing FAD-dependent halogenase, NADH-dependent flavin reductase, and alcohol dehydrogenase as well as by fermentation with recombinant Corynebacterium glutamicum expressing the genes for the FAD-dependent halogenase RebH and the NADH-dependent flavin reductase RebF from Lechevalieria aerocolonigenes have recently been developed as green alternatives to more hazardous chemical routes. In this study, the fermentative production of 7-Br-Trp was established. The fermentative process employs an l-tryptophan producing C. glutamicum strain expressing rebH and rebF from L. aerocolonigenes for halogenation and is based on glucose, ammonium and sodium bromide. C. glutamicum tolerated high sodium bromide concentrations, but its growth rate was reduced to half-maximal at 0.09 g L−1 7-bromo-l-tryptophan. This may be, at least in part, due to inhibition of anthranilate phosphoribosyltransferase by 7-Br-Trp since anthranilate phosphoribosyltransferase activity in crude extracts was half-maximal at about 0.03 g L−1 7-Br-Trp. Fermentative production of 7-Br-Trp by recombinant C. glutamicum was scaled up to a working volume of 2 L and operated in batch and fed-batch mode. The titers were increased from batch fermentation in CGXII minimal medium with 0.3 g L−1 7-Br-Trp to fed-batch fermentation in HSG complex medium, where up to 1.2 g L−1 7-Br-Trp were obtained. The product isolated from the culture broth was characterized by NMR and LC-MS and shown to be 7-Br-Trp.
Collapse
Affiliation(s)
- Kareen H Veldmann
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Steffen Dachwitz
- Organic and Bioorganic Chemistry, Faculty of Chemistry & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Jin-Ho Lee
- Major in Food Science and Biotechnology, School of Food Biotechnology and Nutrition, BB21+, Kyungsung University, Busan, South Korea
| | - Norbert Sewald
- Organic and Bioorganic Chemistry, Faculty of Chemistry & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology & Center for Biotechnology (CeBiTec), Bielefeld University, Bielefeld, Germany
| |
Collapse
|
2
|
Syukur Purwanto H, Kang MS, Ferrer L, Han SS, Lee JY, Kim HS, Lee JH. Rational engineering of the shikimate and related pathways in Corynebacterium glutamicum for 4-hydroxybenzoate production. J Biotechnol 2018; 282:92-100. [DOI: 10.1016/j.jbiotec.2018.07.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/09/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023]
|
3
|
Novel stand-alone RAM domain protein-mediated catalytic control of anthranilate phosphoribosyltransferase in tryptophan biosynthesis in Thermus thermophilus. Extremophiles 2016; 21:73-83. [DOI: 10.1007/s00792-016-0884-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
|
4
|
Sun H, Zhao D, Xiong B, Zhang C, Bi C. Engineering Corynebacterium glutamicum for violacein hyper production. Microb Cell Fact 2016; 15:148. [PMID: 27557730 PMCID: PMC4997675 DOI: 10.1186/s12934-016-0545-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/15/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum was used as a metabolic engineering chassis for production of crude violacein (mixture of violacein and deoxyviolacein) due to Corynebacterium's GRAS status and advantages in tryptophan fermentation. The violacein is a commercially potential compound with various applications derived from L-tryptophan. RESULTS Corynebacterium glutamicum ATCC 21850 that could produce 162.98 mg L(-1) tryptophan was employed as a novel host for metabolic engineering chassis. Heterologous vio operon from Chromobacterium violaceum was over-expressed in ATCC 21850 strain with constitutive promoter to have obtained 532 mg L(-1) violacein. Considering toxicity of violacein, vio operon was expressed with inducible promoter and 629 mg L(-1) violacein was obtained in batch culture. Due to the economical coding nature of vio operon, the compressed RBS of vio genes were replaced with complete strong C. glutamicum ones. And extended expression units were assembled to form a synthetic operon. With this strategy, 1116 mg L(-1) violacein in batch culture was achieved. Fermentation process was then optimized by studying induction time, induction concentration, culture composition and fermentation temperature. as a result, a titer of 5436 mg L(-1) and a productivity of 47 mg L(-1) h(-1) were achieved in 3 L bioreactor. CONCLUSIONS With metabolic engineering and fermentation optimization practice, C. glutamicum 21850 (pEC-C-vio1) was able to produce violacein with both titer and productivity at the highest level ever reported. Due to advantages of mature C. glutamicum fermentation industry, this work has built basis for commercial production of violacein.
Collapse
Affiliation(s)
- Hongnian Sun
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034 People’s Republic of China
| | - Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Bin Xiong
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| | - Chunzhi Zhang
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034 People’s Republic of China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308 People’s Republic of China
| |
Collapse
|
5
|
Korolev SA, Zverkov OA, Seliverstov AV, Lyubetsky VA. Ribosome reinitiation at leader peptides increases translation of bacterial proteins. Biol Direct 2016; 11:20. [PMID: 27084079 PMCID: PMC4833913 DOI: 10.1186/s13062-016-0123-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/07/2016] [Indexed: 02/04/2023] Open
Abstract
Short leader genes usually do not encode stable proteins, although their importance in expression control of bacterial genomes is widely accepted. Such genes are often involved in the control of attenuation regulation. However, the abundance of leader genes suggests that their role in bacteria is not limited to regulation. Specifically, we hypothesize that leader genes increase the expression of protein-coding (structural) genes via ribosome reinitiation at the leader peptide in the case of a short distance between the stop codon of the leader gene and the start codon of the structural gene. For instance, in Actinobacteria, the frequency of leader genes at a distance of 10-11 bp is about 70 % higher than the mean frequency within the 1 to 65 bp range; and it gradually decreases as the range grows longer. A pronounced peak of this frequency-distance relationship is also observed in Proteobacteria, Bacteroidetes, Spirochaetales, Acidobacteria, the Deinococcus-Thermus group, and Planctomycetes. In contrast, this peak falls to the distance of 15-16 bp and is not very pronounced in Firmicutes; and no such peak is observed in cyanobacteria and tenericutes. Generally, this peak is typical for many bacteria. Some leader genes located close to a structural gene probably play a regulatory role as well.
Collapse
Affiliation(s)
- Semen A. Korolev
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
| | - Oleg A. Zverkov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
| | - Alexandr V. Seliverstov
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
| | - Vassily A. Lyubetsky
- Institute for Information Transmission Problems of the Russian Academy of Sciences (Kharkevich Institute), Bolshoy Karetny per. 19, build.1, Moscow, 127051 Russia
| |
Collapse
|
6
|
Neshat A, Mentz A, Rückert C, Kalinowski J. Transcriptome sequencing revealed the transcriptional organization at ribosome-mediated attenuation sites in Corynebacterium glutamicum and identified a novel attenuator involved in aromatic amino acid biosynthesis. J Biotechnol 2014; 190:55-63. [PMID: 24910972 DOI: 10.1016/j.jbiotec.2014.05.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 05/02/2014] [Accepted: 05/14/2014] [Indexed: 11/27/2022]
Abstract
The Gram-positive bacterium Corynebacterium glutamicum belongs to the order Corynebacteriales and is used as a producer of amino acids at industrial scales. Due to its economic importance, gene expression and particularly the regulation of amino acid biosynthesis has been investigated extensively. Applying the high-resolution technique of transcriptome sequencing (RNA-seq), recently a vast amount of data has been generated that was used to comprehensively analyze the C. glutamicum transcriptome. By analyzing RNA-seq data from a small RNA cDNA library of C. glutamicum, short transcripts in the known transcriptional attenuators sites of the trp operon, the ilvBNC operon and the leuA gene were verified. Furthermore, whole transcriptome RNA-seq data were used to elucidate the transcriptional organization of these three amino acid biosynthesis operons. In addition, we discovered and analyzed the novel attenuator aroR, located upstream of the aroF gene (cg1129). The DAHP synthase encoded by aroF catalyzes the first step in aromatic amino acid synthesis. The AroR leader peptide contains the amino acid sequence motif F-Y-F, indicating a regulatory effect by phenylalanine and tyrosine. Analysis by real-time RT-PCR suggests that the attenuator regulates the transcription of aroF in dependence of the cellular amount of tRNA loaded with phenylalanine when comparing a phenylalanine-auxotrophic C. glutamicum mutant fed with limiting and excess amounts of a phenylalanine-containing dipeptide. Additionally, the very interesting finding was made that all analyzed attenuators are leaderless transcripts.
Collapse
Affiliation(s)
- Armin Neshat
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Almut Mentz
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Christian Rückert
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany
| | - Jörn Kalinowski
- Microbial Genomics and Biotechnology, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany; Technology Platform Genomics, Center for Biotechnology, Bielefeld University, Universitätsstraße 27, 33615 Bielefeld, Germany.
| |
Collapse
|
7
|
Gene expression regulation of the PF00480 or PF14340 domain proteins suggests their involvement in sulfur metabolism. Comput Biol Chem 2014; 49:7-13. [PMID: 24513779 DOI: 10.1016/j.compbiolchem.2014.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 01/06/2014] [Accepted: 01/09/2014] [Indexed: 11/22/2022]
Abstract
The paper studies proteins with domains PF00480 or PF14340, as well as some other poorly characterized proteins, encoded by genes associated with leader peptide genes containing a tract of cysteine codons. Such proteins are hypothetically regulated with cysteine-dependent transcription attenuation, namely the Rho-dependent or classic transcription attenuation. Cysteine is an important structural amino acid in various proteins and is required for synthesis of many sulfur-containing compounds, such as methionine, thiamine, glutathione, taurine and the lipoic acid. Earlier a few species of mycobacteria were predicted by the authors to have cysteine-dependent regulation of operons containing the cysK gene. In Escherichia coli this regulation is absent, and the same operon is regulated by the CysB transcription activator. The paper also studies Rho-dependent and classic transcription regulations in all annotated genes of mycobacteria available in GenBank and their orthologs in Actinomycetales. We predict regulations for many genes involved in sulfur metabolism and transport of sulfur-containing compounds; these regulations differ considerably among species. On the basis of predictions, we assign a putative role to proteins encoded by the regulated genes with unknown function, and also describe the structure of corresponding regulons, predict the lack of such regulations for many genes. Thus, all proteins with the uncharacterized Pfam domains PF14340 and PF00480, as well as some others, are predicted to be involved in sulfur metabolism. We also surmise the affinity of some transporters to sulfur-containing compounds. The obtained results considerably extend earlier large-scale studies of Rho-dependent and classic transcription attenuations.
Collapse
|
8
|
Kulis-Horn RK, Persicke M, Kalinowski J. Histidine biosynthesis, its regulation and biotechnological application in Corynebacterium glutamicum. Microb Biotechnol 2013; 7:5-25. [PMID: 23617600 PMCID: PMC3896937 DOI: 10.1111/1751-7915.12055] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Revised: 03/01/2013] [Accepted: 03/05/2013] [Indexed: 01/12/2023] Open
Abstract
l-Histidine biosynthesis is an ancient metabolic pathway present in bacteria, archaea, lower eukaryotes, and plants. For decades l-histidine biosynthesis has been studied mainly in Escherichia coli and Salmonella typhimurium, revealing fundamental regulatory processes in bacteria. Furthermore, in the last 15 years this pathway has been also investigated intensively in the industrial amino acid-producing bacterium Corynebacterium glutamicum, revealing similarities to E. coli and S. typhimurium, as well as differences. This review summarizes the current knowledge of l-histidine biosynthesis in C. glutamicum. The genes involved and corresponding enzymes are described, in particular focusing on the imidazoleglycerol-phosphate synthase (HisFH) and the histidinol-phosphate phosphatase (HisN). The transcriptional organization of his genes in C. glutamicum is also reported, including the four histidine operons and their promoters. Knowledge of transcriptional regulation during stringent response and by histidine itself is summarized and a translational regulation mechanism is discussed, as well as clues about a histidine transport system. Finally, we discuss the potential of using this knowledge to create or improve C. glutamicum strains for the industrial l-histidine production.
Collapse
Affiliation(s)
- Robert K Kulis-Horn
- Centrum für Biotechnologie, Universität Bielefeld, Universitätsstraße 27, 33615, Bielefeld, Germany
| | | | | |
Collapse
|
9
|
Gu P, Yang F, Kang J, Wang Q, Qi Q. One-step of tryptophan attenuator inactivation and promoter swapping to improve the production of L-tryptophan in Escherichia coli. Microb Cell Fact 2012; 11:30. [PMID: 22380540 PMCID: PMC3311589 DOI: 10.1186/1475-2859-11-30] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 03/02/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND L-tryptophan is an aromatic amino acid widely used in the food, chemical and pharmaceutical industries. In Escherichia coli, L-tryptophan is synthesized from phosphoenolpyruvate and erythrose 4-phosphate by enzymes in the shikimate pathway and L-tryptophan branch pathway, while L-serine and phosphoribosylpyrophosphate are also involved in L-tryptophan synthesis. In order to construct a microbial strain for efficient L-tryptophan production from glucose, we developed a one step tryptophan attenuator inactivation and promoter swapping strategy for metabolic flux optimization after a base strain was obtained by overexpressing the tktA, mutated trpE and aroG genes and inactivating a series of competitive steps. RESULTS The engineered E. coli GPT1002 with tryptophan attenuator inactivation and tryptophan operon promoter substitution exhibited 1.67 ~ 9.29 times higher transcription of tryptophan operon genes than the control GPT1001. In addition, this strain accumulated 1.70 g l(-1) L-tryptophan after 36 h batch cultivation in 300-mL shake flask. Bioreactor fermentation experiments showed that GPT1002 could produce 10.15 g l(-1) L-tryptophan in 48 h. CONCLUSIONS The one step inactivating and promoter swapping is an efficient method for metabolic engineering. This method can also be applied in other bacteria.
Collapse
Affiliation(s)
- Pengfei Gu
- State Key Laboratory of Microbial Technology, National Glycoengineering Research Center, Shandong University, Jinan 250100, People's Republic of China
| | | | | | | | | |
Collapse
|
10
|
Lopatovskaya KV, Seliverstov AV, Lyubetsky VA. Attenuation regulation of the amino acid and aminoacyl-tRNA biosynthesis operons in bacteria: A comparative genomic analysis. Mol Biol 2010. [DOI: 10.1134/s0026893310010164] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Characterization of mutations induced by N-methyl-N'-nitro-N-nitrosoguanidine in an industrial Corynebacterium glutamicum strain. Mutat Res 2007; 649:239-44. [PMID: 18037338 DOI: 10.1016/j.mrgentox.2007.10.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 10/02/2007] [Accepted: 10/08/2007] [Indexed: 11/23/2022]
Abstract
Mutations induced by classical whole-cell mutagenesis using N-methyl-N'-nitro-N-nitrosoguanidine (NTG) were determined for all genes of pathways from glucose to L-lysine in an industrial L-lysine producer of Corynebacterium glutamicum. A total of 50 mutations with a genome-wide distribution were identified and characterized for mutational types and mutagenic specificities. Those mutations were all point mutations with single-base substitutions and no deletions, frame shifts, and insertions were found. Among six possible types of base substitutions, the mutations consisted of only two types: 47 G.C-->A.T transitions and three A.T-->G.C transitions with no transversion. The findings indicate a limited repertoire of amino acid substitutions by classical NTG mutagenesis and thus raise a new possibility of further improving industrial strains by optimizing key mutations through PCR-mediated site-directed mutagenesis.
Collapse
|
12
|
Lyubetsky VA, Pirogov SA, Rubanov LI, Seliverstov AV. Modeling classic attenuation regulation of gene expression in bacteria. J Bioinform Comput Biol 2007; 5:155-80. [PMID: 17477496 DOI: 10.1142/s0219720007002576] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Revised: 11/21/2006] [Accepted: 11/28/2006] [Indexed: 12/13/2022]
Abstract
A model is proposed primarily for the classical RNA attenuation regulation of gene expression through premature transcription termination. The model is based on the concept of the RNA secondary structure macrostate within the regulatory region between the ribosome and RNA-polymerase, on hypothetical equation describing deceleration of RNA-polymerase by a macrostate and on views of transcription and translation initiation and elongation, under different values of the four basic model parameters which were varied. A special effort was made to select adequate model parameters. We first discuss kinetics of RNA folding and define the concept of the macrostate as a specific parentheses structure used to construct a conventional set of hairpins. The originally developed software that realizes the proposed model offers functionality to fully model RNA secondary folding kinetics. Its performance is compared to that of a public server described in Ref. 1. We then describe the delay in RNA-polymerase shifting to the next base or its premature termination caused by an RNA secondary structure or, herefrom, a macrostate. In this description, essential concepts are the basic and excited states of the polymerase first introduced in Ref. 2: the polymerase shifting to the next base can occur only in the basic state, and its detachment from DNA strand - only in excited state. As to the authors' knowledge, such a model incorporating the above-mentioned attenuation characteristics is not published elsewhere. The model was implemented in an application with command line interface for running in batch mode in Windows and Linux environments, as well as a public web server.(3) The model was tested with a conventional Monte Carlo procedure. In these simulations, the estimate of correlation between the premature transcription termination probability p and concentration c of charged amino acyl-tRNA was obtained as function p(c) for many regulatory regions in many bacterial genomes, as well as for local mutations in these regions.
Collapse
Affiliation(s)
- Vassily A Lyubetsky
- Institute for Information Transmission Problems RAS, Moscow, 127994, Russia.
| | | | | | | |
Collapse
|
13
|
Brune I, Jochmann N, Brinkrolf K, Hüser AT, Gerstmeir R, Eikmanns BJ, Kalinowski J, Pühler A, Tauch A. The IclR-type transcriptional repressor LtbR regulates the expression of leucine and tryptophan biosynthesis genes in the amino acid producer Corynebacterium glutamicum. J Bacteriol 2007; 189:2720-33. [PMID: 17259312 PMCID: PMC1855810 DOI: 10.1128/jb.01876-06] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptional regulator Cg1486 of Corynebacterium glutamicum ATCC 13032 is a member of the IclR protein family and belongs to the conserved set of regulatory proteins in corynebacteria. A defined deletion in the cg1486 gene, now designated ltbR (leucine and tryptophan biosynthesis regulator), led to the mutant strain C. glutamicum IB1486. According to whole-genome expression analysis by DNA microarray hybridizations, transcription of the leuB and leuCD genes encoding enzymes of the leucine biosynthesis pathway was enhanced in C. glutamicum IB1486 compared with the wild-type strain. Moreover, the genes of the trpEGDCFBA operon involved in tryptophan biosynthesis of C. glutamicum showed an enhanced expression in the cg1486 mutant strain. Bioinformatics pattern searches in the upstream regions of the differentially expressed genes revealed the common 12-bp motif CA(T/C)ATAGTG(A/G)GA that is located downstream of the -10 region of the mapped promoter sequences. DNA band shift assays with a streptavidin-tagged LtbR protein demonstrated the specific binding of the purified protein to 40-mers containing the 12-bp motif localized in front of leuB, leuC, and trpE, thereby confirming the direct regulatory role of LtbR in the expression of the leucine and tryptophan biosynthesis pathway genes of C. glutamicum. Genes homologous with ltbR were detected upstream of the leuCD genes in almost all sequenced genomes of bacteria belonging to the taxonomic class Actinobacteria. The ltbR-like genes of Corynebacterium diphtheriae, Corynebacterium jeikeium, Mycobacterium bovis, and Bifidobacterium longum were cloned and shown to complement the deregulation of leuB, leuCD, and trpE gene expression in C. glutamicum IB1486.
Collapse
Affiliation(s)
- Iris Brune
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Universitätsstrasse 25, D-33615 Bielefeld, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mormann S, Lömker A, Rückert C, Gaigalat L, Tauch A, Pühler A, Kalinowski J. Random mutagenesis in Corynebacterium glutamicum ATCC 13032 using an IS6100-based transposon vector identified the last unknown gene in the histidine biosynthesis pathway. BMC Genomics 2006; 7:205. [PMID: 16901339 PMCID: PMC1590026 DOI: 10.1186/1471-2164-7-205] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2006] [Accepted: 08/10/2006] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum, a Gram-positive bacterium of the class Actinobacteria, is an industrially relevant producer of amino acids. Several methods for the targeted genetic manipulation of this organism and rational strain improvement have been developed. An efficient transposon mutagenesis system for the completely sequenced type strain ATCC 13032 would significantly advance functional genome analysis in this bacterium. RESULTS A comprehensive transposon mutant library comprising 10,080 independent clones was constructed by electrotransformation of the restriction-deficient derivative of strain ATCC 13032, C. glutamicum RES167, with an IS6100-containing non-replicative plasmid. Transposon mutants had stable cointegrates between the transposon vector and the chromosome. Altogether 172 transposon integration sites have been determined by sequencing of the chromosomal inserts, revealing that each integration occurred at a different locus. Statistical target site analyses revealed an apparent absence of a target site preference. From the library, auxotrophic mutants were obtained with a frequency of 2.9%. By auxanography analyses nearly two thirds of the auxotrophs were further characterized, including mutants with single, double and alternative nutritional requirements. In most cases the nutritional requirement observed could be correlated to the annotation of the mutated gene involved in the biosynthesis of an amino acid, a nucleotide or a vitamin. One notable exception was a clone mutagenized by transposition into the gene cg0910, which exhibited an auxotrophy for histidine. The protein sequence deduced from cg0910 showed high sequence similarities to inositol-1(or 4)-monophosphatases (EC 3.1.3.25). Subsequent genetic deletion of cg0910 delivered the same histidine-auxotrophic phenotype. Genetic complementation of the mutants as well as supplementation by histidinol suggests that cg0910 encodes the hitherto unknown essential L-histidinol-phosphate phosphatase (EC 3.1.3.15) in C. glutamicum. The cg0910 gene, renamed hisN, and its encoded enzyme have putative orthologs in almost all Actinobacteria, including mycobacteria and streptomycetes. CONCLUSION The absence of regional and sequence preferences of IS6100-transposition demonstrate that the established system is suitable for efficient genome-scale random mutagenesis in the sequenced type strain C.glutamicum ATCC 13032. The identification of the hisN gene encoding histidinol-phosphate phosphatase in C. glutamicum closed the last gap in histidine synthesis in the Actinobacteria. The system might be a valuable genetic tool also in other bacteria due to the broad host-spectrum of IS6100.
Collapse
Affiliation(s)
- Sascha Mormann
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alexander Lömker
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Christian Rückert
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Lars Gaigalat
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Andreas Tauch
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Alfred Pühler
- Lehrstuhl für Genetik, Universität Bielefeld, D-33594 Bielefeld, Germany
| | - Jörn Kalinowski
- Institut für Genomforschung, Universität Bielefeld, D-33594 Bielefeld, Germany
| |
Collapse
|
15
|
|
16
|
Ikeda M. Towards bacterial strains overproducing L-tryptophan and other aromatics by metabolic engineering. Appl Microbiol Biotechnol 2005; 69:615-26. [PMID: 16374633 DOI: 10.1007/s00253-005-0252-y] [Citation(s) in RCA: 196] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2005] [Revised: 10/31/2005] [Accepted: 11/01/2005] [Indexed: 11/25/2022]
Abstract
The aromatic amino acids, L-tryptophan, L-phenylalanine, and L-tyrosine, can be manufactured by bacterial fermentation. Until recently, production efficiency of classical aromatic amino-acid-producing mutants had not yet reached a high level enough to make the fermentation method the most economic. With the introduction of recombinant DNA technology, it has become possible to apply more rational approaches to strain improvement. Many recent activities in this metabolic engineering have led to several effective approaches, which include modification of terminal pathways leading to removal of bottleneck or metabolic conversion, engineering of central carbon metabolism leading to increased supply of precursors, and transport engineering leading to reduced intracellular pool of the aromatic amino acids. In this review, advances in metabolic engineering for the production of the aromatic amino acids and useful aromatic intermediates are described with particular emphasis on two representative producer organisms, Corynebacterium glutamicum and Escherichia coli.
Collapse
Affiliation(s)
- Masato Ikeda
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Shinshu University, Minami-minowa, Nagano, 399-4598, Japan.
| |
Collapse
|
17
|
Morbach S, Junger C, Sahm H, Eggeling L. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J Biosci Bioeng 2005; 90:501-7. [PMID: 16232899 DOI: 10.1016/s1389-1723(01)80030-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2000] [Accepted: 08/01/2000] [Indexed: 11/25/2022]
Abstract
The ilvBNC operon of Corynebacterium glutamicum encodes acetohydroxy acid synthase and isomero-reductase, which are key enzymes of L-isoleucine, L-valine and L-leucine syntheses. In this study we identified the transcript initiation site of ilvBNC operon 292 nucleotides in front of the first structural gene, and detected the formation of a short transcript from the leader region in addition to the full-length transcript of the operon. This identifies the control of ilvBNC transcription by an attenuation mechanism involving antitermination. Mutations in the leader region were made and their effect on the operon expression in ilvB'lacZ fusions was quantified. Although a presumed leader-peptide-coding region is only one nucleotide away from the transcript initiation site determined, there is clear evidence to support the formation of this leader peptide: (i) the substitution of initiation codon ATG of the peptide by AGG reduced lacZ expression of the appropriate fusion construct to 19%; (ii) the replacement of three subsequent Val codons by Ala codons resulted in the loss of Val-dependent expression; and (iii) a leader peptide LacZ fusion resulted in active beta-galactosidase. Based on these results, it is concluded that transcription of ilvBNC is controlled by a translational-coupled attenuation mechanism. The absence of a ribosome binding site for leader peptide formation means that additional mechanisms may contribute to the transcription control at the decoding initiation step in the leader peptide formation.
Collapse
Affiliation(s)
- S Morbach
- Institut für Biochemie der Universität zu Köln, Zülpicher Str. 47, 50674 Köln, Germany
| | | | | | | |
Collapse
|
18
|
Seliverstov AV, Putzer H, Gelfand MS, Lyubetsky VA. Comparative analysis of RNA regulatory elements of amino acid metabolism genes in Actinobacteria. BMC Microbiol 2005; 5:54. [PMID: 16202131 PMCID: PMC1262725 DOI: 10.1186/1471-2180-5-54] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 10/03/2005] [Indexed: 01/25/2023] Open
Abstract
Background Formation of alternative structures in mRNA in response to external stimuli, either direct or mediated by proteins or other RNAs, is a major mechanism of regulation of gene expression in bacteria. This mechanism has been studied in detail using experimental and computational approaches in proteobacteria and Firmicutes, but not in other groups of bacteria. Results Comparative analysis of amino acid biosynthesis operons in Actinobacteria resulted in identification of conserved regions upstream of several operons. Classical attenuators were predicted upstream of trp operons in Corynebacterium spp. and Streptomyces spp., and trpS and leuS genes in some Streptomyces spp. Candidate leader peptides with terminators were observed upstream of ilvB genes in Corynebacterium spp., Mycobacterium spp. and Streptomyces spp. Candidate leader peptides without obvious terminators were found upstream of cys operons in Mycobacterium spp. and several other species. A conserved pseudoknot (named LEU element) was identified upstream of leuA operons in most Actinobacteria. Finally, T-boxes likely involved in the regulation of translation initiation were observed upstream of ileS genes from several Actinobacteria. Conclusion The metabolism of tryptophan, cysteine and leucine in Actinobacteria seems to be regulated on the RNA level. In some cases the mechanism is classical attenuation, but in many cases some components of attenuators are missing. The most interesting case seems to be the leuA operon preceded by the LEU element that may fold into a conserved pseudoknot or an alternative structure. A LEU element has been observed in a transposase gene from Bifidobacterium longum, but it is not conserved in genes encoding closely related transposases despite a very high level of protein similarity. One possibility is that the regulatory region of the leuA has been co-opted from some element involved in transposition. Analysis of phylogenetic patterns allowed for identification of ML1624 of M. leprae and its orthologs as the candidate regulatory proteins that may bind to the LEU element. T-boxes upstream of the ileS genes are unusual, as their regulatory mechanism seems to be inhibition of translation initiation via a hairpin sequestering the Shine-Dalgarno box.
Collapse
Affiliation(s)
- Alexander V Seliverstov
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
| | - Harald Putzer
- Institut de Biologie Physico-Chimique, CNRS UPR9073, 13, rue P. et M. Curie, 75005 Paris, France
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
| | - Vassily A Lyubetsky
- Institute for Information Transmission Problems, RAS, Bolshoi Karetny pereulok 19, Moscow, 127994, Russia
| |
Collapse
|
19
|
Inter-genomic displacement via lateral gene transfer of bacterial trp operons in an overall context of vertical genealogy. BMC Biol 2004; 2:15. [PMID: 15214963 PMCID: PMC471576 DOI: 10.1186/1741-7007-2-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 06/23/2004] [Indexed: 11/19/2022] Open
Abstract
Background The growing conviction that lateral gene transfer plays a significant role in prokaryote genealogy opens up a need for comprehensive evaluations of gene-enzyme systems on a case-by-case basis. Genes of tryptophan biosynthesis are frequently organized as whole-pathway operons, an attribute that is expected to facilitate multi-gene transfer in a single step. We have asked whether events of lateral gene transfer are sufficient to have obscured our ability to track the vertical genealogy that underpins tryptophan biosynthesis. Results In 47 complete-genome Bacteria, the genes encoding the seven catalytic domains that participate in primary tryptophan biosynthesis were distinguished from any paralogs or xenologs engaged in other specialized functions. A reliable list of orthologs with carefully ascertained functional roles has thus been assembled and should be valuable as an annotation resource. The protein domains associated with primary tryptophan biosynthesis were then concatenated, yielding single amino-acid sequence strings that represent the entire tryptophan pathway. Lateral gene transfer of several whole-pathway trp operons was demonstrated by use of phylogenetic analysis. Lateral gene transfer of partial-pathway trp operons was also shown, with newly recruited genes functioning either in primary biosynthesis (rarely) or specialized metabolism (more frequently). Conclusions (i) Concatenated tryptophan protein trees are congruent with 16S rRNA subtrees provided that the genomes represented are of sufficiently close phylogenetic spacing. There are currently seven tryptophan congruency groups in the Bacteria. Recognition of a succession of others can be expected in the near future, but ultimately these should coalesce to a single grouping that parallels the 16S rRNA tree (except for cases of lateral gene transfer). (ii) The vertical trace of evolution for tryptophan biosynthesis can be deduced. The daunting complexities engendered by paralogy, xenology, and idiosyncrasies of nomenclature at this point in time have necessitated an expert-assisted manual effort to achieve a correct analysis. Once recognized and sorted out, paralogy and xenology can be viewed as features that enrich evolutionary histories.
Collapse
|
20
|
Abstract
Regulation of gene expression in Corynebacterium glutamicum represents an important issue since this Gram-positive bacterium is a notable industrial amino acid producer. Transcription initiation, beginning by binding of RNA polymerase to the promoter DNA sequence, is one of the main points at which bacterial gene expression is regulated. More than 50 transcriptional promoters have so far been experimentally localized in C. glutamicum. Most of them are assumed to be promoters of vegetative genes recognized by the main sigma factor. Although transcription initiation rate defined by many of these promoters may be affected by transcription factors, which activate or repress their function, the promoter regions share common sequence features, which may be generalized in a consensus sequence. In the consensus C. glutamicum promoter, the prominent feature is a conserved extended -10 region tgngnTA(c/t)aaTgg, while the -35 region is much less conserved. Some commonly utilized heterologous promoters were shown to drive strong gene expression in C. glutamicum. Conversely, some C. glutamicum promoters were found to function in Escherichia coli and in other bacteria. These observations suggest that C. glutamicum promoters functionally conform with the common bacterial promoter scheme, although they differ in some sequence structures.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institute of Microbiology, Academy of Sciences of the Czech Republic, Vídenská 1083, CZ-14220 Prague 4, Czech Republic.
| | | | | | | | | |
Collapse
|
21
|
Grundy FJ, Henkin TM. The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in gram-positive bacteria. Mol Microbiol 1998; 30:737-49. [PMID: 10094622 DOI: 10.1046/j.1365-2958.1998.01105.x] [Citation(s) in RCA: 220] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The molecular mechanisms for regulation of the genes involved in the biosynthesis of methionine and cysteine are poorly characterized in Bacillus subtilis. Analyses of the recently completed B. subtilis genome revealed 11 copies of a highly conserved motif. In all cases, this motif was located in the leader region of putative transcriptional units, upstream of coding sequences that included genes involved in methionine or cysteine biosynthesis. Additional copies were identified in Clostridium acetobutylicum and Staphylococcus aureus, indicating conservation in other Gram-positive genera. The motif includes an element resembling an intrinsic transcriptional terminator, suggesting that regulation might be controlled at the level of premature termination of transcription. The 5' portion of all of the leaders could fold into a conserved complex structure. Analysis of the yitJ gene, which is homologous to Escherichia coli metH and metF, revealed that expression was induced by starvation for methionine and that induction was independent of the promoter and dependent on the leader region terminator. Mutation of conserved primary sequence and structural elements supported a model in which the 5' portion of the leader forms an anti-antiterminator structure, which sequesters sequences required for the formation of an antiterminator, which, in turn, sequesters sequences required for the formation of the terminator; the anti-antiterminator is postulated to be stabilized by the binding of some unknown factor when methionine is available. This set of genes is proposed to form a new regulon controlled by a global termination control system, which we designate the S box system, as most of the genes are involved in sulphur metabolism and biosynthesis of methionine and cysteine.
Collapse
Affiliation(s)
- F J Grundy
- Department of Microbiology, The Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
22
|
|
23
|
Pátek M, Eikmanns BJ, Pátek J, Sahm H. Promoters from Corynebacterium glutamicum: cloning, molecular analysis and search for a consensus motif. MICROBIOLOGY (READING, ENGLAND) 1996; 142 ( Pt 5):1297-1309. [PMID: 8704969 DOI: 10.1099/13500872-142-5-1297] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Relatively limited information about promoter structures in Corynebacterium glutamicum has been available until now. With the aim of isolating and characterizing such transcription initiation signals, random Sau3A fragments of C. glutamicum chromosomal DNA and of the corynebacterial phage phi GA1 were cloned into the promoter probe vector pEKplCm and selected for promoter activity by chloramphenicol resistance of transformed C. glutamicum cells. The nucleotide sequence of ten chromosomal and three phage fragments was determined and the transcriptional start (TS) sites were localized by primer extension analyses. Additionally, the promoters of five previously isolated C. glutamicum genes were cloned and mapped. All of the isolated promoters were also functional in the heterologous host Escherichia coli. A comparative analysis of the newly characterized promoter sequences together with published promoters from C. glutamicum revealed conserved sequences centred about 35 bp (ttGcca) and 10 bp (TA.aaT) upstream of the TS site. The position of these motifs and the motifs themselves are comparable to the -35 and -10 promoter consensus sequences of other Gram-positive and Gram-negative bacteria, indicating that they represent transcription initiation signals in C. glutamicum. However, the C. glutamicum consensus hexamer of the -35 region is much less conserved than in E. coli, Bacillus, Lactobacillus and Streptococcus.
Collapse
Affiliation(s)
- Miroslav Pátek
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Bernhard J Eikmanns
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Jaroslav Pátek
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - Hermann Sahm
- Institut für Biotechnologie 1, Forschungszentrum Jülich, D-52425 Jülich, Germany
| |
Collapse
|
24
|
O'Gara JP, Dunican LK. Mutations in the trpD gene of Corynebacterium glutamicum confer 5-methyltryptophan resistance by encoding a feedback-resistant anthranilate phosphoribosyltransferase. Appl Environ Microbiol 1995; 61:4477-9. [PMID: 8534114 PMCID: PMC167758 DOI: 10.1128/aem.61.12.4477-4479.1995] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The trpD gene from tryptophan-hyperproducing Corynebacterium glutamicum ATCC 21850 was isolated on the basis of its ability to confer resistance to 5-methyltryptophan on wild-type C. glutamicum AS019. Comparative sequence analysis of the genes from the wild-type AS019 and ATCC 21850 trpD genes revealed two amino acid substitutions at the protein level. Further analysis demonstrated that the trpD gene product from ATCC 21850, anthranilate phosphoribosyltransferase, was more resistant to feedback inhibition by either tryptophan or 5-methyltryptophan than its wild-type counterpart. It is proposed that phosphoribosyltransferase insensitivity to tryptophan in ATCC 21850 contributes to an elevated level of tryptophan biosynthesis.
Collapse
Affiliation(s)
- J P O'Gara
- Department of Microbiology, University College Galway, Ireland
| | | |
Collapse
|
25
|
Abstract
Biotechnology and the use of biologically based agents for the betterment of mankind is an active field which is founded on the interaction between many basic sciences. This is achieved in coordination with engineering and technology for scaling up purposes. The application of modern recombinant DNA technology gave momentum and new horizons to the field of biotechnology both in the academic setting and in industry. The applications of biotechnology are being used in many fields including agriculture, medicine, industry, marine science and the environment. The final products of biotechnological applications are diverse. In the medical applications of biotechnology, for example, the field has been evolving in such a way that the final product could be a small molecule (e.g. drug/antibiotic) that can be developed based on genetic information by drug design or drug screening using a cloned and expressed target protein.
Collapse
Affiliation(s)
- M R el-Gewely
- Department of Biotechnology, University of Tromsø, Norway
| |
Collapse
|
26
|
Jetten MS, Sinskey AJ. Recent advances in the physiology and genetics of amino acid-producing bacteria. Crit Rev Biotechnol 1995; 15:73-103. [PMID: 7736600 DOI: 10.3109/07388559509150532] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Corynebacterium glutamicum and its close relatives, C. flavum and C. lactofermentum, have been used for over 3 decades in the industrial production of amino acids by fermentation. Since 1984, several research groups have started programs to develop metabolic engineering principles for amino acid-producing Corynebacterium strains. Initially, the programs concentrated on the isolation of genes encoding (deregulated) biosynthetic enzymes and the development of general molecular biology tools such as cloning vectors and DNA transfer methods. With most of the genes and tools now available, recombinant DNA technology can be applied in strain improvement. To accomplish these improvements, it is critical and advantageous to understand the mechanisms of gene expression and regulation as well as the biochemistry and physiology of the species being engineered. This review explores the advances made in the understanding and application of amino acid-producing bacteria in the early 1990s.
Collapse
Affiliation(s)
- M S Jetten
- Department of Microbiology and Enzymology, Kluyyer Laboratory for Biotechnology, Delft University of Technology, The Netherlands
| | | |
Collapse
|
27
|
Fitzpatrick R, O'Donohue M, Joy J, Heery DM, Dunican LK. Construction and characterization of recA mutant strains of Corynebacterium glutamicum and Brevibacterium lactofermentum. Appl Microbiol Biotechnol 1994; 42:575-80. [PMID: 7765733 DOI: 10.1007/bf00173923] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An internal fragment of the Corynebacterium glutamicum recA gene was amplified by the polymerase chain reaction (PCR) using degenerate primers corresponding to two short sequences that are well conserved in procaryotic RecA proteins. The deduced amino acid sequence of the amplified fragment shared significant homology with RecA sequences from other bacteria including the "invariant" and functionally conserved amino acids Leu-126, Asp-144, Gly-157, Arg-169 and Asn-193. Highest identity (91%) was shared with the gram-positive Mycobacterium tuberculosis RecA sequence. The amplified fragment was cloned into a conditional suicide vector, pBGS, and used to generate recA deficient strains of C. glutamicum and Brevibacterium lactofermentum by insertional inactivation. These strains exhibited classical RecA phenotypes including reduced recombinational activity and increased sensitivity to DNA-damaging agents such as UV irradiation, mitomycin C and methyl-methanesulphonate.
Collapse
Affiliation(s)
- R Fitzpatrick
- Department of Microbiology, University College Galway, Ireland
| | | | | | | | | |
Collapse
|
28
|
Eikmanns BJ, Eggeling L, Sahm H. Molecular aspects of lysine, threonine, and isoleucine biosynthesis in Corynebacterium glutamicum. Antonie Van Leeuwenhoek 1994; 64:145-63. [PMID: 8092856 DOI: 10.1007/bf00873024] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The Gram-positive bacterium Corynebacterium glutamicum is used for the industrial production of amino acids, e.g. of L-glutamate and L-lysine. In the last ten years genetic engineering methods were developed for C. glutamicum and consequently, recombinant DNA technology was employed to study the biosynthetic pathways and to improve the amino acid productivity by manipulation of enzymatic, transport and regulatory functions of this bacterium. The present review summarizes the current knowledge on the synthesis and over-production of the aspartate derived amino acids L-lysine, L-threonine and L-isoleucine in C. glutamicum. A special feature of C. glutamicum is its ability to convert the lysine intermediate piperideine2,6-dicarboxylate to diaminopimelate by two different routes, i.e. by reactions involving succinylated intermediates or by the single reaction of diaminopimelate dehydrogenase. The flux distribution over the two pathways is regulated by the ammonium availability. The overall carbon flux from aspartate to lysine, however, is governed by feedback-control of the aspartate kinase and by the level of dihydrodipicolinate synthase. Consequently, expression of lysCFBR encoding a deregulated aspartate kinase and/or the overexpression of dapA encoding dihydrodipicolinate synthase led to overproduction of lysine. As a further specific feature C. glutamicum possesses a specific lysine export carrier which shows high activity in lysine overproducing mutants. Threonine biosynthesis is in addition to control by the aspartate kinase tightly regulated at the level of homoserine dehydrogenase which is subject to feedback-inhibition and to repression. C. glutamicum strains possessing a deregulated aspartate kinase and a deregulated homoserine dehydrogenase produce lysine and threonine. Amplification of deregulated homoserine dehydrogenase in such strains led to an almost complete redirection of the carbon flux to threonine. For a further flux from threonine to isoleucine the allosteric control of threonine dehydratase and of the acetohydroxy acid synthase are important. The expression of the genes encoding the latter enzyme is additionally regulated at the transcriptional level. By addition of 2-oxobutyrate as precursor and by bypassing the expression control of the acetohydroxy acid synthase genes high isoleucine overproduction can be obtained.
Collapse
Affiliation(s)
- B J Eikmanns
- Institut für Biotechnologie, Forschungszentrum Jülich GmbH, Germany
| | | | | |
Collapse
|