1
|
Messner K, Kyndt JA, Yurkov V. Salinarimonas chemoclinalis, an Aerobic Anoxygenic Phototroph Isolated from a Saline, Sulfate-Rich Meromictic Lake. Microorganisms 2024; 12:2359. [PMID: 39597747 PMCID: PMC11596632 DOI: 10.3390/microorganisms12112359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/29/2024] Open
Abstract
A pink-pigmented, ovoid-rod-shaped, Gram-negative bacterial strain ML10T was previously isolated in a study of a meromictic lake in British Columbia, Canada. It produces bacteriochlorophyll a, which is incorporated into the reaction center and light harvesting I complexes. This alongside no anaerobic or photoautotrophic growth supports the designation of the strain as an aerobic anoxygenic phototroph. The cells produce wavy polar flagellum and accumulate clear, refractive granules, presumed to be polyhydroxyalkanoate. Sequence of the 16S rRNA gene identified close relatedness to Salinarimonas rosea (97.85%), Salinarimonas ramus (97.92%) and Saliniramus fredricksonii (94.61%). The DNA G + C content was 72.06 mol %. Differences in cellular fatty acids and some physiological tests compared to Salinarimonadaceae members, as well as average nucleotide identity and digital DNA-DNA hybridization, define the strain as a new species in Salinarimonas. Therefore, we propose that ML10T (=NCIMB 15586T = DSM 118510T) be classified as the type strain of a new species in the genus with the name Salinarimonas chemoclinalis sp. nov.
Collapse
Affiliation(s)
- Katia Messner
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| | - John A. Kyndt
- College of Science and Technology, Bellevue University, Bellevue, NE 68005, USA;
| | - Vladimir Yurkov
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada;
| |
Collapse
|
2
|
Oberreiter V, Gelabert P, Brück F, Franz S, Zelger E, Szedlacsek S, Cheronet O, Cano FT, Exler F, Zagorc B, Karavanić I, Banda M, Gasparyan B, Straus LG, Gonzalez Morales MR, Kappelman J, Stahlschmidt M, Rattei T, Kraemer SM, Sawyer S, Pinhasi R. Maximizing efficiency in sedimentary ancient DNA analysis: a novel extract pooling approach. Sci Rep 2024; 14:19388. [PMID: 39169089 PMCID: PMC11339378 DOI: 10.1038/s41598-024-69741-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024] Open
Abstract
In the last few decades, the field of ancient DNA has taken a new direction towards using sedimentary ancient DNA (sedaDNA) for studying human and mammalian population dynamics as well as past ecosystems. However, the screening of numerous sediment samples from archaeological sites remains a time-consuming and costly endeavor, particularly when targeting hominin DNA. Here, we present a novel high-throughput method that facilitates the fast and efficient analysis of sediment samples by applying a pooled testing approach. This method combines multiple extracts, enabling early parallelization of laboratory procedures and effective aDNA screening. Pooled samples with detectable aDNA signals undergo detailed analysis, while empty pools are discarded. We have successfully applied our method to multiple sediment samples from Middle and Upper Paleolithic sites in Europe, Asia, and Africa. Notably, our results reveal that an aDNA signal remains discernible even when pooled with four negative samples. We also demonstrate that the DNA yield of double-stranded libraries increases significantly when reducing the extract input, potentially mitigating the effects of inhibition. By embracing this innovative approach, researchers can analyze large numbers of sediment samples for aDNA preservation, achieving significant cost reductions of up to 70% and reducing hands-on laboratory time to one-fifth.
Collapse
Affiliation(s)
- Victoria Oberreiter
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Pere Gelabert
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Universitat Autònoma de Barcelona, Bellaterra, Spain.
| | - Florian Brück
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, Austria
| | - Stefan Franz
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Evelyn Zelger
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Sophie Szedlacsek
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
| | - Olivia Cheronet
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | | | - Florian Exler
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Brina Zagorc
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Ivor Karavanić
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Marko Banda
- Department of Archaeology, Faculty of Humanities and Social Sciences, University of Zagreb, Zagreb, Croatia
| | - Boris Gasparyan
- Institute of Archaeology and Ethnography, National Academy of Sciences of the Republic of Armenia, Yerevan, Armenia
| | - Lawrence Guy Straus
- Department of Anthropology, University of New Mexico, Albuquerque, USA
- EvoAdapta Group Universidad de Cantabria, Santander, Spain
| | - Manuel R Gonzalez Morales
- Instituto Internacional de Investigaciones Prehistóricas de Cantabria, Universidad de Cantabria, Gobierno de Cantabria, Banco Santander, Spain
| | - John Kappelman
- Department of Anthropology and Department of Earth and Planetary Sciences, The University of Texas, Austin, TX, USA
| | - Mareike Stahlschmidt
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
| | - Thomas Rattei
- Division of Computational Systems Biology, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Stephan M Kraemer
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
- Institut für Analytische Chemie, University of Vienna, Vienna, Austria
- Forschungsverbund Umwelt und Klima, University of Vienna, Vienna, Austria
| | - Susanna Sawyer
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| | - Ron Pinhasi
- Department of Evolutionary Anthropology, University of Vienna, Vienna, Austria.
- Human Evolution and Archaeological Sciences (HEAS), University of Vienna, Vienna, Austria.
| |
Collapse
|
3
|
Pearman JK, Biessy L, Howarth JD, Vandergoes MJ, Rees A, Wood SA. Deciphering the molecular signal from past and alive bacterial communities in aquatic sedimentary archives. Mol Ecol Resour 2021; 22:877-890. [PMID: 34562066 DOI: 10.1111/1755-0998.13515] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/01/2021] [Accepted: 09/22/2021] [Indexed: 01/04/2023]
Abstract
Lake sediments accumulate information on biological communities thus acting as natural archives. Traditionally paleolimnology has focussed on fossilized remains of organisms, however, many organisms do not leave fossil evidence, meaning major ecosystem components are missing from environmental reconstructions. Many paleolimnology studies now incorporate molecular methods, including investigating microbial communities using environmental DNA (eDNA), but there is uncertainty about the contribution of living organisms to molecular inventories. In the present study, we obtained DNA and RNA inventories from sediment spanning 700 years to investigate the contribution of past and active communities to the molecular signal from sedimentary archives. Additionally, a droplet digital PCR (ddPCR) targeting the 16S ribosomal RNA (16S rRNA) gene of the photosynthetic cyanobacterial genera Microcystis was used to explore if RNA signals were from legacy RNA. We posit that the RNA signal is a mixture of legacy RNA, dormant cells, living bacteria and modern-day trace level contaminants that were introduced during sampling and preferentially amplified. The presence of legacy RNA was confirmed by the detection of Microcystis in sediments aged to ~200 years ago. Recent comparisons between 16S rRNA gene metabarcoding and traditional paleo proxies showed that past changes in bacterial communities can be reconstructed from sedimentary archives. The recovery of RNA in the present study has provided new insights into the origin of these signals. However, caution is required during analysis and interpretation of 16S rRNA gene metabarcoding data especially in recent sediments were there are potentially active bacteria.
Collapse
Affiliation(s)
- John K Pearman
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | - Laura Biessy
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| | | | | | - Andrew Rees
- University of Victoria, Wellington, New Zealand
| | - Susanna A Wood
- Coastal and Freshwater Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
4
|
Dussex N, Bergfeldt N, de Anca Prado V, Dehasque M, Díez-Del-Molino D, Ersmark E, Kanellidou F, Larsson P, Lemež Š, Lord E, Mármol-Sánchez E, Meleg IN, Måsviken J, Naidoo T, Studerus J, Vicente M, von Seth J, Götherström A, Dalén L, Heintzman PD. Integrating multi-taxon palaeogenomes and sedimentary ancient DNA to study past ecosystem dynamics. Proc Biol Sci 2021; 288:20211252. [PMID: 34428961 PMCID: PMC8385357 DOI: 10.1098/rspb.2021.1252] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Ancient DNA (aDNA) has played a major role in our understanding of the past. Important advances in the sequencing and analysis of aDNA from a range of organisms have enabled a detailed understanding of processes such as past demography, introgression, domestication, adaptation and speciation. However, to date and with the notable exception of microbiomes and sediments, most aDNA studies have focused on single taxa or taxonomic groups, making the study of changes at the community level challenging. This is rather surprising because current sequencing and analytical approaches allow us to obtain and analyse aDNA from multiple source materials. When combined, these data can enable the simultaneous study of multiple taxa through space and time, and could thus provide a more comprehensive understanding of ecosystem-wide changes. It is therefore timely to develop an integrative approach to aDNA studies by combining data from multiple taxa and substrates. In this review, we discuss the various applications, associated challenges and future prospects of such an approach.
Collapse
Affiliation(s)
- Nicolas Dussex
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Nora Bergfeldt
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | | | - Marianne Dehasque
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - David Díez-Del-Molino
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden
| | - Erik Ersmark
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Foteini Kanellidou
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Petter Larsson
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Špela Lemež
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Edana Lord
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Emilio Mármol-Sánchez
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Ioana N Meleg
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden.,'Emil Racoviță' Institute of Speleology of the Romanian Academy, Calea 13 Septembrie, nr. 13, 050711, Sector 5, Bucharest, Romania.,Emil. G. Racoviță Institute, Babeș-Bolyai University, Clinicilor 5-7, 400006 Cluj-Napoca, Romania
| | - Johannes Måsviken
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Thijessen Naidoo
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden.,Ancient DNA Unit, SciLifeLab, Stockholm and Uppsala, Sweden
| | - Jovanka Studerus
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden
| | - Mário Vicente
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Johanna von Seth
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Anders Götherström
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Archaeology and Classical Studies, Stockholm University, Stockholm, Sweden
| | - Love Dalén
- Centre for Palaeogenetics, Svante Arrhenius väg 20C, 10691 Stockholm, Sweden.,Department of Zoology, Stockholm University, Stockholm, Sweden.,Department of Bioinformatics and Genetics, Swedish Museum of Natural History, Stockholm, Sweden
| | - Peter D Heintzman
- The Arctic University Museum of Norway, The Arctic University of Norway, 9037 Tromsø, Norway
| |
Collapse
|
5
|
From Water into Sediment-Tracing Freshwater Cyanobacteria via DNA Analyses. Microorganisms 2021; 9:microorganisms9081778. [PMID: 34442857 PMCID: PMC8400057 DOI: 10.3390/microorganisms9081778] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/17/2021] [Accepted: 08/19/2021] [Indexed: 01/04/2023] Open
Abstract
Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May–October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.
Collapse
|
6
|
Lake Sedimentary DNA Research on Past Terrestrial and Aquatic Biodiversity: Overview and Recommendations. QUATERNARY 2021. [DOI: 10.3390/quat4010006] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The use of lake sedimentary DNA to track the long-term changes in both terrestrial and aquatic biota is a rapidly advancing field in paleoecological research. Although largely applied nowadays, knowledge gaps remain in this field and there is therefore still research to be conducted to ensure the reliability of the sedimentary DNA signal. Building on the most recent literature and seven original case studies, we synthesize the state-of-the-art analytical procedures for effective sampling, extraction, amplification, quantification and/or generation of DNA inventories from sedimentary ancient DNA (sedaDNA) via high-throughput sequencing technologies. We provide recommendations based on current knowledge and best practises.
Collapse
|
7
|
Dead or alive: sediment DNA archives as tools for tracking aquatic evolution and adaptation. Commun Biol 2020; 3:169. [PMID: 32265485 PMCID: PMC7138834 DOI: 10.1038/s42003-020-0899-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/10/2020] [Indexed: 12/18/2022] Open
Abstract
DNA can be preserved in marine and freshwater sediments both in bulk sediment and in intact, viable resting stages. Here, we assess the potential for combined use of ancient, environmental, DNA and timeseries of resurrected long-term dormant organisms, to reconstruct trophic interactions and evolutionary adaptation to changing environments. These new methods, coupled with independent evidence of biotic and abiotic forcing factors, can provide a holistic view of past ecosystems beyond that offered by standard palaeoecology, help us assess implications of ecological and molecular change for contemporary ecosystem functioning and services, and improve our ability to predict adaptation to environmental stress. Ellegaard et al. discuss the potential for using ancient environmental DNA (eDNA), combined with resurrection ecology, to analyse trophic interactions and evolutionary adaptation to changing environments. Their Review suggests that these techniques will improve our ability to predict genetic and phenotypic adaptation to environmental stress.
Collapse
|
8
|
Giguet-Covex C, Ficetola GF, Walsh K, Poulenard J, Bajard M, Fouinat L, Sabatier P, Gielly L, Messager E, Develle AL, David F, Taberlet P, Brisset E, Guiter F, Sinet R, Arnaud F. New insights on lake sediment DNA from the catchment: importance of taphonomic and analytical issues on the record quality. Sci Rep 2019; 9:14676. [PMID: 31604959 PMCID: PMC6789010 DOI: 10.1038/s41598-019-50339-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022] Open
Abstract
Over the last decade, an increasing number of studies have used lake sediment DNA to trace past landscape changes, agricultural activities or human presence. However, the processes responsible for lake sediment formation and sediment properties might affect DNA records via taphonomic and analytical processes. It is crucial to understand these processes to ensure reliable interpretations for “palaeo” studies. Here, we combined plant and mammal DNA metabarcoding analyses with sedimentological and geochemical analyses from three lake-catchment systems that are characterised by different erosion dynamics. The new insights derived from this approach elucidate and assess issues relating to DNA sources and transfer processes. The sources of eroded materials strongly affect the “catchment-DNA” concentration in the sediments. For instance, erosion of upper organic and organo-mineral soil horizons provides a higher amount of plant DNA in lake sediments than deep horizons, bare soils or glacial flours. Moreover, high erosion rates, along with a well-developed hydrographic network, are proposed as factors positively affecting the representation of the catchment flora. The development of open and agricultural landscapes, which favour the erosion, could thus bias the reconstructed landscape trajectory but help the record of these human activities. Regarding domestic animals, pastoral practices and animal behaviour might affect their DNA record because they control the type of source of DNA (“point” vs. “diffuse”).
Collapse
Affiliation(s)
- C Giguet-Covex
- BioArch-Department of Archaeology, University of York, York, YO10 5DD, UK. .,EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France.
| | - G F Ficetola
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France.,Department of Environmental Science and Policy, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - K Walsh
- BioArch-Department of Archaeology, University of York, York, YO10 5DD, UK
| | - J Poulenard
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - M Bajard
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - L Fouinat
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - P Sabatier
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - L Gielly
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - E Messager
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - A L Develle
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| | - F David
- CEREGE, UMR CNRS 7330, IRD 161-Marseille Université, Technopôle de l'Arbois Méditerranée, BP 80, 13545, Aix en Provence cedex 4, France
| | - P Taberlet
- Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - E Brisset
- Aix-Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Aix-en-Provence, France.,Institut Català de Paleoecologia Humana i Evolució Social (IPHES), Tarragona, Spain.,Àrea de Prehistòria, Universitat Rovira i Virgili, Tarragona, Spain
| | - F Guiter
- Aix-Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Aix-en-Provence, France
| | - R Sinet
- Aix-Marseille Univ, Avignon Univ, CNRS, IRD, IMBE, Aix-en-Provence, France
| | - F Arnaud
- EDYTEM, UMR 5204 CNRS, Univ. Savoie Mont Blanc, Pôle Montagne, 73376, Le Bourget du Lac, France
| |
Collapse
|
9
|
Fulton JM, Arthur MA, Thomas B, Freeman KH. Pigment carbon and nitrogen isotopic signatures in euxinic basins. GEOBIOLOGY 2018; 16:429-445. [PMID: 29577577 DOI: 10.1111/gbi.12285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 02/12/2018] [Indexed: 06/08/2023]
Abstract
The carbon and nitrogen isotopic signatures of chloropigments and porphyrins from the sediments of redox-stratified lakes and marine basins reveal details of past biogeochemical nutrient cycling. Such interpretations are strengthened by modern calibration studies, and here, we report on the C and N isotopic composition of pigments and nutrients in the water column and surface sediment of redox-stratified Fayetteville Green Lake (FGL; New York). We also report δ13 C and δ15 N values for pyropheophytin a (Pphe a) and bacteriochlorophyll e (Bchl e) deposited in the Black Sea during its transition to a redox-stratified basin ca. 7.8 ka. We propose a model for evolving nutrient cycling in the Black Sea from 7.8 to 6.4 ka, informed by the new pigment data from FGL. The seasonal study of water column nutrients and pigments at FGL revealed population dynamics in surface and deep waters that were also captured in the sediments. Biomass was greatest near the chemocline, where cyanobacteria, purple sulfur bacteria (PSB), and green sulfur bacteria (GSB) had seasonally variable populations. Bulk organic matter in the surface sediment, however, was derived mainly from the oxygenated surface waters. Surface sediment pigment δ13 C and δ15 N values indicate intact chlorophyll a (Chl a) was derived from near the chemocline, but its degradation product pheophytin a (Phe a) was derived primarily from surface waters. Bacteriopheophytin a (Bphe a) and Bchl e in the sediments came from chemocline populations of PSB and GSB, respectively. The distinctive δ13 C and δ15 N values for Chl a, Phe a, and Bphe a in the surface sediment are inputs to an isotopic mixing model that shows their decomposition to a common porphyrin derivative can produce non-specific sedimentary isotope signatures. This model serves as a caveat for paleobiogeochemical interpretations in basins that had diverse populations near a shallow chemocline.
Collapse
Affiliation(s)
- J M Fulton
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - M A Arthur
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| | - B Thomas
- Department of Environmental and Earth Sciences, Willamette University, Salem, OR, USA
| | - K H Freeman
- Department of Geosciences, The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
10
|
Tse TJ, Doig LE, Tang S, Zhang X, Sun W, Wiseman SB, Feng CX, Liu H, Giesy JP, Hecker M, Jones PD. Combining High-Throughput Sequencing of sedaDNA and Traditional Paleolimnological Techniques To Infer Historical Trends in Cyanobacterial Communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:6842-6853. [PMID: 29782156 DOI: 10.1021/acs.est.7b06386] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Freshwaters worldwide are under increasing pressure from anthropogenic activities and changing climate. Unfortunately, many inland waters lack sufficient long-term monitoring to assess environmental trends. Analysis of sedimentary ancient DNA ( sedaDNA) is emerging as a means to reconstruct the past occurrence of microbial communities of inland waters. The purpose of this study was to assess a combination of high-throughput sequencing (16S rRNA) of sedaDNA and traditional paleolimnological analyses to explore multidecadal relationships among cyanobacterial community composition, the potential for cyanotoxin production, and paleoenvironmental proxies. DNA was extracted from two sediment cores collected from a northern Canadian Great Plains reservoir. Diversity indices illustrated significant community-level changes since reservoir formation. Furthermore, higher relative abundances in more recent years were observed for potentially toxic cyanobacterial genera including Dolichospermum. Correlation-based network analysis revealed this trend significantly and positively correlated to abundances of the microcystin synthetase gene ( mcyA) and other paleoproxies (nutrients, pigments, stanols, sterols, and certain diatom species), demonstrating synchrony between molecular and more standard proxies. These findings demonstrate a novel approach to infer long-term dynamics of cyanobacterial diversity in inland waters and highlight the power of high-throughput sequencing to reconstruct trends in environmental quality and inform lake and reservoir management and monitoring program design.
Collapse
Affiliation(s)
- Timothy J Tse
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
| | - Lorne E Doig
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
| | - Song Tang
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
- National Institute of Environmental Health , Chinese Center for Disease Control and Prevention , No. 7 Panjiayuan Nanli , Chaoyang District, Beijing 100021 , China
| | - Xiaohui Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - Weimin Sun
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management , Guangdong Institute of Eco-environment Science & Technology , Guangzhou , Guangdong 510650 , China
| | - Steve B Wiseman
- Department of Biological Sciences , University of Lethbridge , Lethbridge , AB T1K 3M4 , Canada
| | - Cindy Xin Feng
- School of Public Health , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5E5 , Canada
| | - Hongling Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
| | - John P Giesy
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment , Nanjing University , Nanjing , Jiangsu 210023 , China
- Zoology Department, Center for Integrative Toxicology , Michigan State University , East Lansing , Michigan 48824 , United States
- School of Biological Sciences , University of Hong Kong , Hong Kong , SAR 999077 , China
| | - Markus Hecker
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
| | - Paul D Jones
- Toxicology Centre , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5B3 , Canada
- Global Institute for Water Security , University of Saskatchewan , Saskatoon , Saskatchewan S7N 3H5 , Canada
- School of Environment and Sustainability , University of Saskatchewan , Saskatoon , Saskatchewan S7N 5C3 , Canada
| |
Collapse
|
11
|
Harrison BK, Myrbo A, Flood BE, Bailey JV. Abrupt burial imparts persistent changes to the bacterial diversity of turbidite-associated sediment profiles. GEOBIOLOGY 2018; 16:190-202. [PMID: 29350440 DOI: 10.1111/gbi.12271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Accepted: 11/09/2017] [Indexed: 06/07/2023]
Abstract
The emplacement of subaqueous gravity-driven sediment flows imposes a significant physical and geochemical impact on underlying sediment and microbial communities. Although previous studies have established lasting mineralogical and biological signatures of turbidite deposition, the response of bacteria and archaea within and beneath debris flows remains poorly constrained. Both bacterial cells associated with the underlying sediment and those attached to allochthonous material must respond to substantially altered environmental conditions and selective pressures. As a consequence, turbidites and underlying sediments provide an exceptional opportunity to examine (i) the microbial community response to rapid sedimentation and (ii) the preservation and identification of displaced micro-organisms. We collected Illumina MiSeq sequence libraries across turbidite boundaries at ~26 cm sediment depth in La Jolla Canyon off the coast of California, and at ~50 cm depth in meromictic Twin Lake, Hennepin County, MN. 16S rRNA gene signatures of relict and active bacterial populations exhibit persistent differences attributable to turbidite deposition. In particular, both the marine and lacustrine turbidite boundaries are sharply demarcated by the abundance and diversity of Chloroflexi, suggesting a characteristic sensitivity to sediment disturbance history or to differences in organic substrates across turbidite profiles. Variations in the abundance of putative dissimilatory sulfate-reducing Deltaproteobacteria across the buried La Jolla Canyon sediment-water interface reflect turbidite-induced changes to the geochemical environment. Species-level distinctions within the Deltaproteobacteria clearly conform to the sedimentological boundary, suggesting a continuing impact of genetic inheritance distinguishable from broader trends attributable to selective pressure. Abrupt, <1-cm scale changes in bacterial diversity across the Twin Lake turbidite contact are consistent with previous studies showing that relict DNA signatures attributable to sediment transport may be more easily preserved in low-energy, anoxic environments. This work raises the possibility that deep subsurface microbial communities may inherit variations in microbial diversity from sediment flow and deformation events.
Collapse
Affiliation(s)
- B K Harrison
- Department of Earth and Atmospheric Sciences, Central Michigan University, Mt. Pleasant, MI, USA
- Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - A Myrbo
- LacCore/CSDCO, Limnological Research Center, Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - B E Flood
- Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| | - J V Bailey
- Department of Earth Sciences, University of Minnesota, Twin Cities, Minneapolis, MN, USA
| |
Collapse
|
12
|
Extracellular DNA as a genetic recorder of microbial diversity in benthic deep-sea ecosystems. Sci Rep 2018; 8:1839. [PMID: 29382896 PMCID: PMC5789842 DOI: 10.1038/s41598-018-20302-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 01/17/2018] [Indexed: 12/17/2022] Open
Abstract
Extracellular DNA in deep-sea sediments represents a major repository of genes, which previously belonged to living organisms. However, the extent to which these extracellular genes influence current estimates of prokaryotic biodiversity is unknown. We investigated the abundance and diversity of 16S rDNA sequences contained within extracellular DNA from continental margins of different biogeographic regions. We also compared the taxonomic composition of microbial assemblages through the analysis of extracellular DNA and DNA associated with living cells. 16S rDNA contained in the extracellular DNA pool contributed up to 50% of the total 16S rDNA copy number determined in the sediments. Ca. 4% of extracellular Operational Taxonomic Units (OTUs) were shared among the different biogeographic regions revealing the presence of a core of preserved OTUs. A higher fraction of OTUs was exclusive of each region potentially due to its geographic and thermohaline characteristics. Ca. one third of the OTUs identified in the extracellular DNA were absent from living prokaryotic assemblages, possibly representing the signatures of past assemblages. Our findings expand the knowledge of the contribution of extracellular microbial sequences to current estimates of prokaryotic diversity obtained through the analyses of “environmental DNA”, and open new perspectives for understanding microbial successions in benthic ecosystems.
Collapse
|
13
|
Hamilton TL, Welander PV, Albrecht HL, Fulton JM, Schaperdoth I, Bird LR, Summons RE, Freeman KH, Macalady JL. Microbial communities and organic biomarkers in a Proterozoic-analog sinkhole. GEOBIOLOGY 2017; 15:784-797. [PMID: 29035021 DOI: 10.1111/gbi.12252] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 07/07/2017] [Indexed: 06/07/2023]
Abstract
Little Salt Spring (Sarasota County, FL, USA) is a sinkhole with groundwater vents at ~77 m depth. The entire water column experiences sulfidic (~50 μM) conditions seasonally, resulting in a system poised between oxic and sulfidic conditions. Red pinnacle mats occupy the sediment-water interface in the sunlit upper basin of the sinkhole, and yielded 16S rRNA gene clones affiliated with Cyanobacteria, Chlorobi, and sulfate-reducing clades of Deltaproteobacteria. Nine bacteriochlorophyll e homologues and isorenieratene indicate contributions from Chlorobi, and abundant chlorophyll a and pheophytin a are consistent with the presence of Cyanobacteria. The red pinnacle mat contains hopanoids, including 2-methyl structures that have been interpreted as biomarkers for Cyanobacteria. A single sequence of hpnP, the gene required for methylation of hopanoids at the C-2 position, was recovered in both DNA and cDNA libraries from the red pinnacle mat. The hpnP sequence was most closely related to cyanobacterial hpnP sequences, implying that Cyanobacteria are a source of 2-methyl hopanoids present in the mat. The mats are capable of light-dependent primary productivity as evidenced by 13 C-bicarbonate photoassimilation. We also observed 13 C-bicarbonate photoassimilation in the presence of DCMU, an inhibitor of electron transfer to Photosystem II. Our results indicate that the mats carry out light-driven primary production in the absence of oxygen production-a mechanism that may have delayed the oxygenation of the Earth's oceans and atmosphere during the Proterozoic Eon. Furthermore, our observations of the production of 2-methyl hopanoids by Cyanobacteria under conditions of low oxygen and low light are consistent with the recovery of these structures from ancient black shales as well as their paucity in modern marine environments.
Collapse
Affiliation(s)
- T L Hamilton
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN, USA
| | - P V Welander
- Department of Earth System Science, Stanford University, Stanford, CA, USA
| | - H L Albrecht
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - J M Fulton
- Department of Geosciences, Baylor University, Waco, TX, USA
| | - I Schaperdoth
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - L R Bird
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - R E Summons
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - K H Freeman
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | - J L Macalady
- Department of Geosciences and the Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| |
Collapse
|
14
|
Vuillemin A, Horn F, Alawi M, Henny C, Wagner D, Crowe SA, Kallmeyer J. Preservation and Significance of Extracellular DNA in Ferruginous Sediments from Lake Towuti, Indonesia. Front Microbiol 2017; 8:1440. [PMID: 28798742 PMCID: PMC5529349 DOI: 10.3389/fmicb.2017.01440] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 07/17/2017] [Indexed: 01/20/2023] Open
Abstract
Extracellular DNA is ubiquitous in soil and sediment and constitutes a dominant fraction of environmental DNA in aquatic systems. In theory, extracellular DNA is composed of genomic elements persisting at different degrees of preservation produced by processes occurring on land, in the water column and sediment. Extracellular DNA can be taken up as a nutrient source, excreted or degraded by microorganisms, or adsorbed onto mineral matrices, thus potentially preserving information from past environments. To test whether extracellular DNA records lacustrine conditions, we sequentially extracted extracellular and intracellular DNA from anoxic sediments of ferruginous Lake Towuti, Indonesia. We applied 16S rRNA gene Illumina sequencing on both fractions to discriminate exogenous from endogenous sources of extracellular DNA in the sediment. Environmental sequences exclusively found as extracellular DNA in the sediment originated from multiple sources. For instance, Actinobacteria, Verrucomicrobia, and Acidobacteria derived from soils in the catchment. Limited primary productivity in the water column resulted in few sequences of Cyanobacteria in the oxic photic zone, whereas stratification of the water body mainly led to secondary production by aerobic and anaerobic heterotrophs. Chloroflexi and Planctomycetes, the main degraders of sinking organic matter and planktonic sequences at the water-sediment interface, were preferentially preserved during the initial phase of burial. To trace endogenous sources of extracellular DNA, we used relative abundances of taxa in the intracellular DNA to define which microbial populations grow, decline or persist at low density with sediment depth. Cell lysis became an important additional source of extracellular DNA, gradually covering previous genetic assemblages as other microbial genera became more abundant with depth. The use of extracellular DNA as nutrient by active microorganisms led to selective removal of sequences with lowest GC contents. We conclude that extracellular DNA preserved in shallow lacustrine sediments reflects the initial environmental context, but is gradually modified and thereby shifts from its stratigraphic context. Discrimination of exogenous and endogenous sources of extracellular DNA allows simultaneously addressing in-lake and post-depositional processes. In deeper sediments, the accumulation of resting stages and sequences from cell lysis would require stringent extraction and specific primers if ancient DNA is targeted.
Collapse
Affiliation(s)
- Aurèle Vuillemin
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Fabian Horn
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Mashal Alawi
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Cynthia Henny
- Research Center for Limnology, Indonesian Institute of SciencesCibinong-Bogor, Indonesia
| | - Dirk Wagner
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| | - Sean A. Crowe
- Department of Microbiology and Immunology, University of British Columbia, VancouverBC, Canada
- Department of Earth, Ocean, and Atmospheric Sciences, University of British Columbia, VancouverBC, Canada
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section 5.3: GeomicrobiologyPotsdam, Germany
| |
Collapse
|
15
|
Parducci L, Bennett KD, Ficetola GF, Alsos IG, Suyama Y, Wood JR, Pedersen MW. Ancient plant DNA in lake sediments. THE NEW PHYTOLOGIST 2017; 214:924-942. [PMID: 28370025 DOI: 10.1111/nph.14470] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Accepted: 12/07/2016] [Indexed: 05/14/2023]
Abstract
Contents 924 I. 925 II. 925 III. 927 IV. 929 V. 930 VI. 930 VII. 931 VIII. 933 IX. 935 X. 936 XI. 938 938 References 938 SUMMARY: Recent advances in sequencing technologies now permit the analyses of plant DNA from fossil samples (ancient plant DNA, plant aDNA), and thus enable the molecular reconstruction of palaeofloras. Hitherto, ancient frozen soils have proved excellent in preserving DNA molecules, and have thus been the most commonly used source of plant aDNA. However, DNA from soil mainly represents taxa growing a few metres from the sampling point. Lakes have larger catchment areas and recent studies have suggested that plant aDNA from lake sediments is a more powerful tool for palaeofloristic reconstruction. Furthermore, lakes can be found globally in nearly all environments, and are therefore not limited to perennially frozen areas. Here, we review the latest approaches and methods for the study of plant aDNA from lake sediments and discuss the progress made up to the present. We argue that aDNA analyses add new and additional perspectives for the study of ancient plant populations and, in time, will provide higher taxonomic resolution and more precise estimation of abundance. Despite this, key questions and challenges remain for such plant aDNA studies. Finally, we provide guidelines on technical issues, including lake selection, and we suggest directions for future research on plant aDNA studies in lake sediments.
Collapse
Affiliation(s)
- Laura Parducci
- Department of Ecology and Genetics, Evolutionary Biology Centre, Uppsala University, Norbyvägen 18D, Uppsala, 75236, Sweden
| | - Keith D Bennett
- Department of Geography & Sustainable Development, School of Geography & Geosciences, University of St Andrews, St Andrews, Fife, KY16 9AL, UK
- Marine Laboratory, Queen's University Belfast, Portaferry, BT22 1LS, UK
| | - Gentile Francesco Ficetola
- CNRS, Université Grenoble-Alpes, Laboratoire d'Ecologie Alpine (LECA), Grenoble, F-38000, France
- Department of Biosciences, Università degli Studi di Milano, Milan, 20133, Italy
| | - Inger Greve Alsos
- Tromsø Museum, UiT - The Arctic University of Norway, Tromsø, NO-9037, Norway
| | - Yoshihisa Suyama
- Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-onsen, Osaki, Miyagi, 989-6711, Japan
| | - Jamie R Wood
- Long-term Ecology Lab, Landcare Research, PO Box 69040, Lincoln Canterbury, 7640, New Zealand
| | - Mikkel Winther Pedersen
- Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Copenhagen, 1350, Denmark
| |
Collapse
|
16
|
Chlorobaculum tepidum Modulates Amino Acid Composition in Response to Energy Availability, as Revealed by a Systematic Exploration of the Energy Landscape of Phototrophic Sulfur Oxidation. Appl Environ Microbiol 2016; 82:6431-6439. [PMID: 27565613 DOI: 10.1128/aem.02111-16] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 08/17/2016] [Indexed: 12/26/2022] Open
Abstract
Microbial sulfur metabolism, particularly the formation and consumption of insoluble elemental sulfur (S0), is an important biogeochemical engine that has been harnessed for applications ranging from bioleaching and biomining to remediation of waste streams. Chlorobaculum tepidum, a low-light-adapted photoautolithotrophic sulfur-oxidizing bacterium, oxidizes multiple sulfur species and displays a preference for more reduced electron donors: sulfide > S0 > thiosulfate. To understand this preference in the context of light energy availability, an "energy landscape" of phototrophic sulfur oxidation was constructed by varying electron donor identity, light flux, and culture duration. Biomass and cellular parameters of C. tepidum cultures grown across this landscape were analyzed. From these data, a correction factor for colorimetric protein assays was developed, enabling more accurate biomass measurements for C. tepidum, as well as other organisms. C. tepidum's bulk amino acid composition correlated with energy landscape parameters, including a tendency toward less energetically expensive amino acids under reduced light flux. This correlation, paired with an observation of increased cell size and storage carbon production under electron-rich growth conditions, suggests that C. tepidum has evolved to cope with changing energy availability by tuning its proteome for energetic efficiency and storing compounds for leaner times. IMPORTANCE How microbes cope with and adapt to varying energy availability is an important factor in understanding microbial ecology and in designing efficient biotechnological processes. We explored the response of a model phototrophic organism, Chlorobaculum tepidum, across a factorial experimental design that enabled simultaneous variation and analysis of multiple growth conditions, what we term the "energy landscape." C. tepidum biomass composition shifted toward less energetically expensive amino acids at low light levels. This observation provides experimental evidence for evolved efficiencies in microbial proteomes and emphasizes the role that energy flux may play in the adaptive responses of organisms. From a practical standpoint, our data suggest that bulk biomass amino acid composition could provide a simple proxy to monitor and identify energy stress in microbial systems.
Collapse
|
17
|
Hamilton TL, Bovee RJ, Sattin SR, Mohr W, Gilhooly WP, Lyons TW, Pearson A, Macalady JL. Carbon and Sulfur Cycling below the Chemocline in a Meromictic Lake and the Identification of a Novel Taxonomic Lineage in the FCB Superphylum, Candidatus Aegiribacteria. Front Microbiol 2016; 7:598. [PMID: 27199928 PMCID: PMC4846661 DOI: 10.3389/fmicb.2016.00598] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Accepted: 04/11/2016] [Indexed: 11/13/2022] Open
Abstract
Mahoney Lake in British Columbia is an extreme meromictic system with unusually high levels of sulfate and sulfide present in the water column. As is common in strongly stratified lakes, Mahoney Lake hosts a dense, sulfide-oxidizing phototrophic microbial community where light reaches the chemocline. Below this "plate," the euxinic hypolimnion is anoxic, eutrophic, saline, and rich in sulfide, polysulfides, elemental sulfur, and other sulfur intermediates. While much is known regarding microbial communities in sunlit portions of euxinic systems, the composition and genetic potential of organisms living at aphotic depths have rarely been studied. Metagenomic sequencing of samples from the hypolimnion and the underlying sediments of Mahoney Lake indicate that multiple taxa contribute to sulfate reduction below the chemocline and that the hypolimnion and sediments each support distinct populations of sulfate reducing bacteria (SRB) that differ from the SRB populations observed in the chemocline. After assembling and binning the metagenomic datasets, we recovered near-complete genomes of dominant populations including two Deltaproteobacteria. One of the deltaproteobacterial genomes encoded a 16S rRNA sequence that was most closely related to the sulfur-disproportionating genus Dissulfuribacter and the other encoded a 16S rRNA sequence that was most closely related to the fatty acid- and aromatic acid-degrading genus Syntrophus. We also recovered two near-complete genomes of Firmicutes species. Analysis of concatenated ribosomal protein trees suggests these genomes are most closely related to extremely alkaliphilic genera Alkaliphilus and Dethiobacter. Our metagenomic data indicate that these Firmicutes contribute to carbon cycling below the chemocline. Lastly, we recovered a nearly complete genome from the sediment metagenome which represents a new genus within the FCB (Fibrobacteres, Chlorobi, Bacteroidetes) superphylum. Consistent with the geochemical data, we found little or no evidence for organisms capable of sulfide oxidation in the aphotic zone below the chemocline. Instead, comparison of functional genes below the chemocline are consistent with recovery of multiple populations capable of reducing oxidized sulfur. Our data support previous observations that at least some of the sulfide necessary to support the dense population of phototrophs in the chemocline is supplied from sulfate reduction in the hypolimnion and sediments. These studies provide key insights regarding the taxonomic and functional diversity within a euxinic environment and highlight the complexity of biogeochemical carbon and sulfur cycling necessary to maintain euxinia.
Collapse
Affiliation(s)
- Trinity L Hamilton
- Department of Biological Sciences, University of Cincinnati Cincinnati, OH, USA
| | - Roderick J Bovee
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Sarah R Sattin
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Wiebke Mohr
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - William P Gilhooly
- Department of Earth Sciences, Indiana University-Purdue University Indianapolis Indianapolis, IN, USA
| | - Timothy W Lyons
- Department of Earth Sciences, University of California Riverside, CA, USA
| | - Ann Pearson
- Department of Earth and Planetary Sciences, Harvard University Cambridge, MA, USA
| | - Jennifer L Macalady
- Penn State Astrobiology Research Center, Department of Geosciences, Pennsylvania State University University Park, TX, USA
| |
Collapse
|
18
|
Sedimentary archaeal amoA gene abundance reflects historic nutrient level and salinity fluctuations in Qinghai Lake, Tibetan Plateau. Sci Rep 2015; 5:18071. [PMID: 26666501 PMCID: PMC4678299 DOI: 10.1038/srep18071] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Integration of DNA derived from ancient phototrophs with their characteristic lipid biomarkers has been successfully employed to reconstruct paleoenvironmental conditions. However, it is poorly known that whether the DNA and lipids of microbial functional aerobes (such as ammonia-oxidizing archaea: AOA) can be used for reconstructing past environmental conditions. Here we identify and quantify the AOA amoA genes (encoding the alpha subunit of ammonia monooxygenases) preserved in a 5.8-m sediment core (spanning the last 18,500 years) from Qinghai Lake. Parallel analyses revealed that low amoA gene abundance corresponded to high total organic carbon (TOC) and salinity, while high amoA gene abundance corresponded to low TOC and salinity. In the Qinghai Lake region, TOC can serve as an indicator of paleo-productivity and paleo-precipitation, which is related to historic nutrient input and salinity. So our data suggest that temporal variation of AOA amoA gene abundance preserved in Qinghai Lake sediment may reflect the variations of nutrient level and salinity throughout the late Pleistocene and Holocene in the Qinghai Lake region.
Collapse
|
19
|
Torti A, Lever MA, Jørgensen BB. Origin, dynamics, and implications of extracellular DNA pools in marine sediments. Mar Genomics 2015; 24 Pt 3:185-96. [DOI: 10.1016/j.margen.2015.08.007] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 08/29/2015] [Indexed: 12/17/2022]
|
20
|
Carolan MT, Smith JM, Beman JM. Transcriptomic evidence for microbial sulfur cycling in the eastern tropical North Pacific oxygen minimum zone. Front Microbiol 2015; 6:334. [PMID: 26029168 PMCID: PMC4426714 DOI: 10.3389/fmicb.2015.00334] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/03/2015] [Indexed: 01/06/2023] Open
Abstract
Microbial communities play central roles in ocean biogeochemical cycles, and are particularly important in in oceanic oxygen minimum zones (OMZs). However, the key carbon, nitrogen, and sulfur (S) cycling processes catalyzed by OMZ microbial communities are poorly constrained spatially, temporally, and with regard to the different microbial groups involved. Here we sample across dissolved oxygen (DO) gradients in the oceans’ largest OMZ by volume—the eastern tropical North Pacific ocean, or ETNP—and quantify 16S rRNA and functional gene transcripts to detect and constrain the activity of different S-cycling groups. Based on gene expression profiles, putative dissimilatory sulfite reductase (dsrA) genes are actively expressed within the ETNP OMZ. dsrA expression was limited almost entirely to samples with elevated nitrite concentrations, consistent with previous observations in the Eastern Tropical South Pacific OMZ. dsrA and ‘reverse’ dissimilatory sulfite reductase (rdsrA) genes are related and the associated enzymes are known to operate in either direction—reducing or oxidizing different S compounds. We found that rdsrA genes and soxB genes were expressed in the same samples, suggestive of active S cycling in the ETNP OMZ. These data provide potential thresholds for S cycling in OMZs that closely mimic recent predictions, and indicate that S cycling may be broadly relevant in OMZs.
Collapse
Affiliation(s)
- Molly T Carolan
- Life and Environmental Sciences and Sierra Nevada Research Institute, University of California at Merced Merced, CA, USA
| | - Jason M Smith
- Monterey Bay Aquarium Research Institute Moss Landing, CA, USA
| | - J M Beman
- Monterey Bay Aquarium Research Institute Moss Landing, CA, USA
| |
Collapse
|
21
|
Martínez de la Escalera G, Antoniades D, Bonilla S, Piccini C. Application of ancient DNA to the reconstruction of past microbial assemblages and for the detection of toxic cyanobacteria in subtropical freshwater ecosystems. Mol Ecol 2014; 23:5791-802. [PMID: 25346253 DOI: 10.1111/mec.12979] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Revised: 10/02/2014] [Accepted: 10/06/2014] [Indexed: 11/26/2022]
Abstract
Ancient DNA (aDNA) analysis of lake sediments is a promising tool for detecting shifts in past microbial assemblages in response to changing environmental conditions. We examined sediment core samples from subtropical, freshwater Laguna Blanca (Uruguay), which has been severely affected by cultural eutrophication since 1960 and where cyanobacterial blooms, particularly those of the saxitoxin-producer Cylindrospermopsis raciborskii, have been reported since the 1990s. Samples corresponding to ~1846, 1852, 2000 and 2007 AD were selected to perform denaturing gradient gel electrophoresis (DGGE) analysis of the 16S-23S rRNA intergenic transcribed spacer (ribosomal ITS) to compare their prokaryotic assemblage composition. Each stratum showed different ITS patterns, but the composition of 21st century samples was clearly different than those of mid-19th century. This compositional change was correlated with shifts in sediment organic matter and chlorophyll a content, which were significantly higher in recent samples. The presence of saxitoxin-producing cyanobacteria was addressed by quantitative real-time PCR of the sxtU gene involved in toxin biosynthesis. This gene was present only in recent samples, for which clone libraries and ITS sequencing indicated the presence of Cyanobacteria. Phylogenetic analyses identified C. raciborskii only in the 2000 sample, shortly after several years when blooms were recorded in the lake. These data suggest the utility of aDNA for the reconstruction of microbial assemblage shifts in subtropical lakes, at least on centennial scales. The application of aDNA analysis to genes involved in cyanotoxin synthesis extends the applicability of molecular techniques in palaeolimnological studies to include key microbial community characteristics of great scientific and social interest.
Collapse
Affiliation(s)
- Gabriela Martínez de la Escalera
- Departamento de Microbiología, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Avenida Italia 3318, 11600, Montevideo, Uruguay; Ecology and Physiology of Phytoplankton Group, CSIC, Universidad de la República, Iguá 4225, 11400, Montevideo, Uruguay
| | | | | | | |
Collapse
|
22
|
Bovee RJ, Pearson A. Strong influence of the littoral zone on sedimentary lipid biomarkers in a meromictic lake. GEOBIOLOGY 2014; 12:529-541. [PMID: 25201322 DOI: 10.1111/gbi.12099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Accepted: 07/29/2014] [Indexed: 06/03/2023]
Abstract
Planktonic sulfur bacteria growing in zones of photic zone euxinia (PZE) are important primary producers in stratified, sulfur-rich environments. The potential for export and burial of microbial biomass from anoxic photic zones remains relatively understudied, despite being of fundamental importance to interpreting the geologic record of bulk total organic carbon (TOC) and individual lipid biomarkers. Here we report the relative concentrations and carbon isotope ratios of lipid biomarkers from the water column and sediments of meromictic Mahoney Lake. The data show that organic matter in the central basin sediments is indistinguishable from material at the lake shoreline in both its lipid and carbon isotopic compositions. However, this material is not consistent with either the lipid profile or carbon isotope composition of biomass obtained directly from the region of PZE. Due to the strong density stratification and the intensive carbon and sulfur recycling pathways in the water column, there appears to be minimal direct export of the sulfur-oxidizing planktonic community to depth. The results instead suggest that basinal sediments are sourced via the littoral environment, a system that integrates an indigenous shoreline microbial community, the degraded remains of laterally rafted biomass from the PZE community, and detrital remains of terrigenous higher plants. Material from the lake margins appears to travel downslope, traverse the strong density gradient, and become deposited in the deep basin; its final composition may be largely heterotrophic in origin. This suggests an important role for clastic and/or authigenic minerals in aiding the burial of terrigenous and mat-derived organic matter in euxinic systems. Downslope or mineral-aided transport of anoxygenic, photoautotrophic microbial mats may have been a significant sedimentation process in early Earth history.
Collapse
Affiliation(s)
- R J Bovee
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA
| | | |
Collapse
|
23
|
Hamilton TL, Bovee RJ, Thiel V, Sattin SR, Mohr W, Schaperdoth I, Vogl K, Gilhooly WP, Lyons TW, Tomsho LP, Schuster SC, Overmann J, Bryant DA, Pearson A, Macalady JL. Coupled reductive and oxidative sulfur cycling in the phototrophic plate of a meromictic lake. GEOBIOLOGY 2014; 12:451-68. [PMID: 24976102 DOI: 10.1111/gbi.12092] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 05/30/2014] [Indexed: 05/10/2023]
Abstract
Mahoney Lake represents an extreme meromictic model system and is a valuable site for examining the organisms and processes that sustain photic zone euxinia (PZE). A single population of purple sulfur bacteria (PSB) living in a dense phototrophic plate in the chemocline is responsible for most of the primary production in Mahoney Lake. Here, we present metagenomic data from this phototrophic plate--including the genome of the major PSB, as obtained from both a highly enriched culture and from the metagenomic data--as well as evidence for multiple other taxa that contribute to the oxidative sulfur cycle and to sulfate reduction. The planktonic PSB is a member of the Chromatiaceae, here renamed Thiohalocapsa sp. strain ML1. It produces the carotenoid okenone, yet its closest relatives are benthic PSB isolates, a finding that may complicate the use of okenone (okenane) as a biomarker for ancient PZE. Favorable thermodynamics for non-phototrophic sulfide oxidation and sulfate reduction reactions also occur in the plate, and a suite of organisms capable of oxidizing and reducing sulfur is apparent in the metagenome. Fluctuating supplies of both reduced carbon and reduced sulfur to the chemocline may partly account for the diversity of both autotrophic and heterotrophic species. Collectively, the data demonstrate the physiological potential for maintaining complex sulfur and carbon cycles in an anoxic water column, driven by the input of exogenous organic matter. This is consistent with suggestions that high levels of oxygenic primary production maintain episodes of PZE in Earth's history and that such communities should support a diversity of sulfur cycle reactions.
Collapse
Affiliation(s)
- T L Hamilton
- Department of Geosciences, Penn State Astrobiology Research Center (PSARC), The Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Deoxygenation alters bacterial diversity and community composition in the ocean's largest oxygen minimum zone. Nat Commun 2014; 4:2705. [PMID: 24162368 DOI: 10.1038/ncomms3705] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2013] [Accepted: 10/03/2013] [Indexed: 11/08/2022] Open
Abstract
Oceanic oxygen minimum zones (OMZs) have a central role in biogeochemical cycles and are expanding as a consequence of climate change, yet how deoxygenation will affect the microbial communities that control these cycles is unclear. Here we sample across dissolved oxygen gradients in the oceans' largest OMZ and show that bacterial richness displays a unimodal pattern with decreasing dissolved oxygen, reaching maximum values on the edge of the OMZ and decreasing within it. Rare groups on the OMZ margin are abundant at lower dissolved oxygen concentrations, including sulphur-cycling Chromatiales, for which 16S rRNA was amplified from extracted RNA. Microbial species distribution models accurately replicate community patterns based on multivariate environmental data, demonstrate likely changes in distributions and diversity in the eastern tropical North Pacific Ocean, and highlight the sensitivity of key bacterial groups to deoxygenation. Through these mechanisms, OMZ expansion may alter microbial composition, competition, diversity and function, all of which have implications for biogeochemical cycling in OMZs.
Collapse
|
25
|
Pawłowska J, Lejzerowicz F, Esling P, Szczuciński W, Zajączkowski M, Pawlowski J. Ancient DNA sheds new light on the Svalbard foraminiferal fossil record of the last millennium. GEOBIOLOGY 2014; 12:277-288. [PMID: 24730667 DOI: 10.1111/gbi.12087] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 04/19/2014] [Indexed: 06/03/2023]
Abstract
Recent palaeogenetic studies have demonstrated the occurrence of preserved ancient DNA (aDNA) in various types of fossilised material. Environmental aDNA sequences assigned to modern species have been recovered from marine sediments dating to the Pleistocene. However, the match between the aDNA and the fossil record still needs to be evaluated for the environmental DNA approaches to be fully exploited. Here, we focus on foraminifera in sediments up to one thousand years old retrieved from the Hornsund fjord (Svalbard). We compared the diversity of foraminiferal microfossil assemblages with the diversity of aDNA sequenced from subsurface sediment samples using both cloning and high-throughput sequencing (HTS). Our study shows that 57% of the species archived in the fossil record were also detected in the aDNA data. However, the relative abundance of aDNA sequence reads and fossil specimens differed considerably. We also found a limited match between the stratigraphic occurrence of some fossil species and their aDNA sequences, especially in the case of rare taxa. The aDNA data comprised a high proportion of non-fossilised monothalamous species, which are known to dominate in modern foraminiferal communities of the Svalbard region. Our results confirm the relevance of HTS for studying past micro-eukaryotic diversity and provide insight into its ability to reflect fossil assemblages. Palaeogenetic studies including aDNA analyses of non-fossilised groups expand the range of palaeoceanographical proxies and therefore may increase the accuracy of palaeoenvironmental reconstructions.
Collapse
Affiliation(s)
- J Pawłowska
- Institute of Oceanology Polish Academy of Sciences, Sopot, Poland
| | | | | | | | | | | |
Collapse
|
26
|
Alawi M, Schneider B, Kallmeyer J. A procedure for separate recovery of extra- and intracellular DNA from a single marine sediment sample. J Microbiol Methods 2014; 104:36-42. [PMID: 24955890 DOI: 10.1016/j.mimet.2014.06.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 06/12/2014] [Accepted: 06/12/2014] [Indexed: 10/25/2022]
Abstract
Extracellular DNA (eDNA) is a ubiquitous biological compound in aquatic sediment and soil. Previous studies suggested that eDNA plays an important role in biogeochemical element cycling, horizontal gene transfer and stabilization of biofilm structures. Previous methods for eDNA extraction were either not suitable for oligotrophic sediments or only allowed quantification but no genetic analyses. Our procedure is based on cell detachment and eDNA liberation from sediment particles by sequential washing with an alkaline sodium phosphate buffer followed by a separation of cells and eDNA. The separated eDNA is then bound onto silica particles and purified, whereas the intracellular DNA from the separated cells is extracted using a commercial kit. The method provides extra- and intracellular DNA of high purity that is suitable for downstream applications like PCR. Extracellular DNA was extracted from organic-rich shallow sediment of the Baltic Sea, glacially influenced sediment of the Barents Sea and from the oligotrophic South Pacific Gyre. The eDNA concentration in these samples varied from 23 to 626ngg(-1) wet weight sediment. A number of experiments were performed to verify each processing step. Although extraction efficiency is higher than other published methods, it is not fully quantitative.
Collapse
Affiliation(s)
- Mashal Alawi
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Potsdam, Germany.
| | - Beate Schneider
- University of Potsdam, Institute of Earth and Environmental Science, Geomicrobiology, Potsdam, Germany
| | - Jens Kallmeyer
- GFZ German Research Centre for Geosciences, Section 4.5 Geomicrobiology, Potsdam, Germany
| |
Collapse
|
27
|
Rogozin DY, Zykov VV, Degermendzhi AG. Ecology of purple sulfur bacteria in the highly stratified meromictic Lake Shunet (Siberia, Khakassia) in 2002–2009. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712060148] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
Hargreaves KR, Anderson NJ, Clokie MRJ. Recovery of viable cyanophages from the sediments of a eutrophic lake at decadal timescales. FEMS Microbiol Ecol 2012; 83:450-6. [PMID: 22963199 DOI: 10.1111/1574-6941.12005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 08/22/2012] [Accepted: 09/03/2012] [Indexed: 12/01/2022] Open
Abstract
Cyanobacteria and their associated viruses (cyanophages) are abundant throughout the world in both marine and freshwater environments. The predator-prey relationship influences population dynamics within these ecosystems and facilitates the co-evolution of both organisms. Evidence of the close-linked interactions between cyanobacteria and viruses has been found extensively throughout marine biomes, but freshwater systems are less well studied. Eutrophic lake sediments potentially allow the preservation of cyanophages. If historic cyanophages could be isolated, they could provide insights into the evolution, biology and population dynamics over defined timescales. To determine whether viable phages are present in this environment, sectioned sediment cores (~ 50 cm in length) were taken from a eutrophic, stratifying lake (Rostherne Mere, Cheshire, UK). They were examined under the transmission electron microscope, and phages were isolated on two Microcystis strains PCC 7820 and BC 84/1. Viable phages were recovered from ~ 33- and ~ 50-year-old sediments. This is the first known study to investigate the viability of freshwater cyanophages recovered from dated lake sediments.
Collapse
Affiliation(s)
- Kate R Hargreaves
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, UK
| | | | | |
Collapse
|
29
|
Beman JM, Bertics VJ, Braunschweiler T, Wilson JM. Quantification of ammonia oxidation rates and the distribution of ammonia-oxidizing Archaea and Bacteria in marine sediment depth profiles from Catalina Island, California. Front Microbiol 2012; 3:263. [PMID: 22837756 PMCID: PMC3403348 DOI: 10.3389/fmicb.2012.00263] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 07/04/2012] [Indexed: 11/28/2022] Open
Abstract
Microbial communities present in marine sediments play a central role in nitrogen biogeochemistry at local to global scales. Along the oxidation–reduction gradients present in sediment profiles, multiple nitrogen cycling processes (such as nitrification, denitrification, nitrogen fixation, and anaerobic ammonium oxidation) are active and actively coupled to one another – yet the microbial communities responsible for these transformations and the rates at which they occur are still poorly understood. We report pore water geochemical (O2, NH4+, and NO3−) profiles, quantitative profiles of archaeal and bacterial amoA genes, and ammonia oxidation rate measurements, from bioturbated marine sediments of Catalina Island, California. Across triplicate sediment cores collected offshore at Bird Rock (BR) and within Catalina Harbor (CH), oxygen penetration (0.24–0.5 cm depth) and the abundance of amoA genes (up to 9.30 × 107 genes g–1) varied with depth and between cores. Bacterial amoA genes were consistently present at depths of up to 10 cm, and archaeal amoA was readily detected in BR cores, and CH cores from 2008, but not 2007. Although detection of DNA is not necessarily indicative of active growth and metabolism, ammonia oxidation rate measurements made in 2008 (using isotope tracer) demonstrated the production of oxidized nitrogen at depths where amoA was present. Rates varied with depth and between cores, but indicate that active ammonia oxidation occurs at up to 10 cm depth in bioturbated CH sediments, where it may be carried out by either or both ammonia-oxidizing archaea and bacteria.
Collapse
Affiliation(s)
- J M Beman
- School of Natural Sciences, University of California, Merced, Merced, CA, USA
| | | | | | | |
Collapse
|
30
|
Klepac-Ceraj V, Hayes CA, Gilhooly WP, Lyons TW, Kolter R, Pearson A. Microbial diversity under extreme euxinia: Mahoney Lake, Canada. GEOBIOLOGY 2012; 10:223-235. [PMID: 22329601 DOI: 10.1111/j.1472-4669.2012.00317.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Mahoney Lake, British Columbia, Canada, is a stratified, 15-m deep saline lake with a euxinic (anoxic, sulfidic) hypolimnion. A dense plate of phototrophic purple sulfur bacteria is found at the chemocline, but to date the rest of the Mahoney Lake microbial ecosystem has been underexamined. In particular, the microbial community that resides in the aphotic hypolimnion and/or in the lake sediments is unknown, and it is unclear whether the sulfate reducers that supply sulfide for phototrophy live only within, or also below, the plate. Here we profiled distributions of 16S rRNA genes using gene clone libraries and PhyloChip microarrays. Both approaches suggest that microbial diversity is greatest in the hypolimnion (8 m) and sediments. Diversity is lowest in the photosynthetic plate (7 m). Shallower depths (5 m, 7 m) are rich in Actinobacteria, Alphaproteobacteria, and Gammaproteobacteria, while deeper depths (8 m, sediments) are rich in Crenarchaeota, Natronoanaerobium, and Verrucomicrobia. The heterogeneous distribution of Deltaproteobacteria and Epsilonproteobacteria between 7 and 8 m is consistent with metabolisms involving sulfur intermediates in the chemocline, but complete sulfate reduction in the hypolimnion. Overall, the results are consistent with the presence of distinct microbial niches and suggest zonation of sulfur cycle processes in this stratified system.
Collapse
MESH Headings
- Archaea/classification
- Archaea/isolation & purification
- Bacteria/classification
- Bacteria/isolation & purification
- Biota
- British Columbia
- Cluster Analysis
- DNA, Archaeal/chemistry
- DNA, Archaeal/genetics
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Fresh Water/microbiology
- Genes, rRNA
- Geologic Sediments/microbiology
- Phylogeny
- RNA, Archaeal/genetics
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- V Klepac-Ceraj
- Department of Molecular Genetics, Forsyth Institute, Cambridge, MA, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Ravasi DF, Peduzzi S, Guidi V, Peduzzi R, Wirth SB, Gilli A, Tonolla M. Development of a real-time PCR method for the detection of fossil 16S rDNA fragments of phototrophic sulfur bacteria in the sediments of Lake Cadagno. GEOBIOLOGY 2012; 10:196-204. [PMID: 22433067 DOI: 10.1111/j.1472-4669.2012.00326.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lake Cadagno is a crenogenic meromictic lake situated in the southern range of the Swiss Alps characterized by a compact chemocline that has been the object of many ecological studies. The population dynamics of phototrophic sulfur bacteria in the chemocline has been monitored since 1994 with molecular methods such as 16S rRNA gene clone library analysis. To reconstruct paleo-microbial community dynamics, we developed a quantitative real-time PCR methodology for specific detection of 16S rRNA gene sequences of purple and green sulfur bacteria populations from sediment samples. We detected fossil 16S rDNA of nine populations of phototrophic sulfur bacteria down to 9-m sediment depth, corresponding to about 9500 years of the lake's biogeological history. These results provide the first evidence for the presence of 16S rDNA of anoxygenic phototrophic bacteria in Holocene sediments of an alpine meromictic lake and indicate that the water column stratification and the bacterial plume were already present in Lake Cadagno thousands of years ago. The finding of Chlorobium clathratiforme remains in all the samples analyzed shows that this population, identified in the water column only in 2001, was already a part of the lake's biota in the past.
Collapse
Affiliation(s)
- D F Ravasi
- Piora Alpine Biology Centre Foundation, c/o Cantonal Institute of Microbiology, Bellinzona, Switzerland.
| | | | | | | | | | | | | |
Collapse
|
32
|
Boere AC, Rijpstra WIC, De Lange GJ, Sinninghe Damsté JS, Coolen MJL. Preservation potential of ancient plankton DNA in Pleistocene marine sediments. GEOBIOLOGY 2011; 9:377-393. [PMID: 21884361 DOI: 10.1111/j.1472-4669.2011.00290.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Recent studies have shown that ancient plankton DNA can be recovered from Holocene lacustrine and marine sediments, including from species that do not leave diagnostic microscopic fossils in the sediment record. Therefore, the analysis of this so-called fossil plankton DNA is a promising approach for refining paleoecological and paleoenvironmental information. However, further studies are needed to reveal whether DNA of past plankton is preserved beyond the Holocene. Here, we identified past eukaryotic plankton members based on 18S rRNA gene profiling in eastern Mediterranean Holocene and Pleistocene sapropels S1 (~9 ka), S3 (~80 ka), S4 (~105 ka), and S5 (~125 ka). The majority of preserved ~400- to 500-bp-long 18S rDNA fragments of microalgae that were studied in detail (i.e. from haptophyte algae and dinoflagellates) were found in the youngest sapropel S1, whereas their specific lipid biomarkers (long-chain alkenones and dinosterol) were also abundant in sediments deposited between 80 and 124 ka BP. The late-Pleistocene sediments mainly contained eukaryotic DNA of marine fungi and from terrestrial plants, which could have been introduced via the river Nile at the time of deposition and preserved in pollen grains. A parallel analysis of Branched and Isoprenoid Tetraethers (i.e. BIT index) showed that most of the organic matter in the eastern Mediterranean sediment record was of marine (e.g. pelagic) origin. Therefore, the predominance of terrestrial plant DNA over plankton DNA in older sapropels suggests a preferential degradation of marine plankton DNA.
Collapse
Affiliation(s)
- A C Boere
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands
| | | | | | | | | |
Collapse
|
33
|
Mori Y, Purdy KJ, Oakley BB, Kondo R. Comprehensive detection of phototrophic sulfur bacteria using PCR primers that target reverse dissimilatory sulfite reductase gene. Microbes Environ 2011; 25:190-6. [PMID: 21576872 DOI: 10.1264/jsme2.me10109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A new set of primers for the detection of phototrophic sulfur bacteria in natural environments is described. The primers target the α-subunit of the reverse dissimilatory sulfite reductase gene (dsrA). PCR-amplification resulted in products of the expected size from all the phototrophic strains tested, including purple sulfur and green sulfur bacteria. Seventy-nine clones obtained from environmental DNA using the primers were sequenced and all found to be closely related to the dsrA of purple sulfur bacteria and green sulfur bacteria. This newly developed PCR assay targeting dsrA is rapid and simple for the detection of phototrophic sulfur bacteria in situ and superior to the use of culture-dependent techniques.
Collapse
Affiliation(s)
- Yumi Mori
- Department of Marine Bioscience, Fukui Prefectural University, Obama, Fukui 917–0003, Japan.
| | | | | | | |
Collapse
|
34
|
Abstract
A 7000-year record of Coccolithovirus and its host, the calcifying haptophyte Emiliania huxleyi, was reconstructed on the basis of genetic signatures preserved in sediments underlying the Black Sea. The data show that the same virus and host populations can persist for centuries. Major changes in virus and host populations occurred during early sapropel deposition, ~5600 years ago, and throughout the formation of the coccolith-bearing sediments of Unit I during the past 2500 years, when the Black Sea experienced dramatic changes in hydrologic and nutrient regimes. Unit I saw a reoccurrence of the same host genotype thousands of years later in the presence of a different subset of viruses. Historical plankton virus populations can thus be included in paleoecological and paleoenvironmental studies.
Collapse
Affiliation(s)
- Marco J L Coolen
- Marine Chemistry and Geochemistry Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA.
| |
Collapse
|
35
|
Meyer KM, Macalady JL, Fulton JM, Kump LR, Schaperdoth I, Freeman KH. Carotenoid biomarkers as an imperfect reflection of the anoxygenic phototrophic community in meromictic Fayetteville Green Lake. GEOBIOLOGY 2011; 9:321-329. [PMID: 21682840 DOI: 10.1111/j.1472-4669.2011.00285.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Organic biomarkers in marine sedimentary rocks hold important clues about the early history of Earth's surface environment. The chemical relicts of carotenoids from anoxygenic sulfur bacteria are of particular interest to geoscientists because of their potential to signal episodes of marine photic-zone euxinia such as those proposed for extended periods in the Proterozoic as well as brief intervals during the Phanerozoic. It is therefore critical to constrain the environmental and physiological factors that influence carotenoid production and preservation in modern environments. Here, we present the results of coupled pigment and nucleic acid clone library analyses from planktonic and benthic samples collected from a microbially dominated meromictic lake, Fayetteville Green Lake (New York). Purple sulfur bacteria (PSB) are abundant and diverse both in the water column at the chemocline and in benthic mats below oxygenated shallow waters, with different PSB species inhabiting the two environments. Okenone (from PSB) is an abundant carotenoid in both the chemocline waters and in benthic mats. Green sulfur bacteria and their primary pigment Bchl e are also represented in and below the chemocline. However, the water column and sediments are devoid of the green sulfur bacteria carotenoid isorenieratene. The unexpected absence of isorenieratene and apparent benthic production of okenone provide strong rationale for continued exploration of the microbial ecology of biomarker production in modern euxinic environments.
Collapse
Affiliation(s)
- K M Meyer
- Department of Geological and Environmental Sciences, Stanford University, CA, USA.
| | | | | | | | | | | |
Collapse
|
36
|
Brandsma J, van de Vossenberg J, Risgaard-Petersen N, Schmid MC, Engström P, Eurenius K, Hulth S, Jaeschke A, Abbas B, Hopmans EC, Strous M, Schouten S, Jetten MSM, Damsté JSS. A multi-proxy study of anaerobic ammonium oxidation in marine sediments of the Gullmar Fjord, Sweden. ENVIRONMENTAL MICROBIOLOGY REPORTS 2011; 3:360-366. [PMID: 23761282 DOI: 10.1111/j.1758-2229.2010.00233.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is an important process for nitrogen removal in marine pelagic and benthic environments and represents a major sink in the global nitrogen cycle. We applied a suite of complementary methods for the detection and enumeration of anammox activity and anammox bacteria in marine sediments of the Gullmar Fjord, and compared the results obtained with each technique. (15) N labelling experiments showed that nitrogen removal through N2 production was essentially limited to the upper 2 cm of the sediment, where anammox contributed 23-47% of the total production. The presence of marine anammox bacteria belonging to the genus 'Candidatus Scalindua' was shown by 16S rRNA gene sequence comparison. FISH counts of anammox bacteria correlated well with anammox activity, while quantitative PCR may have underestimated the number of anammox bacterial 16S rRNA gene copies at this site. Potential nitrogen conversion by anammox ranged from 0.6 to 4.8 fmol N cell(-1) day(-1) , in agreement with previous measurements in the marine environment and in bioreactors. Finally, intact ladderane glycerophospholipid concentrations better reflected anammox activity and abundance than ladderane core lipid concentrations, most likely because the core lipid fraction contained a substantial fossil component, especially deeper in the sediment.
Collapse
Affiliation(s)
- Joost Brandsma
- NIOZ Royal Netherlands Institute for Sea Research, Department of Marine Organic Biogeochemistry, P.O. Box 59, NL-1790 AB Den Burg, The Netherlands. Radboud University Nijmegen, IWWR, Department of Microbiology, Heyendaalseweg 135, NL-6525 AJ Nijmegen, The Netherlands. Aarhus University, National Environmental Research Institute, Velsøvej 25, DK-8600 Silkeborg, Denmark. University of Gothenburg, Department of Chemistry, SE-412 96 Göteborg, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Epp LS, Stoof-Leichsenring KR, Trauth MH, Tiedemann R. Molecular profiling of diatom assemblages in tropical lake sediments using taxon-specific PCR and Denaturing High-Performance Liquid Chromatography (PCR-DHPLC). Mol Ecol Resour 2011; 11:842-53. [PMID: 21592311 DOI: 10.1111/j.1755-0998.2011.03022.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Here we present a protocol to genetically detect diatoms in sediments of the Kenyan tropical Lake Naivasha, based on taxon-specific PCR amplification of short fragments (approximately 100 bp) of the small subunit ribosomal (SSU) gene and subsequent separation of species-specific PCR products by PCR-based denaturing high-performance liquid chromatography (DHPLC). An evaluation of amplicons differing in primer specificity to diatoms and length of the fragments amplified demonstrated that the number of different diatom sequence types detected after cloning of the PCR products critically depended on the specificity of the primers to diatoms and the length of the amplified fragments whereby shorter fragments yielded more species of diatoms. The DHPLC was able to discriminate between very short amplicons based on the sequence difference, even if the fragments were of identical length and if the amplicons differed only in a small number of nucleotides. Generally, the method identified the dominant sequence types from mixed amplifications. A comparison with microscopic analysis of the sediment samples revealed that the sequence types identified in the molecular assessment corresponded well with the most dominant species. In summary, the PCR-based DHPLC protocol offers a fast, reliable and cost-efficient possibility to study DNA from sediments and other environmental samples with unknown organismic content, even for very short DNA fragments.
Collapse
Affiliation(s)
- Laura S Epp
- Unit of Evolutionary Biology/Systematic Zoology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, D-14476 Potsdam, Germany.
| | | | | | | |
Collapse
|
38
|
Lanekoff I, Karlsson R. Analysis of intact ladderane phospholipids, originating from viable anammox bacteria, using RP-LC-ESI-MS. Anal Bioanal Chem 2010; 397:3543-51. [PMID: 20556361 PMCID: PMC2911534 DOI: 10.1007/s00216-010-3913-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2010] [Revised: 06/03/2010] [Accepted: 06/08/2010] [Indexed: 11/28/2022]
Abstract
Since the discovery of the anaerobic ammonium oxidizing (anammox) bacteria, many attempts have been made in order to identify these environmentally important bacteria in natural environments. Anammox bacteria contain a unique class of lipids, called ladderane lipids and here we present a novel method to detect viable anammox bacteria in sediments and waste water treatment plants based on the use of a ladderane lipid biomarker. Intact ladderane phosphatidylcholine (PC) lipids are analyzed using reversed-phase liquid chromatography-electrospray ionization-mass spectrometry. Following extraction from the complex sediment matrix, reversed-phase LC is used to separate ladderane PC lipids based on their tail group hydrophobicity as well as their ether or ester link to the glycerol backbone in the sn-2 position. We investigate the presence of intact ladderane lipids in natural sediments displaying anammox activity and illustrate the use of a specific intact membrane forming PC lipid as a biomarker for viable anammox bacterial cells. The presented method can be used to elucidate the whereabouts of viable anammox bacteria, subsequently enabling an estimation of anammox activity. This will greatly increase the knowledge of anammox bacteria and their importance in the global nitrogen cycle.
Collapse
Affiliation(s)
- Ingela Lanekoff
- Department of Chemistry, University of Gothenburg, Kemivagen 10, 412 96 Gothenburg, Sweden
| | | |
Collapse
|
39
|
Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnol J 2009; 4:480-94. [PMID: 19288513 DOI: 10.1002/biot.200800201] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microorganisms constitute two third of the Earth's biological diversity. As many as 99% of the microorganisms present in certain environments cannot be cultured by standard techniques. Culture-independent methods are required to understand the genetic diversity, population structure and ecological roles of the majority of organisms. Metagenomics is the genomic analysis of microorganisms by direct extraction and cloning of DNA from their natural environment. Protocols have been developed to capture unexplored microbial diversity to overcome the existing barriers in estimation of diversity. New screening methods have been designed to select specific functional genes within metagenomic libraries to detect novel biocatalysts as well as bioactive molecules applicable to mankind. To study the complete gene or operon clusters, various vectors including cosmid, fosmid or bacterial artificial chromosomes are being developed. Bioinformatics tools and databases have added much to the study of microbial diversity. This review describes the various methodologies and tools developed to understand the biology of uncultured microbes including bacteria, archaea and viruses through metagenomic analysis.
Collapse
Affiliation(s)
- Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Boere AC, Abbas B, Rijpstra WIC, Versteegh GJM, Volkman JK, Sinninghe Damsté JS, Coolen MJL. Late-Holocene succession of dinoflagellates in an Antarctic fjord using a multi-proxy approach: paleoenvironmental genomics, lipid biomarkers and palynomorphs. GEOBIOLOGY 2009; 7:265-281. [PMID: 19515203 DOI: 10.1111/j.1472-4669.2009.00202.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Recent work has shown that paleoenvironmental genomics, i.e. the application of genomic tools to analyze preserved DNA in sedimentary records, is a promising approach to reconstruct the diversity of past planktonic communities. This provides information about past ecological and environmental changes. A major advantage of this approach is that individual species, including those that did not leave other characteristic markers, can be identified. In this study, we determined which dinoflagellate marker (i.e. 18S rDNA, dinosterol or dinocysts) provided the most detailed information about the late-Holocene succession of dinoflagellates in an Antarctic Fjord (Ellis Fjord, Vestfold Hills). The preserved rDNA revealed two intervals in the 2750-year-old sediment record. The dinoflagellate diversity was the highest until approximately 1850 cal yr bp and included phylotypes related to known dinosterol producers. A lower concentration of dinosterol in sediments <1850 cal yr bp coincided with a community shift towards a predominance of the autotrophic sea-ice dinoflagellate Polarella glacialis, which is not a source of dinosterol. Remarkably, cultures of P. glacialis are known to produce other diagnostic sterols, but these were not recovered here. In addition, conspicuous resting cysts of P. glacialis were not preserved in the analyzed sediments. Overall, dinocysts were rare and the paleoenvironmental genomics approach revealed the highest diversity of dinoflagellates in Ellis Fjord, and was the only approach that recorded a shift in dinoflagellate composition at approximately 1850 cal yr bp indicative of a colder climate with more extensive ice cover - this timing coincides with a period of changing climate reported for this region.
Collapse
MESH Headings
- Animals
- Antarctic Regions
- Biodiversity
- Cluster Analysis
- DNA, Protozoan/chemistry
- DNA, Protozoan/genetics
- DNA, Protozoan/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Dinoflagellida/genetics
- Genes, rRNA
- Geologic Sediments/parasitology
- Lipids/isolation & purification
- Molecular Sequence Data
- Phylogeny
- RNA, Protozoan/genetics
- RNA, Ribosomal, 18S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- A C Boere
- Department of Marine Organic Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, Den Burg, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
41
|
Shrestha PM, Kube M, Reinhardt R, Liesack W. Transcriptional activity of paddy soil bacterial communities. Environ Microbiol 2008; 11:960-70. [PMID: 19170728 DOI: 10.1111/j.1462-2920.2008.01821.x] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bulk mRNA was used to explore the transcriptional activity of bacterial communities in oxic versus anoxic paddy soil. Two microbial cDNA libraries were constructed from composite samples using semi-randomly primed RT-PCR. cDNAs averaged 500-600 bp in length and were treated as expressed sequence tags (ESTs). Clustering analysis of 805 random cDNAs resulted in 179 and 155 different ESTs for the oxic and anoxic zones respectively. Using an E-value threshold of e(-10), a total of 218 different ESTs could be assigned by blastx, while 116 ESTs were predicted novel. Both the proportion and significance of the EST assignments increased with cDNA length. Taxonomic assignment was more powerful in discriminating between the aerobic and anaerobic bacterial communities than functional inference, as most ESTs in both oxygen zones were putative indicators of similar housekeeping functions, in particular ABC-type transporters. A few ESTs were putative indicators for community function in a biogeochemical context, such as beta-oxidation of long-chain fatty acids specifically in the oxic zone. Expressed sequence tags assigned to Alpha- and Betaproteobacteria were predominantly found in the oxic zone, while those affiliated with Deltaproteobacteria were more frequently detected in the anoxic zone. At the genus level, multiple assignments to Bradyrhizobium and Geobacter were unique to the oxic and anoxic zones respectively. The phylum-level affiliations of 93 16S rRNA sequences corresponded well with two taxonomically distinct EST patterns. Expressed sequence tags affiliated with Acidobacteria and Chloroflexi were frequently detected in both oxygen zones. In summary, the soil metatranscriptome is accessible for global analysis and such studies have great potential in elucidating the taxonomic and functional status of soil bacterial communities, but study significance depends on the number and length of cDNAs being randomly analysed.
Collapse
Affiliation(s)
- Pravin Malla Shrestha
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str., D-35043 Marburg, Germany
| | | | | | | |
Collapse
|
42
|
Jiang H, Dong H, Yu B, Lv G, Deng S, Wu Y, Dai M, Jiao N. Abundance and diversity of aerobic anoxygenic phototrophic bacteria in saline lakes on the Tibetan plateau. FEMS Microbiol Ecol 2008; 67:268-78. [PMID: 19016867 DOI: 10.1111/j.1574-6941.2008.00616.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aerobic anoxygenic phototrophic (AAP) bacteria are heterotrophic prokaryotes that are capable of utilizing light as an energy source but are not capable of producing molecular oxygen. Recently, multiple studies have found that AAP bacteria are widely distributed in oceans and estuaries and may play an important role in carbon cycling. However, AAP bacteria in inland lake ecosystems have not been investigated in depth. In this study, the abundance and diversity of the pufL-M genes, encoding photosynthetic reaction centers of AAP bacteria, were determined in the oxic water column and anoxic sediments of saline lakes (Qinghai, Erhai, and Gahai Lakes) on the Tibetan Plateau, China. Our results indicated that AAP bacteria were abundant in inland lakes, with the proportion of AAP bacteria (in total bacteria) comparable to those in the oceans, but with a lower diversity. Salinity and pH were found to be potential factors controlling the AAP bacterial diversity and community composition. Our data have implications for a better understanding of the potential role of AAP bacteria in carbon cycling in inland lake ecosystems.
Collapse
Affiliation(s)
- Hongchen Jiang
- Geomicrobiology Laboratory, State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Corinaldesi C, Beolchini F, Dell'Anno A. Damage and degradation rates of extracellular DNA in marine sediments: implications for the preservation of gene sequences. Mol Ecol 2008; 17:3939-51. [PMID: 18643876 DOI: 10.1111/j.1365-294x.2008.03880.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The extracellular DNA pool in marine sediments is the largest reservoir of DNA of the world oceans and it potentially represents an archive of genetic information and gene sequences involved in natural transformation processes. However, no information is at present available for the gene sequences contained in the extracellular DNA and for the factors that influence their preservation. In the present study, we investigated the depurination and degradation rates of extracellular DNA in a variety of marine sediment samples characterized by different ages (up to 10,000 years) and environmental conditions according to the presence, abundance and diversity of prokaryotic gene sequences. We provide evidence that depurination of extracellular DNA in these sediments depends upon the different environmental factors that act synergistically and proceeds at much slower rates than those theoretically predicted or estimated for terrestrial ecosystems. These findings suggest that depurination in marine sediments is not the main process that limits extracellular DNA survival. Conversely, DNase activities were high suggesting a more relevant role of biologically driven processes. Amplifiable prokaryotic 16S rDNA sequences were present in most benthic systems analysed, independent of depurination and degradation rates and of the ages of the sediment samples. Additional molecular analyses revealed that the extracellular DNA pool is characterized by relatively low-copy numbers of prokaryotic 16S rDNA sequences that are highly diversified. Overall, our results suggest that the extracellular DNA pool in marine sediments represents a repository of genetic information, which can be used for improving our understanding of the biodiversity, functioning and evolution of ecosystems over different timescales.
Collapse
Affiliation(s)
- C Corinaldesi
- Department of Marine Sciences, Faculty of Science, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | | | | |
Collapse
|
44
|
Overmann J. Ecology of Phototrophic Sulfur Bacteria. SULFUR METABOLISM IN PHOTOTROPHIC ORGANISMS 2008. [DOI: 10.1007/978-1-4020-6863-8_19] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
45
|
Subfossil 16S rRNA gene sequences of green sulfur bacteria in the Black Sea and their implications for past photic zone anoxia. Appl Environ Microbiol 2007; 74:624-32. [PMID: 18039829 DOI: 10.1128/aem.02137-07] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Black Sea is the largest extant anoxic water body on Earth. Its oxic-anoxic boundary is located at a depth of 100 m and is populated by a single phylotype of marine green sulfur bacteria. This organism, Chlorobium sp. strain BS-1, is extraordinarily low light adapted and can therefore serve as an indicator of deep photic zone anoxia (A. K. Manske, J. Glaeser, M. M. M. Kuypers, and J. Overmann, Appl. Environ. Microbiol. 71:8049-8060, 2005). In the present study, two sediment cores were retrieved from the bottom of the Black Sea at depths of 2,006 and 2,162 m and were analyzed for the presence of subfossil DNA sequences of BS-1 using ancient-DNA methodology. Using optimized cultivation media, viable cells of the BS-1 phylotype were detected only at the sediment surface and not in deeper layers. In contrast, green sulfur bacterial 16S rRNA gene fragments were amplified from all the sediment layers investigated, including turbidites. After separation by denaturing gradient gel electrophoresis and sequencing, 14 different sequence types were distinguished. The sequence of BS-1 represented only a minor fraction of the amplification products and was found in 6 of 22 and 4 of 26 samples from the 2,006- and 2,162-m stations, respectively. Besides the sequences of BS-1, three additional phylotypes of the marine clade of green sulfur bacteria were detected. However, the majority of sequences clustered with groups from freshwater habitats. Our results suggest that a considerable fraction of green sulfur bacterial chemofossils did not originate in a low-light marine chemocline environment and therefore were likely to have an allochthonous origin. Thus, analysis of subfossil DNA sequences permits a more differentiated interpretation and reconstruction of past environmental conditions if specific chemofossils of stenoec species, like Chlorobium sp. strain BS-1, are employed.
Collapse
|
46
|
Abstract
The seabed is a diverse environment that ranges from the desert-like deep seafloor to the rich oases that are present at seeps, vents, and food falls such as whales, wood or kelp. As well as the sedimentation of organic material from above, geological processes transport chemical energy--hydrogen, methane, hydrogen sulphide and iron--to the seafloor from the subsurface below, which provides a significant proportion of the deep-sea energy. At the sites on the seafloor where chemical energy is delivered, rich and diverse microbial communities thrive. However, most subsurface microorganisms live in conditions of extreme energy limitation, with mean generation times of up to thousands of years. Even in the most remote subsurface habitats, temperature rather than energy seems to set the ultimate limit for life, and in the deep biosphere, where energy is most depleted, life might even be based on the cleavage of water by natural radioisotopes. Here, we review microbial biodiversity and function in these intriguing environments.
Collapse
Affiliation(s)
- Bo Barker Jørgensen
- Max Planck Institute for Marine Microbiology, Celsiusstrasse 1, Bremen D-28359, Germany.
| | | |
Collapse
|
47
|
Nelson DM, Ohene-Adjei S, Hu FS, Cann IKO, Mackie RI. Bacterial diversity and distribution in the holocene sediments of a northern temperate lake. MICROBIAL ECOLOGY 2007; 54:252-63. [PMID: 17364246 DOI: 10.1007/s00248-006-9195-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2006] [Revised: 11/11/2006] [Accepted: 11/21/2006] [Indexed: 05/14/2023]
Abstract
Sediments contain an abundance of microorganisms. However, the diversity and distribution of microorganisms associated with sediments are poorly understood, particularly in lacustrine environments. We used banding patterns from denaturing gradient gel electrophoresis (DGGE) and 16S rDNA sequences to assess the structure of bacterial communities in the Holocene sediments of a meromictic lake in Minnesota. Cluster analysis of the DGGE banding patterns indicates that the early- and middle-Holocene samples group separately from the late-Holocene samples. About 79% of the recovered bacterial sequences cluster with the alpha-, beta-, delta-, epsilon-, and gamma- Proteobacteriaceae and Firmicutes. The remaining approximately 21% lack cultured representatives. The taxonomic lineages of bacteria differ statistically among the early-, middle-, and late-Holocene samples, although the difference is smallest between early- and middle-Holocene samples. Early- and middle-Holocene samples are dominated by epsilon-Proteobacteriaceae, and late-Holocene samples are dominated by sequences from uncultured subphyla. We only recovered delta-Proteobacteriaceae in late-Holocene sediments and alpha- and gamma- Proteobacteriaceae in late- and middle-Holocene sediments. Diversity estimates derived from early-, middle-, and late-Holocene clone libraries indicate that the youngest (late-Holocene) samples had significantly greater bacterial diversity than the oldest (early-Holocene) samples, and the middle-Holocene samples contained intermediate levels of diversity. The observed patterns of diversity may be caused by increased bacterial niche-partitioning in younger sediments that contain a greater abundance of labile organic matter than older sediments.
Collapse
Affiliation(s)
- David M Nelson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | | | | | | | |
Collapse
|
48
|
Dong H, Rech JA, Jiang H, Sun H, Buck BJ. Endolithic cyanobacteria in soil gypsum: Occurrences in Atacama (Chile), Mojave (United States), and Al-Jafr Basin (Jordan) Deserts. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000385] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Coolen MJL, Overmann J. 217 000-year-old DNA sequences of green sulfur bacteria in Mediterranean sapropels and their implications for the reconstruction of the paleoenvironment. Environ Microbiol 2007; 9:238-49. [PMID: 17227428 DOI: 10.1111/j.1462-2920.2006.01134.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Deep-sea sediments of the eastern Mediterranean harbour a series of dark, organic carbon-rich layers, so-called sapropels. Within these layers, the carotenoid isorenieratene was detected. Since it is specific for the obligately anaerobic phototrophic green sulfur bacteria, the presence of isorenieratene may suggest that extended water column anoxia occurred in the ancient Mediterranean Sea during periods of sapropel formation. Only three carotenoids (isorenieratene, beta-isorenieratene and chlorobactene) are typical for green sulfur bacteria and thus do not permit to differentiate between the approximately 80 known phylotypes. In order to reconstruct the paleoecological conditions in more detail, we searched for fossil 16S rRNA gene sequences of green sulfur bacteria employing ancient DNA methodology. 540 bp-long fossil sequences could indeed be amplified from up to 217 000-year-old sapropels. In addition, such sequences were also recovered from carbon-lean intermediate sediment layers deposited during times of an entirely oxic water column. Unexpectedly, however, all the recovered 16S rRNA gene sequences grouped with freshwater or brackish, rather than truly marine, types of green sulfur bacteria. It is therefore feasible that the molecular remains of green sulfur bacteria originated from populations which thrived in adjacent freshwater or estuarine coastal environments rather than from an indigenous pelagic population.
Collapse
Affiliation(s)
- Marco J L Coolen
- Woods Hole Oceanographic Institution, Department of Marine Chemistry and Geochemistry, Woods Hole, MA 02543, USA
| | | |
Collapse
|
50
|
Webster G, Parkes RJ, Cragg BA, Newberry CJ, Weightman AJ, Fry JC. Prokaryotic community composition and biogeochemical processes in deep subseafloor sediments from the Peru Margin. FEMS Microbiol Ecol 2006; 58:65-85. [PMID: 16958909 DOI: 10.1111/j.1574-6941.2006.00147.x] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The community compositions of Bacteria and Archaea were investigated in deep, sub-seafloor sediments from the highly productive Peru Margin (ODP Leg 201, sites 1228 and 1229, c. 25 km apart) down to nearly 200 m below the seafloor using taxonomic (16S rRNA) and functional (mcrA and dsrA) gene markers. Bacterial and archaeal groups identified from clone libraries of 16S rRNA gene sequences at site 1229 agreed well with sequences amplified from bands excised from denaturing gradient gel electrophoresis (DGGE) depth profiles, with the exception of the Miscellaneous Crenarchaeotic Group (MCG). This suggested that the prokaryotic community at site 1228, obtained from DGGE profiling alone, was reliable. Sites were dominated by Bacteria in the Gammaproteobacteria, Chloroflexi (green non-sulphur bacteria) and Archaea in the MCG and South African Gold Mine Euryarchaeotic Group, although community composition changed with depth. The candidate division JS1 was present throughout both sites but was not dominant. The populations identified in the Peru Margin sediments consisted mainly of prokaryotes found in other deep subsurface sediments, and were more similar to communities from the Sea of Okhotsk (pelagic clays) than to those from the low organic carbon Nankai Trough sediments. Despite broad similarities in the prokaryotic community at the two sites, there were some differences, as well as differences in activity and geochemistry. Methanogens (mcrA) within the Methanosarcinales and Methanobacteriales were only found at site 1229 (4 depths analysed), whereas sulphate-reducing prokaryotes (dsrA) were only found at site 1228 (one depth), and these terminal-oxidizing prokaryotes may represent an active community component present at low abundance. This study clearly demonstrates that the deep subsurface sediments of the Peru Margin have a large diverse and metabolically active prokaryotic population.
Collapse
Affiliation(s)
- Gordon Webster
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3YE, UK.
| | | | | | | | | | | |
Collapse
|