1
|
Avila-Arias H, Casallas FC, Arbeli Z, García Gutiérrez A, Fajardo Gomez CA, Herrera Castillo DY, Carvajal Ramirez S, Tamayo-Figueroa DP, Benavides López de Mesa J, Roldan F. Bacteria isolated from explosive contaminated environments transform pentaerythritol tetranitrate (PETN) under aerobic and anaerobic conditions. Lett Appl Microbiol 2023; 76:ovad113. [PMID: 37740443 DOI: 10.1093/lambio/ovad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/01/2023] [Accepted: 09/20/2023] [Indexed: 09/24/2023]
Abstract
Pentaerythritol tetranitrate (PETN) is a nitrate ester explosive that may be persistent with scarce reports on its environmental fate and impacts. Our main objective was to isolate and characterize bacteria that transform PETN under aerobic and anaerobic conditions. Biotransformation of PETN (100 mg L-1) was evaluated using mineral medium with (M + C) and without (M - C) additional carbon sources under aerobic conditions and with additional carbon sources under anaerobic conditions. Here, we report on the isolation of 12 PETN-transforming cultures (4 pure and 8 co-cultures) from environmental samples collected at an explosive manufacturing plant. The highest transformation of PETN was observed for cultures in M + C under aerobic conditions, reaching up to 91% ± 2% in 2 d. Under this condition, PETN biotransformation was observed in conjunction with the release of nitrites and bacterial growth. No substantial transformation of PETN (<45%) was observed during 21 d in M - C under aerobic conditions. Under anaerobic conditions, five cultures could transform PETN (up to 52% ± 13%) as the sole nitrogen source, concurrent with the formation of two unidentified metabolites. PETN-transforming cultures belonged to Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Actinobacteria. In conclusion, we isolated 12 PETN-transforming cultures belonging to diverse taxa, suggesting that PETN transformation is phylogenetically widespread.
Collapse
Affiliation(s)
- Helena Avila-Arias
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Francy-Carolina Casallas
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Ziv Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Andrea García Gutiérrez
- Programa de ingeniería Ambiental y Sanitaria, Facultad de ingeniería, Universidad de la Salle, Bogotá 110231, Colombia
- Maestría en Diseño y gestión de Procesos, Facultad de Ingeniería, Universidad de la Sabana, Bogotá 110831, Colombia
| | - Carlos Andres Fajardo Gomez
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | - Denis Yohana Herrera Castillo
- Programa de ingeniería Ambiental y Sanitaria, Facultad de ingeniería, Universidad de la Salle, Bogotá 110231, Colombia
| | - Sandra Carvajal Ramirez
- Programa de ingeniería Ambiental y Sanitaria, Facultad de ingeniería, Universidad de la Salle, Bogotá 110231, Colombia
| | - Diana Paola Tamayo-Figueroa
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| | | | - Fabio Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Bogotá 110231, Colombia
| |
Collapse
|
2
|
Lease N, Klamborowski LM, Perriot R, Cawkwell MJ, Manner VW. Identifying the Molecular Properties that Drive Explosive Sensitivity in a Series of Nitrate Esters. J Phys Chem Lett 2022; 13:9422-9428. [PMID: 36191261 PMCID: PMC9575148 DOI: 10.1021/acs.jpclett.2c02701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Energetic materials undergo hundreds of chemical reactions during exothermic runaway, generally beginning with the breaking of the weakest chemical bond, the "trigger linkage." Herein we report the syntheses of a series of pentaerythritol tetranitrate (PETN) derivatives in which the energetic nitrate ester groups are systematically substituted by hydroxyl groups. Because all the PETN derivatives have the same nitrate ester-based trigger linkages, quantum molecular dynamics (QMD) simulations show very similar Arrhenius kinetics for the first reactions. However, handling sensitivity testing conducted using drop weight impact indicates that sensitivity decreases precipitously as nitrate esters are replaced by hydroxyl groups. These experimental results are supported by QMD simulations that show systematic decreases in the final temperatures of the products and the energy release as the nitrate ester functional groups are removed. To better interpret these results, we derive a simple model based only on the specific enthalpy of explosion and the kinetics of trigger linkage rupture that accounts qualitatively for the decrease in sensitivity as nitrate ester groups are removed.
Collapse
Affiliation(s)
- Nicholas Lease
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Lisa M. Klamborowski
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Romain Perriot
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Marc J. Cawkwell
- Theoretical
Division, Los Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| | - Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico87545, United States
| |
Collapse
|
3
|
Manner VW, Smilowitz L, Freye CE, Cleveland AH, Brown GW, Suvorova N, Tian H. Chemical Evaluation and Performance Characterization of Pentaerythritol Tetranitrate (PETN) under Melt Conditions. ACS MATERIALS AU 2022; 2:464-473. [PMID: 36855707 PMCID: PMC9928408 DOI: 10.1021/acsmaterialsau.2c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pentaerythritol tetranitrate (PETN) is a nitrate ester explosive commonly used in commercial detonators. Although its degradation properties have been studied extensively, very little information has been collected on its thermal stability in the molten state due to the fact that its melting point is only ∼20 °C below its onset of decomposition. Furthermore, studies that have been performed on PETN thermal degradation often do not fully characterize or quantify the decomposition products. In this study, we heat PETN to melt temperatures and identify thermal decomposition products, morphology changes, and mass loss by ultrahigh-pressure liquid chromatography coupled to quadrupole time of flight mass spectrometry, scanning electron microscopy, nuclear magnetic resonance spectroscopy, and differential scanning calorimetry. For the first time, we quantify several decomposition products using independently prepared standards and establish the resulting melting point depression after the first melt. We also estimate the amount of decomposition relative to sublimation that we measure through gas evolution and evaluate the performance behavior of the molten material in commercial detonator configurations.
Collapse
Affiliation(s)
- Virginia W. Manner
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States,
| | - Laura Smilowitz
- Physical
Chemistry and Spectroscopy, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Chris E. Freye
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Alexander H. Cleveland
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Geoffrey W. Brown
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| | - Natalya Suvorova
- Physical
Chemistry and Spectroscopy, Los Alamos National
Laboratory, Los Alamos, New Mexico 87544, United States
| | - Hongzhao Tian
- High
Explosives Science & Technology, Los
Alamos National Laboratory, Los Alamos, New Mexico 87544, United States
| |
Collapse
|
4
|
Huestis P, Stull JA, Lichthardt JP, Wasiolek MA, Montano-Martinez L, Manner VW. Effects of Low-Level Gamma Radiation on Common Nitroaromatic, Nitramine, and Nitrate Ester Explosives. ACS OMEGA 2022; 7:2842-2849. [PMID: 35097280 PMCID: PMC8793075 DOI: 10.1021/acsomega.1c05703] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
The aging of high explosives in an ionizing radiation field is not well understood, and little work has been done in the low dose and low dose rate regime. In this study, four explosives were exposed to low-level gamma irradiation from a 137Cs source: PETN, PATO, and PBX 9501 both with and without the Irganox 1010 stabilizer. Post-irradiation analysis included GC-MS of the headspace gas, SEM of the pellets and powder, NMR spectroscopy, DSC analysis, impact sensitivity tests, and ESD sensitivity tests. Overall, no significant change to the materials was seen for the dose and dose rate explored in this study. A small change in the 1H NMR spectrum of PETN was observed and SEM and ESD results suggest a surface energy change in PATO, but these differences are minor and do not appear to have a substantial impact on the handling safety.
Collapse
Affiliation(s)
- Patricia
L. Huestis
- High
Explosives Science and Technology, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Jamie A. Stull
- High
Explosives Science and Technology, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph P. Lichthardt
- High
Explosives Science and Technology, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Maryla A. Wasiolek
- Gamma
Irradiation Facility, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Lori Montano-Martinez
- Energetic
Materials, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States
| | - Virginia W. Manner
- High
Explosives Science and Technology, Los Alamos
National Laboratory, Los Alamos, New Mexico 87545, United States
| |
Collapse
|
5
|
Monga D, Kaur P, Singh B. Microbe mediated remediation of dyes, explosive waste and polyaromatic hydrocarbons, pesticides and pharmaceuticals. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100092. [PMID: 35005657 PMCID: PMC8717453 DOI: 10.1016/j.crmicr.2021.100092] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 11/16/2021] [Accepted: 12/08/2021] [Indexed: 01/30/2023] Open
Abstract
Environmental pollutants dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons. Environmental pollutants toxicity. Possible microbial biodegradation pathways of environmental pollutants.
Industrialization and human activities have led to serious effects on environment. With the progress taking place in the biodegradation field, it is important to summarize the latest advancement. In this review, we intend to provide insights on the recent progress on the biodegradation of environmental contaminants such as dyes, pesticides, pharmaceuticals, explosive waste and polyaromatic hydrocarbons by microorganisms. Along with the biodegradation of environmental contaminants, toxicity effects have also been discussed.
Collapse
|
6
|
Wójcik J. Mass spectrometry of the soot left after ethylene oxide explosion answers some questions on the crash of Polish Air Force Flight 101. J Forensic Sci 2021; 67:775-785. [PMID: 34766629 PMCID: PMC9299718 DOI: 10.1111/1556-4029.14943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 11/29/2022]
Abstract
The Polish TU 154M plane, Polish Air Force Flight 101, had crashed near Smolensk on 10th of April 2010. The crash was investigated by The Interstate Aviation Committee, whose conclusions were questioned by a number of Polish scientists. The cause of the crash still appears to be incompletely documented and requires additional evidence. In this paper, investigations of a solid material eluted from a piece of cloth of one of the victims of the crash are described. High resolution mass spectrometry was applied to analyze the soot left after controlled ethylene oxide (EO) explosions, performed under different conditions. These included electric ignition of EO vapors in a large volume steel container, and explosions of glass tubes filled with liquid EO, stimulated by thermally initiated explosions of pentaerythritol tetranitrate (PETN). One of these explosions was conducted in the vessel used for the electric ignition of EO and the other in a hermetically locked, small volume container. It was shown that the soot comprises a set of C2 H4 O homopolymers and copolymers whose characteristic MS patterns are condition-dependent. The MS spectrum of the postcrash sample referred to above reveals a number of polymers that are also present in the soot obtained in PETN-initiated ethylene oxide explosions. It can be concluded that the piece of cloth was subjected to an EO explosion initiated by an explosion of energetic material, possibly PETN. Similar control experiments with ethylene glycol (EG) showed that the polymers identified in the investigated postcrash sample could not originate from exploding EG.
Collapse
Affiliation(s)
- Jacek Wójcik
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warszawa, Poland
| |
Collapse
|
7
|
Sheven DG, Pervukhin VV. Acceleration of the thermal degradation of PETN in the microdroplets flow reactor. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126670. [PMID: 34329107 DOI: 10.1016/j.jhazmat.2021.126670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/13/2021] [Accepted: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Thermal degradation of pentaerythritol tetranitrate (PETN) was investigated in microdroplets within a heated capillary used as a flow reactor. The thermal degradation was monitored by aerodynamic thermal breakup droplet ionization mass spectrometry. It was shown that the PETN degradation in microdroplets occurs much faster than the bulk reaction (by 4-5 orders of magnitude). The effect of the capillary material [stainless steel (Fe, Cr), copper (Cu), or fused quartz (SiO2)] on the thermal PETN degradation in microdroplets of water or acetonitrile was studied next. The capillary material affected the rate of thermal PETN degradation much more weakly than did the use of microdroplets (pure Cu was most conducive to the degradation). Kinetic parameters (activation energy and the frequency factor) of the PETN degradation for all the studied materials of the flow-through reactor and the solvents were estimated under the assumption that the thermal degradation is a first-order reaction. Implications of the acceleration of PETN degradation in microdroplets are discussed.
Collapse
Affiliation(s)
- Dmitriy G Sheven
- Nikolaev Institute of Inorganic Chemistry of SB RAS, Acad. Lavrentieva Ave., 3, 630090 Novosibirsk, Russia.
| | - Viktor V Pervukhin
- Nikolaev Institute of Inorganic Chemistry of SB RAS, Acad. Lavrentieva Ave., 3, 630090 Novosibirsk, Russia
| |
Collapse
|
8
|
Li Y, Xu Z, Liu H. Nutrient-imbalanced conditions shift the interplay between zooplankton and gut microbiota. BMC Genomics 2021; 22:37. [PMID: 33413098 PMCID: PMC7791863 DOI: 10.1186/s12864-020-07333-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/16/2020] [Indexed: 12/13/2022] Open
Abstract
Background Nutrient stoichiometry of phytoplankton frequently changes with aquatic ambient nutrient concentrations, which is mainly influenced by anthropogenic water treatment and the ecosystem dynamics. Consequently, the stoichiometry of phytoplankton can markedly alter the metabolism and growth of zooplankton. However, the effects of nutrient-imbalanced prey on the interplay between zooplankton and their gut microbiota remain unknown. Using metatranscriptome, a 16 s rRNA amplicon-based neutral community model (NCM) and experimental validation, we investigated the interactions between Daphnia magna and its gut microbiota in a nutrient-imbalanced algal diet. Results Our results showed that in nutrient-depleted water, the nutrient-enriched zooplankton gut stimulated the accumulation of microbial polyphosphate in fecal pellets under phosphorus limitation and the microbial assimilation of ammonia under nitrogen limitation. Compared with the nutrient replete group, both N and P limitation markedly promoted the gene expression of the gut microbiome for organic matter degradation but repressed that for anaerobic metabolisms. In the nutrient limited diet, the gut microbial community exhibited a higher fit to NCM (R2 = 0.624 and 0.781, for N- and P-limitation, respectively) when compared with the Control group (R2 = 0.542), suggesting increased ambient-gut exchange process favored by compensatory feeding. Further, an additional axenic grazing experiment revealed that the growth of D. magna can still benefit from gut microbiota under a nutrient-imbalanced diet. Conclusions Together, these results demonstrated that under a nutrient-imbalanced diet, the microbes not only benefit themselves by absorbing excess nutrients inside the zooplankton gut but also help zooplankton to survive during nutrient limitation. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-020-07333-z.
Collapse
Affiliation(s)
- Yingdong Li
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China
| | - Zhimeng Xu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China.,SZU-HKUST Joint PhD Program in Marine Environmental Science, Shenzhen University, Shenzhen, China.,Institute for Advanced Study, Shenzhen University, Shenzhen, China
| | - Hongbin Liu
- Department of Ocean Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, SAR, China. .,Hong Kong Branch of Southern Marine Science & Engineering Guangdong Laboratory, The Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
9
|
Avellaneda H, Arbeli Z, Teran W, Roldan F. Transformation of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109 and exploration of the associated enzymes. World J Microbiol Biotechnol 2020; 36:190. [PMID: 33247357 DOI: 10.1007/s11274-020-02962-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 11/11/2020] [Indexed: 10/22/2022]
Abstract
The nitrated compounds 2,4-dinitrotoluene (2,4-DNT), 2,4,6-trinitrotoluene (TNT), and pentaerythritol tetranitrate (PETN) are toxic xenobiotics widely used in various industries. They often coexist as environmental contaminants. The aims of this study were to evaluate the transformation of 100 mg L-1 of TNT, 2,4-DNT, and PETN by Raoultella planticola M30b and Rhizobium radiobacter M109c and identify enzymes that may participate in the transformation. These strains were selected from 34 TNT transforming bacteria. Cupriavidus metallidurans DNT was used as a reference strain for comparison purposes. Strains DNT, M30b and M109c transformed 2,4-DNT (100%), TNT (100, 94.7 and 63.6%, respectively), and PETN (72.7, 69.3 and 90.7%, respectively). However, the presence of TNT negatively affects 2,4-DNT and PETN transformation (inhibition > 40%) in strains DNT and M109c and fully inhibited (100% inhibition) 2,4-DNT transformation in R. planticola M30b.Genomes of R. planticola M30b and R. radiobacter M109c were sequenced to identify genes related with 2,4-DNT, TNT or PETN transformation. None of the tested strains presented DNT oxygenase, which has been previously reported in the transformation of 2,4-DNT. Thus, unidentified novel enzymes in these strains are involved in 2,4-DNT transformation. Genes encoding enzymes homologous to the previously reported TNT and PETN-transforming enzymes were identified in both genomes. R. planticola M30b have homologous genes of PETN reductase and xenobiotic reductase B, while R. radiobacter M109c have homologous genes to GTN reductase and PnrA nitroreductase. The ability of these strains to transform explosive mixtures has a potentially biotechnological application in the bioremediation of contaminated environments.
Collapse
Affiliation(s)
- Hernán Avellaneda
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia
| | - Ziv Arbeli
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia
| | - Wilson Teran
- Facultad de Ciencias, Departamento de Biología, Biología de Plantas y Sistemas Productivos, Pontificia Universidad Javeriana, Bogotá, Colombia
| | - Fabio Roldan
- Facultad de Ciencias, Departamento de Biología, Unidad de Saneamiento y Biotecnología Ambiental (USBA), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá, DC, Colombia.
| |
Collapse
|
10
|
Amelia TSM, Amirul AAA, Saidin J, Bhubalan K. Identification of Cultivable Bacteria from Tropical Marine Sponges and Their Biotechnological Potentials. Trop Life Sci Res 2018; 29:187-199. [PMID: 30112149 PMCID: PMC6072720 DOI: 10.21315/tlsr2018.29.2.13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Marine sponges are acknowledged as bacterial hotspots in the oceanic biome. Aquatic bacteria are being investigated comprehensively for bioactive complexes and secondary metabolites. Cultivable bacteria associated with different species of sea sponges in South China Sea waters adjacent to Bidong Island, Terengganu were identified. Molecular identification was accomplished using 16S rRNA gene cloning and sequencing. Fourteen bacterial species were identified and their phylogenetic relationships were analysed by constructing a neighbour-joining tree with Molecular Evolutionary Genetics Analysis 6. The identified species encompassed four bacterial classes that were Firmicutes, Actinobacteria, Alphaproteobacteria and Gammaproteobacteria known to have been associated with sponges. The potential biotechnological applications of the identified bacteria were compared and reviewed based on relevant past studies. The biotechnological functions of the 14 cultivable isolates have been previously reported, hence reinforcing that bacteria associated with sponges are an abundant resource of scientifically essential compounds. Resilience of psychrotolerant bacteria, Psychrobacter celer, in warm tropical waters holds notable prospects for future research.
Collapse
Affiliation(s)
- Tan Suet May Amelia
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Al-Ashraf Abdullah Amirul
- School of Biological Sciences, Universiti Sains Malaysia, 11800 USM Pulau Pinang, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Centre of Chemical Biology, Universiti Sains Malaysia, 11900 Bayan Lepas, Pulau Pinang, Malaysia
| | - Jasnizat Saidin
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Kesaven Bhubalan
- School of Marine and Environmental Sciences, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
- Malaysian Institute of Pharmaceuticals and Nutraceuticals, National Institutes of Biotechnology Malaysia (NIBM), Ministry of Science, Technology and Innovation, 11700 Gelugor, Pulau Pinang, Malaysia
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
11
|
Sadani M, Karami MA, Teimouri F, Amin MM, Moosavi SM, Dehdashti B. Kinetic parameters and nitrate, nitrite changes in bioremediation of Toxic Pentaerythritol Tetranitrate (PETN) contaminated soil. Electron Physician 2017; 9:5623-5630. [PMID: 29238507 PMCID: PMC5718871 DOI: 10.19082/5623] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/18/2017] [Indexed: 11/20/2022] Open
Abstract
Background Cleanup of areas contaminated by explosives is a public health concern. Some explosives can be carcinogenic in humans. Pentaerythritol Tetranitrate (PETN), a powerful explosive with very low water solubility, can be easily transported to ground waters. Objective This study was conducted to determine the removal efficiencies of PETN from soil by bioremediation, and obtain kinetic parameters of biological process. Methods This experimental study was conducted at the Environmental Health Engineering Lab (Isfahan University of Medical Sciences, Isfahan, Iran) in 2015–2016. In the present work, bioremediation of the explosive-polluted soils by PETN in anaerobic-aerobic landfarming method was performed. The influence of seeding and biosurfactant addition on bioremediation was also evaluated. The data were analyzed using Microsoft Excel software. Results The results show that, as the initial concentration of PETN increased, the lag phase was increased and the specific growth rate was increased up to 0.1/day in concentration of 50 mg/kg, and then it was decreased to 0.04/day. Subsequent decreases in specific growth rate can cause substrate inhibition. Seeding causes decrease in lag phase significantly. Biosurfactant addition had little to no impact on the length of lag phase, but biosurfactant plus seeding can increase the growth rate to 0.2/day, however, inhibitory effect of the initial concentration was started in very high concentration of PETN (150 mg/kg). Conclusion Biosurfactant addition and seeding together have an impressive effect on biodegradation of PETN, furthermore seeding can enhance active microbial consortium and biosurfactant can improve the poor aqueous solubility of PETN, therefore making the substrate more accessible.
Collapse
Affiliation(s)
- Mohsen Sadani
- Department of Environmental Health Engineering, School of Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, Student Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Amin Karami
- Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, Student Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Environmental Health Engineering, School of Health, Lorestan University of Medical Sciences, Khoramabad, Iran
| | - Fahimeh Teimouri
- Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, Student Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran.,Department of Environmental Health Engineering, School of Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammad Mehdi Amin
- Ph.D. of Environmental Health, Professor, Environment Research Center, Research Institute for Primordial Prevention of Non-communicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Bahare Dehdashti
- Environment Research Center, Isfahan University of Medical Sciences, Isfahan, Iran, and Department of Environmental Health Engineering, Student Research Center, School of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
12
|
Avila-Arias H, Avellaneda H, Garzón V, Rodríguez G, Arbeli Z, Garcia-Bonilla E, Villegas-Plazas M, Roldan F. Screening for biosurfactant production by 2,4,6-trinitrotoluene-transforming bacteria. J Appl Microbiol 2017; 123:401-413. [DOI: 10.1111/jam.13504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 05/18/2017] [Accepted: 05/25/2017] [Indexed: 11/28/2022]
Affiliation(s)
- H. Avila-Arias
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - H. Avellaneda
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - V. Garzón
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - G. Rodríguez
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - Z. Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - E. Garcia-Bonilla
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - M. Villegas-Plazas
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| | - F. Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA); Departamento de Biología; Facultad de Ciencias; Pontificia Universidad Javeriana; Bogotá Colombia
| |
Collapse
|
13
|
Arbeli Z, Garcia-Bonilla E, Pardo C, Hidalgo K, Velásquez T, Peña L, C ER, Avila-Arias H, Molano-Gonzalez N, Brandão PFB, Roldan F. Persistence of pentolite (PETN and TNT) in soil microcosms and microbial enrichment cultures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:9144-9155. [PMID: 26832872 DOI: 10.1007/s11356-016-6133-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Accepted: 01/19/2016] [Indexed: 06/05/2023]
Abstract
Pentolite is a mixture (1:1) of 2,4,6-trinitrotoluene (TNT) and pentaerythritol tetranitrate (PETN), and little is known about its fate in the environment. This study was aimed to determine the dissipation of pentolite in soils under laboratory conditions. Microcosm experiments conducted with two soils demonstrated that dissipation rate of PETN was significantly slower than that of TNT. Interestingly, the dissipation of PETN was enhanced by the presence of TNT, while PETN did not enhanced the dissipation of TNT. Pentolite dissipation rate was significantly faster under biostimulation treatment (addition of carbon source) in soil from the artificial wetland, while no such stimulation was observed in soil from detonation field. In addition, the dissipation rate of TNT and PETN in soil from artificial wetland under biostimulation was significantly faster than the equivalent abiotic control, although it seems that non-biological processes might also be important for the dissipation of TNT and PETN. Transformation of PETN was also slower during establishment of enrichment culture using pentolite as the sole nitrogen source. In addition, transformation of these explosives was gradually reduced and practically stopped after the forth cultures transfer (80 days). DGGE analysis of bacterial communities from these cultures indicates that all consortia were dominated by bacteria from the order Burkholderiales and Rhodanobacter. In conclusion, our results suggest that PETN might be more persistent than TNT.
Collapse
Affiliation(s)
- Ziv Arbeli
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia.
| | - Erika Garcia-Bonilla
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Cindy Pardo
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Kelly Hidalgo
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Trigal Velásquez
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Luis Peña
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Eliana Ramos C
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Helena Avila-Arias
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| | - Nicolás Molano-Gonzalez
- Study Center of Autoimmune Diseases (CREA), School of Medicine and Health Sciences, Universidad del Rosario, Carrera 24 # 63C-69, Bogotá, Colombia
| | - Pedro F B Brandão
- Laboratorio de Microbiología Ambiental y Aplicada, Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Cra. 30 N. 45-03, Bogotá, Colombia
| | - Fabio Roldan
- Unidad de Saneamiento y Biotecnología Ambiental (USBA), Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Cra. 7 N. 43-82, Bogotá, Colombia
| |
Collapse
|
14
|
Pei XQ, Xu MY, Wu ZL. Two “classical” Old Yellow Enzymes from Chryseobacterium sp. CA49: Broad substrate specificity of Chr-OYE1 and limited activity of Chr-OYE2. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.molcatb.2015.11.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
15
|
Rylott EL, Johnston EJ, Bruce NC. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6519-33. [PMID: 26283045 DOI: 10.1093/jxb/erv384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|
16
|
Kang SM, Radhakrishnan R, You YH, Khan AL, Lee KE, Lee JD, Lee IJ. Enterobacter asburiae KE17 association regulates physiological changes and mitigates the toxic effects of heavy metals in soybean. PLANT BIOLOGY (STUTTGART, GERMANY) 2015; 17:1013-22. [PMID: 25940948 DOI: 10.1111/plb.12341] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 04/28/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to elucidate the role played by Enterobacter asburiae KE17 in the growth and metabolism of soybeans during copper (100 μm Cu) and zinc (100 μm Zn) toxicity. When compared to controls, plants grown under Cu and Zn stress exhibited significantly lower growth rates, but inoculation with E. asburiae KE17 increased growth rates of stressed plants. The concentrations of plant hormones (abscisic acid and salicylic acid) and rates of lipid peroxidation were higher in plants under heavy metal stress, while total chlorophyll, carotenoid content and total polyphenol concentration were lower. While the bacterial treatment reduced the abscisic acid and salicylic acid content and lipid peroxidation rate of Cu-stressed plants, it also increased the concentration of photosynthetic pigments and total polyphenol. Moreover, the heavy metals induced increased accumulation of free amino acids such as aspartic acid, threonine, serine, glycine, alanine, leucine, isoleucine, tyrosine, proline and gamma-aminobutyric acid, while E. asburiae KE17 significantly reduced concentrations of free amino acids in metal-affected plants. Co-treatment with E. asburiae KE17 regulated nutrient uptake by enhancing nitrogen content and inhibiting Cu and Zn accumulation in soybean plants. The results of this study suggest that E. asburiae KE17 mitigates the effects of Cu and Zn stress by reprogramming plant metabolic processes.
Collapse
Affiliation(s)
- S-M Kang
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - R Radhakrishnan
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Y-H You
- Korean Agricultural Culture Collection, Agricultural Microbiology Division, National Academy of Agricultural Science, RDA, Daegu, Korea
| | - A-L Khan
- Department of Biological Sciences and Chemistry, University of Nizwa, Nizwa, Oman
| | - K-E Lee
- School of Ecology and Environmental Science, Kyungpook National University, Sangju, Korea
| | - J-D Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - I-J Lee
- School of Applied Biosciences, Kyungpook National University, Daegu, Korea
| |
Collapse
|
17
|
Applications of protein engineering to members of the old yellow enzyme family. Biotechnol Adv 2015; 33:624-31. [PMID: 25940546 DOI: 10.1016/j.biotechadv.2015.04.011] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 04/24/2015] [Accepted: 04/25/2015] [Indexed: 01/28/2023]
Abstract
In the 20 years since Massey's initial report in 1995, interest in using alkene reductases to prepare chiral intermediates for synthesis has grown rapidly. While native alkene reductases often show very high stereoselectivities toward favorable substrates, these enzymes have somewhat size-restricted active sites that limit their substrate ranges to small alkenes. In addition, most alkene reductases have the same stereoselectivities, which makes it difficult to access the "other" product enantiomers. Protein engineering strategies have been used to address both of these issues and good progress has been made in several cases. This review summarizes published examples through late 2014 and focuses on studies of six enzymes: Saccharomyces pastorianus OYE 1, tomato OPR1, Zymomonas mobilis NCR, Enterobacter cloacae PB2 PETN reductase, Bacillus subtilis YqjM and Pichia stipitis OYE 2.6.
Collapse
|
18
|
Yap AC, Teoh WY, Chan KG, Sim KS, Choo YM. A new oxathiolane from Enterobacter cloacae. Nat Prod Res 2014; 29:722-6. [DOI: 10.1080/14786419.2014.983507] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ann-Chee Yap
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Wuen-Yew Teoh
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kok-Gan Chan
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Kae-Shin Sim
- Faculty of Science, Institute of Biological Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Yeun-Mun Choo
- Chemistry Department, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
19
|
Harvey P, Oakland C, Driscoll MD, Hay S, Natrajan LS. Ratiometric detection of enzyme turnover and flavin reduction using rare-earth upconverting phosphors. Dalton Trans 2014; 43:5265-8. [PMID: 24531569 DOI: 10.1039/c4dt00356j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gd4O2S:Yb:Tm rare-earth upconversion phosphors have been utilised to monitor the redox behaviour of flavin mononucleotide and report on the turnover of a flavo-protein, (pentaerythritol tetranitrate reductase). The presence of two bands separated by over 300 nm in the UCP emission spectra allows ratiometric signalling of these processes with high sensitivity.
Collapse
Affiliation(s)
- Peter Harvey
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | | | | | | |
Collapse
|
20
|
Zheng S, Su J, Wang L, Yao R, Wang D, Deng Y, Wang R, Wang G, Rensing C. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil. BMC Microbiol 2014; 14:204. [PMID: 25098921 PMCID: PMC4236595 DOI: 10.1186/s12866-014-0204-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 07/18/2014] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Selenium (Se) is an essential trace element in most organisms but has to be carefully handled since there is a thin line between beneficial and toxic concentrations. Many bacteria have the ability to reduce selenite (Se(IV)) and (or) selenate (Se(VI)) to red elemental selenium that is less toxic. RESULTS A strictly aerobic bacterium, Comamonas testosteroni S44, previously isolated from metal(loid)-contaminated soil in southern China, reduced Se(IV) to red selenium nanoparticles (SeNPs) with sizes ranging from 100 to 200 nm. Both energy dispersive X-ray Spectroscopy (EDX or EDS) and EDS Elemental Mapping showed no element Se and SeNPs were produced inside cells whereas Se(IV) was reduced to red-colored selenium in the cytoplasmic fraction in presence of NADPH. Tungstate inhibited Se(VI) but not Se(IV) reduction, indicating the Se(IV)-reducing determinant does not contain molybdenum as co-factor. Strain S44 was resistant to multiple heavy and transition metal(loid)s such as Se(IV), As(III), Cu(II), and Cd(II) with minimal inhibitory concentrations (MIC) of 100 mM, 20 mM, 4 mM, and 0.5 mM, respectively. Disruption of iscR encoding a transcriptional regulator negatively impacted cellular growth and subsequent resistance to multiple heavy metal(loid)s. CONCLUSIONS C. testosteroni S44 could be very useful for bioremediation in heavy metal(loid) polluted soils due to the ability to both reduce toxic Se(VI) and Se(IV) to non-toxic Se (0) under aerobic conditions and to tolerate multiple heavy and transition metals. IscR appears to be an activator to regulate genes involved in resistance to heavy or transition metal(loid)s but not for genes responsible for Se(IV) reduction.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | | |
Collapse
|
21
|
Chen W, Fu X, Ge W, Xu J, Jiang M. Microencapsulation of bisneopentyl glycol dithiopyrophosphate and its flame retardant effect on polyvinyl alcohol. Polym Degrad Stab 2014. [DOI: 10.1016/j.polymdegradstab.2014.02.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Ngigi A, Getenga Z, Boga H, Ndalut P. Isolation and identification of hexazinone-degrading bacterium from sugarcane-cultivated soil in Kenya. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:364-368. [PMID: 24458247 DOI: 10.1007/s00128-014-1207-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 01/15/2014] [Indexed: 06/03/2023]
Abstract
The s-triazine herbicide hexazinone [3-cyclohexyl-6-dimethylamino-1-methyl-1,3,5-triazine-2,4(1H,3H)-dione], is widely used in agriculture for weed control. Laboratory biodegradation experiments for hexazinone in liquid cultures were carried out using sugarcane-cultivated soils in Kenya. Liquid culture experiments with hexazinone as the only carbon source led to the isolation of a bacterial strain capable of its degradation. Through morphological, biochemical and molecular characterization by 16S rRNA, the isolate was identified as Enterobacter cloacae. The isolate degraded hexazinone up to 27.3% of the initially applied concentration of 40 μg mL(-1) after 37 days of incubation in a liquid culture medium. The study reports the degradation of hexazinone and characterization of the isolated bacterial strain.
Collapse
Affiliation(s)
- Anastasiah Ngigi
- Department of Physical Sciences, Multimedia University of Kenya, P.O. Box 30305-00100, Magadi Road, Nairobi, Kenya,
| | | | | | | |
Collapse
|
23
|
Brust H, van Asten A, Koeberg M, van der Heijden A, Kuijpers CJ, Schoenmakers P. Pentaerythritol tetranitrate (PETN) profiling in post-explosion residues to constitute evidence of crime-scene presence. Forensic Sci Int 2013; 230:37-45. [PMID: 23622790 DOI: 10.1016/j.forsciint.2013.03.042] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 03/13/2013] [Accepted: 03/22/2013] [Indexed: 11/28/2022]
Abstract
Pentaerythritol tetranitrate (PETN) and its degradation products are analyzed to discriminate between residues originating from PETN explosions and residues obtained under other circumstances, such as natural degradation on textile, or after handling intact PETN. The degradation products observed in post-explosion samples were identified using liquid chromatography-mass spectrometry as the less-nitrated analogues of PETN: pentaerythritol trinitrate (PETriN), pentaerythritol dinitrate (PEDiN) and pentaerythritol mononitrate (PEMN). Significant levels of these degradation products were observed in post-explosion samples, whereas only very low levels were detected in a variety of intact PETN samples and naturally degraded PETN. No significant degradation was observed after 12 weeks of storage at room temperature and the influence of high relative humidity (90%) was found to be small. Natural degradation was accelerated by storage of small amounts of PETN on different types of textile, resembling the clothing of a suspect, at elevated temperature (333K). This resulted in significant levels of PETN degradation products, but the relative amounts remained much lower than in post-explosion PETN. For PETriN the peak area relative to PETN was 0.014 (SD=0.0051) and 0.39 (SD=0.19) respectively. Based on the peak areas of PETriN, PEDiN and PEMN relative to PETN, it was possible to fully distinguish the post-explosion profiles from the profiles obtained from intact PETN or after (accelerated) natural degradation. Although more data are required to accurately assess the strength of the evidence, this work illustrates that PETN profiling may yield valuable evidence when investigating a possible link between a suspect and post-explosion PETN found on a crime scene. Due to the substantial variation in the degradation pattern between explosion experiments and even between sampling positions in one experiment, the method is not able to distinguish different PETN explosion events.
Collapse
Affiliation(s)
- Hanneke Brust
- University of Amsterdam, van 't Hoff Institute for Molecular Sciences, PO Box 94157, 1090 GD Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
24
|
Oberdorfer G, Binter A, Wallner S, Durchschein K, Hall M, Faber K, Macheroux P, Gruber K. The structure of glycerol trinitrate reductase NerA from Agrobacterium radiobacter reveals the molecular reason for nitro- and ene-reductase activity in OYE homologues. Chembiochem 2013; 14:836-45. [PMID: 23606302 PMCID: PMC3659409 DOI: 10.1002/cbic.201300136] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Indexed: 11/08/2022]
Abstract
In recent years, Old Yellow Enzymes (OYEs) and their homologues have found broad application in the efficient asymmetric hydrogenation of activated C=C bonds with high selectivities and yields. Members of this class of enzymes have been found in many different organisms and are rather diverse on the sequence level, with pairwise identities as low as 20 %, but they exhibit significant structural similarities with the adoption of a conserved (αβ)8-barrel fold. Some OYEs have been shown not only to reduce C=C double bonds, but also to be capable of reducing nitro groups in both saturated and unsaturated substrates. In order to understand this dual activity we determined and analyzed X-ray crystal structures of NerA from Agrobacterium radiobacter, both in its apo form and in complex with 4-hydroxybenzaldehyde and with 1-nitro-2-phenylpropene. These structures, together with spectroscopic studies of substrate binding to several OYEs, indicate that nitro-containing substrates can bind to OYEs in different binding modes, one of which leads to C=C double bond reduction and the other to nitro group reduction.
Collapse
Affiliation(s)
- Gustav Oberdorfer
- ACIB--Austrian Centre of Industrial Biotechnology, Petergasse 14, 8010 Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhuang L, Gui L, Gillham RW. Biodegradation of pentaerythritol tetranitrate (PETN) by anaerobic consortia from a contaminated site. CHEMOSPHERE 2012; 89:810-816. [PMID: 22647196 DOI: 10.1016/j.chemosphere.2012.04.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/23/2012] [Accepted: 04/30/2012] [Indexed: 06/01/2023]
Abstract
This study examined the role of denitrifying and sulfate-reducing bacteria in biodegradation of pentaerythritol tetranitrate (PETN). Microbial inocula were obtained from a PETN-contaminated soil. PETN degradation was evaluated using nitrate and/or sulfate as electron acceptors and acetate as a carbon source. Results showed that under different electron acceptor conditions tested, PETN was sequentially reduced to pentaerythritol via the intermediary formation of tri-, di- and mononitrate pentaerythritol (PETriN, PEDN and PEMN). The addition of nitrate enhanced the degradation rate of PETN by stimulating greater microbial activity and growth of nitrite reducing bacteria that were responsible for degrading PETN. However, a high concentration of nitrite (350mgL(-1)) accumulated from nitrate reduction, consequently caused self-inhibition and temporarily delayed PETN biodegradation. In contrast, PETN degraded at very similar rates in the presence and absence of sulfate, while PETN inhibited sulfate reduction. It is apparent that denitrifying bacteria possessing nitrite reductase were capable of using PETN and its intermediates as terminal electron acceptors in a preferential utilization sequence of PETN, PETriN, PEDN and PEMN, while sulfate-reducing bacteria were not involved in PETN biodegradation. This study demonstrated that under anaerobic conditions and with sufficient carbon source, PETN can be effectively biotransformed by indigenous denitrifying bacteria, providing a viable means of treatment for PETN-containing wastewaters and PETN-contaminated soils.
Collapse
Affiliation(s)
- Li Zhuang
- Guangdong Institute of Eco-environmental and Soil Sciences, Guangzhou, China.
| | | | | |
Collapse
|
26
|
Ngigi AN, Getenga ZM, Boga HI, Ndalut PK. Biodegradation of s-triazine herbicide atrazine by Enterobacter cloacae and Burkholderia cepacia sp. from long-term treated sugarcane-cultivated soils in Kenya. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2012; 47:769-778. [PMID: 22575004 DOI: 10.1080/03601234.2012.676364] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
In this study soils from sugarcane-cultivated fields were screened for bacterial species capable of atrazine (6-chloro-N²-ethyl-N⁴-isopropyl-1,3,5-triazine-2,4-diamine) degradation due to long exposure of the soils to this herbicide. To enrich for atrazine degraders, Minimal Salt Medium containing atrazine as the sole N source and glucose as the C source was inoculated with soils impacted with this herbicide and incubated. Bacterial growth was monitored by measuring optical density. The degradation of atrazine was followed by measuring residual atrazine in liquid cultures over a given time period by high performance liquid chromatography. Bacterial strains isolated from the enrichment cultures were characterized by biochemical tests and identified by 16S rRNA gene sequencing. Two bacterial strains coded ISL 8 and ISL 15 isolated from two different fields were shown to have 94 and 96% 16S rRNA gene sequence similarity to Burkholderia cepacia respectively. Another bacterial sp., ISL 14 was closely related to Enterobacter cloacae with a 96% 16S rRNA gene sequence similarity. There was not much difference between the extents of atrazine degradation by the enrichment cultures with communities (79-82% applied amount) from which pure strains were isolated and the pure strains themselves in liquid cultures that showed a degradation of 53-83% of applied amount. The study showed existence of bacterial strains in different sugarcane-cultivated fields which can use atrazine as a nitrogen source. The bacterial strains isolated can be used to enhance the degradation of atrazine in contaminated soils where atrazine is still considered to be recalcitrant.
Collapse
Affiliation(s)
- Anastasiah N Ngigi
- Department of Pure and Applied Chemistry, Masinde Muliro University of Science and Technology, Kakamega, Kenya.
| | | | | | | |
Collapse
|
27
|
Abstract
Explosives are synthesized globally mainly for military munitions. Nitrate esters, such as GTN and PETN, nitroaromatics like TNP and TNT and nitramines with RDX, HMX and CL20, are the main class of explosives used. Their use has resulted in severe contamination of environment and strategies are now being developed to clean these substances in an economical and eco-friendly manner. The incredible versatility inherited in microbes has rendered these explosives as a part of the biogeochemical cycle. Several microbes catalyze mineralization and/or nonspecific transformation of explosive waste either by aerobic or anaerobic processes. It is likely that ongoing genetic adaptation, with the recruitment of silent sequences into functional catabolic routes and evolution of substrate range by mutations in structural genes, will further enhance the catabolic potential of bacteria toward explosives and ultimately contribute to cleansing the environment of these toxic and recalcitrant chemicals. This review summarizes information on the biodegradation and biotransformation pathways of several important explosives. Isolation, characterization, utilization and manipulation of the major detoxifying enzymes and the molecular basis of degradation are also discussed. This may be useful in developing safer and economic microbiological methods for clean up of soil and water contaminated with such compounds. The necessity of further investigations concerning the microbial metabolism of these substances is also discussed.
Collapse
|
28
|
Kulakova AN, Hobbs D, Smithen M, Pavlov E, Gilbert JA, Quinn JP, McGrath JW. Direct quantification of inorganic polyphosphate in microbial cells using 4'-6-diamidino-2-phenylindole (DAPI). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:7799-7803. [PMID: 21875055 DOI: 10.1021/es201123r] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Inorganic polyphosphate (polyP) is increasingly being recognized as an important phosphorus sink within the environment, playing a central role in phosphorus exchange and phosphogenesis. Yet despite the significant advances made in polyP research there is a lack of rapid and efficient analytical approaches for the quantification of polyP accumulation in microbial cultures and environmental samples. A major drawback is the need to extract polyP from cells prior to analysis. Due to extraction inefficiencies this can lead to an underestimation of both intracellular polyP levels and its environmental pool size: we observed 23-58% loss of polyP using standard solutions and current protocols. Here we report a direct fluorescence based DAPI assay system which removes the requirement for prior polyP extraction before quantification. This increased the efficiency of polyP detection by 28-55% in microbial cultures suggesting quantitative measurement of the intracellular polyP pool. It provides a direct polyP assay which combines quantification capability with technical simplicity. This is an important step forward in our ability to explore the role of polyP in cellular biology and biogeochemical nutrient cycling.
Collapse
Affiliation(s)
- Anna N Kulakova
- School of Biological Sciences and QUESTOR Centre, The Queen's University of Belfast, Medical Biology Centre, 97 Lisburn Rd., Belfast, BT9 7BL, Northern Ireland
| | | | | | | | | | | | | |
Collapse
|
29
|
Mäkinen M, Nousiainen M, Sillanpää M. Ion spectrometric detection technologies for ultra-traces of explosives: a review. MASS SPECTROMETRY REVIEWS 2011; 30:940-973. [PMID: 21294149 DOI: 10.1002/mas.20308] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In recent years, explosive materials have been widely employed for various military applications and civilian conflicts; their use for hostile purposes has increased considerably. The detection of different kind of explosive agents has become crucially important for protection of human lives, infrastructures, and properties. Moreover, both the environmental aspects such as the risk of soil and water contamination and health risks related to the release of explosive particles need to be taken into account. For these reasons, there is a growing need to develop analyzing methods which are faster and more sensitive for detecting explosives. The detection techniques of the explosive materials should ideally serve fast real-time analysis in high accuracy and resolution from a minimal quantity of explosive without involving complicated sample preparation. The performance of the in-field analysis of extremely hazardous material has to be user-friendly and safe for operators. The two closely related ion spectrometric methods used in explosive analyses include mass spectrometry (MS) and ion mobility spectrometry (IMS). The four requirements-speed, selectivity, sensitivity, and sampling-are fulfilled with both of these methods.
Collapse
Affiliation(s)
- Marko Mäkinen
- Laboratory of Applied Environmental Chemistry, Department of Environmental Science, University of Eastern Finland, Patteristonkatu 1, 50100 Mikkeli, Finland.
| | | | | |
Collapse
|
30
|
Cooley NA, Kulakova AN, Villarreal-Chiu JF, Gilbert JA, McGrath JW, Quinn JP. Phosphonoacetate biosynthesis: In vitro detection of a novel NADP+-dependent phosphonoacetaldehyde-oxidizing activity in cell-extracts of a marine Roseobacter. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711030076] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
31
|
Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). PURE APPL CHEM 2011. [DOI: 10.1351/pac-rep-10-01-05] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An explosion occurs when a large amount of energy is suddenly released. This energy may come from an over-pressurized steam boiler, from the products of a chemical reaction involving explosive materials, or from a nuclear reaction that is uncontrolled. In order for an explosion to occur, there must be a local accumulation of energy at the site of the explosion, which is suddenly released. This release of energy can be dissipated as blast waves, propulsion of debris, or by the emission of thermal and ionizing radiation. Modern explosives or energetic materials are nitrogen-containing organic compounds with the potential for self-oxidation to small gaseous molecules (N2, H2O, and CO2). Explosives are classified as primary or secondary based on their susceptibility of initiation. Primary explosives are highly susceptible to initiation and are often used to ignite secondary explosives, such as TNT (2,4,6-trinitrotoluene), RDX (1,3,5-trinitroperhydro-1,3,5-triazine), HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocane), and tetryl (N-methyl-N-2,4,6-tetranitro-aniline).
Collapse
|
32
|
Toogood HS, Fryszkowska A, Hulley M, Sakuma M, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. A Site-Saturated Mutagenesis Study of Pentaerythritol Tetranitrate Reductase Reveals that Residues 181 and 184 Influence Ligand Binding, Stereochemistry and Reactivity. Chembiochem 2011; 12:738-49. [DOI: 10.1002/cbic.201000662] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2010] [Indexed: 11/09/2022]
|
33
|
Fryszkowska A, Toogood H, Sakuma M, Stephens GM, Gardiner JM, Scrutton NS. Active site modifications in pentaerythritol tetranitrate reductase can lead to improved product enantiopurity, decreased by-product formation and altered stereochemical outcome in reactions with α,β-unsaturated nitroolefins. Catal Sci Technol 2011. [DOI: 10.1039/c0cy00092b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Hulley ME, Toogood HS, Fryszkowska A, Mansell D, Stephens GM, Gardiner JM, Scrutton NS. Focused directed evolution of pentaerythritol tetranitrate reductase by using automated anaerobic kinetic screening of site-saturated libraries. Chembiochem 2010; 11:2433-47. [PMID: 21064170 DOI: 10.1002/cbic.201000527] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Indexed: 01/01/2023]
Abstract
This work describes the development of an automated robotic platform for the rapid screening of enzyme variants generated from directed evolution studies of pentraerythritol tetranitrate (PETN) reductase, a target for industrial biocatalysis. By using a 96-well format, near pure enzyme was recovered and was suitable for high throughput kinetic assays; this enabled rapid screening for improved and new activities from libraries of enzyme variants. Initial characterisation of several single site-saturation libraries targeted at active site residues of PETN reductase, are described. Two mutants (T26S and W102F) were shown to have switched in substrate enantiopreference against substrates (E)-2-aryl-1-nitropropene and α-methyl-trans-cinnamaldehyde, respectively, with an increase in ee (62 % (R) for W102F). In addition, the detection of mutants with weak activity against α,β-unsaturated carboxylic acid substrates showed progress in the expansion of the substrate range of PETN reductase. These methods can readily be adapted for rapid evolution of enzyme variants with other oxidoreductase enzymes.
Collapse
Affiliation(s)
- Martyn E Hulley
- Faculty of Life Sciences, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Toogood H, Gardiner J, Scrutton N. Biocatalytic Reductions and Chemical Versatility of the Old Yellow Enzyme Family of Flavoprotein Oxidoreductases. ChemCatChem 2010. [DOI: 10.1002/cctc.201000094] [Citation(s) in RCA: 250] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Mueller N, Stueckler C, Hauer B, Baudendistel N, Housden H, Bruce N, Faber K. The Substrate Spectra of Pentaerythritol Tetranitrate Reductase, Morphinone Reductase,N-Ethylmaleimide Reductase and Estrogen-Binding Protein in the Asymmetric Bioreduction of Activated Alkenes. Adv Synth Catal 2010. [DOI: 10.1002/adsc.200900832] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
37
|
Spiegelhauer O, Dickert F, Mende S, Niks D, Hille R, Ullmann M, Dobbek H. Kinetic characterization of xenobiotic reductase A from Pseudomonas putida 86. Biochemistry 2009; 48:11412-20. [PMID: 19839648 DOI: 10.1021/bi901370u] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Xenobiotic reductase A (XenA) from Pseudomonas putida is a member of the old-yellow-enzyme family of flavin-containing enzymes and catalyzes the NADH/NADPH-dependent reduction of various substrates, including 8-hydroxycoumarin and 2-cyclohexenone. Here we present a kinetic and thermodynamic analysis of XenA. In the reductive half-reaction, complexes of oxidized XenA with NADH or NADPH form charge-transfer (CT) intermediates with increased absorption around 520-560 nm, which occurs with a second-order rate constant of 9.4 x 10(5) M(-1) s(-1) with NADH and 6.4 x 10(5) M(-1) s(-1) with NADPH, while its disappearance is controlled by a rate constant of 210-250 s(-1) with both substrates. Transfer of hydride from NADPH proceeds 24 times more rapidly than from NADH. This modest kinetic preference of XenA for NADPH is unlike the typical discrimination between NADH and NADPH by binding affinity. Docking studies combined with electrostatic energy calculations indicate that the 2'-phosphate group attached to the adenine moiety of NADPH is responsible for this difference. The reductions of 2-cyclohexenone and coumarin in the oxidative half-reaction are both concentration-dependent under the assay conditions and reveal a more than 50-fold larger limiting rate constant for the reduction of 2-cyclohexenone compared to that of coumarin. Our work corroborates the link between XenA and other members of the old-yellow-enzyme family but demonstrates several differences in the reactivity of these enzymes.
Collapse
|
38
|
Adalbjörnsson BV, Toogood HS, Fryszkowska A, Pudney CR, Jowitt TA, Leys D, Scrutton NS. Biocatalysis with Thermostable Enzymes: Structure and Properties of a Thermophilic ‘ene’-Reductase related to Old Yellow Enzyme. Chembiochem 2009; 11:197-207. [DOI: 10.1002/cbic.200900570] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
39
|
Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. PLANT PHYSIOLOGY 2009; 151:253-61. [PMID: 19605548 PMCID: PMC2735992 DOI: 10.1104/pp.109.141598] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 07/08/2009] [Indexed: 05/17/2023]
Abstract
The explosive 2,4,6-trinitrotoluene (TNT) is a significant environmental pollutant that is both toxic and recalcitrant to degradation. Phytoremediation is being increasingly proposed as a viable alternative to conventional remediation technologies to clean up explosives-contaminated sites. Despite the potential of this technology, relatively little is known about the innate enzymology of TNT detoxification in plants. To further elucidate this, we used microarray analysis to identify Arabidopsis (Arabidopsis thaliana) genes up-regulated by exposure to TNT and found that the expression of oxophytodienoate reductases (OPRs) increased in response to TNT. The OPRs share similarity with the Old Yellow Enzyme family, bacterial members of which have been shown to transform explosives. The three predominantly expressed forms, OPR1, OPR2, and OPR3, were recombinantly expressed and affinity purified. Subsequent biochemical characterization revealed that all three OPRs are able to transform TNT to yield nitro-reduced TNT derivatives, with OPR1 additionally producing the aromatic ring-reduced products hydride and dihydride Meisenheimer complexes. Arabidopsis plants overexpressing OPR1 removed TNT more quickly from liquid culture, produced increased levels of transformation products, and maintained higher fresh weight biomasses than wild-type plants. In contrast, OPR1,2 RNA interference lines removed less TNT, produced fewer transformation products, and had lower biomasses. When grown on solid medium, two of the three OPR1 lines and all of the OPR2-overexpressing lines exhibited significantly enhanced tolerance to TNT. These data suggest that, in concert with other detoxification mechanisms, OPRs play a physiological role in xenobiotic detoxification.
Collapse
Affiliation(s)
- Emily R Beynon
- Centre for Novel Agricultural Products, Department of Biology, University of York, York YO10 5YW, United Kingdom
| | | | | | | | | | | |
Collapse
|
40
|
Nyanhongo GS, Schroeder M, Steiner W, Gübitz GM. Biodegradation of 2,4,6-trinitrotoluene (TNT): An enzymatic perspective. BIOCATAL BIOTRANSFOR 2009. [DOI: 10.1080/10242420500090169] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
41
|
Abhilash P, Jamil S, Singh N. Transgenic plants for enhanced biodegradation and phytoremediation of organic xenobiotics. Biotechnol Adv 2009; 27:474-88. [DOI: 10.1016/j.biotechadv.2009.04.002] [Citation(s) in RCA: 236] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2008] [Revised: 03/26/2009] [Accepted: 04/03/2009] [Indexed: 11/28/2022]
|
42
|
Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 2009; 27:73-81. [DOI: 10.1016/j.tibtech.2008.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 11/14/2008] [Accepted: 11/14/2008] [Indexed: 11/20/2022]
|
43
|
Isolation of Tributyltin-Degrading Bacteria Citrobacter braakii and Enterobacter cloacae from Butyltin-Polluted Sediment. ACTA ACUST UNITED AC 2009. [DOI: 10.1520/jai102120] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
44
|
Doty SL. Enhancing phytoremediation through the use of transgenics and endophytes. THE NEW PHYTOLOGIST 2008; 179:318-333. [PMID: 19086174 DOI: 10.1111/j.1469-8137.2008.02446.x] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the last decade, there has been an increase in research on improving the ability of plants to remove environmental pollution. Genes from microbes, plants, and animals are being used successfully to enhance the ability of plants to tolerate, remove, and degrade pollutants. Through expression of specific bacterial genes in transgenic plants, the phytotoxic effects of nitroaromatic pollutants were overcome, resulting in increased removal of these chemicals. Overexpression of mammalian genes encoding cytochrome P450s led to increased metabolism and removal of a variety of organic pollutants and herbicides. Genes involved in the uptake or detoxification of metal pollutants were used to enhance phytoremediation of this important class of pollutants. Transgenic plants containing specific bacterial genes converted mercury and selenium to less toxic forms. In addition to these transgenic approaches, the use of microbes that live within plants, termed endophytes, also led to improved tolerance to normally phytotoxic chemicals and increased removal of the pollutants. Bacteria that degraded a herbicide imparted resistance to the herbicide when inoculated into plants. In another study, plants harboring bacteria capable of degrading toluene were more tolerant to normally phytotoxic concentrations of the chemical, and transpired less of it into the atmosphere. This review examines the recent advances in enhancing phytoremediation through transgenic plant research and through the use of symbiotic endophytic microorganisms within plant tissues.
Collapse
|
45
|
Zhuang L, Gui L, Gillham RW. Degradation of pentaerythritol tetranitrate (PETN) by granular iron. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:4534-4539. [PMID: 18605582 DOI: 10.1021/es7029703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Pentaerythritol tetranitrate (PETN), a nitrate ester, is used primarily as an explosive. It is of environmental concern, posing a threat to aquatic organisms with an estimated EC50 five times greater than that of RDX. This study evaluated the kinetics and products of PETN degradation in the presence of granular iron. PETN transformation in columns containing 100% granular iron and 30% iron mixed with 70% silica sand followed pseudo first-order kinetics, with average half-lives of 0.26 and 1.58 min, respectively. The reduction pathway was proposed to be sequential denitration, in which PETN was stepwise reduced to pentaerythritol with the formation of pentaerythritol trinitrate and pentaerythritol dinitrate as intermediates. The intermediate of pentaerythritol mononitrate was not detected; however, the nearly 100% nitrogen mass recovery supported complete denitration. Nitrite was released in each denitration step and was subsequently reduced to ammonium by iron. Nitrate was not detected during the experiment suggesting that hydrolysis was not involved in PETN degradation. Batch experiments showed that when solid-phase PETN is present, dissolution is the rate-limiting factorfor PETN mass removal. Using 50% methanol as a cosolvent PETN solubility was enhanced and thus the removal efficiency was improved. The results demonstrate excellent potential of using iron to remediate PETN-contaminated water.
Collapse
Affiliation(s)
- Li Zhuang
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1
| | | | | |
Collapse
|
46
|
Potocnjak D, Barić-Rafaj R, Lemo N, Matijatko V, Kis I, Mrljak V, Harapin I. Poisoning of a dog with the explosive pentaerythrityl tetranitrate. J Small Anim Pract 2008; 49:314-8. [PMID: 18482332 DOI: 10.1111/j.1748-5827.2008.00549.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A three-year-old male Labrador retriever was presented at the Clinic of Internal Medicine, University of Zagreb, Croatia. The owner reported that the dog was ataxic, and this was evident by its markedly unsteady, swaying gait. The dog also had difficulty rising and fell several times while trying to stand. It had come into contact with the explosive, pentaerythrityl tetranitrate, while training to detect explosives. The following clinical symptoms were observed: bradycardia, depression, mild disorientation and a broad-based stance. The dog had conscious proprioceptive deficits in the hindlimbs, but cranial nerve function was normal except for miosis. Ion scan analysis of the dog's serum after evaporation of the current phase by mass spectroscopy revealed the presence of fragments that are characteristic of pentaerythrityl tetranitrate. The aim of the present case report was to identify pentaerythrityl tetranitrate poisoning and describe the clinical signs of pentaerythrityl tetranitrate poisoning in dogs. To the authors' knowledge, there are no published scientific articles on pentaerythrityl tetranitrate poisoning in dogs.
Collapse
Affiliation(s)
- D Potocnjak
- The Clinic of Internal Medicine, The Faculty of Veterinary Medicine, University of Zagreb, Heinzelova 55, Zagreb 10000, Croatia
| | | | | | | | | | | | | |
Collapse
|
47
|
Travis ER, Hannink NK, Van der Gast CJ, Thompson IP, Rosser SJ, Bruce NC. Impact of transgenic tobacco on trinitrotoluene (TNT) contaminated soil community. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2007; 41:5854-61. [PMID: 17874797 DOI: 10.1021/es070507a] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Environmental contamination with recalcitrant toxic chemicals presents a serious and widespread problem to the functional capacity of soil. Soil bacteria play an essential role in ecosystem processes, such as nutrient cycling and decomposition; thus a decrease in their biomass and community diversity, resulting from exposure to toxic chemicals, negatively affects the functioning of soil. Plants provide the primary energy source to soil microorganisms and affect the size and composition of microbial communities, which in turn have an effect on vegetation dynamics. We have found that transgenic tobacco plants overexpressing a bacterial nitroreductase gene detoxify soil contaminated with the high explosive 2,4,6-trinitrotoluene (TNT), with a significantly increased microbial community biomass and metabolic activity in the rhizosphere of transgenic plants compared with wild type plants. This is the first report to demonstrate that transgenic plants engineered for the phytoremediation of organic pollutants can increase the functional and genetic diversity of the rhizosphere bacterial community in acutely polluted soil compared to wild type plants.
Collapse
Affiliation(s)
- Emma R Travis
- Institute of Biotechnology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QT, UK
| | | | | | | | | | | |
Collapse
|
48
|
Jube S, Borthakur D. Expression of bacterial genes in transgenic tobacco: methods, applications and future prospects. ELECTRON J BIOTECHN 2007; 10:452-467. [PMID: 19750137 PMCID: PMC2742426 DOI: 10.2225/vol10-issue3-fulltext-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Tobacco is the most commonly used plant for expression of transgenes from a variety of organisms, because it is easily grown and transformed, it provides abundant amounts of fresh tissue and has a well-established cell culture system. Many bacterial proteins involved in the synthesis of commercial products are currently engineered for production in tobacco. Bacterial enzymes synthesized in tobacco can enhance protection against abiotic stresses and diseases, and provide a system to test applied strategies such as phytoremediation. Examples of bacterial gene expression in tobacco include production of antigen proteins from several human bacterial pathogens as vaccines, bacterial proteins for enhancing resistance against insects, pathogens and herbicides, and bacterial enzymes for the production of polymers, sugars, and bioethanol. Further improvements in the expression of recombinant proteins and their recovery from tobacco will enhance production and commercial use of these proteins. This review highlights the dynamic use of tobacco in bacterial protein production by examining the most relevant research in this field.
Collapse
Affiliation(s)
- Sandro Jube
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Ag. Science 218, Honolulu, Hawaii 96822 USA, Tel: 808 956 8210, Fax: 808 956 3542, E-mail:
| | - Dulal Borthakur
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, 1955 East-West Road, Ag. Science 218, Honolulu, Hawaii 96822 USA, Tel: 808 956 6600, Fax: 808 956 3542, E-mail:
| |
Collapse
|
49
|
Abstract
The last one hundred years have seen a massive expansion in the chemicals industry; however, with this progress came the concomitant pollution of the environment with a significant range of xenobiotics.Nitroaromatic compounds form one such category of novel environmental contaminants and are produced through a large number of industrial processes, most notably the pesticides, dyes and explosives industries. Whilst singly nitrated aromatic compounds are usually mineralised in the environment, multiply nitrated aromatics, such as the explosive 2,4,6-trinitrotoluene (TNT), are recalcitrant and highly toxic. The predominant route of biological transformation of aromatic compounds is oxidation; however, the presence of three electron-withdrawing nitro-groups around the ring prevents oxidation, rendering such compounds resistant to biodegradation. The subsequent accumulation of these contaminants has stimulated much research leading to the isolation of bacteria that possess, to varying extents, the ability to remediate explosives and other nitroaromatic pollutants.The extreme environments created by these toxic substances accelerate the evolutionary process and examples of bacteria that have conscripted metabolic enzymes for novel remediatory pathways are included. This Highlight ends with a discussion of the future of nitroaromatic bioremediation including engineering plants to express bacterial enzymes for use in bioremediation programs.
Collapse
Affiliation(s)
- Zoe C Symons
- CNAP, The Department of Biology, AREA 8, The University of York, PO Box 373, York, England YO10 5YW
| | | |
Collapse
|
50
|
Griese JJ, P Jakob R, Schwarzinger S, Dobbek H. Xenobiotic reductase A in the degradation of quinoline by Pseudomonas putida 86: physiological function, structure and mechanism of 8-hydroxycoumarin reduction. J Mol Biol 2006; 361:140-52. [PMID: 16822524 DOI: 10.1016/j.jmb.2006.06.007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2006] [Revised: 06/01/2006] [Accepted: 06/07/2006] [Indexed: 11/28/2022]
Abstract
A continuous evolutionary pressure of the biotic and abiotic world has led to the development of a diversity of microbial pathways to degrade and biomineralize aromatic and heteroaromatic compounds. The heterogeneity of compounds metabolized by bacteria like Pseudomonas putida indicates the large variety of enzymes necessary to catalyse the required reactions. Quinoline, a N-heterocyclic aromatic compound, can be degraded by microbes along different pathways. For P. putida 86 quinoline degradation by the 8-hydroxycoumarin pathway has been described and several intermediates were identified. To select enzymes catalysing the later stages of the 8-hydroxycoumarin pathway P. putida 86 was grown with quinoline. The FMN-containing enzyme xenobiotic reductase A (XenA) was isolated and analysed for its reactivity with intermediates of the 8-hydroxycoumarin pathway. XenA catalyses the NADPH-dependent reduction of 8-hydroxycoumarin and coumarin to produce 8-hydroxy-3,4-dihydrocoumarin and 3,4-dihydrocoumarin, respectively. Crystallographic analysis of XenA alone and in complex with the two substrates revealed insights into the mechanism. XenA shows a dimeric arrangement of two (beta/alpha)(8) barrel domains each binding one FMN cofactor. High resolution crystal structures of complexes with 8-hydroxycoumarin and coumarin show different modes of binding for these molecules in the active site. While coumarin is ideally positioned for hydride transfer from N-5 of the isoalloxazine ring to C-4 of coumarin, 8-hydroxycoumarin forms a non-productive complex with oxidised XenA. Orientation of 8-hydroxycoumarin in the active site appears to be dependent on the electronic state of the flavin. We postulate that XenA catalyses the last step of the 8-hydroxycoumarin pathway before the heterocyclic ring is hydrolysed to yield 3-(2,3-dihydroxyphenyl)-propionic acid. As XenA is also found in P. putida strains unable to degrade quinoline, it appears to have more than one physiological function and is an example of how enzymes with low substrate specificity can help to explain the variety of degradation pathways possible.
Collapse
Affiliation(s)
- Julia J Griese
- Laboratorium Proteinkristallographie, Universität Bayreuth, Germany
| | | | | | | |
Collapse
|