1
|
Ji P, Bao Y, Zhou H, Pei Y, Song W, Ou K, Qiao Z, Si J, Zhong Z, Xu X, Huang T, Shen D, Yin Z, Dou D. Blocking the isoflavone chemoreceptor in Phytophthora sojae to prevent disease. SCIENCE ADVANCES 2025; 11:eadt0925. [PMID: 39772695 PMCID: PMC11708900 DOI: 10.1126/sciadv.adt0925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025]
Abstract
Inhibiting pathogen chemotaxis is a promising strategy for reducing disease pressure. However, this strategy is currently in the proof-of-concept stage. Here, Phytophthora sojae was used as a model, as its biflagellated zoospores could sense genistein, a soybean root exudate, to navigate host and initiate infection. We identify P. sojae IRK1 (isoflavone-insensitive receptor kinase 1) as a receptor for genistein, with PsIRK2 functioning as a coreceptor that enhances the binding affinity of PsIRK1 to genistein and regulates chemotaxis by phosphorylating G protein α subunit. Last, we identify an antagonist, esculetin, which disrupts the PsIRK1-genistein interaction, thereby preventing P. sojae infection by repelling zoospores. Our findings reveal the mechanism by which P. sojae senses host genistein and demonstrate a strategy for disease prevention by targeting the chemoreceptor.
Collapse
Affiliation(s)
- Peiyun Ji
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yazhou Bao
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| | - Hao Zhou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yong Pei
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen Song
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangmiao Ou
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zijin Qiao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jierui Si
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zengtao Zhong
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xia Xu
- Hefei Kejing Biotechnology Co., Ltd., Hefei 230061, China
| | - Tao Huang
- Hefei Kejing Biotechnology Co., Ltd., Hefei 230061, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhiyuan Yin
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Maximo HJ, Araújo FDDS, Pagotto CC, Boava LP, Dalio RJD, Duarte GHB, Eberlin MN, Machado MA. Influence of Citrus sunki and Poncirus trifoliata Root Extracts on Metabolome of Phytophthora parasitica. Metabolites 2024; 14:206. [PMID: 38668334 PMCID: PMC11052222 DOI: 10.3390/metabo14040206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 04/28/2024] Open
Abstract
Phytophthora parasitica is an oomycete pathogen that infects a broad range of crops of worldwide economic interest; among them are citrus species. In general, some Citrus and the rootstocks of related genera offer considerable resistance against P. parasitica; therefore, understanding the mechanisms involved in the virulence of this pathogen is crucial. In this work, P. parasitica secondary metabolite production was studied using matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) and ultrahigh-performance liquid chromatography coupled with electrospray ionization quadrupole time-of-flight tandem mass spectrometry (UHPLC/ESI-Q-TOF-MS) combined with chemometric tools, and its metabolic profile was evaluated under the influence of Citrus sunki (a highly susceptible host) and Poncirus trifoliata (a resistant genotype) extracts. The root extracts of Citrus sunki had an influence on the growth and hyphae morphology, and the root extracts of P. trifoliata had an influence on the zoospore behavior. In parallel, the spatial distribution of several metabolites was revealed in P. parasitica colonies using MALDI-MSI, and the metabolite ion of m/z 246 was identified as the protonated molecule of Arg-Ala. The MALDI-MSI showed variations in the surface metabolite profile of P. parasitica under the influence of the P. trifoliata extract. The P. parasitica metabolome analysis using UHPLC-ESI-Q-TOF-MS resulted in the detection of Arg-Gln (m/z 303.1775), as well as L-arginine (m/z 175.1191) and other unidentified metabolites. Significant variations in this metabolome were detected under the influence of the plant extracts when evaluated using UHPLC-ESI-Q-TOF-MS. Both techniques proved to be complementary, offering valuable insights at the molecular level when used to assess the impact of the plant extracts on microbial physiology in vitro. The metabolites identified in this study may play significant roles in the interaction or virulence of P. parasitica, but their functional characterization remains to be analyzed. Overall, these data confirm our initial hypotheses, demonstrating that P. parasitica has the capabilities of (i) recognizing host signals and altering its reproductive programing and (ii) distinguishing between hosts with varying responses in terms of reproduction and the production of secondary metabolites.
Collapse
Affiliation(s)
- Héros José Maximo
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira, Agronomic Institute, Cordeirópolis 13490-970, SP, Brazil; (L.P.B.); (R.J.D.D.)
- BioXyz Biotecnologia Microbiana e Bioprocessos e Industriais Ltda., Piracicaba 13414-224, SP, Brazil
| | - Francisca Diana da Silva Araújo
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil; (F.D.d.S.A.); (C.C.P.); (G.H.B.D.); (M.N.E.)
- Campus Professora Cinobelina Elvas, Federal University of Piauí, Bom Jesus 64900-000, PI, Brazil
| | - Carolina Clepf Pagotto
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil; (F.D.d.S.A.); (C.C.P.); (G.H.B.D.); (M.N.E.)
| | - Leonardo Pires Boava
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira, Agronomic Institute, Cordeirópolis 13490-970, SP, Brazil; (L.P.B.); (R.J.D.D.)
- Centro Universitário ‘Dr. Edmundo Ulson’—UNAR, Araras 13603-112, SP, Brazil
| | - Ronaldo José Durigan Dalio
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira, Agronomic Institute, Cordeirópolis 13490-970, SP, Brazil; (L.P.B.); (R.J.D.D.)
| | - Gustavo Henrique Bueno Duarte
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil; (F.D.d.S.A.); (C.C.P.); (G.H.B.D.); (M.N.E.)
| | - Marcos Nogueira Eberlin
- ThoMSon Mass Spectrometry Laboratory, Chemistry Institute, University of Campinas, UNICAMP, Campinas 13083-970, SP, Brazil; (F.D.d.S.A.); (C.C.P.); (G.H.B.D.); (M.N.E.)
- School of Material Engineering and Nanotechnology, MackMass Laboratory, Mackenzie Presbyterian University, São Paulo 01302-907, SP, Brazil
| | - Marcos Antonio Machado
- Biotechnology Laboratory, Centro de Citricultura Sylvio Moreira, Agronomic Institute, Cordeirópolis 13490-970, SP, Brazil; (L.P.B.); (R.J.D.D.)
| |
Collapse
|
3
|
Kasteel M, Ketelaar T, Govers F. Fatal attraction: How Phytophthora zoospores find their host. Semin Cell Dev Biol 2023; 148-149:13-21. [PMID: 36792439 DOI: 10.1016/j.semcdb.2023.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/30/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023]
Abstract
Oomycete plant pathogens, such as Phytophthora and Pythium species produce motile dispersal agents called zoospores that actively target host plants. Zoospores are exceptional in their ability to display taxis to chemical, electrical and physical cues to navigate the phyllosphere and reach stomata, wound sites and roots. Many components of root exudates have been shown attractive or repulsive to zoospores. Although some components possess very strong attractiveness, it seems that especially the mix of components exuded by the primary host is most attractive to zoospores. Zoospores actively approach attractants with swimming behaviour reminiscent of other microswimmers. To achieve a unified description of zoospore behaviour when sensing an attractant, we propose the following terms for the successive stages of the homing response: reorientation, approaching, retention and settling. How zoospores sense and process attractants is poorly understood but likely involves signal perception via cell surface receptors. Since zoospores are important for infection, undermining their activity by luring attractants or blocking receptors seem promising strategies for disease control.
Collapse
Affiliation(s)
- Michiel Kasteel
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands; Laboratory of Cell Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Tijs Ketelaar
- Laboratory of Cell Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | - Francine Govers
- Laboratory of Phytopathology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| |
Collapse
|
4
|
de Ronne M, Santhanam P, Cinget B, Labbé C, Lebreton A, Ye H, Vuong TD, Hu H, Valliyodan B, Edwards D, Nguyen HT, Belzile F, Bélanger R. Mapping of partial resistance to Phytophthora sojae in soybean PIs using whole-genome sequencing reveals a major QTL. THE PLANT GENOME 2022; 15:e20184. [PMID: 34964282 DOI: 10.1002/tpg2.20184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 11/09/2021] [Indexed: 06/14/2023]
Abstract
In the last decade, more than 70 quantitative trait loci (QTL) related to soybean [Glycine max (L.) Merr.] partial resistance (PR) against Phytophthora sojae have been identified by genome-wide association studies (GWAS). However, most of them have either a minor effect on the resistance level or are specific to a single phenotypic variable or one isolate, thereby limiting their use in breeding programs. In this study, we have used an analytical approach combining (a) the phenotypic characterization of a diverse panel of 357 soybean accessions for resistance to P. sojae captured through a single variable, corrected dry weight; (b) a new hydroponic assay allowing the inoculation of a combination of P. sojae isolates covering the spectrum of commercially relevant Rps genes; and (c) exhaustive genotyping through whole-genome resequencing (WGS). This led to the identification of a novel P. sojae resistance QTL with a relatively major effect compared with the previously reported QTL. The QTL interval, spanning ∼500 kb on chromosome (Chr) 15, does not colocalize with previously reported QTL for P. sojae resistance. Plants carrying the favorable allele at this QTL were 60% more resistant. Eight genes were found to reside in the linkage disequilibrium (LD) block containing the peak single-nucleotide polymorphism (SNP) including Glyma.15G217100, which encodes a major latex protein (MLP)-like protein, with a functional annotation related to pathogen resistance. Expression analysis of Glyma.15G217100 indicated that it was nearly eight times more highly expressed in a group of plant introductions (PIs) carrying the resistant (R) allele compared with those carrying the susceptible (S) allele within a short period after inoculation. These results offer new and valuable options to develop improved soybean cultivars with broad resistance to P. sojae through marker-assisted selection.
Collapse
Affiliation(s)
| | | | | | | | | | - Heng Ye
- Division of Plant Sciences and National Center for Soybean Biotechnology, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Tri D Vuong
- Division of Plant Sciences and National Center for Soybean Biotechnology, Univ. of Missouri, Columbia, MO, 65211, USA
| | - Haifei Hu
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Babu Valliyodan
- Division of Plant Sciences and National Center for Soybean Biotechnology, Univ. of Missouri, Columbia, MO, 65211, USA
- Dep. of Agriculture and Environmental Sciences, Lincoln Univ., Jefferson City, MO, 65101, USA
| | - David Edwards
- School of Biological Sciences and Institute of Agriculture, Univ. of Western Australia, Perth, Western Australia, Australia
| | - Henry T Nguyen
- Division of Plant Sciences and National Center for Soybean Biotechnology, Univ. of Missouri, Columbia, MO, 65211, USA
| | - François Belzile
- Dép. de phytologie, Univ. Laval, Québec, Canada
- Institut de Biologie Intégrative et des Systèmes (IBIS), Univ. Laval, Québec, Canada
| | | |
Collapse
|
5
|
Zhang Z, Zhao Y, An T, Yu H, Bi X, Liu H, Xu Y, Yang Z, Chen Y, Wen J. Maize and Common Bean Seed Exudates Mediate Part of Nonhost Resistance to Phytophthora sojae Prior to Infection. PHYTOPATHOLOGY 2022; 112:335-344. [PMID: 34311549 DOI: 10.1094/phyto-05-21-0213-r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Phytophthora sojae does not infect nonhost maize (Zea mays) but infects nonhost common bean (Phaseolus vulgaris) under inoculation. Soybean seed exudates participate in mediating host resistance to P. sojae before infection. This study aims to elucidate the role of seed exudates in mediating the nonhost resistance of maize and common bean to P. sojae before infection. The behaviors of P. sojae zoospores in response to the seed exudates were determined using an assay chamber and a concave slide. The proteomes of P. sojae zoospores in response to the seed exudates were analyzed with the tandem mass tag method. The key proteins were quantitatively verified by parallel reaction monitoring. Maize seed exudates exerted a repellent effect on zoospores of P. sojae. This result explains why zoospores sense repelling signaling molecules in maize seed exudates that weaken and strongly inhibit chemotaxis signals in the phosphatidylinositol signaling pathway and arachidonic acid metabolism pathway. Common bean seed exudates did not exhibit any attraction to the zoospores because the guanine nucleotide-binding protein signaling pathway, which is responsible for transmitting chemotactic signals, had no significant change. The proteins protecting the cell membrane structure were significantly downregulated, and the early apoptosis signal glutathione was enhanced in zoospores responding to common bean seed exudates, which resulted in dissolution of the cysts. Maize and common bean seed exudates mediate part of the nonhost resistance to P. sojae via different mechanisms before infection. The immunity of maize to P. sojae is caused by the repellent effect of maize seed exudates on zoospores. Common bean seed exudates participate in mediating nonhost resistance by dissolving the cysts.
Collapse
Affiliation(s)
- Zhuoqun Zhang
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yifan Zhao
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Tai An
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Han Yu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Xiangqi Bi
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Haixu Liu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Ying Xu
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Zhiyue Yang
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Yufei Chen
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| | - Jingzhi Wen
- Department of Plant Protection, College of Agriculture, Northeast Agricultural University, Harbin 150030, People's Republic of China
| |
Collapse
|
6
|
Ge T, Gao W, Liang C, Han C, Wang Y, Xu Q, Wang Q. 4-Ethylphenol, A Volatile Organic Compound Produced by Disease-Resistant Soybean, Is a Potential Botanical Agrochemical Against Oomycetes. FRONTIERS IN PLANT SCIENCE 2021; 12:717258. [PMID: 34630464 PMCID: PMC8492902 DOI: 10.3389/fpls.2021.717258] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/30/2021] [Indexed: 05/05/2023]
Abstract
Oomycetes, represented by Phytophthora, are seriously harmful to agricultural production, resulting in a decline in grain quality and agricultural products and causing great economic losses. Integrated management of oomycete diseases is becoming more challenging, and plant derivatives represent effective alternatives to synthetic chemicals as novel crop protection solutions. Biologically active secondary metabolites are rapidly synthesized and released by plants in response to biotic stress caused by herbivores or insects, as well as pathogens. In this study, we identified groups of volatile organic compounds (VOCs) from soybean plants inoculated with Phytophthora sojae, the causal agent of soybean root rot. 4-Ethylphenol was present among the identified VOCs and was induced in the incompatible interaction between the plants and the pathogen. 4-Ethylphenol inhibited the growth of P. sojae and Phytophthora nicotianae and had toxicity to sporangia formation and zoospore germination by destroying the pathogen cell membrane; it had a good control effect on soybean root rot and tobacco black shank in the safe concentration range. Furthermore, 4-Ethylphenol had a potent antifungal activity against three soil-borne phytopathogenic fungi, Rhizoctonia solani, Fusarium graminearum, and Gaeumannomyces graminis var tritici, and four forma specialis of Fusarium oxysporum, which suggest a potential to be an eco-friendly biological control agent.
Collapse
Affiliation(s)
- Ting Ge
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Wenteng Gao
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Changhui Liang
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
| | - Chao Han
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Yong Wang
- Shimadzu (China) Co., Ltd., Beijing, China
| | - Qian Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- College of Agronomy, Shandong Agricultural University, Tai’an, China
- *Correspondence: Qian Xu,
| | - Qunqing Wang
- Shandong Province Key Laboratory of Agricultural Microbiology, Department of Plant Pathology, College of Plant Protection, Shandong Agricultural University, Tai’an, China
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an, China
- Qunqing Wang,
| |
Collapse
|
7
|
Ku YS, Cheng SS, Gerhardt A, Cheung MY, Contador CA, Poon LYW, Lam HM. Secretory Peptides as Bullets: Effector Peptides from Pathogens against Antimicrobial Peptides from Soybean. Int J Mol Sci 2020; 21:E9294. [PMID: 33291499 PMCID: PMC7730307 DOI: 10.3390/ijms21239294] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/24/2020] [Accepted: 12/03/2020] [Indexed: 12/24/2022] Open
Abstract
Soybean is an important crop as both human food and animal feed. However, the yield of soybean is heavily impacted by biotic stresses including insect attack and pathogen infection. Insect bites usually make the plants vulnerable to pathogen infection, which causes diseases. Fungi, oomycetes, bacteria, viruses, and nematodes are major soybean pathogens. The infection by pathogens and the defenses mounted by soybean are an interactive and dynamic process. Using fungi, oomycetes, and bacteria as examples, we will discuss the recognition of pathogens by soybean at the molecular level. In this review, we will discuss both the secretory peptides for soybean plant infection and those for pathogen inhibition. Pathogenic secretory peptides and peptides secreted by soybean and its associated microbes will be included. We will also explore the possible use of externally applied antimicrobial peptides identical to those secreted by soybean and its associated microbes as biopesticides.
Collapse
Affiliation(s)
- Yee-Shan Ku
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Sau-Shan Cheng
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Aisha Gerhardt
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Ming-Yan Cheung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Carolina A. Contador
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Lok-Yiu Winnie Poon
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong; (Y.-S.K.); (S.-S.C.); (A.G.); (M.-Y.C.); (C.A.C.); (L.-Y.W.P.)
| |
Collapse
|
8
|
Grams N, Ospina-Giraldo M. Increased expression of Phytophthora sojae genes encoding membrane-degrading enzymes appears to suggest an early onset of necrotrophy during Glycine max infection. Fungal Genet Biol 2019; 133:103268. [PMID: 31518653 DOI: 10.1016/j.fgb.2019.103268] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 08/27/2019] [Accepted: 09/06/2019] [Indexed: 12/19/2022]
Abstract
Phytophthora sojae is an oomycete pathogen that causes root, stem, and leaf rot in soybean plants, frequently leading to massive economic losses. Despite its importance, the mechanism by which P. sojae penetrates the host is not yet fully understood. Evidence indicates that P. sojae is not capable of penetrating the plant cell wall via mechanical force, suggesting that alternative factors facilitate breakdown of the host cell wall and membrane. Members of the carbohydrate esterase (CE) family 10 (carboxylesterases, arylesterases, sterol esterases and acetylcholine esterases, collectively known as CE10), are thought to be important for this penetration process. To gain insight into the potential role of CE10-coding genes in P. sojae pathogenesis, the newly revised version of the P. sojae genome was searched for putative CE10-coding genes, and various bioinformatic analyses were conducted using their amino acid and nucleotide sequences. In addition, in planta infection assays were conducted with P. sojae Race 4 and soybean cultivars Williams and Williams 82, and the transcriptional activity of P. sojae CE10-coding genes was evaluated at different time points during infection. Results suggest that these genes are important for both the biotrophic and necrotrophic stages of the P. sojae infection process and provide molecular evidence for stage distinction during infection progression. Furthermore, bioinformatic analyses have identified several conserved gene and protein sequence features that appear to have a significant impact on observed levels of expression during infection. Results agree with previous reports implicating other carbohydrate-active enzymes in P. sojae infection.
Collapse
Affiliation(s)
- Nicholas Grams
- Biology Department, Lafayette College, Easton, PA 18042, United States
| | | |
Collapse
|
9
|
Lawrence SA, Burgess EJ, Pairama C, Black A, Patrick WM, Mitchell I, Perry NB, Gerth ML. Mātauranga-guided screening of New Zealand native plants reveals flavonoids from kānuka (Kunzea robusta) with anti-Phytophthora activity. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1648303] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Scott A. Lawrence
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Elaine J. Burgess
- Plant & Food Research, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | | | - Amanda Black
- Bio-Protection Research Centre, Lincoln University, Christchurch, New Zealand
| | - Wayne M. Patrick
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| | | | - Nigel B. Perry
- Plant & Food Research, Department of Chemistry, University of Otago, Dunedin, New Zealand
| | - Monica L. Gerth
- School of Biological Sciences, Victoria University of Wellington, New Zealand
| |
Collapse
|
10
|
Leaño EM, Vrijmoed LLP, Jones EBG. Zoospore chemotaxis of two mangrove strains ofHalophytophthora vesiculafrom Mai Po, Hong Kong. Mycologia 2018. [DOI: 10.1080/00275514.1998.12026998] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Eduardo M. Leaño
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - Lilian L. P. Vrijmoed
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| | - E. B. Gareth Jones
- Department of Biology and Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
11
|
Affiliation(s)
- Chang Xu
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403-0212
| | - Paul F. Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH, 43403-0212
| |
Collapse
|
12
|
Zhang X, Zhai C, Hua C, Qiu M, Hao Y, Nie P, Ye W, Wang Y. PsHint1, associated with the G-protein α subunit PsGPA1, is required for the chemotaxis and pathogenicity of Phytophthora sojae. MOLECULAR PLANT PATHOLOGY 2016; 17:272-85. [PMID: 25976113 PMCID: PMC6638540 DOI: 10.1111/mpp.12279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Zoospore chemotaxis to soybean isoflavones is essential in the early stages of infection by the oomycete pathogen Phytophthora sojae. Previously, we have identified a G-protein α subunit encoded by PsGPA1 which regulates the chemotaxis and pathogenicity of P. sojae. In the present study, we used affinity purification to identify PsGPA1-interacting proteins, including PsHint1, a histidine triad (HIT) domain-containing protein orthologous to human HIT nucleotide-binding protein 1 (HINT1). PsHint1 interacted with both the guanosine triphosphate (GTP)- and guanosine diphosphate (GDP)-bound forms of PsGPA1. An analysis of the gene-silenced transformants revealed that PsHint1 was involved in the chemotropic response of zoospores to the isoflavone daidzein. During interaction with a susceptible soybean cultivar, PsHint1-silenced transformants displayed significantly reduced infectious hyphal extension and caused a strong cell death in plants. In addition, the transformants displayed defective cyst germination, forming abnormal germ tubes that were highly branched and exhibited apical swelling. These results suggest that PsHint1 not only regulates chemotaxis by interacting with PsGPA1, but also participates in a Gα-independent pathway involved in the pathogenicity of P. sojae.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunhua Zhai
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chenlei Hua
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Qiu
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yujuan Hao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pingping Nie
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenwu Ye
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
13
|
Bollmann SR, Fang Y, Press CM, Tyler BM, Grünwald NJ. Diverse Evolutionary Trajectories for Small RNA Biogenesis Genes in the Oomycete Genus Phytophthora. FRONTIERS IN PLANT SCIENCE 2016; 7:284. [PMID: 27014308 PMCID: PMC4791657 DOI: 10.3389/fpls.2016.00284] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Accepted: 02/22/2016] [Indexed: 05/10/2023]
Abstract
Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL), and RNA-dependent RNA polymerase (RDR) through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.
Collapse
Affiliation(s)
- Stephanie R. Bollmann
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Yufeng Fang
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- Interdisciplinary Ph.D. Program in Genetics, Bioinformatics and Computational Biology, Virginia TechBlacksburg, VA, USA
| | - Caroline M. Press
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
| | - Brett M. Tyler
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
| | - Niklaus J. Grünwald
- Horticultural Crop Research Unit, USDA-Agricultural Research ServiceCorvallis, OR, USA
- Department of Botany and Plant Pathology and Center for Genome Biology and Biocomputing, Oregon State UniversityCorvallis, OR, USA
- *Correspondence: Niklaus J. Grünwald
| |
Collapse
|
14
|
Gascuel Q, Martinez Y, Boniface MC, Vear F, Pichon M, Godiard L. The sunflower downy mildew pathogen Plasmopara halstedii. MOLECULAR PLANT PATHOLOGY 2015; 16:109-22. [PMID: 25476405 PMCID: PMC6638465 DOI: 10.1111/mpp.12164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
UNLABELLED Downy mildew of sunflower is caused by Plasmopara halstedii (Farlow) Berlese & de Toni. Plasmopara halstedii is an obligate biotrophic oomycete pathogen that attacks annual Helianthus species and cultivated sunflower, Helianthus annuus. Depending on the sunflower developmental stage at which infection occurs, the characteristic symptoms range from young seedling death, plant dwarfing, leaf bleaching and sporulation to the production of infertile flowers. Downy mildew attacks can have a great economic impact on sunflower crops, and several Pl resistance genes are present in cultivars to protect them against the disease. Nevertheless, some of these resistances have been overcome by the occurrence of novel isolates of the pathogen showing increased virulence. A better characterization of P. halstedii infection and dissemination mechanisms, and the identification of the molecular basis of the interaction with sunflower, is a prerequisite to efficiently fight this pathogen. This review summarizes what is currently known about P. halstedii, provides new insights into its infection cycle on resistant and susceptible sunflower lines using scanning electron and light microscopy imaging, and sheds light on the pathogenicity factors of P. halstedii obtained from recent molecular data. TAXONOMY Kingdom Stramenopila; Phylum Oomycota; Class Oomycetes; Order Peronosporales; Family Peronosporaceae; Genus Plasmopara; Species Plasmopara halstedii. DISEASE SYMPTOMS Sunflower seedling damping off, dwarfing of the plant, bleaching of leaves, starting from veins, and visible white sporulation, initially on the lower side of cotyledons and leaves. Plasmopara halstedii infection may severely impact sunflower seed yield. INFECTION PROCESS In spring, germination of overwintered sexual oospores leads to sunflower root infection. Intercellular hyphae are responsible for systemic plant colonization and the induction of disease symptoms. Under humid and fresh conditions, dissemination structures are produced by the pathogen on all plant organs to release asexual zoosporangia. These zoosporangia play an important role in pathogen dissemination, as they release motile zoospores that are responsible for leaf infections on neighbouring plants. DISEASE CONTROL Disease control is obtained by both chemical seed treatment (mefenoxam) and the deployment of dominant major resistance genes, denoted Pl. However, the pathogen has developed fungicide resistance and has overcome some plant resistance genes. Research for more sustainable strategies based on the identification of the molecular basis of the interaction are in progress. USEFUL WEBSITES http://www.heliagene.org/HP, http://lipm-helianthus.toulouse.inra.fr/dokuwiki/doku.php?id=start, https://www.heliagene.org/PlasmoparaSpecies (soon available).
Collapse
Affiliation(s)
- Quentin Gascuel
- INRA, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR441, F-31326, Castanet-Tolosan, France; CNRS, Laboratoire des Interactions Plantes-Microorganismes (LIPM), UMR2594, F-31326, Castanet-Tolosan, France
| | | | | | | | | | | |
Collapse
|
15
|
Molecular profiling of the Phytophthora plurivora secretome: a step towards understanding the cross-talk between plant pathogenic oomycetes and their hosts. PLoS One 2014; 9:e112317. [PMID: 25372870 PMCID: PMC4221288 DOI: 10.1371/journal.pone.0112317] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/05/2014] [Indexed: 02/06/2023] Open
Abstract
The understanding of molecular mechanisms underlying host–pathogen interactions in plant diseases is of crucial importance to gain insights on different virulence strategies of pathogens and unravel their role in plant immunity. Among plant pathogens, Phytophthora species are eliciting a growing interest for their considerable economical and environmental impact. Plant infection by Phytophthora phytopathogens is a complex process coordinated by a plethora of extracellular signals secreted by both host plants and pathogens. The characterization of the repertoire of effectors secreted by oomycetes has become an active area of research for deciphering molecular mechanisms responsible for host plants colonization and infection. Putative secreted proteins by Phytophthora species have been catalogued by applying high-throughput genome-based strategies and bioinformatic approaches. However, a comprehensive analysis of the effective secretome profile of Phytophthora is still lacking. Here, we report the first large-scale profiling of P. plurivora secretome using a shotgun LC-MS/MS strategy. To gain insight on the molecular signals underlying the cross-talk between plant pathogenic oomycetes and their host plants, we also investigate the quantitative changes of secreted protein following interaction of P. plurivora with the root exudate of Fagus sylvatica which is highly susceptible to the root pathogen. We show that besides known effectors, the expression and/or secretion levels of cell-wall-degrading enzymes were altered following the interaction with the host plant root exudate. In addition, a characterization of the F. sylvatica root exudate was performed by NMR and amino acid analysis, allowing the identification of the main released low-molecular weight components, including organic acids and free amino acids. This study provides important insights for deciphering the extracellular network involved in the highly susceptible P. plurivora-F. sylvatica interaction.
Collapse
|
16
|
Yang X, Zhao W, Hua C, Zheng X, Jing M, Li D, Govers F, Meijer HJG, Wang Y. Chemotaxis and oospore formation in Phytophthora sojae are controlled by G-protein-coupled receptors with a phosphatidylinositol phosphate kinase domain. Mol Microbiol 2013; 88:382-94. [PMID: 23448757 DOI: 10.1111/mmi.12191] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/19/2013] [Indexed: 12/11/2022]
Abstract
G-protein-coupled receptors (GPCRs) are key cellular components that mediate extracellular signals into intracellular responses. Genome mining revealed that Phytophthora spp. have over 60 GPCR genes among which a prominent class of 12 encoding novel proteins with an N-terminal GPCR domain fused to a C-terminal phosphatidylinositol phosphate kinase (PIPK) domain. This study focuses on two GPCR-PIPKs (GKs) in Phytophthora sojae. PsGK4 and PsGK5 are differentially expressed during the life cycle with the highest expression in cysts and during cyst germination, and at late infection stages. In P. sojae transformants that constitutively express RFP-tagged PsGK4 and PsGK5, the fusion proteins in hyphae reside in small, rapidly moving vesicular-like structures. Functional analysis using gene silencing showed that PsGK4-silenced transformants displayed higher levels of encystment and a reduced cyst germination rate when compared with the recipient strain. Moreover, GK4 deficiency (or reduction) resulted in severe defects in zoospore chemotaxis towards isoflavones and soybean roots. In contrast, PsGK5-silenced transformants exhibited no obvious defects in asexual development but oospore production was severely impaired. Both, PsGK4- and PsGK5-silenced transformants showed reduced pathogenicity. These results point to involvement of GKs in zoospore behaviour, chemotaxis and oospore development, and suggest that PsGK4 and PsGK5 each head independent signalling pathways.
Collapse
Affiliation(s)
- X Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Fan KW, Vrijmoed LLP, Jones EBG. Zoospore chemotaxis of mangrove thraustochytrids from Hong Kong. Mycologia 2012; 94:569-78. [PMID: 21156530 DOI: 10.1080/15572536.2003.11833185] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Zoospores of mangrove isolates of Schizochytrium mangrovei KF6, KF7, KF12 (three strains), Thraustochytrium striatum KF9 and Ulkenia sp. KF13 were examined for their chemotactic responses to amino acids, carbohydrates, ethanol, and leaf extracts using a capillary root model. Most leaf extracts of mangrove plants and a marsh grass tested were shown to induce moderate chemotactic responses in zoospores of both S. mangrovei KF6 and Ulkenia sp. KF13. Of the remaining amino acids and carbohydrates evaluated, glutamic acid and pectin induced strong attraction in zoospores of S. mangrovei KF6 and Ulkenia sp. KF13, suggesting these are the major components in leaves which may be responsible for the chemotactic response of thraustochytrid zoospores in nature. Zoospores of T. striatum KF9, in general, showed a weak chemotactic response to all the tested compounds and extracts except cellulose, which elicited a moderate response. The ecological significance of the data presented is discussed.
Collapse
Affiliation(s)
- K W Fan
- Department of Biology and Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region, The People's Republic of China
| | | | | |
Collapse
|
18
|
Li A, Wang Y, Tao K, Dong S, Huang Q, Dai T, Zheng X, Wang Y. PsSAK1, a stress-activated MAP kinase of Phytophthora sojae, is required for zoospore viability and infection of soybean. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1022-31. [PMID: 20615113 DOI: 10.1094/mpmi-23-8-1022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Mitogen-activated protein kinase (MAPK) pathways are universal and evolutionarily conserved signal transduction modules in all eukaryotic cells. In this study, PsSAK1, which encodes a stress-activated MAPK of Phytophthora sojae, was identified. PsSAK1 is highly conserved in oomycetes, and it represents a novel group of MAPK due to its pleckstrin homology domain. Reverse-transcription polymerase chain reaction analysis showed that PsSAK1 expression was upregulated in zoospores and cysts and during early infection. In addition, its expression was induced by osmotic and oxidative stress mediated by NaCl and H(2)O(2), respectively. To elucidate the function, the expression of PsSAK1 was silenced using stable transformation of P. sojae. The silencing of PsSAK1 did not impair hyphal growth, sporulation, or oospore production but severely hindered zoospore development, in that the silenced strains showed quicker encystment and a lower germination ratio than the wild type. PsSAK1-silenced mutants produced much longer germ tubes and could not colonize either wounded or unwounded soybean leaves. Our results indicate that PsSAK1 is an important regulator of zoospore development and pathogenicity in P. sojae.
Collapse
Affiliation(s)
- Aining Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang Y, Li A, Wang X, Zhang X, Zhao W, Dou D, Zheng X, Wang Y. GPR11, a putative seven-transmembrane G protein-coupled receptor, controls zoospore development and virulence of Phytophthora sojae. EUKARYOTIC CELL 2010; 9:242-50. [PMID: 20008081 PMCID: PMC2823010 DOI: 10.1128/ec.00265-09] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Accepted: 11/28/2009] [Indexed: 11/20/2022]
Abstract
G protein-coupled receptors (GPCRs) represent a large receptor family involved in a broad spectrum of cell signaling. To understand signaling mechanisms mediated by GPCRs in Phytophthora sojae, we identified and characterized the PsGPR11 gene, which encodes a putative seven-transmembrane GPCR. An expression analysis revealed that PsGPR11 was differentially expressed during asexual development. The highest expression level occurred in zoospores and was upregulated during early infection. PsGPR11-deficienct transformants were obtained by gene silencing strategies. Silenced transformants exhibited no differences in hyphal growth or morphology, sporangium production or size, or mating behavior. However, the release of zoospores from sporangia was severely impaired in the silenced transformants, and about 50% of the sporangia did not completely release their zoospores. Zoospore encystment and germination were also impaired, and zoospores of the transformants lost their pathogenicity to soybean. In addition, no interaction was observed between PsGPR11 and PsGPA1 with a conventional yeast two-hybrid assay, and the transcriptional levels of some genes which were identified as being negatively regulated by PsGPA1 were not clearly altered in PsGPR11-silenced mutants. These results suggest that PsGPR11-mediated signaling controls P. sojae zoospore development and virulence through the pathways independent of G protein.
Collapse
Affiliation(s)
- Yonglin Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Aining Li
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoli Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Zhang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaobo Zheng
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
20
|
Hua C, Wang Y, Zheng X, Dou D, Zhang Z, Govers F, Wang Y. A Phytophthora sojae G-protein alpha subunit is involved in chemotaxis to soybean isoflavones. EUKARYOTIC CELL 2008; 7:2133-40. [PMID: 18931042 PMCID: PMC2593195 DOI: 10.1128/ec.00286-08] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Accepted: 10/08/2008] [Indexed: 11/20/2022]
Abstract
For the soybean pathogen Phytophthora sojae, chemotaxis of zoospores to isoflavones is believed to be critical for recognition of the host and for initiating infection. However, the molecular mechanisms underlying this chemotaxis are largely unknown. To investigate the role of G-protein and calcium signaling in chemotaxis, we analyzed the expression of several genes known to be involved in these pathways and selected one that was specifically expressed in sporangia and zoospores but not in mycelium. This gene, named PsGPA1, is a single-copy gene in P. sojae and encodes a G-protein alpha subunit that shares 96% identity in amino acid sequence with that of Phytophthora infestans. To elucidate the function, expression of PsGPA1 was silenced by introducing antisense constructs into P. sojae. PsGPA1 silencing did not disturb hyphal growth or sporulation but severely affected zoospore behavior, including chemotaxis to the soybean isoflavone daidzein. Zoospore encystment and cyst germination were also altered, resulting in the inability of the PsGPA1-silenced mutants to infect soybean. In addition, the expressions of a calmodulin gene, PsCAM1, and two calcium- and calmodulin-dependent protein kinase genes, PsCMK3 and PsCMK4, were increased in the mutant zoospores, suggesting that PsGPA1 negatively regulates the calcium signaling pathways that are likely involved in zoospore chemotaxis.
Collapse
Affiliation(s)
- Chenlei Hua
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | | | |
Collapse
|
21
|
Ranathunge K, Thomas RH, Fang X, Peterson CA, Gijzen M, Bernards MA. Soybean root suberin and partial resistance to root rot caused by Phytophthora sojae. PHYTOPATHOLOGY 2008; 98:1179-89. [PMID: 18943406 DOI: 10.1094/phyto-98-11-1179] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Phytophthora sojae is the causal agent of root and stem rot of soybean (Glycine max). Various cultivars with partial resistance to the pathogen have been developed to mitigate this damage. Herein, two contrasting genotypes, the cultivar Conrad (with strong partial resistance) and the line OX760-6 (with weak partial resistance), were compared regarding their amounts of preformed and induced suberin components, and to early events during the P. sojae infection process. To colonize the root, hyphae grew through the suberized middle lamellae between epidermal cells. This took 2 to 3 h longer in Conrad than in OX760-6, giving Conrad plants more time to establish their chemical defenses. Subsequent growth of hyphae through the endodermis was also delayed in Conrad. This cultivar had more preformed aliphatic suberin than the line OX760-6 and was induced to form more aliphatic suberin several days prior to that of OX760-6. However, the induced suberin was formed subsequent to the initial infection process. Eventually, the amount of induced suberin (measured 8 days postinoculation) was the same in both genotypes. Preformed root epidermal suberin provides a target for selection and development of new soybean cultivars with higher levels of expression of partial resistance to P. sojae.
Collapse
|
22
|
Steinkellner S, Lendzemo V, Langer I, Schweiger P, Khaosaad T, Toussaint JP, Vierheilig H. Flavonoids and strigolactones in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 2007; 12:1290-306. [PMID: 17909485 PMCID: PMC6149470 DOI: 10.3390/12071290] [Citation(s) in RCA: 156] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2007] [Revised: 06/20/2007] [Accepted: 07/03/2007] [Indexed: 11/17/2022] Open
Abstract
Secondary plant compounds are important signals in several symbiotic and pathogenic plant-microbe interactions. The present review is limited to two groups of secondary plant compounds, flavonoids and strigolactones, which have been reported in root exudates. Data on flavonoids as signaling compounds are available from several symbiotic and pathogenic plant-microbe interactions, whereas only recently initial data on the role of strigolactones as plant signals in the arbuscular mycorrhizal symbiosis have been reported. Data from other plant-microbe interactions and strigolactones are not available yet. In the present article we are focusing on flavonoids in plant-fungal interactions such as the arbuscular mycorrhizal (AM) association and the signaling between different Fusarium species and plants. Moreover the role of strigolactones in the AM association is discussed and new data on the effect of strigolactones on fungi, apart from arbuscular mycorrhizal fungi (AMF), are provided.
Collapse
Affiliation(s)
- Siegrid Steinkellner
- Institut für Pflanzenschutz, Department für Angewandte Pflanzenwissenschaften und Pflanzen-biotechnologie, Universität für Bodenkultur Wien, Peter Jordan-Straße 82, A-1190 Wien, Austria; E-mail: , ;
| | - Venasius Lendzemo
- Institute of Agricultural Research for Development, Maroua, Cameroon; E-mail:
| | - Ingrid Langer
- Institut für Bodenforschung, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur Wien, Peter Jordan-Straße 82, A-1190 Wien, Austria; E-mail: ;
| | - Peter Schweiger
- Institut für Bodenforschung, Department für Wald- und Bodenwissenschaften, Universität für Bodenkultur Wien, Peter Jordan-Straße 82, A-1190 Wien, Austria; E-mail: ;
| | - Thanasan Khaosaad
- Institut für Pflanzenschutz, Department für Angewandte Pflanzenwissenschaften und Pflanzen-biotechnologie, Universität für Bodenkultur Wien, Peter Jordan-Straße 82, A-1190 Wien, Austria; E-mail: , ;
| | - Jean-Patrick Toussaint
- School of Earth and Environmental Sciences, The University of Adelaide, Adelaide, Australia; E-mail:
| | - Horst Vierheilig
- Institut für Pflanzenschutz, Department für Angewandte Pflanzenwissenschaften und Pflanzen-biotechnologie, Universität für Bodenkultur Wien, Peter Jordan-Straße 82, A-1190 Wien, Austria; E-mail: , ;
| |
Collapse
|
23
|
Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete. MOLECULAR PLANT PATHOLOGY 2007; 8:1-8. [PMID: 20507474 DOI: 10.1111/j.1364-3703.2006.00373.x] [Citation(s) in RCA: 274] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
UNLABELLED SUMMARY Phytophthora sojae is an oomycete pathogen of soybean, classified in the kingdom Stramenopiles. It causes 'damping off' of seedlings and root rot of older plants, with an annual cost worldwide of $1-2 billion. Owing to its economic importance, this species, along with P. infestans, has been developed as a model species for the study of oomycete plant pathogens. It is readily transformed with DNA enabling over-expression and silencing of selected genes, genetic maps have been constructed and large expressed sequence tag sequence libraries have been developed. A draft genome sequence has recently been completed. This review briefly summarizes current information about the pathogenicity, evolution, molecular biology and genomics of P. sojae. TAXONOMY Phytophthora sojae (Kaufman & Gerdman): superkingdom Eukaryota; kingdom Stramenopila; phylum Oomycota; class Peronosporomycetidae; order Pythiales; family Pythiaceae; genus Phytophthora. HOST RANGE Soybean is the only economically important host. Several species of lupins have also been reported as hosts. Disease symptoms and signs: All parts of the soybean plant are susceptible to infection by P. sojae, from germinating seedlings to mature plants. In the field, P. sojae causes damping off of soybean seedlings and a root and stem rot of established plants. Leaves can be infected in the field as a result of rain splash or by deliberate inoculation in the laboratory. Damping off can affect germinating seeds or emerged seedlings and is most severe when the spring is very wet and warm (25-30 degrees C). Established plants can become infected when the soil is wet for extended periods, especially if the soil is poorly drained. Both the cortex and the vascular tissue are colonized by P. sojae, and the infection can spread rapidly along the vascular tissues in susceptible cultivars. USEFUL WEBSITES http://pmgn.vbi.vt.edu, http://phytophthora.vbi.vt.edu, http://www.jgi.doe.gov/Psojae, http://www.jgi.doe.gov/Pramorum, http://www.pfgd.org, http://pamgo.vbi.vt.edu, http://soy.vbi.vt.edu, https://www.vbi.vt.edu/article/articleview/78, http://plantpath.osu.edu/faculty/dorrance.php.
Collapse
Affiliation(s)
- Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061-0477, USA
| |
Collapse
|
24
|
Tyler BM. Molecular basis of recognition between phytophthora pathogens and their hosts. ANNUAL REVIEW OF PHYTOPATHOLOGY 2002; 40:137-167. [PMID: 12147757 DOI: 10.1146/annurev.phyto.40.120601.125310] [Citation(s) in RCA: 127] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Recognition is the earliest step in any direct plant-microbe interaction. Recognition between Phytophthora pathogens, which are oomycetes, phylogenetically distinct from fungi, has been studied at two levels. Recognition of the host by the pathogen has focused on recognition of chemical, electrical, and physical features of plant roots by zoospores. Both host-specific factors such as isoflavones, and host-nonspecific factors such as amino acids, calcium, and electrical fields, influence zoospore taxis, encystment, cyst germination, and hyphal chemotropism in guiding the pathogen to potential infection sites. Recognition of the pathogen by the host defense machinery has been analyzed using biochemical and genetic approaches. Biochemical approaches have identified chemical elicitors of host defense responses, and in some cases, their cognate receptors from the host. Some elicitors, such as glucans and fatty acids, have broad host ranges, whereas others such as elicitins have narrow host ranges. Most elicitors identified appear to contribute primarily to basic or nonhost resistance. Genetic analysis has identified host resistance (R) genes and pathogen avirulence (Avr) genes that interact in a gene-for-gene manner. One Phytophthora Avr gene, Avr1b from P. sojae, has been cloned and characterized. It encodes a secreted elicitor that triggers a system-wide defense response in soybean plants carrying the cognate R gene, Rps1b.
Collapse
Affiliation(s)
- Brett M Tyler
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg 24061, USA.
| |
Collapse
|
25
|
Chamnanpunt J, Shan WX, Tyler BM. High frequency mitotic gene conversion in genetic hybrids of the oomycete Phytophthora sojae. Proc Natl Acad Sci U S A 2001; 98:14530-5. [PMID: 11724938 PMCID: PMC64716 DOI: 10.1073/pnas.251464498] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2001] [Indexed: 11/18/2022] Open
Abstract
Microbial populations depend on genetic variation to respond to novel environmental challenges. Plant pathogens are notorious for their ability to overcome pesticides and host resistance genes as a result of genetic changes. We report here that in particular hybrid strains of Phytophthora sojae, an oomycete pathogen of soybean, high frequency mitotic gene conversion rapidly converts heterozygous loci to homozygosity, resulting in heterokaryons containing highly diverse populations of diploid nuclei. In hybrids involving strain P7076, conversion rates of up to 3 x 10(-2) per locus per nucleus per generation were observed. In other hybrids, rates were of the order of 5 x 10(-5). Independent gene conversion was observed within a selected linkage group including loci as close as 0.7 kb apart and in unlinked markers throughout the genome. Gene conversions continued throughout vegetative growth and were stimulated by further sexual reproduction. At many loci, conversion showed extreme disparity, with one allele always being lost, suggesting that conversion was initiated by allele-specific double-stranded breaks. Pedigree analysis indicated that individual loci undergo multiple independent conversions within the nuclei of a vegetative clone and that conversion may be preceded by a heritable "activation" state.
Collapse
Affiliation(s)
- J Chamnanpunt
- Department of Plant Pathology, University of California, Davis, CA 95616, USA
| | | | | |
Collapse
|
26
|
Connolly MS, Williams N, Heckman CA, Morris PF. Soybean isoflavones trigger a calcium influx in Phytophthora sojae. Fungal Genet Biol 1999; 28:6-11. [PMID: 10512667 DOI: 10.1006/fgbi.1999.1148] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Both the motile zoospores and the hyphal germ tubes of Phytophthora sojae respond chemotropically to the soybean isoflavones daidzein and genistein. The role of Ca(2+) in the cellular response to these host signals was investigated by using X-ray microanalysis of cells to monitor net changes in cellular levels of Ca(2+) and by quantifying the effects of exogenous Ca(2+) and daidzein on the developmental fate of encysted zoospores. Confirmation that isoflavones trigger a net influx of Ca(2+) into the cell was demonstrated by X-ray microanalysis of individual encysted zoospores. Zoospores exposed to 10 mM Ca(2+) and 1 microM daidzein at the time of encystment formed cysts that contained more Ca(2+) than zoospores exposed to Ca(2+) alone. The magnitude of internal Ca(2+) stores appears to be a determining factor affecting the developmental fate of P. sojae cysts.
Collapse
Affiliation(s)
- M S Connolly
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio, 43403, USA
| | | | | | | |
Collapse
|
27
|
Morris PF, Bone E, Tyler BM. Chemotropic and contact responses of phytophthora sojae hyphae to soybean isoflavonoids and artificial substrates. PLANT PHYSIOLOGY 1998; 117:1171-8. [PMID: 9701573 PMCID: PMC34881 DOI: 10.1104/pp.117.4.1171] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/1998] [Accepted: 05/12/1998] [Indexed: 05/18/2023]
Abstract
We have investigated the role of the isoflavones daidzein and genistein on the chemotropic behavior of germinating cysts of Phytophthora sojae. Hyphal germlings were shown to respond chemotropically to daidzein and genistein, suggesting that hyphal tips from zoospores that have encysted adjacent to the root may use specific host isoflavones to locate their host. Observations of the contact response of hyphal germlings were made on several different substrates in the presence and absence of isoflavones. Hyphal tips of germlings detected and penetrated pores in membranes and produced multiple appressoria on smooth, impenetrable surfaces. Hyphae that successfully penetrated the synthetic membrane were observed to grow away from the membrane surface. The presence of isoflavones in the medium surrounding the hyphal germlings did not appear to alter any of those habits. Daidzein and genistein did not inhibit germination or initial hyphal growth at concentrations up to 20 &mgr;M.
Collapse
Affiliation(s)
- PF Morris
- Department of Biological Sciences, Bowling Green State University, Bowling Green, Ohio 43403 (P.F.M., E.B.)
| | | | | |
Collapse
|