1
|
Heider J, Hege D. The aldehyde dehydrogenase superfamilies: correlations and deviations in structure and function. Appl Microbiol Biotechnol 2025; 109:106. [PMID: 40301148 PMCID: PMC12041015 DOI: 10.1007/s00253-025-13467-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 05/01/2025]
Abstract
Aldehyde dehydrogenases participate in many biochemical pathways, either by degrading organic substrates via organic acids or by producing reactive aldehyde intermediates in many biosynthetic pathways, and are becoming increasingly important for constructing synthetic metabolic pathways. Although they consist of simple and highly conserved basic structural motifs, they exhibit a surprising variability in the reactions catalyzed. We attempt here to give an overview of the known enzymes of two superfamilies comprising the known aldehyde dehydrogenases, focusing on their structural similarities and the residues involved in the catalytic reactions. The analysis reveals that the enzymes of the two superfamilies share many common traits and probably have a common evolutionary origin. While all enzymes catalyzing irreversible aldehyde oxidation to acids exhibit a universally conserved reaction mechanism with shared catalytic active-site residues, the enzymes capable of reducing activated acids to aldehydes deviate from this mechanism, displaying different active-site modifications required to allow these reactions which apparently evolved independently in different enzyme subfamilies. KEY POINTS: • The two aldehyde dehydrogenase superfamilies share significant similarities. • Catalytic amino acids of irreversibly acting AlDH are universally conserved. • Reductive or reversible reactions are enabled by water exclusion via the loss of conserved residues.
Collapse
Affiliation(s)
- Johann Heider
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany.
- Center for Synthetic Microbiology, Marburg, Germany.
| | - Dominik Hege
- Laboratory for Microbial Biochemistry, Philipps University of Marburg, 35043, Marburg, Germany
| |
Collapse
|
2
|
New perspectives into Gluconobacter-catalysed biotransformations. Biotechnol Adv 2023; 65:108127. [PMID: 36924811 DOI: 10.1016/j.biotechadv.2023.108127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 03/02/2023] [Accepted: 03/08/2023] [Indexed: 03/17/2023]
Abstract
Different from other aerobic microorganisms that oxidise carbon sources to water and carbon dioxide, Gluconobacter catalyses the incomplete oxidation of various substrates with regio- and stereoselectivity. This ability, as well as its capacity to release the resulting products into the reaction media, place Gluconobacter as a privileged member of a non-model microorganism class that may boost industrial biotechnology. Knowledge of new technologies applied to Gluconobacter has been piling up in recent years. Advancements in its genetic modification, application of immobilisation tools and careful designs of the transformations, have improved productivities and stabilities of Gluconobacter strains or enabled new bioconversions for the production of valuable marketable chemicals. In this work, the latest advancements applied to Gluconobacter-catalysed biotransformations are summarised with a special focus on recent available tools to improve them. From genetic and metabolic engineering to bioreactor design, the most recent works on the topic are analysed in depth to provide a comprehensive resource not only for scientists and technologists working on/with Gluconobacter, but for the general biotechnologist.
Collapse
|
3
|
Engineering Gluconobacter cerinus CGMCC 1.110 for direct 2-keto-L-gulonic acid production. Appl Microbiol Biotechnol 2022; 107:153-162. [DOI: 10.1007/s00253-022-12310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
|
4
|
Fricke PM, Gries ML, Mürköster M, Höninger M, Gätgens J, Bott M, Polen T. The l-rhamnose-dependent regulator RhaS and its target promoters from Escherichia coli expand the genetic toolkit for regulatable gene expression in the acetic acid bacterium Gluconobacter oxydans. Front Microbiol 2022; 13:981767. [PMID: 36060754 PMCID: PMC9429829 DOI: 10.3389/fmicb.2022.981767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/13/2022] [Indexed: 11/25/2022] Open
Abstract
For regulatable target gene expression in the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first plasmids became available. These systems solely enable AraC- and TetR-dependent induction. In this study we showed that the l-rhamnose-dependent regulator RhaS from Escherichia coli and its target promoters PrhaBAD, PrhaT, and PrhaSR could also be used in G. oxydans for regulatable target gene expression. Interestingly, in contrast to the responsiveness in E. coli, in G. oxydans RhaS increased the expression from PrhaBAD in the absence of l-rhamnose and repressed PrhaBAD in the presence of l-rhamnose. Inserting an additional RhaS binding site directly downstream from the −10 region generating promoter variant PrhaBAD(+RhaS-BS) almost doubled the apparent RhaS-dependent promoter strength. Plasmid-based PrhaBAD and PrhaBAD(+RhaS-BS) activity could be reduced up to 90% by RhaS and l-rhamnose, while a genomic copy of PrhaBAD(+RhaS-BS) appeared fully repressed. The RhaS-dependent repression was largely tunable by l-rhamnose concentrations between 0% and only 0.3% (w/v). The RhaS-PrhaBAD and the RhaS-PrhaBAD(+RhaS-BS) systems represent the first heterologous repressible expression systems for G. oxydans. In contrast to PrhaBAD, the E. coli promoter PrhaT was almost inactive in the absence of RhaS. In the presence of RhaS, the PrhaT activity in the absence of l-rhamnose was weak, but could be induced up to 10-fold by addition of l-rhamnose, resulting in a moderate expression level. Therefore, the RhaS-PrhaT system could be suitable for tunable low-level expression of difficult enzymes or membrane proteins in G. oxydans. The insertion of an additional RhaS binding site directly downstream from the E. coli PrhaT −10 region increased the non-induced expression strength and reversed the regulation by RhaS and l-rhamnose from inducible to repressible. The PrhaSR promoter appeared to be positively auto-regulated by RhaS and this activation was increased by l-rhamnose. In summary, the interplay of the l-rhamnose-binding RhaS transcriptional regulator from E. coli with its target promoters PrhaBAD, PrhaT, PrhaSR and variants thereof provide new opportunities for regulatable gene expression in G. oxydans and possibly also for simultaneous l-rhamnose-triggered repression and activation of target genes, which is a highly interesting possibility in metabolic engineering approaches requiring redirection of carbon fluxes.
Collapse
|
5
|
da Silva GAR, Oliveira SSDS, Lima SF, do Nascimento RP, Baptista ARDS, Fiaux SB. The industrial versatility of Gluconobacter oxydans: current applications and future perspectives. World J Microbiol Biotechnol 2022; 38:134. [PMID: 35688964 PMCID: PMC9187504 DOI: 10.1007/s11274-022-03310-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 05/13/2022] [Indexed: 11/26/2022]
Abstract
Gluconobacter oxydans is a well-known acetic acid bacterium that has long been applied in the biotechnological industry. Its extraordinary capacity to oxidize a variety of sugars, polyols, and alcohols into acids, aldehydes, and ketones is advantageous for the production of valuable compounds. Relevant G. oxydans industrial applications are in the manufacture of L-ascorbic acid (vitamin C), miglitol, gluconic acid and its derivatives, and dihydroxyacetone. Increasing efforts on improving these processes have been made in the last few years, especially by applying metabolic engineering. Thereby, a series of genes have been targeted to construct powerful recombinant strains to be used in optimized fermentation. Furthermore, low-cost feedstocks, mostly agro-industrial wastes or byproducts, have been investigated, to reduce processing costs and improve the sustainability of G. oxydans bioprocess. Nonetheless, further research is required mainly to make these raw materials feasible at the industrial scale. The current shortage of suitable genetic tools for metabolic engineering modifications in G. oxydans is another challenge to be overcome. This paper aims to give an overview of the most relevant industrial G. oxydans processes and the current strategies developed for their improvement.
Collapse
Affiliation(s)
- Gabrielle Alves Ribeiro da Silva
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil.
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil.
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil.
| | - Simone Santos de Sousa Oliveira
- Graduate Program in Science and Biotechnology, Biology Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Sara Fernandes Lima
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| | - Rodrigo Pires do Nascimento
- Ecology of Microbial Process Laboratory, Biochemical Engineering Department, Chemical School, Technology Center, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro-RJ, 21941-909, Brazil
| | - Andrea Regina de Souza Baptista
- Center for Microorganisms Investigation, Microbiology and Parasitology Department, Biomedical Institute, Fluminense Federal University (UFF), Niterói-RJ, 24020-141, Brazil
| | - Sorele Batista Fiaux
- Microbial Technology Laboratory, Pharmaceutical Technology Department, Faculty of Pharmacy, Fluminense Federal University (UFF), Niterói-RJ, 24241-000, Brazil
| |
Collapse
|
6
|
Li D, Liu L, Qin Z, Yu S, Zhou J. Combined evolutionary and metabolic engineering improve 2-keto-L-gulonic acid production in Gluconobacter oxydans WSH-004. BIORESOURCE TECHNOLOGY 2022; 354:127107. [PMID: 35381333 DOI: 10.1016/j.biortech.2022.127107] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/30/2022] [Accepted: 03/31/2022] [Indexed: 06/14/2023]
Abstract
The direct fermentation of the precursor of vitamin C, 2-keto-L-gulonic acid (2-KLG), has been a long-pursued goal. Previously, a strain of Gluconobacter oxydans WSH-004 was isolated that produced 2.5 g/L 2-KLG, and through adaptive evolution engineering, the strain G. oxydans MMC3 could tolerate 300 g/L D-sorbitol. This study verified that the sndh-sdh gene cluster encoded two key dehydrogenases for the 2-KLG biosynthesis pathway in this strain. Then G. oxydans MMC3 further evolved through adaptive evolution to G. oxydans 2-KLG5, which can tolerate high concentrations of D-sorbitol and 2-KLG. Finally, by increasing the gene expression levels of the sndh-sdh and terminal oxidase cyoBACD in G. oxydans 2-KLG5, the 2-KLG accumulation in the 5-L fermenter increased to 45.14 g/L by batch fermentation. The results showed that combined evolutionary and metabolic engineering efficiently improved the direct production of 2-KLG from D-sorbitol in G. oxydans.
Collapse
Affiliation(s)
- Dong Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Li Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhijie Qin
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
7
|
Characterization of a sorbose oxidase involved in the biosynthesis of 2-keto-L-gulonic acid from Gluconobacter oxydans WSH-004. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.02.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
8
|
Qin Z, Yu S, Chen J, Zhou J. Dehydrogenases of acetic acid bacteria. Biotechnol Adv 2021; 54:107863. [PMID: 34793881 DOI: 10.1016/j.biotechadv.2021.107863] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/13/2022]
Abstract
Acetic acid bacteria (AAB) are a group of bacteria that can oxidize many substrates such as alcohols and sugar alcohols and play important roles in industrial biotechnology. A majority of industrial processes that involve AAB are related to their dehydrogenases, including PQQ/FAD-dependent membrane-bound dehydrogenases and NAD(P)+-dependent cytoplasmic dehydrogenases. These cofactor-dependent dehydrogenases must effectively regenerate their cofactors in order to function continuously. For PQQ, FAD and NAD(P)+ alike, regeneration is directly or indirectly related to the electron transport chain (ETC) of AAB, which plays an important role in energy generation for aerobic cell growth. Furthermore, in changeable natural habitats, ETC components of AAB can be regulated so that the bacteria survive in different environments. Herein, the progressive cascade in an application of AAB, including key dehydrogenases involved in the application, regeneration of dehydrogenase cofactors, ETC coupling with cofactor regeneration and ETC regulation, is systematically reviewed and discussed. As they have great application value, a deep understanding of the mechanisms through which AAB function will not only promote their utilization and development but also provide a reference for engineering of other industrial strains.
Collapse
Affiliation(s)
- Zhijie Qin
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
9
|
Fricke PM, Lürkens M, Hünnefeld M, Sonntag CK, Bott M, Davari MD, Polen T. Highly tunable TetR-dependent target gene expression in the acetic acid bacterium Gluconobacter oxydans. Appl Microbiol Biotechnol 2021; 105:6835-6852. [PMID: 34448898 PMCID: PMC8426231 DOI: 10.1007/s00253-021-11473-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 11/27/2022]
Abstract
Abstract For the acetic acid bacterium (AAB) Gluconobacter oxydans only recently the first tight system for regulatable target gene expression became available based on the heterologous repressor-activator protein AraC from Escherichia coli and the target promoter ParaBAD. In this study, we tested pure repressor-based TetR- and LacI-dependent target gene expression in G. oxydans by applying the same plasmid backbone and construction principles that we have used successfully for the araC-ParaBAD system. When using a pBBR1MCS-5-based plasmid, the non-induced basal expression of the Tn10-based TetR-dependent expression system was extremely low. This allowed calculated induction ratios of up to more than 3500-fold with the fluorescence reporter protein mNeonGreen (mNG). The induction was highly homogeneous and tunable by varying the anhydrotetracycline concentration from 10 to 200 ng/mL. The already strong reporter gene expression could be doubled by inserting the ribosome binding site AGGAGA into the 3’ region of the Ptet sequence upstream from mNG. Alternative plasmid constructs used as controls revealed a strong influence of transcription terminators and antibiotics resistance gene of the plasmid backbone on the resulting expression performance. In contrast to the TetR-Ptet-system, pBBR1MCS-5-based LacI-dependent expression from PlacUV5 always exhibited some non-induced basal reporter expression and was therefore tunable only up to 40-fold induction by IPTG. The leakiness of PlacUV5 when not induced was independent of potential read-through from the lacI promoter. Protein-DNA binding simulations for pH 7, 6, 5, and 4 by computational modeling of LacI, TetR, and AraC with DNA suggested a decreased DNA binding of LacI when pH is below 6, the latter possibly causing the leakiness of LacI-dependent systems hitherto tested in AAB. In summary, the expression performance of the pBBR1MCS-5-based TetR-Ptet system makes this system highly suitable for applications in G. oxydans and possibly in other AAB. Key Points • A pBBR1MCS-5-based TetR-Ptet system was tunable up to more than 3500-fold induction. • A pBBR1MCS-5-based LacI-PlacUV5 system was leaky and tunable only up to 40-fold. • Modeling of protein-DNA binding suggested decreased DNA binding of LacI at pH < 6. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11473-x.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Institute of Bio- and Geosciences, 52425 Jülich, Germany
| | - Martha Lürkens
- RWTH Aachen University, Institute of Biotechnology, Worringerweg 3, 52074 Aachen, Germany
| | - Max Hünnefeld
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Institute of Bio- and Geosciences, 52425 Jülich, Germany
| | - Christiane K. Sonntag
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Institute of Bio- and Geosciences, 52425 Jülich, Germany
| | - Michael Bott
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Institute of Bio- and Geosciences, 52425 Jülich, Germany
| | - Mehdi D. Davari
- Department of Bioorganic Chemistry, Leibniz Institute of Plant Biochemistry, Weinberg 3, 06120 Halle, Germany
| | - Tino Polen
- Forschungszentrum Jülich GmbH, IBG-1: Biotechnology, Institute of Bio- and Geosciences, 52425 Jülich, Germany
| |
Collapse
|
10
|
Fricke PM, Klemm A, Bott M, Polen T. On the way toward regulatable expression systems in acetic acid bacteria: target gene expression and use cases. Appl Microbiol Biotechnol 2021; 105:3423-3456. [PMID: 33856535 PMCID: PMC8102297 DOI: 10.1007/s00253-021-11269-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/24/2021] [Accepted: 04/04/2021] [Indexed: 01/06/2023]
Abstract
Acetic acid bacteria (AAB) are valuable biocatalysts for which there is growing interest in understanding their basics including physiology and biochemistry. This is accompanied by growing demands for metabolic engineering of AAB to take advantage of their properties and to improve their biomanufacturing efficiencies. Controlled expression of target genes is key to fundamental and applied microbiological research. In order to get an overview of expression systems and their applications in AAB, we carried out a comprehensive literature search using the Web of Science Core Collection database. The Acetobacteraceae family currently comprises 49 genera. We found overall 6097 publications related to one or more AAB genera since 1973, when the first successful recombinant DNA experiments in Escherichia coli have been published. The use of plasmids in AAB began in 1985 and till today was reported for only nine out of the 49 AAB genera currently described. We found at least five major expression plasmid lineages and a multitude of further expression plasmids, almost all enabling only constitutive target gene expression. Only recently, two regulatable expression systems became available for AAB, an N-acyl homoserine lactone (AHL)-inducible system for Komagataeibacter rhaeticus and an L-arabinose-inducible system for Gluconobacter oxydans. Thus, after 35 years of constitutive target gene expression in AAB, we now have the first regulatable expression systems for AAB in hand and further regulatable expression systems for AAB can be expected. KEY POINTS: • Literature search revealed developments and usage of expression systems in AAB. • Only recently 2 regulatable plasmid systems became available for only 2 AAB genera. • Further regulatable expression systems for AAB are in sight.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Angelika Klemm
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| |
Collapse
|
11
|
Chen Y, Liu L, Yu S, Li J, Zhou J, Chen J. Identification of Gradient Promoters of Gluconobacter oxydans and Their Applications in the Biosynthesis of 2-Keto-L-Gulonic Acid. Front Bioeng Biotechnol 2021; 9:673844. [PMID: 33898410 PMCID: PMC8064726 DOI: 10.3389/fbioe.2021.673844] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The acetic acid bacterium Gluconobacter oxydans is known for its unique incomplete oxidation and therefore widely applied in the industrial production of many compounds, e.g., 2-keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C. However, few molecular tools are available for metabolically engineering G. oxydans, which greatly limit the strain development. Promoters are one of vital components to control and regulate gene expression at the transcriptional level for boosting production. In this study, the low activity of SDH was found to hamper the high yield of 2-KLG, and enhancing the expression of SDH was achieved by screening the suitable promoters based on RNA sequencing data. We obtained 97 promoters from G. oxydans’s genome, including two strong shuttle promoters and six strongest promoters. Among these promoters, P3022 and P0943 revealed strong activities in both Escherichia coli and G. oxydans, and the activity of the strongest promoter (P2703) was about threefold that of the other reported strong promoters of G. oxydans. These promoters were used to overexpress SDH in G. oxydans WSH-003. The titer of 2-KLG reached 3.7 g/L when SDH was under the control of strong promoters P2057 and P2703. This study obtained a series of gradient promoters, including two strong shuttle promoters, and expanded the toolbox of available promoters for the application in metabolic engineering of G. oxydans for high-value products.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Li Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Fricke PM, Link T, Gätgens J, Sonntag C, Otto M, Bott M, Polen T. A tunable L-arabinose-inducible expression plasmid for the acetic acid bacterium Gluconobacter oxydans. Appl Microbiol Biotechnol 2020; 104:9267-9282. [PMID: 32974745 PMCID: PMC7567684 DOI: 10.1007/s00253-020-10905-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/04/2020] [Accepted: 09/10/2020] [Indexed: 01/21/2023]
Abstract
Abstract The acetic acid bacterium (AAB) Gluconobacter oxydans incompletely oxidizes a wide variety of carbohydrates and is therefore used industrially for oxidative biotransformations. For G. oxydans, no system was available that allows regulatable plasmid-based expression. We found that the l-arabinose-inducible PBAD promoter and the transcriptional regulator AraC from Escherichia coli MC4100 performed very well in G. oxydans. The respective pBBR1-based plasmids showed very low basal expression of the reporters β-glucuronidase and mNeonGreen, up to 480-fold induction with 1% l-arabinose, and tunability from 0.1 to 1% l-arabinose. In G. oxydans 621H, l-arabinose was oxidized by the membrane-bound glucose dehydrogenase, which is absent in the multi-deletion strain BP.6. Nevertheless, AraC-PBAD performed similar in both strains in the exponential phase, indicating that a gene knockout is not required for application of AraC-PBAD in wild-type G. oxydans strains. However, the oxidation product arabinonic acid strongly contributed to the acidification of the growth medium in 621H cultures during the stationary phase, which resulted in drastically decreased reporter activities in 621H (pH 3.3) but not in BP.6 cultures (pH 4.4). These activities could be strongly increased quickly solely by incubating stationary cells in d-mannitol-free medium adjusted to pH 6, indicating that the reporters were hardly degraded yet rather became inactive. In a pH-controlled bioreactor, these reporter activities remained high in the stationary phase (pH 6). Finally, we created a multiple cloning vector with araC-PBAD based on pBBR1MCS-5. Together, we demonstrated superior functionality and good tunability of an AraC-PBAD system in G. oxydans that could possibly also be used in other AAB. Key points • We found the AraC-PBADsystem from E. coli MC4100 was well tunable in G. oxydans. • In the absence of AraC orl-arabinose, expression from PBADwas extremely low. • This araC-PBADsystem could also be fully functional in other acetic acid bacteria. Electronic supplementary material The online version of this article (10.1007/s00253-020-10905-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Philipp Moritz Fricke
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tobias Link
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Jochem Gätgens
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Christiane Sonntag
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Maike Otto
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
13
|
Efficient Optimization of Gluconobacter oxydans Based on Protein Scaffold-Trimeric CutA to Enhance the Chemical Structure Stability of Enzymes for the Direct Production of 2-Keto-L-gulonic Acid. J CHEM-NY 2020. [DOI: 10.1155/2020/5429409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
2-Keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C, is produced by a two-step fermentation route from D-sorbitol in industry. However, this route is a complicated mix-culture system which involves three bacteria. Thus, replacement of the conventional two-step fermentation process with a one-step process could be revolutionary in vitamin C industry. The one-step fermentation of 2-keto-L-gulonic acid (2-KLG) has been achieved in our previous study; 32.4 g/L of 2-KLG production was obtained by the one-step strain G. oxydans/pGUC-tufB-sdh-GGGGS-sndh after 168 h. In this study, L-sorbose dehydrogenase (SDH) and L-sorbosone dehydrogenase (SNDH) were expressed in G. oxydans after the codon optimization. Furthermore, the trimeric protein CutA was used to improve the chemical structure stability of SDH and SNDH. The recombinant strain G. oxydans/pGUC-tufB-SH3-sdh-GGGGS-sndh-tufB-SH3lig-(GGGGS)2-cutA produced 40.3 g/L of 2-KLG after 168 h. In addition, the expression levels of the cofactor PQQ were enhanced to further improve 2-KLG production. With the stepwise metabolic engineering of G. oxydans, the final 2-KLG production was improved to 42.6 g/L. The efficient one-step production of 2-KLG was achieved, and the final one-step industrial-scale production of 2-KLG is drawing near.
Collapse
|
14
|
Shan X, Liu L, Zeng W, Chen J, Zhou J. High Throughput Screening Platform for a FAD-Dependent L-Sorbose Dehydrogenase. Front Bioeng Biotechnol 2020; 8:194. [PMID: 32258011 PMCID: PMC7092628 DOI: 10.3389/fbioe.2020.00194] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Accepted: 02/27/2020] [Indexed: 12/11/2022] Open
Abstract
2-Keto-L-gulonic acid (2-KLG) is the direct precursor for the production of L-ascorbic acid (L-Asc) on industrial scale. Currently, the production of L-Asc in the industry is a two-step fermentation process. Owing to many unstable factors in the fermentation process, the conversion rate of L-sorbose to 2-KLG has remained at about 90% for many years. In order to further improve the production efficiency of 2-KLG, a FAD-dependent sorbose dehydrogenase (SDH) has been obtained in our previous research. The SDH can directly convert L-sorbose to 2-KLG at a very high efficiency. However, the enzyme activity of the SDH is relatively low. In order to further improve the enzyme activity of the SDH, a high throughput screening platform the dehydrogenase is essential. By optimizing the promoter, host and sorbosone dehydrogenase (SNDH), knockout of the aldosterone reductases and PTS related genes, a reliable platform for high-throughput screening of more efficient FAD-dependent SDH has been established. By using the high-throughput screening platform, the titer of the 2-KLG has been improved by 14.1%. The method established here could be useful for further enhancing the FAD-dependent SDH, which is important to achieve the efficient one-strain-single-step fermentation production of 2-KLG.
Collapse
Affiliation(s)
- Xiaoyu Shan
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Li Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jian Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
15
|
Yakushi T, Takahashi R, Matsutani M, Kataoka N, Hours RA, Ano Y, Adachi O, Matsushita K. The membrane-bound sorbosone dehydrogenase of Gluconacetobacter liquefaciens is a pyrroloquinoline quinone-dependent enzyme. Enzyme Microb Technol 2020; 137:109511. [PMID: 32423666 DOI: 10.1016/j.enzmictec.2020.109511] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 01/06/2020] [Accepted: 01/12/2020] [Indexed: 11/19/2022]
Abstract
Membrane-bound sorbosone dehydrogenase (SNDH) of Gluconacetobacter liquefaciens oxidizes l-sorbosone to 2-keto-l-gulonic acid (2KGLA), a key intermediate in vitamin C production. We constructed recombinant Escherichia coli and Gluconobacter strains harboring plasmids carrying the sndh gene from Ga. liquefaciens strain RCTMR10 to identify the prosthetic group of SNDH. The membranes of the recombinant E. coli showed l-sorbosone oxidation activity, only after the holo-enzyme formation with pyrroloquinoline quinone (PQQ), indicating that SNDH is a PQQ-dependent enzyme. The sorbosone-oxidizing respiratory chain was thus heterologously reconstituted in the E. coli membranes. The membranes that contained SNDH showed the activity of sorbosone:ubiquinone analogue oxidoreductase. These results suggest that the natural electron acceptor for SNDH is membranous ubiquinone, and it functions as the primary dehydrogenase in the sorbosone oxidation respiratory chain in Ga. liquefaciens. A biotransformation experiment showed l-sorbosone oxidation to 2KGLA in a nearly quantitative manner. Phylogenetic analysis for prokaryotic SNDH homologues revealed that they are found only in the Proteobacteria phylum and those of the Acetobacteraceae family are clustered in a group where all members possess a transmembrane segment. A three-dimensional structure model of the SNDH constructed with an in silico fold recognition method was similar to the crystal structure of the PQQ-dependent pyranose dehydrogenase from Coprinopsis cinerea. The structural similarity suggests a reaction mechanism under which PQQ participates in l-sorbosone oxidation.
Collapse
Affiliation(s)
- Toshiharu Yakushi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan.
| | - Ryota Takahashi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Minenosuke Matsutani
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Naoya Kataoka
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Roque A Hours
- Centro de Investigación y Desarrollo en Fermentaciones Industriales (CINDEFI), Universidad Nacional de La Plata - CONICET, La Plata, Argentina
| | - Yoshitaka Ano
- Department of Bioscience, Graduate School of Agriculture, Ehime University, Matsuyama 796-8566, Japan
| | - Osao Adachi
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan
| | - Kazunobu Matsushita
- Division of Agricultural Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8515, Japan; Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi 753-8515, Japan; Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi 753-8515, Japan
| |
Collapse
|
16
|
Liu L, Zeng W, Du G, Chen J, Zhou J. Identification of NAD-Dependent Xylitol Dehydrogenase from Gluconobacter oxydans WSH-003. ACS OMEGA 2019; 4:15074-15080. [PMID: 31552350 PMCID: PMC6751703 DOI: 10.1021/acsomega.9b01867] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/20/2019] [Indexed: 05/08/2023]
Abstract
Gluconobacter oxydans plays an important role in the conversion of d-sorbitol to l-sorbose, which is an essential intermediate for the industrial-scale production of vitamin C. In the fermentation process, some d-sorbitol could be converted to d-fructose and other byproducts by uncertain dehydrogenases. Genome sequencing has revealed the presence of diverse genes encoding dehydrogenases in G. oxydans. However, the characteristics of most of these dehydrogenases remain unclear. Therefore, the analyses of these unknown dehydrogenases could be useful for identifying those related to the production of d-fructose and other byproducts. Accordingly, dehydrogenases in G. oxydans WSH-003, an industrial strain used for vitamin C production, were examined. A nicotinamide adenine dinucleotide (NAD)-dependent dehydrogenase, which was annotated as xylitol dehydrogenase 2, was identified, codon-optimized, and expressed in Escherichia coli BL21 (DE3) cells. The enzyme exhibited a high preference for NAD+ as the cofactor, while no activity with nicotinamide adenine dinucleotide phosphate, flavin adenine dinucleotide, or pyrroloquinoline quinone was noted. Although this enzyme presented high similarity with NAD-dependent xylitol dehydrogenase, it showed high activity to catalyze d-sorbitol to d-fructose. Unlike the optimum temperature and pH for most of the known NAD-dependent xylitol dehydrogenases (30-40 °C and about 6-8, respectively), those for the identified enzyme were 57 °C and 12, respectively. The values of K m and V max of the identified dehydrogenase toward l-sorbitol were 4.92 μM and 196.08 μM/min, respectively. Thus, xylitol dehydrogenase 2 can be useful for the cofactor-reduced nicotinamide adenine dinucleotide regeneration under alkaline conditions, or its knockout can improve the conversion ratio of d-sorbitol to l-sorbose.
Collapse
Affiliation(s)
- Li Liu
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Weizhu Zeng
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Guocheng Du
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jian Chen
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
| | - Jingwen Zhou
- School
of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry
of Education, National Engineering Laboratory for Cereal Fermentation Technology, The Key Laboratory of Carbohydrate
Chemistry and Biotechnology, Ministry of Education, and Jiangsu Provisional Research Center for
Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi 214122, Jiangsu, China
- E-mail: . Tel/Fax: +86-510-85914317
| |
Collapse
|
17
|
Ke X, Pan-Hong Y, Hu ZC, Chen L, Sun XQ, Zheng YG. Synergistic improvement of PQQ-dependent D-sorbitol dehydrogenase activity from Gluconobacter oxydans for the biosynthesis of miglitol precursor 6-(N-hydroxyethyl)-amino-6-deoxy-α-L-sorbofuranose. J Biotechnol 2019; 300:55-62. [PMID: 31100333 DOI: 10.1016/j.jbiotec.2019.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/01/2019] [Accepted: 05/13/2019] [Indexed: 01/24/2023]
Abstract
6-(N-hydroxyethyl) amino-6-deoxy-l-sorbofuranose (6NSL) is the direct precursor of miglitol for diabetes therapy. The regio- and stereo-selective dehydrogenation offered by the membrane-bound d-sorbitol dehydrogenase (mSLDH) from Gluconobacter oxydans provides an elegant enzymatic method for 6NSL production. In this study, two subunits sldA and sldB of mSLDH were introduced into G. oxydans ZJB-605, and the specific enzyme activity of mSLDH towards NHEG was enhanced by 2.15-fold. However, the endogenous PQQ level was dramatically reduced in the recombinant strain and became a bottleneck to support the holo-enzyme activity. A combined supplementation of four amino acids (Glu, Ile, Ser, Arg) involved in biosynthesis of PQQ in conventional media effectively increased extracellular accumulation of PQQ by 1.49-fold, which further enhanced mSLDH activity by 1.33-fold. The synergic improvement of mSLDH activity provided in this study supports the superior high dehydrogenate activity towards substrate N-2-hydroxyethyl-glucamine, 184.28 g·L-1 of 6NSL was produced after a repeated bioconversion process catalyzed by the resting cells of G. oxydans/pBB-sldAB, all of which presenting a great potential of their industrial application in 6NSL biosynthesis.
Collapse
Affiliation(s)
- Xia Ke
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Yu Pan-Hong
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China
| | - Liang Chen
- Zhejiang Medicine CO., LTD. Xinchang Pharmaceutical Factory, Shaoxing, Zhejiang 312500, PR China
| | - Xin-Qiang Sun
- Zhejiang Medicine CO., LTD. Xinchang Pharmaceutical Factory, Shaoxing, Zhejiang 312500, PR China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; Engineering Research Center of Bioconversion and Biopurification of the Ministry of Education, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China; The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
| |
Collapse
|
18
|
Lynch KM, Zannini E, Wilkinson S, Daenen L, Arendt EK. Physiology of Acetic Acid Bacteria and Their Role in Vinegar and Fermented Beverages. Compr Rev Food Sci Food Saf 2019; 18:587-625. [DOI: 10.1111/1541-4337.12440] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 02/06/2019] [Accepted: 02/18/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Kieran M. Lynch
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Emanuele Zannini
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
| | - Stuart Wilkinson
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Luk Daenen
- Global Innovation & Technology CentreAnheuser‐Busch InBev nv/sa Leuven 3000 Belgium
| | - Elke K. Arendt
- School of Food and Nutritional SciencesUniv. College Cork Cork T12 K8AF Ireland
- APC Microbiome IrelandUniv. College Cork Cork T12 K8AF Ireland
| |
Collapse
|
19
|
Current challenges facing one-step production of l-ascorbic acid. Biotechnol Adv 2018; 36:1882-1899. [DOI: 10.1016/j.biotechadv.2018.07.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 06/20/2018] [Accepted: 07/17/2018] [Indexed: 12/16/2022]
|
20
|
Kranz A, Steinmann A, Degner U, Mengus-Kaya A, Matamouros S, Bott M, Polen T. Global mRNA decay and 23S rRNA fragmentation in Gluconobacter oxydans 621H. BMC Genomics 2018; 19:753. [PMID: 30326828 PMCID: PMC6191907 DOI: 10.1186/s12864-018-5111-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 09/25/2018] [Indexed: 12/14/2022] Open
Abstract
Background Gluconobacter oxydans is a strictly aerobic Gram-negative acetic acid bacterium used industrially for oxidative biotransformations due to its exceptional type of catabolism. It incompletely oxidizes a wide variety of carbohydrates regio- and stereoselectively in the periplasm using membrane-bound dehydrogenases with accumulation of the products in the medium. As a consequence, only a small fraction of the carbon and energy source enters the cell, resulting in a low biomass yield. Additionally, central carbon metabolism is characterized by the absence of a functional glycolysis and absence of a functional tricarboxylic acid (TCA) cycle. Due to these features, G. oxydans is a highly interesting model organism. Here we analyzed global mRNA decay in G. oxydans to describe its characteristic features and to identify short-lived mRNAs representing potential bottlenecks in the metabolism for further growth improvement by metabolic engineering. Results Using DNA microarrays we estimated the mRNA half-lives in G. oxydans. Overall, the mRNA half-lives ranged mainly from 3 min to 25 min with a global mean of 5.7 min. The transcripts encoding GroES and GroEL required for proper protein folding ranked at the top among transcripts exhibiting both long half-lives and high abundance. The F-type H+-ATP synthase transcripts involved in energy metabolism ranked among the transcripts with the shortest mRNA half-lives. RNAseq analysis revealed low expression levels for genes of the incomplete TCA cycle and also the mRNA half-lives of several of those were short and below the global mean. The mRNA decay analysis also revealed an apparent instability of full-length 23S rRNA. Further analysis of the ribosome-associated rRNA revealed a 23S rRNA fragmentation pattern exhibiting new cleavage regions in 23S rRNAs which were previously not known. Conclusions The very short mRNA half-lives of the H+-ATP synthase, which is likely responsible for the ATP-proton motive force interconversion in G. oxydans under many or most conditions, is notably in contrast to mRNA decay data from other bacteria. Together with the short mRNA half-lives and low expression of some other central metabolic genes it could limit intended improvements of G. oxydans’ biomass yield by metabolic engineering. Also, further studies are needed to unravel the multistep process of the 23S rRNA fragmentation in G. oxydans. Electronic supplementary material The online version of this article (10.1186/s12864-018-5111-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Angela Kranz
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Andrea Steinmann
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Ursula Degner
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Aliye Mengus-Kaya
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Susana Matamouros
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Bott
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tino Polen
- IBG-1: Biotechnology, Institute of Bio- and Geosciences, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany. .,The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
21
|
Kallscheuer N. Engineered Microorganisms for the Production of Food Additives Approved by the European Union-A Systematic Analysis. Front Microbiol 2018; 9:1746. [PMID: 30123195 PMCID: PMC6085563 DOI: 10.3389/fmicb.2018.01746] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 01/16/2023] Open
Abstract
In the 1950s, the idea of a single harmonized list of food additives for the European Union arose. Already in 1962, the E-classification system, a robust food safety system intended to protect consumers from possible food-related risks, was introduced. Initially, it was restricted to colorants, but at later stages also preservatives, antioxidants, emulsifiers, stabilizers, thickeners, gelling agents, sweeteners, and flavorings were included. Currently, the list of substances authorized by the European Food Safety Authority (EFSA) (referred to as "E numbers") comprises 316 natural or artificial substances including small organic molecules, metals, salts, but also more complex compounds such as plant extracts and polymers. Low overall concentrations of such compounds in natural producers due to inherent regulation mechanisms or production processes based on non-regenerative carbon sources led to an increasing interest in establishing more reliable and sustainable production platforms. In this context, microorganisms have received significant attention as alternative sources providing access to these compounds. Scientific advancements in the fields of molecular biology and genetic engineering opened the door toward using engineered microorganisms for overproduction of metabolites of their carbon metabolism such as carboxylic acids and amino acids. In addition, entire pathways, e.g., of plant origin, were functionally introduced into microorganisms, which holds the promise to get access to an even broader range of accessible products. The aim of this review article is to give a systematic overview on current efforts during construction and application of microbial cell factories for the production of food additives listed in the EU "E numbers" catalog. The review is focused on metabolic engineering strategies of industrially relevant production hosts also discussing current bottlenecks in the underlying metabolic pathways and how they can be addressed in the future.
Collapse
Affiliation(s)
- Nicolai Kallscheuer
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| |
Collapse
|
22
|
Huang M, Zhang YH, Yao S, Ma D, Yu XD, Zhang Q, Lyu SX. Antioxidant effect of glutathione on promoting 2-keto-l-gulonic acid production in vitamin C fermentation system. J Appl Microbiol 2018; 125:1383-1395. [PMID: 30053331 DOI: 10.1111/jam.14052] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2018] [Revised: 07/10/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
Abstract
AIMS Oxidative stress limited the growth of cells and 2-keto-l-gulonic acid (2-KGA) production in vitamin C (Vc) fermentation system. The study aims to investigate the antioxidant effect of glutathione on promoting 2-KGA in Vc fermentation system using Ketogulonicigenium vulgare 25B-1 and Bacillus endophyticus ST-1 as the co-culturing microbes. METHODS AND RESULTS The activities of antioxidant-related enzymes and qPCR were used to study the antioxidant effect of glutathione addition in Vc fermentation system. The addition of GSH and GSH/GSSG increased 2-KGA production and decreased fermentation time, and the highest 2-KGA production increased by 40·63% and the lowest fermentation time shortened to 60 h when the addition of optimal concentration ratio of GSH/GSSG was 50 : 1. Moreover, the increased production of 2-KGA was accompanied by up-regulated the activities of total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD), catalase (CAT) and over-expressed oxidative stress-related genes sod, gst, gr, zwf, gp, which resulted in scavenging reactive oxygen species to reduce oxidative stress in Vc fermentation system. CONCLUSIONS Glutathione showed a significant effect on increasing 2-KGA production and decreasing fermentation time in Vc fermentation system. GSH/GSSG could maintain a dynamic balance with two forms of glutathione and the optimal concentration ratio of GSH/GSSG was 50 : 1. SIGNIFICANCE AND IMPACT OF THE STUDY Glutathione is proved to be effective to relieve oxidative stress. The promotion effects of GSSG and GSH on 2-KGA production could help to further explore the optimization of co-culture fermentation process for Vc industrial production.
Collapse
Affiliation(s)
- M Huang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Y-H Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - S Yao
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - D Ma
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - X-D Yu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - Q Zhang
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| | - S-X Lyu
- College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, Liaoning, China
| |
Collapse
|
23
|
La China S, Zanichelli G, De Vero L, Gullo M. Oxidative fermentations and exopolysaccharides production by acetic acid bacteria: a mini review. Biotechnol Lett 2018; 40:1289-1302. [DOI: 10.1007/s10529-018-2591-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 07/03/2018] [Indexed: 02/07/2023]
|
24
|
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol Biol Evol 2018; 35:1547-1549. [PMID: 29722887 DOI: 10.1007/0-387-30745-1_9] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2023] Open
Abstract
The Molecular Evolutionary Genetics Analysis (Mega) software implements many analytical methods and tools for phylogenomics and phylomedicine. Here, we report a transformation of Mega to enable cross-platform use on Microsoft Windows and Linux operating systems. Mega X does not require virtualization or emulation software and provides a uniform user experience across platforms. Mega X has additionally been upgraded to use multiple computing cores for many molecular evolutionary analyses. Mega X is available in two interfaces (graphical and command line) and can be downloaded from www.megasoftware.net free of charge.
Collapse
Affiliation(s)
- Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
- Department of Biology, Temple University, Philadelphia, PA
- Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Glen Stecher
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Michael Li
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Christina Knyaz
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA
| | - Koichiro Tamura
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| |
Collapse
|
25
|
Wang CY, Li Y, Gao ZW, Liu LC, Zhang MY, Zhang TY, Wu CF, Zhang YX. Establishing an innovative carbohydrate metabolic pathway for efficient production of 2-keto-L-gulonic acid in Ketogulonicigenium robustum initiated by intronic promoters. Microb Cell Fact 2018; 17:81. [PMID: 29778095 PMCID: PMC5960096 DOI: 10.1186/s12934-018-0932-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Background 2-Keto-l-gulonic acid (2-KGA), the precursor of vitamin C, is currently produced by two-step fermentation. In the second step, l-sorbose is transformed into 2-KGA by the symbiosis system composed of Ketogulonicigenium vulgare and Bacillus megaterium. Due to the different nutrient requirements and the uncertain ratio of the two strains, the symbiosis system significantly limits strain improvement and fermentation optimization. Results In this study, Ketogulonicigenium robustum SPU_B003 was reported for its capability to grow well independently and to produce more 2-KGA than that of K. vulgare in a mono-culture system. The complete genome of K. robustum SPU_B003 was sequenced, and the metabolic characteristics were analyzed. Compared to the four reported K. vulgare genomes, K. robustum SPU_B003 contained more tRNAs, rRNAs, NAD and NADP biosynthetic genes, as well as regulation- and cell signaling-related genes. Moreover, the amino acid biosynthesis pathways were more complete. Two species-specific internal promoters, P1 (orf_01408 promoter) and P2 (orf_02221 promoter), were predicted and validated by detecting their initiation activity. To efficiently produce 2-KGA with decreased CO2 release, an innovative acetyl-CoA biosynthetic pathway (XFP-PTA pathway) was introduced into K. robustum SPU_B003 by expressing heterologous phosphoketolase (xfp) and phosphotransacetylase (pta) initiated by internal promoters. After gene optimization, the recombinant strain K. robustum/pBBR-P1_xfp2502-P2_pta2145 enhanced acetyl-CoA approximately 2.4-fold and increased 2-KGA production by 22.27% compared to the control strain K. robustum/pBBR1MCS-2. Accordingly, the transcriptional level of the 6-phosphogluconate dehydrogenase (pgd) and pyruvate dehydrogenase genes (pdh) decreased by 24.33 ± 6.67 and 8.67 ± 5.51%, respectively. The key genes responsible for 2-KGA biosynthesis, sorbose dehydrogenase gene (sdh) and sorbosone dehydrogenase gene (sndh), were up-regulated to different degrees in the recombinant strain. Conclusions The genome-based functional analysis of K. robustum SPU_B003 provided a new understanding of the specific metabolic characteristics. The new XFP-PTA pathway was an efficient route to enhance acetyl-CoA levels and to therefore promote 2-KGA production. Electronic supplementary material The online version of this article (10.1186/s12934-018-0932-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Cai-Yun Wang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Ye Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.,Northeast Pharmaceutical Group Co., Ltd, Shenyang, 110026, People's Republic of China
| | - Zi-Wei Gao
- Department of Biotechnology, School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Li-Cheng Liu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Meng-Yue Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Tian-Yuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Chun-Fu Wu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China
| | - Yi-Xuan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, Liaoning, People's Republic of China.
| |
Collapse
|
26
|
Biosynthesis of miglitol intermediate 6-( N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose by an improved d-sorbitol dehydrogenase from Gluconobacter oxydans. 3 Biotech 2018; 8:231. [PMID: 29719773 DOI: 10.1007/s13205-018-1251-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 04/23/2018] [Indexed: 01/03/2023] Open
Abstract
Adaptable exploitation of the catalytic potential of membrane-bound d-sorbitol dehydrogenase (mSLDH) from Gluconobacter oxydans is desperately needed in the industrial-scale production of miglitol. In the present study, a carbonyl group-dependent colorimetric quantification method was developed for the assay of miglitol key intermediate 6-(N-hydroxyethyl)-amino-6-deoxy-α-l-sorbofuranose (6NSL), and a high-throughput screening process of positive mutants was processed. Combined with several rounds of ultraviolet irradiation mutagenesis and screening procedure, a positive mutant strain G. oxydans ZJB16009 was obtained with significant increase in mSLDH catalytic activity by 1.5-fold, which exhibited an extremely accelerated uptake rate of d-sorbitol, and the fermentation time was significantly shortened from 22 to 11 h. In a 5-L biotransformation system, 60 g/L substrate N-2-hydroxyethyl glucamine (NHEG) was catalyzed by the resting cells of the mutant strain within 36 h and accumulated 53.6 g/L 6NSL, showing a 33.6% increase in the product yield. Therefore, it was indicated that the established high-throughput screening method could provide a highly efficient platform for the breading of G. oxydans strain for the industrial biosynthesis of miglitol intermediate 6NSL.
Collapse
|
27
|
RNAseq analysis of α-proteobacterium Gluconobacter oxydans 621H. BMC Genomics 2018; 19:24. [PMID: 29304737 PMCID: PMC5756330 DOI: 10.1186/s12864-017-4415-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2017] [Accepted: 12/22/2017] [Indexed: 01/05/2023] Open
Abstract
Background The acetic acid bacterium Gluconobacter oxydans 621H is characterized by its exceptional ability to incompletely oxidize a great variety of carbohydrates in the periplasm. The metabolism of this α-proteobacterium has been characterized to some extent, yet little is known about its transcriptomes and related data. In this study, we applied two different RNAseq approaches. Primary transcriptomes enriched for 5′-ends of transcripts were sequenced to detect transcription start sites, which allow subsequent analysis of promoter motifs, ribosome binding sites, and 5´-UTRs. Whole transcriptomes were sequenced to identify expressed genes and operon structures. Results Sequencing of primary transcriptomes of G. oxydans revealed 2449 TSSs, which were classified according to their genomic context followed by identification of promoter and ribosome binding site motifs, analysis of 5´-UTRs including validation of predicted cis-regulatory elements and correction of start codons. 1144 (41%) of all genes were found to be expressed monocistronically, whereas 1634 genes were organized in 571 operons. Together, TSSs and whole transcriptome data were also used to identify novel intergenic (18), intragenic (328), and antisense transcripts (313). Conclusions This study provides deep insights into the transcriptional landscapes of G. oxydans. The comprehensive transcriptome data, which we made publicly available, facilitate further analysis of promoters and other regulatory elements. This will support future approaches for rational strain development and targeted gene expression in G. oxydans. The corrections of start codons further improve the high quality genome reference and support future proteome analysis. Electronic supplementary material The online version of this article (10.1186/s12864-017-4415-x) contains supplementary material, which is available to authorized users.
Collapse
|
28
|
Abstract
One of the greatest sources of metabolic and enzymatic diversity are microorganisms. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly, and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
Affiliation(s)
| | - Sergio Sánchez
- Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, CDMX, México
| |
Collapse
|
29
|
Peters B, Mientus M, Kostner D, Daniel R, Liebl W, Ehrenreich A. Expression of membrane-bound dehydrogenases from a mother of vinegar metagenome in Gluconobacter oxydans. Appl Microbiol Biotechnol 2017; 101:7901-7912. [PMID: 28916850 DOI: 10.1007/s00253-017-8479-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/28/2017] [Accepted: 08/09/2017] [Indexed: 10/18/2022]
Abstract
Acetic acid bacteria are well-known for their membrane-bound dehydrogenases rapidly oxidizing a variety of substrates in the periplasm. Since many acetic acid bacteria have not been successfully cultured in the laboratory yet, studying membrane-bound dehydrogenases directly from a metagenome of vinegar microbiota seems to be a promising way to identify novel variants of these enzymes. To this end, DNA from a mother of vinegar was isolated, sequenced, and screened for membrane-bound dehydrogenases using an in silico approach. Six metagenomic dehydrogenases were successfully expressed using an expression vector with native promoters in the acetic acid bacterium strain Gluconobacter oxydans BP.9, which is devoid of its major native membrane-bound dehydrogenases. Determining the substrates converted by these enzymes, using a whole-cell DCPIP assay, revealed one glucose dehydrogenase with an enlarged substrate spectrum additionally oxidizing aldoheptoses, D-ribose and aldotetroses, one polyol dehydrogenase with an extreme diminished spectrum but distinguishing cis and trans-1,2-cyclohexandiol and a completely new secondary alcohol dehydrogenase, which oxidizes secondary alcohols with a hydroxyl group at position 2, as long as no primary hydroxyl group is present. Three further dehydrogenases were found with substrate spectra similar to known dehydrogenases of G. oxydans 621H.
Collapse
Affiliation(s)
- Björn Peters
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Markus Mientus
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - David Kostner
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Rolf Daniel
- Institut für Mikrobiologie und Genetik, Genomische und Angewandte Mikrobiologie, Georg-August-Universität Göttingen, Grisebachstraße 8, 37077, Göttingen, Germany
| | - Wolfgang Liebl
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, 85354, Freising, Germany.
| |
Collapse
|
30
|
Kranz A, Vogel A, Degner U, Kiefler I, Bott M, Usadel B, Polen T. High precision genome sequencing of engineered Gluconobacter oxydans 621H by combining long nanopore and short accurate Illumina reads. J Biotechnol 2017; 258:197-205. [PMID: 28433722 DOI: 10.1016/j.jbiotec.2017.04.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 04/14/2017] [Accepted: 04/15/2017] [Indexed: 02/08/2023]
Abstract
State of the art and novel high-throughput DNA sequencing technologies enable fascinating opportunities and applications in the life sciences including microbial genomics. Short high-quality read data already enable not only microbial genome sequencing, yet can be inadequately to solve problems in genome assemblies and for the analysis of structural variants, especially in engineered microbial cell factories. Single-molecule real-time sequencing technologies generating long reads promise to solve such assembly problems. In our study, we wanted to increase the average read length of long nanopore reads with R9 chemistry and conducted a hybrid approach for the analysis of structural variants to check the genome stability of a recombinant Gluconobacter oxydans 621H strain (IK003.1) engineered for improved growth. Therefore we combined accurate Illumina sequencing technology and low-cost single-molecule nanopore sequencing using the MinION® device from Oxford Nanopore. In our hybrid approach with a modified library protocol we could increase the average size of nanopore 2D reads to about 18.9kb. Combining the long MinION nanopore reads with the high quality short Illumina reads enabled the assembly of the engineered chromosome into a single contig and comprehensive detection and clarification of 7 structural variants including all three known genetically engineered modifications. We found the genome of IK003.1 was stable over 70 generations of strain handling including 28h of process time in a bioreactor. The long read data revealed a novel 1420 bp transposon-flanked and ORF-containing sequence which was hitherto unknown in the G. oxydans 621H reference. Further analysis and genome sequencing showed that this region is already present in G. oxydans 621H wild-type strains. Our data of G. oxydans 621H wild-type DNA from different resources also revealed in 73 annotated coding sequences about 91 uniform nucleotide differences including InDels. Together, our results contribute to an improved high quality genome reference for G. oxydans 621H which is available via ENA accession PRJEB18739.
Collapse
Affiliation(s)
- Angela Kranz
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Alexander Vogel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ursula Degner
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Ines Kiefler
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Michael Bott
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Björn Usadel
- IBMG: Institute for Biology I, RWTH Aachen University, Worringer Weg 2, 52074 Aachen, Germany; IBG-2 Plant Sciences, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany
| | - Tino Polen
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425 Jülich, Germany; The Bioeconomy Science Center (BioSC), c/o Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.
| |
Collapse
|
31
|
Mientus M, Kostner D, Peters B, Liebl W, Ehrenreich A. Characterization of membrane-bound dehydrogenases of Gluconobacter oxydans 621H using a new system for their functional expression. Appl Microbiol Biotechnol 2017; 101:3189-3200. [PMID: 28064365 DOI: 10.1007/s00253-016-8069-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/14/2016] [Accepted: 12/17/2016] [Indexed: 10/20/2022]
Abstract
Acetic acid bacteria are used in biotechnology due to their ability to incompletely oxidize a great variety of carbohydrates, alcohols, and related compounds in a regio- and stereo-selective manner. These reactions are catalyzed by membrane-bound dehydrogenases (mDHs), often with a broad substrate spectrum. In this study, the promoters of six mDHs of Gluconobacter oxydans 621H were characterized. The constitutive promoter of the alcohol dehydrogenase and the glucose-repressed promoter of the inositol dehydrogenase were used to construct a shuttle vector system for the fully functional expression of mDHs in the multi-deletion strain G. oxydans BP.9 that lacks its mDHs. This system was used to express each mDH of G. oxydans 621H, in order to individually characterize the substrates, they oxidize. From 55 tested compounds, the alcohol dehydrogenase oxidized 30 substrates and the polyol dehydrogenase 25. The substrate spectrum of alcohol dehydrogenase overlapped largely with the aldehyde dehydrogenase and partially with polyol dehydrogenase. Thus, we were able to resolve the overlapping substrate spectra of the main mDHs of G. oxydans 621H. The described approach could also be used for the expression and detailed characterization of substrates used by mDHs from other acetic acid bacteria or a metagenome.
Collapse
Affiliation(s)
- Markus Mientus
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - David Kostner
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Björn Peters
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Wolfgang Liebl
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany
| | - Armin Ehrenreich
- Lehrstuhl für Mikrobiologie Technische Universität München, Emil-Ramann-Str. 4, 85354, Freising, Germany.
| |
Collapse
|
32
|
Guleria S, Zhou J, Koffas MA. Nutraceuticals (Vitamin C, Carotenoids, Resveratrol). Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807833.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Sanjay Guleria
- Sher-e-Kashmir University of Agricultural Sciences and Technology; Division of Biochemistry, Faculty of Basic Sciences; Main Campus Chatha Jammu 180 009 India
| | - Jingwen Zhou
- Jiangnan University; Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology; 1800 Lihu Road Wuxi Jiangsu 214122 China
| | - Mattheos A.G. Koffas
- Rensselaer Polytechnic Institute; Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Center for Biotechnology and Interdisciplinary Studies; 110 8th Street Troy NY 12180 USA
| |
Collapse
|
33
|
Demain AL, Vandamme EJ, Collins J, Buchholz K. History of Industrial Biotechnology. Ind Biotechnol (New Rochelle N Y) 2016. [DOI: 10.1002/9783527807796.ch1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Arnold L. Demain
- Drew University; Charles A. Dana Research Institute for Scientists Emeriti (R.I.S.E.); 36, Madison Ave Madison NJ 07940 USA
| | - Erick J. Vandamme
- Ghent University; Department of Biochemical and Microbial Technology; Belgium
| | - John Collins
- Science historian; Leipziger Straße 82A; 38124 Braunschweig Germany
| | - Klaus Buchholz
- Technical University Braunschweig; Institute of Chemical Engineering; Hans-Sommer-Str. 10 38106 Braunschweig Germany
| |
Collapse
|
34
|
Kim TS, Patel SKS, Selvaraj C, Jung WS, Pan CH, Kang YC, Lee JK. A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci Rep 2016; 6:33438. [PMID: 27633501 PMCID: PMC5025769 DOI: 10.1038/srep33438] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 08/26/2016] [Indexed: 01/14/2023] Open
Abstract
A sorbitol dehydrogenase (GoSLDH) from Gluconobacter oxydans G624 (G. oxydans G624) was expressed in Escherichia coli BL21(DE3)-CodonPlus RIL. The complete 1455-bp codon-optimized gene was amplified, expressed, and thoroughly characterized for the first time. GoSLDH exhibited Km and kcat values of 38.9 mM and 3820 s−1 toward L-sorbitol, respectively. The enzyme exhibited high preference for NADP+ (vs. only 2.5% relative activity with NAD+). GoSLDH sequencing, structure analyses, and biochemical studies, suggested that it belongs to the NADP+-dependent polyol-specific long-chain sorbitol dehydrogenase family. GoSLDH is the first fully characterized SLDH to date, and it is distinguished from other L-sorbose-producing enzymes by its high activity and substrate specificity. Isothermal titration calorimetry showed that the protein binds more strongly to D-sorbitol than other L-sorbose-producing enzymes, and substrate docking analysis confirmed a higher turnover rate. The high oxidation potential of GoSLDH for D-sorbitol was confirmed by cyclovoltametric analysis. Further, stability of GoSLDH significantly improved (up to 13.6-fold) after cross-linking of immobilized enzyme on silica nanoparticles and retained 62.8% residual activity after 10 cycles of reuse. Therefore, immobilized GoSLDH may be useful for L-sorbose production from D-sorbitol.
Collapse
Affiliation(s)
- Tae-Su Kim
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| | - Sanjay K S Patel
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| | | | - Woo-Suk Jung
- Systems Biotechnology Research Center, KIST Gangneung Institute of Natural Products, 25451, Republic of Korea
| | - Cheol-Ho Pan
- Systems Biotechnology Research Center, KIST Gangneung Institute of Natural Products, 25451, Republic of Korea
| | - Yun Chan Kang
- Department of Materials Science and Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Jung-Kul Lee
- Department of Chemical Engineering, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
35
|
Overexpression of pyrroloquinoline quinone biosynthetic genes affects l -sorbose production in Gluconobacter oxydans WSH-003. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.04.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
36
|
Saichana N, Matsushita K, Adachi O, Frébort I, Frebortova J. Acetic acid bacteria: A group of bacteria with versatile biotechnological applications. Biotechnol Adv 2015; 33:1260-71. [DOI: 10.1016/j.biotechadv.2014.12.001] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
|
37
|
Enhanced production of l-sorbose in an industrial Gluconobacter oxydans strain by identification of a strong promoter based on proteomics analysis. ACTA ACUST UNITED AC 2015; 42:1039-47. [DOI: 10.1007/s10295-015-1624-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/25/2015] [Indexed: 10/23/2022]
Abstract
Abstract
Gluconobacter oxydans is capable of rapidly incomplete oxidation of many sugars and alcohols, which means the strain has great potential for industrial purposes. Strong promoters are one of the essential factors that can improve strain performance by overexpression of specific genes. In this study, a pipeline for screening strong promoters by proteomics analysis was established. Based on the procedure, a new strong promoter designated as PB932_2000 was identified in G. oxydans WSH-003. The promoter region was characterized based on known genome sequence information using BPROM. The strength of PB932_2000 was further assessed by analysis of enhanced green fluorescent protein (egfp) expression and comparison with egfp expression by two commonly used strong promoters, PE. coli_tufB and PG. oxydans_tufB. Both quantitative real-time PCR and fluorescence intensities for egfp gene expression showed that PB932_2000 promoter is stronger than the other two. Overexpression of d-sorbitol dehydrogenase (sldh) by PB932_2000 in G. oxydans WSH-003 enhanced the titer and productivity of l-sorbose synthesis from d-sorbitol by 12.0 % and 33.3 %, respectively. These results showed that proteomics analysis is an efficient way to identify strong promoters. The isolated promoter PB932_2000 could further facilitate the metabolic engineering of G. oxydans.
Collapse
|
38
|
Muñoz-Clares RA, González-Segura L, Riveros-Rosas H, Julián-Sánchez A. Amino acid residues that affect the basicity of the catalytic glutamate of the hydrolytic aldehyde dehydrogenases. Chem Biol Interact 2015; 234:45-58. [DOI: 10.1016/j.cbi.2015.01.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Revised: 12/21/2014] [Accepted: 01/15/2015] [Indexed: 11/26/2022]
|
39
|
Araki T, Nakatsuka T, Kobayashi F, Watanabe-Ishimaru E, Sanada H, Tamura T, Inagaki K. Reactivity of sorbose dehydrogenase from Sinorhizobium sp. 97507 for 1,5-anhydro-D-glucitol. Biosci Biotechnol Biochem 2015; 79:1130-2. [PMID: 25721692 DOI: 10.1080/09168451.2015.1012148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Purified recombinant sorbose dehydrogenase from Sinorhizobium sp. 97507 exhibited high reactivity for 1,5-anhydro-D-glucitol (1,5-AG) and L-sorbose, but little activity for the other sugars or sugar alcohols tested. Kinetic analysis revealed that its catalytic efficiency (k(cat)/Km) for L-sorbose and 1,5-AG is 1.8 × 10(2) and 1.5 × 10(2) s(-1)·M(-1), respectively.
Collapse
Affiliation(s)
- Toshio Araki
- a Ikeda Food Research Co., Ltd , Fukuyama , Japan
| | | | | | | | | | | | | |
Collapse
|
40
|
Gao L, Hu Y, Liu J, Du G, Zhou J, Chen J. Stepwise metabolic engineering of Gluconobacter oxydans WSH-003 for the direct production of 2-keto-l-gulonic acid from d-sorbitol. Metab Eng 2014; 24:30-7. [DOI: 10.1016/j.ymben.2014.04.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 03/18/2014] [Accepted: 04/21/2014] [Indexed: 10/25/2022]
|
41
|
Comparative proteomic analysis of experimental evolution of the Bacillus cereus-Ketogulonicigenium vulgare co-culture. PLoS One 2014; 9:e91789. [PMID: 24619085 PMCID: PMC3950281 DOI: 10.1371/journal.pone.0091789] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 02/14/2014] [Indexed: 11/19/2022] Open
Abstract
The microbial co-culture system composing of Ketogulonicigenium vulgare and Bacillus cereus was widely adopted in industry for the production of 2-keto-gulonic acid (2-KGA), the precursor of vitamin C. We found serial subcultivation of the co-culture could enhance the yield of 2-KGA by 16% in comparison to that of the ancestral co-culture. To elucidate the evolutionary dynamics and interaction mechanisms of the two microbes, we performed iTRAQ-based quantitative proteomic analyses of the pure cultures of K. vulgare, B. cereus and their co-culture during serial subcultivation. Hierarchy cluster analyses of the proteomic data showed that the expression level of a number of crucial proteins associated with sorbose conversion and oligopeptide transport was significantly enhanced by the experimental evolution. In particular, the expression level of sorbose/sorbosone dehydrogenase was enhanced in the evolved K. vulgare, while the expression level of InhA and the transport efficiency of oligopeptides were increased in the evolved B. cereus. The decreased sporulating protein expression and increased peptide transporter expression observed in evolved B. cereus, together with the increased amino acids synthesis in evolved K. vulgare suggested that serial subcultivation result in enhanced synergistic cooperation between K. vulgare and B. cereus, enabling an increased production of 2-KGA.
Collapse
|
42
|
Identification of a novel promoter gHp0169 for gene expression in Gluconobacter oxydans. J Biotechnol 2014; 175:69-74. [PMID: 24530540 DOI: 10.1016/j.jbiotec.2014.01.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 11/20/2022]
Abstract
Gluconobacter oxydans can perform rapid incomplete oxidation of many sugars, sugar polyols and alcohols, and this outstanding ability shows a great potential in industrial bioconversion. Improvements of these industrially important strains would boost their productivities of important metabolites. However, the shortage of molecular tools for homologous and heterologous gene expression has obviously hindered G. oxydans from further application. In this study, a putative promoter sequence (104bp), designated as gHp0169, was isolated and characterized from the chromosome of G. oxydans DSM 2003. Within this promoter sequence, the typical motif, known as -35 and -10 sequences with a 19-bp spacing, was found. The availability and promoter strength of promoter gHp0169 were then evaluated, by insertion into the plasmid pBBR1MCS5 for expression of a green fluorescent protein (GFP) and a membrane-bound type II NADH dehydrogenase (NDH-2) of G. oxydans. In comparison with promoter G. oxydans_tufB, gHp0169 exhibited a stronger promoter activity of NDH-2, indicating its significant value of gene expression in G. oxydans. To promote the production of 2-keto-d-gluconic acid (2-KGA) from gluconic acid (GA) gHp0169 was attempted to equip the flavin-dependent gluconate-2-dehydrogenase (GA2DH) and successfully achieved its overexpression in G. oxydans DSM 2003. As a result, the space-time yield of 2-KGA was boosted up to 29.86mM/h compared with 14.78mM/h for the control, which corresponded to a yield of 98.3% (84% for control).
Collapse
|
43
|
Complete Genome Sequence of the Industrial Strain Gluconobacter oxydans H24. GENOME ANNOUNCEMENTS 2013; 1:genomeA00003-13. [PMID: 23472221 PMCID: PMC3587919 DOI: 10.1128/genomea.00003-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 01/07/2013] [Indexed: 11/20/2022]
Abstract
Gluconobacter oxydans is characterized by its ability to incompletely oxidize carbohydrates and alcohols. The high yields of its oxidation products and complete secretion into the medium make it important for industrial use. We report the finished genome sequence of Gluconobacter oxydans H24, an industrial strain with high l-sorbose productivity.
Collapse
|
44
|
Industrial Production of l-Ascorbic Acid (Vitamin C) and d-Isoascorbic Acid. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2013; 143:143-88. [DOI: 10.1007/10_2013_243] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
45
|
Abstract
Microorganisms are one of the greatest sources of metabolic and enzymatic diversity. In recent years, emerging recombinant DNA and genomic techniques have facilitated the development of new efficient expression systems, modification of biosynthetic pathways leading to new metabolites by metabolic engineering, and enhancement of catalytic properties of enzymes by directed evolution. Complete sequencing of industrially important microbial genomes is taking place very rapidly and there are already hundreds of genomes sequenced. Functional genomics and proteomics are major tools used in the search for new molecules and development of higher-producing strains.
Collapse
|
46
|
Abstract
Vitamin C, an important organic acid, is widely used in the industries of pharmaceuticals, cosmetics, food, beverage and feed additives. Compared with the Reichstein method, biotechnological production of vitamin C is an attractive approach due to the low cost and high product quality. In this chapter, biosynthesis of vitamin C, including one-step fermentation processes and two-step fermentation processes are discussed and compared. Furthermore, the prospects of the biotechnological production of vitamin C are also presented.
Collapse
Affiliation(s)
- Jingwen Zhou
- School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, China
| | | | | |
Collapse
|
47
|
Liu L, Chen K, Zhang J, Liu J, Chen J. Gelatin enhances 2-keto-L-gulonic acid production based on Ketogulonigenium vulgare genome annotation. J Biotechnol 2011; 156:182-7. [PMID: 21924300 DOI: 10.1016/j.jbiotec.2011.08.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Revised: 08/01/2011] [Accepted: 08/08/2011] [Indexed: 11/28/2022]
Abstract
In the two-step fermentative production of vitamin C, its precursor 2-keto-L-gulonic acid (2-KLG) was synthesized by Ketogulonicigenium vulgare through co-culture with Bacillus megaterium. The reconstruction of the amino acid metabolic pathway through completed genome sequence annotation demonstrated that K. vulgare was deficient in one or more key enzymes in the de novo biosynthesis pathways of eight different amino acids (L-histidine, L-glycine, L-lysine, L-proline, L-threonine, L-methionine, L-leucine, and L-isoleucine). Among them, L-glycine, L-proline, L-threonine, and L-isoleucine play vital roles in K. vulgare growth and 2-KLG production. The addition of those amino acids increased the 2-KLG productivity by 20.4%, 17.2%, 17.2%, and 11.8%, respectively. Furthermore, food grade gelatin was developed as a substitute for the amino acids to increase the cell concentration, 2-KLG productivity, and L-sorbose consumption rate by 10.2%, 23.4%, and 20.9%, respectively. As a result, the fermentation period decreased to 43 h in a 7-L fermentor.
Collapse
Affiliation(s)
- Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | |
Collapse
|
48
|
Abstract
A shuttle vector pZL1 which can replicate both in Gluconobacter oxydans and Escherichia coli was constructed based on G. oxydans DSM2003 cryptic plasmid pGOX3, a homology of G. oxydans 621H pGOX3, and E. coli cloning vector pUC18. It was found to be stably maintained in G. oxydans during the serial subcultures in the absence of antibiotic pressure for 144 h. With pGOX3 as the reference sample, the relative copy number of pZL1 in G. oxydans is 13 determined by real-time fluorescence quantitative PCR (qPCR). The copy number of pZL1 is much higher than pBBR1MCS5 in E. coli. The vector pZL1 contains six commonly used restriction endonuclease sites, HindIII, SalI, XbaI, BamHI, SmaI, KpnI, and SacI, and is easy to manipulate in molecular biology experiments. The shuttle vector was used to express a reporter protein wasabi successfully in G. oxydans DSM2003 under the control of the tufB promoter.
Collapse
|
49
|
Kallnik V, Meyer M, Deppenmeier U, Schweiger P. Construction of expression vectors for protein production in Gluconobacter oxydans. J Biotechnol 2010; 150:460-5. [PMID: 20969898 DOI: 10.1016/j.jbiotec.2010.10.069] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2010] [Revised: 09/11/2010] [Accepted: 10/10/2010] [Indexed: 10/18/2022]
Abstract
The characteristic ability of Gluconobacter oxydans to incompletely oxidize numerous sugars, sugar acids, polyols, and alcohols has been exploited in several biotechnological processes, for example vitamin C production. The genome sequence of G. oxydans 621H is known but molecular tools are needed for the characterization of putative proteins and for the improvement of industrial strains by heterologous and homologous gene expression. To this end, promoter regions for the genes encoding G. oxydans ribosomal proteins L35 and L13 were introduced into the broad-host-range plasmid pBBR1MCS-2 to construct two new expression vectors for gene expression in Gluconobacter spp. These vectors were named pBBR1p264 and pBBR1p452, respectively, and have many advantages over current vectors for Gluconobacter spp. The uidA gene encoding β-D-glucuronidase was inserted downstream of the promoter regions and these promoter-reporter fusions were used to assess relative promoter strength. The constructs displayed distinct promoter strengths and strong (pBBR1p264), moderate (pBBR1p452) and weak (pBBR1MCS-2 carrying the intrinsic lac promoter) promoters were identified.
Collapse
Affiliation(s)
- Verena Kallnik
- Universität Bonn, Institut für Mikrobiologie & Biotechnologie, 168 Meckenheimer Allee, 53515 Bonn, Germany
| | | | | | | |
Collapse
|
50
|
|