1
|
Nguyen TPO, Hansen MA, Hansen LH, Horemans B, Sørensen SJ, De Mot R, Springael D. Intra- and inter-field diversity of 2,4-dichlorophenoxyacetic acid-degradative plasmids and their tfd catabolic genes in rice fields of the Mekong delta in Vietnam. FEMS Microbiol Ecol 2019; 95:5149497. [PMID: 30380047 DOI: 10.1093/femsec/fiy214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/29/2018] [Indexed: 11/14/2022] Open
Abstract
The tfd genes mediating degradation of the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) differ in composition and organization in bacterial isolates from different geographical origin and are carried by different types of mobile genetic elements (MGE). It is not known whether such global diversity of 2,4-D-catabolic MGE and their tfd gene cargo is reflected in the diversity at field scale. The genomic context of the 2,4-D catabolic genes of 2,4-D-degrading isolates from two rice fields with a 2,4-D application history, located in two distant provinces of the Vietnam Mekong delta, was compared. All isolates were β-proteobacteria, were unique for each rice field and carried the catabolic genes on MGE and especially plasmids. Most plasmids were IncP-1β plasmids and carried tfd clusters highly similar to those of the IncP-1β plasmid pJP4, typified by two chlorophenol catabolic gene modules (tfd-I and tfd-II). IncP-1β plasmids from the same field showed small deletions and/or insertions in accessory metabolic genes. One plasmid belonged to an unclassified plasmid group and carries a copy of both tfdA and tfd-II identical to those in the IncP-1β plasmids. Our results indicate intra-field evolution and inter-field exchange of 2,4-D-catabolic IncP-1β plasmids as well as the exchange of tfd genes between different plasmids within a confined local environment.
Collapse
Affiliation(s)
- Thi Phi Oanh Nguyen
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium.,Department of Biology, College of Natural Sciences, Can Tho University, Campus II, 3/2 street, Ninh Kieu district, Can Tho City, Vietnam
| | - Martin Asser Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - Lars Hestbjerg Hansen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark.,Department of Environmental Science - Environmental Microbiology & Biotechnology, Aarhus University, Frederiksborgvej 399, Building 7411 B2.12, Roskilde DK-4000, Denmark
| | - Benjamin Horemans
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Søren Johannes Sørensen
- Section for Microbiology, Department of Biology, University of Copenhagen, Universitetsparken 15, Copenhagen DK-2100, Denmark
| | - René De Mot
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| | - Dirk Springael
- Division of Soil and Water Management, KU Leuven, Kasteelpark Arenberg 20, Heverlee-Leuven B-3001, Belgium
| |
Collapse
|
2
|
Chong NM. Model development with defined biological mechanisms for xenobiotic treatment activated sludge at steady state. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8567-8575. [PMID: 25561268 DOI: 10.1007/s11356-014-4042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
Activated sludge treatment of a xenobiotic organic compound, much different from treatment of biogenic organics, must be modeled with interactions involving a two-part biomass of degrader and nondegrader, which selectively or competitively grow on a two-part substrate of input xenobiotic and its biogenic metabolites. A xenobiotic treatment model was developed which incorporates kinetics of the growth of degrader and nondegrader, the line dividing metabolites into xenobiotic and biogenic, yields of degrader and nondegrader from utilization of their parts of substrates, and kinetics of degrader reversion to nondegrader due to instability of the degradative element degraders carry. Experimental activated sludge operated for treatment of a xenobiotic generated data for calibration of the model. With the input of influent xenobiotic concentration, mean cell and hydraulic residence times, and calibrated parameters, the model readily outputs concentrations of degrader, nondegrader, and effluent biogenic residue that closely match the results obtained from experiments.
Collapse
Affiliation(s)
- Nyuk-Min Chong
- Department of Environmental Engineering, DaYeh University, No. 168, University Road, Dacun, Changhua, Taiwan, 51591, Republic of China,
| |
Collapse
|
3
|
Ditterich F, Poll C, Pagel H, Babin D, Smalla K, Horn MA, Streck T, Kandeler E. Succession of bacterial and fungal 4-chloro-2-methylphenoxyacetic acid degraders at the soil-litter interface. FEMS Microbiol Ecol 2013; 86:85-100. [DOI: 10.1111/1574-6941.12131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 03/20/2013] [Accepted: 04/03/2013] [Indexed: 11/29/2022] Open
Affiliation(s)
- Franziska Ditterich
- Institute of Soil Science and Land Evaluation; Soil Biology Section; University of Hohenheim; Stuttgart; Germany
| | - Christian Poll
- Institute of Soil Science and Land Evaluation; Soil Biology Section; University of Hohenheim; Stuttgart; Germany
| | - Holger Pagel
- Institute of Soil Science and Land Evaluation; Biogeophysics Section; University of Hohenheim; Stuttgart; Germany
| | - Doreen Babin
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Kornelia Smalla
- Julius Kühn-Institut; Federal Research Centre for Cultivated Plants; Institute for Epidemiology and Pathogen Diagnostics; Braunschweig; Germany
| | - Marcus A. Horn
- Department of Ecological Microbiology; University of Bayreuth; Bayreuth; Germany
| | - Thilo Streck
- Institute of Soil Science and Land Evaluation; Biogeophysics Section; University of Hohenheim; Stuttgart; Germany
| | - Ellen Kandeler
- Institute of Soil Science and Land Evaluation; Soil Biology Section; University of Hohenheim; Stuttgart; Germany
| |
Collapse
|
4
|
Heuer H, Smalla K. Plasmids foster diversification and adaptation of bacterial populations in soil. FEMS Microbiol Rev 2012; 36:1083-104. [DOI: 10.1111/j.1574-6976.2012.00337.x] [Citation(s) in RCA: 185] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 10/15/2011] [Accepted: 02/24/2012] [Indexed: 11/26/2022] Open
|
5
|
Król JE, Penrod JT, McCaslin H, Rogers LM, Yano H, Stancik AD, Dejonghe W, Brown CJ, Parales RE, Wuertz S, Top EM. Role of IncP-1β plasmids pWDL7::rfp and pNB8c in chloroaniline catabolism as determined by genomic and functional analyses. Appl Environ Microbiol 2012; 78:828-38. [PMID: 22101050 PMCID: PMC3264110 DOI: 10.1128/aem.07480-11] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Accepted: 11/12/2011] [Indexed: 11/20/2022] Open
Abstract
Broad-host-range catabolic plasmids play an important role in bacterial degradation of man-made compounds. To gain insight into the role of these plasmids in chloroaniline degradation, we determined the first complete nucleotide sequences of an IncP-1 chloroaniline degradation plasmid, pWDL7::rfp and its close relative pNB8c, as well as the expression pattern, function, and bioaugmentation potential of the putative 3-chloroaniline (3-CA) oxidation genes. Based on phylogenetic analysis of backbone proteins, both plasmids are members of a distinct clade within the IncP-1β subgroup. The plasmids are almost identical, but whereas pWDL7::rfp carries a duplicate inverted catabolic transposon, Tn6063, containing a putative 3-CA oxidation gene cluster, dcaQTA1A2BR, pNB8c contains only a single copy of the transposon. No genes for an aromatic ring cleavage pathway were detected on either plasmid, suggesting that only the upper 3-CA degradation pathway was present. The dcaA1A2B gene products expressed from a high-copy-number vector were shown to convert 3-CA to 4-chlorocatechol in Escherichia coli. Slight differences in the dca promoter region between the plasmids and lack of induction of transcription of the pNB8c dca genes by 3-CA may explain previous findings that pNB8C does not confer 3-CA transformation. Bioaugmentation of activated sludge with pWDL7::rfp accelerated removal of 3-CA, but only in the presence of an additional carbon source. Successful bioaugmentation requires complementation of the upper pathway genes with chlorocatechol cleavage genes in indigenous bacteria. The genome sequences of these plasmids thus help explain the molecular basis of their catabolic activities.
Collapse
Affiliation(s)
- J. E. Król
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - J. T. Penrod
- Department of Microbiology, University of California, Davis, Davis, California, USA
| | - H. McCaslin
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, California, USA
| | - L. M. Rogers
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - H. Yano
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - A. D. Stancik
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - W. Dejonghe
- Laboratory of Microbial Ecology and Technology, Ghent University, Ghent, Belgium
| | - C. J. Brown
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| | - R. E. Parales
- Department of Microbiology, University of California, Davis, Davis, California, USA
| | - S. Wuertz
- Department of Civil and Environmental Engineering, University of California, Davis, Davis, California, USA
- Singapore Centre on Environmental Life Sciences Engineering, School of Biological Sciences, and School of Civil and Environmental Engineering, Nanyang Technological University, Singapore
| | - E. M. Top
- Department of Biological Sciences, Institute for Bioinformatics and Evolutionary Studies, University of Idaho, Moscow, Idaho, USA
| |
Collapse
|
6
|
Chong NM, Chang HW. Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid. BIORESOURCE TECHNOLOGY 2009; 100:1174-1179. [PMID: 18930390 DOI: 10.1016/j.biortech.2008.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/31/2008] [Accepted: 09/02/2008] [Indexed: 05/26/2023]
Abstract
The purpose of this research was to pursuit the quantification of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid (2,4-D) by detecting and quantifying a prominent 2,4-D degradation encoding plasmid. Batch reactor acclimation, de-acclimation, and re-acclimation tests were conducted during which periods the courses of 2,4-D dissipation and plasmid evolution were quantitatively measured. Pure cultures of bacterial strains were detected to give rise to a plasmid approximately the size of 90 kb after acclimation. The 90 kb plasmid content of Arthrobacter sp. increased when degradation occurred after acclimation, with a rate that corresponded closely to the degradation rate. During de-acclimation, plasmid content declined exponentially at a half-life of approximately 3.5 days. Re-acclimation saw a renewed induction of plasmid, but substrate consumption limited the rise of plasmid to a level much lower than after the first acclimation. This research recommends a method for measuring the microbial degradation capability for a xenobiotic.
Collapse
Affiliation(s)
- Nyuk-Min Chong
- Department of Environmental Engineering, Da-Yeh University, Dacun, Changhua, Taiwan, ROC.
| | | |
Collapse
|
7
|
|
8
|
Ono A, Miyazaki R, Sota M, Ohtsubo Y, Nagata Y, Tsuda M. Isolation and characterization of naphthalene-catabolic genes and plasmids from oil-contaminated soil by using two cultivation-independent approaches. Appl Microbiol Biotechnol 2006; 74:501-10. [PMID: 17096121 DOI: 10.1007/s00253-006-0671-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2006] [Revised: 09/06/2006] [Accepted: 09/10/2006] [Indexed: 10/23/2022]
Abstract
Two different cultivation-independent approaches were applied to isolate genes for naphthalene dioxygenase (NDO) from oil-contaminated soil in Japan. One approach was the construction of a broad-host-range cosmid-based metagenomic DNA library, and the other was the so-called exogenous plasmid isolation technique. Our screening of NDO genes in both approaches was based on the functional complementation of Pseudomonas putida strains which contained Tn4655K, a transposon carrying the entire set of naphthalene-catabolic (nah) genes but lacking the NDO-encoding gene. We obtained in the former approach a cosmid clone (pSLX928-6) that carried an nah upper pathway operon for conversion of naphthalene to salicylate, and this operon showed a significantly high level of similarity to the corresponding operon on an IncP-9 naphthalene-catabolic plasmid, pDTG1. In the latter approach, the microbial fraction from the soil was mated with a plasmid-free P. putida strain containing a chromosomal copy of Tn4655K, and transconjugants were obtained that received either a 200- or 80-kb plasmid containing all the nah genes for the complete degradation of naphthalene. Subsequent analysis revealed that (1) both plasmids belong to the IncP-9 incompatibility group; (2) their nah upper pathway operons are significantly similar, but not completely identical, to those of pDTG1 and pSLX928-6; and (3) these plasmids carried genes for the salicylate metabolism by the meta-cleavage pathway.
Collapse
Affiliation(s)
- Akira Ono
- Department of Environmental Life Sciences, Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Sendai 980-8577, Japan
| | | | | | | | | | | |
Collapse
|
9
|
Gstalder ME, Faelen M, Mine N, Top EM, Mergeay M, Couturier M. Replication functions of new broad host range plasmids isolated from polluted soils. Res Microbiol 2003; 154:499-509. [PMID: 14499936 DOI: 10.1016/s0923-2508(03)00143-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The nucleotide sequencing of replicons isolated from three new broad host range plasmids, pMOL98, pEMT8, and pEMT3, originating from polluted soils, showed a typical organization of iteron replicons replicating by the theta mode. In the pMOL98 replicon, the origin region and the rep gene were identified in complementation experiments. Sequence comparisons showed that the regions bearing these features are highly identical to regions in pIP02T and pSB102 and that the Rep proteins (but not the origin regions) of these three plasmids show some identity to the Rep proteins of the IncW group of plasmids. This suggests that pMOL98, pIPO2T, and pSB102 constitute a new Inc/Rep family, distantly related to the IncW group, but having an incompatibility phenotype different from the IncW phenotype. The pEMT8 replicon displayed an orf whose conceptually translated product is related to the Rep proteins of four plasmids, pSD20, pSW500, pMLb, and pALC1, not yet classified into any known incompatibility group. The vegetative origins of these plasmids were not similar, suggesting that the five plasmids could belong to a new family with similar Rep proteins but different incompatibility phenotypes. The pEMT3 replicon is clearly related to IncP replicons (sequence similarities and incompatibility phenotype), although sequence comparisons revealed some divergence with respect to the two well-documented subgroups IncPalpha and IncPbeta. This suggests that in these plasmids, despite the existence of a powerful system of centralized control over replication, maintenance, and transfer functions, plasticity and evolution of these functions are at work. Our analysis confirms the extreme genetic flexibility of plasmids and the absolute necessity of using multiple techniques (PCR, DNA sequencing, DNA chips, and databases) to analyze the role of broad host range plasmids in the capture, recombination and spread of genetic traits among bacteria.
Collapse
Affiliation(s)
- Marie-Eve Gstalder
- Laboratoire de Génétique des Procaryotes, IBMM, Université Libre de Bruxelles, rue des Prof. Jeener et Brachet, 12, 6104 Gosselies, Belgium.
| | | | | | | | | | | |
Collapse
|
10
|
Smalla K, Sobecky PA. The prevalence and diversity of mobile genetic elements in bacterial communities of different environmental habitats: insights gained from different methodological approaches. FEMS Microbiol Ecol 2002; 42:165-75. [DOI: 10.1111/j.1574-6941.2002.tb01006.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
11
|
|
12
|
|
13
|
de Lipthay JR, Barkay T, Sørensen SJ. Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 2001; 35:75-84. [PMID: 11248392 DOI: 10.1111/j.1574-6941.2001.tb00790.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Few studies have investigated the possible impact of in situ gene transfer on the degradation of xenobiotic compounds in natural environments. In this work we showed that horizontal transfer of the tfdA gene, carried on plasmid pRO103, to phenol degrading recipient strains significantly increased the degradation rate of phenoxyacetic acid in sterile and non-sterile soil microcosms. The tfdA gene encodes a 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase and by complementation with the phenol degradation pathway an expanded catabolic substrate range, now including phenoxyacetic acid, is evolved. Presence of selective pressure had a positive effect on the emergence of transconjugants. However, even in the absence of phenoxyacetic acid transconjugant populations were detected and were kept at a constant level throughout the experimental period. The residuesphere (interface between decaying plant material and soil matrix) of dry leaves of barley was shown to be a hot-spot for gene transfer and presence of barley straw increased the conjugation frequencies in soil microcosms to the same extent as presence of organic nutrients. The results of this study indicate that dissemination of catabolic plasmids is a possible mechanism of genetic adaptation to degradation of xenobiotic compounds in natural environments, and that complementation of catabolic pathways possibly plays an important role in the evolution of new degradative capabilities. The application of horizontal gene transfer as a possible tool in bioremediation of contaminated sites is discussed.
Collapse
|
14
|
Dejonghe W, Goris J, El Fantroussi S, Höfte M, De Vos P, Verstraete W, Top EM. Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 2000; 66:3297-304. [PMID: 10919784 PMCID: PMC92148 DOI: 10.1128/aem.66.8.3297-3304.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (10(5) CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (10(5) CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.
Collapse
Affiliation(s)
- W Dejonghe
- Laboratory of Microbial Ecology and Technology, Ghent University, Belgium
| | | | | | | | | | | | | |
Collapse
|
15
|
Müller RH, Babel W. A theoretical study on the metabolic requirements resulting from alpha-ketoglutarate-dependent cleavage of phenoxyalkanoates. Appl Environ Microbiol 2000; 66:339-44. [PMID: 10618245 PMCID: PMC91827 DOI: 10.1128/aem.66.1.339-344.2000] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The etherolytic cleavage of phenoxyalkanoic acids in various bacteria is catalyzed by an alpha-ketoglutarate-dependent dioxygenase. In this reaction, the electron acceptor is oxidatively decarboxylated to succinate, whereas the proper substrate is cleaved by forming the oxidized alkanoic acid and the phenolic intermediate. The necessity of regenerating alpha-ketoglutarate and the consequences for the overall metabolism were investigated in a theoretical study. It was found that the dioxygenase mechanism is accompanied by a significant loss of carbon amounting to up to 62.5% in the assimilatory branch, thus defining the upper limit of carbon conversion efficiency. This loss in carbon is almost compensated for in comparison to a monooxygenase-catalyzed initial step when the dissimilatory efforts of the entire metabolism are included: the yield coefficients become similar. The alpha-ketoglutarate-dependent dioxygenase mechanism has more drastic consequences for microorganisms which are restricted in their metabolism to the first step of phenoxyalkanoate degradation by excreting the phenolic intermediate as a dead-end product. In the case of phenoxyacetate derivatives, the cleavage reaction would quickly cease due to the exhaustion of alpha-ketoglutarate and no growth would be possible. With the cleavage products of phenoxypropionate and phenoxybutyrate herbicides, i.e., pyruvate and succinate(semialdehyde), respectively, as the possible products, the regeneration of alpha-ketoglutarate will be guaranteed for stoichiometric reasons. However, the maintenance of the cleavage reaction ought to be restricted due to physiological factors owing to the involvement of other metabolic reactions in the pool of metabolites. These effects are discussed in terms of a putative recalcitrance of these compounds.
Collapse
Affiliation(s)
- R H Müller
- UFZ Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| | | |
Collapse
|
16
|
Szpirer C, Top E, Couturier M, Mergeay M. Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. MICROBIOLOGY (READING, ENGLAND) 1999; 145 ( Pt 12):3321-3329. [PMID: 10627031 DOI: 10.1099/00221287-145-12-3321] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Cedric Szpirer
- Laboratoire de Génétique des Prokaryotes, Université Libre de Bruxelles, IBMM, B-6041-Gosselies, Belgium1
| | - Eva Top
- Laboratory for Microbial Ecology and Technology, University of Gent, B-9000 Gent, Belgium2
| | - Martine Couturier
- Laboratoire de Génétique des Prokaryotes, Université Libre de Bruxelles, IBMM, B-6041-Gosselies, Belgium1
| | - Max Mergeay
- Laboratory of Microbiology, Radioactive Waste & Clean-up Division, Center of Studies for Nuclear Energy, SCK/CEN, B-2400 Mol, Belgium4
- Environmental Technology, Flemish Institute for Technological Research, VITO, B-2400 Mol, Belgium3
- Laboratoire de Génétique des Prokaryotes, Université Libre de Bruxelles, IBMM, B-6041-Gosselies, Belgium1
| |
Collapse
|
17
|
Top EM, Maila MP, Clerinx M, Goris J, Vos P, Verstraete W. Methane oxidation as a method to evaluate the removal of 2,4-dichlorophenoxyactic acid (2,4-D) from soil by plasmid-mediated bioaugmentation. FEMS Microbiol Ecol 1999. [DOI: 10.1111/j.1574-6941.1999.tb00576.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
18
|
Drønen AK, Torsvik V, Goksøyr J, Top EM. Effect of mercury addition on plasmid incidence and gene mobilizing capacity in bulk soil. FEMS Microbiol Ecol 1998. [DOI: 10.1111/j.1574-6941.1998.tb00553.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
19
|
Egan S, Wiener P, Kallifidas D, Wellington EM. Transfer of streptomycin biosynthesis gene clusters within streptomycetes isolated from soil. Appl Environ Microbiol 1998; 64:5061-3. [PMID: 9835611 PMCID: PMC90971 DOI: 10.1128/aem.64.12.5061-5063.1998] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptomyces strains isolated from soil were found to possess various numbers of genes from the streptomycin biosynthesis cluster. The strains missing genes from the cluster also lacked the ability to produce streptomycin. Two of the isolates which contain only part of the cluster are apparently recipients of a gene transfer event. The implications for the role of gene transfer in antibiotic evolution are discussed.
Collapse
Affiliation(s)
- S Egan
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom CV4 7AL
| | | | | | | |
Collapse
|
20
|
|
21
|
Plasmids responsible for horizontal transfer of naphthalene catabolism genes between bacteria at a coal tar-contaminated site are homologous to pDTG1 from pseudomonas putida NCIB 9816-4. Appl Environ Microbiol 1998; 64:3633-40. [PMID: 9758778 PMCID: PMC106482 DOI: 10.1128/aem.64.10.3633-3640.1998] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The presence of a highly conserved nahAc allele among phylogenetically diverse bacteria carrying naphthalene-catabolic plasmids provided evidence for in situ horizontal gene transfer at a coal tar-contaminated site (J. B. Herrick, K. G. Stuart-Keil, W. C. Ghiorse, and E. L. Madsen, Appl. Environ. Microbiol. 63:2330-2337, 1997). The objective of the present study was to identify and characterize the different-sized naphthalene-catabolic plasmids in order to determine the probable mechanism of horizontal transfer of the nahAc gene in situ. Filter matings between naphthalene-degrading bacterial isolates and their cured progeny revealed that the naphthalene-catabolic plasmids were self-transmissible. Limited interstrain transfer was also found. Analysis of the restriction fragment length polymorphism (RFLP) patterns indicated that catabolic plasmids from 12 site-derived isolates were closely related to each other and to the naphthalene-catabolic plasmid (pDTG1) of Pseudomonas putida NCIB 9816-4, which was isolated decades ago in Bangor, Wales. The similarity among all site-derived naphthalene-catabolic plasmids and pDTG1 was confirmed by using the entire pDTG1 plasmid as a probe in Southern hybridizations. Two distinct but similar naphthalene-catabolic plasmids were retrieved directly from the microbial community indigenous to the contaminated site in a filter mating by using a cured, rifampin-resistant site-derived isolate as the recipient. RFLP patterns and Southern hybridization showed that both of these newly retrieved plasmids, like the isolate-derived plasmids, were closely related to pDTG1. These data indicate that a pDTG1-like plasmid is the mobile genetic element responsible for transferring naphthalene-catabolic genes among bacteria in situ. The pervasiveness and persistence of this naphthalene-catabolic plasmid suggest that it may have played a role in the adaptation of this microbial community to the coal tar contamination at our study site.
Collapse
|
22
|
Leveau JH, Zehnder AJ, van der Meer JR. The tfdK gene product facilitates uptake of 2,4-dichlorophenoxyacetate by Ralstonia eutropha JMP134(pJP4). J Bacteriol 1998; 180:2237-43. [PMID: 9555911 PMCID: PMC107155 DOI: 10.1128/jb.180.8.2237-2243.1998] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Uptake of 2,4-dichlorophenoxyacetate (2,4-D) by Ralstonia eutropha JMP134(pJP4) was studied and shown to be an energy-dependent process. The uptake system was inducible with 2,4-D and followed saturation kinetics in a concentration range of up to 60 microM, implying the involvement of a protein in the transport process. We identified an open reading frame on plasmid pJP4, which was designated tfdK, whose translation product TfdK was highly hydrophobic and showed resemblance to transport proteins of the major facilitator superfamily. An interruption of the tfdK gene on plasmid pJP4 decimated 2,4-D uptake rates, which implies a role for TfdK in uptake. A tfdA mutant, which was blocked in the first step of 2,4-D metabolism, still took up 2,4-D. A mathematical model describing TfdK as an active transporter at low micromolar concentrations fitted the observed uptake data best.
Collapse
Affiliation(s)
- J H Leveau
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf
| | | | | |
Collapse
|
23
|
Gabant P, Szpirer CY, Couturier M, Faelen M. Direct selection cloning vectors adapted to the genetic analysis of gram-negative bacteria and their plasmids. Gene 1998; 207:87-92. [PMID: 9511747 DOI: 10.1016/s0378-1119(97)00610-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A range of specific and unusual biological pathways are found in Gram-negative bacteria. It is possible to express the genes involved in these processes in Escherichia coli, however, some genes prove lethal when cloned into high copy number vectors in common usage. Conversely, various genetic functions remain silent in E. coli and require to be transferred into their original host for expression and subsequent analysis. To facilitate the cloning and the characterisation of bacterial genes, we have constructed CcdB 'positive-selection' vectors that possess one or more of the following properties: (i) low or medium copy number; (ii) narrow or broad replication host range; (iii) conjugational mobilisation. In this communication, we illustrate the use of these new cloning tools and analyse the CcdB toxicity in different bacterial species.
Collapse
Affiliation(s)
- P Gabant
- Département de Biologie Moléculaire, Université Libre de Bruxelles, Rhode-Saint-Genèse, Belgium.
| | | | | | | |
Collapse
|