1
|
Yu SR, Zhang YY, Zhang QG. The effectiveness of artificial microbial community selection: a conceptual framework and a meta-analysis. Front Microbiol 2023; 14:1257935. [PMID: 37840740 PMCID: PMC10570731 DOI: 10.3389/fmicb.2023.1257935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 09/18/2023] [Indexed: 10/17/2023] Open
Abstract
The potential for artificial selection at the community level to improve ecosystem functions has received much attention in applied microbiology. However, we do not yet understand what conditions in general allow for successful artificial community selection. Here we propose six hypotheses about factors that determine the effectiveness of artificial microbial community selection, based on previous studies in this field and those on multilevel selection. In particular, we emphasize selection strategies that increase the variance among communities. We then report a meta-analysis of published artificial microbial community selection experiments. The reported responses to community selection were highly variable among experiments; and the overall effect size was not significantly different from zero. The effectiveness of artificial community selection was greater when there was no migration among communities, and when the number of replicated communities subjected to selection was larger. The meta-analysis also suggests that the success of artificial community selection may be contingent on multiple necessary conditions. We argue that artificial community selection can be a promising approach, and suggest some strategies for improving the performance of artificial community selection programs.
Collapse
Affiliation(s)
- Shi-Rui Yu
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| | - Yuan-Ye Zhang
- Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, College of the Environment and Ecology, Xiamen University, Xiamen, Fujian, China
| | - Quan-Guo Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology and MOE Key Laboratory for Biodiversity Science and Ecological Engineering, Beijing Normal University, Beijing, China
| |
Collapse
|
2
|
Uzun M, Koziaeva V, Dziuba M, Alekseeva L, Krutkina M, Sukhacheva M, Baslerov R, Grouzdev D. Recovery and genome reconstruction of novel magnetotactic Elusimicrobiota from bog soil. THE ISME JOURNAL 2023; 17:204-214. [PMID: 36302955 PMCID: PMC9859788 DOI: 10.1038/s41396-022-01339-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 01/22/2023]
Abstract
Studying the minor part of the uncultivated microbial majority ("rare biosphere") is difficult even with modern culture-independent techniques. The enormity of microbial diversity creates particular challenges for investigating low-abundance microbial populations in soils. Strategies for selective sample enrichment to reduce community complexity can aid in studying the rare biosphere. Magnetotactic bacteria, apart from being a minor part of the microbial community, are also found in poorly studied bacterial phyla and certainly belong to a rare biosphere. The presence of intracellular magnetic crystals within magnetotactic bacteria allows for their significant enrichment using magnetic separation techniques for studies using a metagenomic approach. This work investigated the microbial diversity of a black bog soil and its magnetically enriched fraction. The poorly studied phylum representatives in the magnetic fraction were enriched compared to the original soil community. Two new magnetotactic species, Candidatus Liberimonas magnetica DUR002 and Candidatus Obscuribacterium magneticum DUR003, belonging to different classes of the relatively little-studied phylum Elusimicrobiota, were proposed. Their genomes contain clusters of magnetosome genes that differ from the previously described ones by the absence of genes encoding magnetochrome-containing proteins and the presence of unique Elusimicrobiota-specific genes, termed mae. The predicted obligately fermentative metabolism in DUR002 and lack of flagellar motility in the magnetotactic Elusimicrobiota broadens our understanding of the lifestyles of magnetotactic bacteria and raises new questions about the evolutionary advantages of magnetotaxis. The findings presented here increase our understanding of magnetotactic bacteria, soil microbial communities, and the rare biosphere.
Collapse
Affiliation(s)
- Maria Uzun
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Veronika Koziaeva
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Marina Dziuba
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Department of Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Lolita Alekseeva
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | | | - Marina Sukhacheva
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Roman Baslerov
- Skryabin Institute of Bioengineering Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Denis Grouzdev
- SciBear OU, Tallinn, Estonia.
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Hara T, Takatsuka Y, Nakata E, Morii T. Augmentation of an Engineered Bacterial Strain Potentially Improves the Cleanup of PCB Water Pollution. Microbiol Spectr 2021; 9:e0192621. [PMID: 34937186 PMCID: PMC8694117 DOI: 10.1128/spectrum.01926-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/04/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) are recalcitrant organohalide pollutants, consisting of 209 congeners. PCB cleanup in natural landscapes is expected to be achieved by the metabolic activity of microorganisms, but aerobic PCB-degrading bacteria that inhabit sites polluted by PCBs cannot degrade all PCB congeners due to the specificity of their enzymes. In this study, we investigated the degradability of PCBs when a genetically modified PCB-degrading bacterium was compounded with wild-type PCB-degrading bacteria. We used two bacterial strains, Comamonas testosteroni YAZ2 isolated from a PCB-uncontaminated natural landscape and Escherichia coli BL21(DE3) transformed with a biphenyl dioxygenase (BphA) gene from a well-known PCB degrader, Burkholderia xenovorans LB400. The enzymatic specificities of BphA were 2,3-dioxygenation in the YAZ2 and 2,3- and 3,4-dioxygenations in the recombinant E. coli. For the PCB-degrading experiment, a dedicated bioreactor capable of generating oxygen microbubbles was prototyped and used. The combined cells of the recombinant and the wild-type strains with an appropriate composite ratio degraded 40 mg/L of Kaneclor KC-300 to 0.3 ± 0.1 mg/L within 24 h. All of the health-toxic coplanar PCB congeners in KC-300 were degraded. This study suggested that the augmentation of an engineered bacterial strain could improve the cleanup of PCB water pollution. It also revealed the importance of the ratio of the strains with different PCB-degrading profiles to efficient degradation and that the application of oxygen microbubbles could rapidly accelerate the cleanup. IMPORTANCE PCB cleanup technique in a natural environment relies on the use of enzymes from microorganisms, primarily biphenyl dioxygenase and dehalogenase. Herein, we focused on biphenyl dioxygenase and created a recombinant PCB-degrading E. coli strain. Despite the development of environments for the field use of transgenic microbial strains around the world, verification of the applicability of transgenic microbial strains for PCB cleanup in the field has not yet been reported. We tentatively verified the extent to which degradability could be obtained by an augmentation model of a transgenic strain, the enzyme expression of which is easily regulated in rivers and lakes with PCB pollution. Our experiments used a dedicated bioreactor to model the natural landscape and produced results superior to those of bioremediation or biostimulation methods. The application of micro-nano bubbles, which has recently been discussed, to the cleanup of environmental pollution was also found to be useful in this study.
Collapse
Affiliation(s)
- Tomijiro Hara
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Yumiko Takatsuka
- Environmental Microbiology Research Section, Laboratory for Complex Energy Processes, Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji, Kyoto, Japan
| |
Collapse
|
4
|
Chen SC, Budhraja R, Adrian L, Calabrese F, Stryhanyuk H, Musat N, Richnow HH, Duan GL, Zhu YG, Musat F. Novel clades of soil biphenyl degraders revealed by integrating isotope probing, multi-omics, and single-cell analyses. ISME JOURNAL 2021; 15:3508-3521. [PMID: 34117322 PMCID: PMC8630052 DOI: 10.1038/s41396-021-01022-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/12/2021] [Accepted: 05/21/2021] [Indexed: 11/23/2022]
Abstract
Most microorganisms in the biosphere remain uncultured and poorly characterized. Although the surge in genome sequences has enabled insights into the genetic and metabolic properties of uncultured microorganisms, their physiology and ecological roles cannot be determined without direct probing of their activities in natural habitats. Here we employed an experimental framework coupling genome reconstruction and activity assays to characterize the largely uncultured microorganisms responsible for aerobic biodegradation of biphenyl as a proxy for a large class of environmental pollutants, polychlorinated biphenyls. We used 13C-labeled biphenyl in contaminated soils and traced the flow of pollutant-derived carbon into active cells using single-cell analyses and protein–stable isotope probing. The detection of 13C-enriched proteins linked biphenyl biodegradation to the uncultured Alphaproteobacteria clade UBA11222, which we found to host a distinctive biphenyl dioxygenase gene widely retrieved from contaminated environments. The same approach indicated the capacity of Azoarcus species to oxidize biphenyl and suggested similar metabolic abilities for species of Rugosibacter. Biphenyl oxidation would thus represent formerly unrecognized ecological functions of both genera. The quantitative role of these microorganisms in pollutant degradation was resolved using single-cell-based uptake measurements. Our strategy advances our understanding of microbially mediated biodegradation processes and has general application potential for elucidating the ecological roles of uncultured microorganisms in their natural habitats.
Collapse
Affiliation(s)
- Song-Can Chen
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Rohit Budhraja
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Lorenz Adrian
- Department Environmental Biotechnology, Helmholtz Centre for Environmental Research-UFZ, Leipzig, Germany.,Chair of Geobiotechnology, Technische Universität Berlin, 13355, Berlin, Germany
| | - Federica Calabrese
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hryhoriy Stryhanyuk
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Niculina Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Hans-Hermann Richnow
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany
| | - Gui-Lan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China
| | - Yong-Guan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 100085, Beijing, China. .,Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, 361021, Xiamen, China.
| | - Florin Musat
- Department of Isotope Biogeochemistry, Helmholtz Centre for Environmental Research-UFZ, 04318, Leipzig, Germany.
| |
Collapse
|
5
|
Estrela S, Sánchez Á, Rebolleda-Gómez M. Multi-Replicated Enrichment Communities as a Model System in Microbial Ecology. Front Microbiol 2021; 12:657467. [PMID: 33897672 PMCID: PMC8062719 DOI: 10.3389/fmicb.2021.657467] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/15/2021] [Indexed: 12/21/2022] Open
Abstract
Recent advances in robotics and affordable genomic sequencing technologies have made it possible to establish and quantitatively track the assembly of enrichment communities in high-throughput. By conducting community assembly experiments in up to thousands of synthetic habitats, where the extrinsic sources of variation among replicates can be controlled, we can now study the reproducibility and predictability of microbial community assembly at different levels of organization, and its relationship with nutrient composition and other ecological drivers. Through a dialog with mathematical models, high-throughput enrichment communities are bringing us closer to the goal of developing a quantitative predictive theory of microbial community assembly. In this short review, we present an overview of recent research on this growing field, highlighting the connection between theory and experiments and suggesting directions for future work.
Collapse
Affiliation(s)
- Sylvie Estrela
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | - Álvaro Sánchez
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, United States
| | | |
Collapse
|
6
|
Mei R, Nobu MK, Liu WT. Identifying anaerobic amino acids degraders through the comparison of short-term and long-term enrichments. ENVIRONMENTAL MICROBIOLOGY REPORTS 2020; 12:173-184. [PMID: 31965729 DOI: 10.1111/1758-2229.12821] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 12/24/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Degradation of amino acids is an important process in methanogenic environments. Early studies in the 1980s focused on isolated clostridia species to study the degradation behaviours. However, it is now well-recognized that isolated species may not represent those with important roles in situ. This study conducted a continuous enrichment experiment with focus on the comparison of the microbial communities after short-term enrichment (SE) and long-term enrichment (LE). Individual amino acids were used as the substrate, and two different anaerobic digester sludge were used as the inoculum. Based on 16S rRNA and 16S rRNA gene, a clear community shift was observed during a time course of 18 months. The SE communities were dominated by microbial populations such as an uncultured Bacteroidales that was different from known fermenters. In the LE communities, known amino acids fermenters were consistently observed with high abundance, including Peptoclostridium acidaminophilum, Acidaminobacter hydrogenoformans and Propionivibrio pelophilus. The community structures could be classified into four types depending on the diversity of fermenters and syntrophs. A culturability index was developed to compare the SE and LE community and revealed that long-term enrichment tended to select microbial populations closely related to species that has been cultivated whereas larger fractions of the inoculum and SE communities remained uncultured.
Collapse
Affiliation(s)
- Ran Mei
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Masaru K Nobu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Wen-Tso Liu
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
7
|
Kuyukina MS, Ivshina IB. Bioremediation of Contaminated Environments Using Rhodococcus. ACTA ACUST UNITED AC 2019. [DOI: 10.1007/978-3-030-11461-9_9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Nádudvari Á, Fabiańska MJ, Marynowski L, Kozielska B, Konieczyński J, Smołka-Danielowska D, Ćmiel S. Distribution of coal and coal combustion related organic pollutants in the environment of the Upper Silesian Industrial Region. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1462-1488. [PMID: 30045566 DOI: 10.1016/j.scitotenv.2018.02.092] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/05/2018] [Accepted: 02/08/2018] [Indexed: 06/08/2023]
Abstract
In this study, a large sample set (276) was separated into up to 15 groups, including coal, fly ash, total particulate matter, coal wastes, river sediments, and different water types. Grouping the sample set into these categories helped to identify the typical features of combustion or water-washing and compare them using newly developed polycyclic aromatic hydrocarbon diagnostic ratios. A wide range of organic pollutants were identified in samples, including aromatic and polycyclic hydrocarbons, nitrogen-heterocycles, sulphur-heterocycles + trithiolane, and polycyclic aromatic hydrocarbons substituted with oxygen functional groups. The distribution of compounds was significantly influenced by water washing or combustion. During the self-heating of coal wastes, secondary compounds such as chlorinated aromatics (chlorobenzene, chloroanthracene, etc.) or light sulphur compounds (e.g. benzenethiol and benzo[b]thiophene) were formed (synthesised). Since these compounds are generally absent in sedimentary organic matter, their origin may be connected with high-temperature formation in burning coal dumps. These compounds should be identified as persistent organic pollutants (POPs) in the environment. The newly defined diagnostic ratios have worked well in separating samples (petrogenic and pyrogenic) and have pointed out the effect of incomplete combustion on self-heated coal waste, ash from domestic furnaces, or water washing and biodegradation of the studied compounds.
Collapse
Affiliation(s)
- Ádám Nádudvari
- Institute for Ecology of Industrial Areas, 6 Kossutha St., 40-844 Katowice, Poland.
| | - Monika J Fabiańska
- Faculty of Earth Sciences, University of Silesia, 60 Będzińska St., 41-200 Sosnowiec, Poland
| | - Leszek Marynowski
- Faculty of Earth Sciences, University of Silesia, 60 Będzińska St., 41-200 Sosnowiec, Poland
| | - Barbara Kozielska
- Silesian University of Technology, Faculty of Power and Environmental Engineering, Department of Air Protection, 2 Akademicka St., 44-100 Gliwice, Poland
| | - Jan Konieczyński
- Institute of Environmental Engineering, Polish Academy of Sciences, 34 M. Skłodowskiej-Curie St., 41-819 Zabrze, Poland
| | | | - Stanisław Ćmiel
- Faculty of Earth Sciences, University of Silesia, 60 Będzińska St., 41-200 Sosnowiec, Poland
| |
Collapse
|
9
|
Blanco-Moreno R, Sáez LP, Luque-Almagro VM, Roldán MD, Moreno-Vivián C. Isolation of bacterial strains able to degrade biphenyl, diphenyl ether and the heat transfer fluid used in thermo-solar plants. N Biotechnol 2016; 35:35-41. [PMID: 27884748 DOI: 10.1016/j.nbt.2016.11.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 11/07/2016] [Accepted: 11/20/2016] [Indexed: 10/20/2022]
Abstract
Thermo-solar plants use eutectic mixtures of diphenyl ether (DE) and biphenyl (BP) as heat transfer fluid (HTF). Potential losses of HTF may contaminate soils and bioremediation is an attractive tool for its treatment. DE- or BP-degrading bacteria are known, but up to now bacteria able to degrade HTF mixture have not been described. Here, five bacterial strains which are able to grow with HTF or its separate components DE and BP as sole carbon sources have been isolated, either from soils exposed to HTF or from rhizospheric soils of plants growing near a thermo-solar plant. The organisms were identified by 16S rRNA gene sequencing as Achromobacter piechaudii strain BioC1, Pseudomonas plecoglossicida strain 6.1, Pseudomonas aeruginosa strains HBD1 and HBD3, and Pseudomonas oleovorans strain HBD2. Activity of 2,3-dihydroxybiphenyl dioxygenase (BphC), a key enzyme of the biphenyl upper degradation pathway, was detected in all isolates. Pseudomonas strains almost completely degraded 2000ppm HTF after 5-day culture, and even tolerated and grew in the presence of 150,000ppm HTF, being suitable candidates for in situ soil bioremediation. Degradation of both components of HTF is of particular interest since in the DE-degrader Sphingomonas sp. SS3, growth on DE or benzoate was strongly inhibited by addition of BP.
Collapse
Affiliation(s)
- Rafael Blanco-Moreno
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Lara P Sáez
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Víctor M Luque-Almagro
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - M Dolores Roldán
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain
| | - Conrado Moreno-Vivián
- Departamento de Bioquímica y Biología Molecular, Edificio Severo Ochoa, 1ª Planta, Campus de Rabanales, Universidad de Córdoba, 14071 Córdoba, Spain.
| |
Collapse
|
10
|
Delmont TO, Eren AM, Maccario L, Prestat E, Esen ÖC, Pelletier E, Le Paslier D, Simonet P, Vogel TM. Reconstructing rare soil microbial genomes using in situ enrichments and metagenomics. Front Microbiol 2015; 6:358. [PMID: 25983722 PMCID: PMC4415585 DOI: 10.3389/fmicb.2015.00358] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2015] [Accepted: 04/09/2015] [Indexed: 01/09/2023] Open
Abstract
Despite extensive direct sequencing efforts and advanced analytical tools, reconstructing microbial genomes from soil using metagenomics have been challenging due to the tremendous diversity and relatively uniform distribution of genomes found in this system. Here we used enrichment techniques in an attempt to decrease the complexity of a soil microbiome prior to sequencing by submitting it to a range of physical and chemical stresses in 23 separate microcosms for 4 months. The metagenomic analysis of these microcosms at the end of the treatment yielded 540 Mb of assembly using standard de novo assembly techniques (a total of 559,555 genes and 29,176 functions), from which we could recover novel bacterial genomes, plasmids and phages. The recovered genomes belonged to Leifsonia (n = 2), Rhodanobacter (n = 5), Acidobacteria (n = 2), Sporolactobacillus (n = 2, novel nitrogen fixing taxon), Ktedonobacter (n = 1, second representative of the family Ktedonobacteraceae), Streptomyces (n = 3, novel polyketide synthase modules), and Burkholderia (n = 2, includes mega-plasmids conferring mercury resistance). Assembled genomes averaged to 5.9 Mb, with relative abundances ranging from rare (<0.0001%) to relatively abundant (>0.01%) in the original soil microbiome. Furthermore, we detected them in samples collected from geographically distant locations, particularly more in temperate soils compared to samples originating from high-latitude soils and deserts. To the best of our knowledge, this study is the first successful attempt to assemble multiple bacterial genomes directly from a soil sample. Our findings demonstrate that developing pertinent enrichment conditions can stimulate environmental genomic discoveries that would have been impossible to achieve with canonical approaches that focus solely upon post-sequencing data treatment.
Collapse
Affiliation(s)
- Tom O Delmont
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France ; Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole MA, USA
| | - A Murat Eren
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole MA, USA
| | - Lorrie Maccario
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| | - Emmanuel Prestat
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| | - Özcan C Esen
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole MA, USA
| | - Eric Pelletier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope Evry, France ; UMR8030, Centre National de la Recherche Scientifique Evry, France ; Université d'Evry Val d'Essonne Evry, France
| | - Denis Le Paslier
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Genoscope Evry, France ; UMR8030, Centre National de la Recherche Scientifique Evry, France ; Université d'Evry Val d'Essonne Evry, France
| | - Pascal Simonet
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| | - Timothy M Vogel
- Environmental Microbial Genomics, Laboratoire Ampere, Centre National de la Recherche Scientifique, Ecole Centrale de Lyon, Université de Lyon Ecully, France
| |
Collapse
|
11
|
Jacquiod S, Franqueville L, Cécillon S, M. Vogel T, Simonet P. Soil bacterial community shifts after chitin enrichment: an integrative metagenomic approach. PLoS One 2013; 8:e79699. [PMID: 24278158 PMCID: PMC3835784 DOI: 10.1371/journal.pone.0079699] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 09/25/2013] [Indexed: 11/19/2022] Open
Abstract
Chitin is the second most produced biopolymer on Earth after cellulose. Chitin degrading enzymes are promising but untapped sources for developing novel industrial biocatalysts. Hidden amongst uncultivated micro-organisms, new bacterial enzymes can be discovered and exploited by metagenomic approaches through extensive cloning and screening. Enrichment is also a well-known strategy, as it allows selection of organisms adapted to feed on a specific compound. In this study, we investigated how the soil bacterial community responded to chitin enrichment in a microcosm experiment. An integrative metagenomic approach coupling phylochips and high throughput shotgun pyrosequencing was established in order to assess the taxonomical and functional changes in the soil bacterial community. Results indicate that chitin enrichment leads to an increase of Actinobacteria, γ-proteobacteria and β-proteobacteria suggesting specific selection of chitin degrading bacteria belonging to these classes. Part of enriched bacterial genera were not yet reported to be involved in chitin degradation, like the members from the Micrococcineae sub-order (Actinobacteria). An increase of the observed bacterial diversity was noticed, with detection of specific genera only in chitin treated conditions. The relative proportion of metagenomic sequences related to chitin degradation was significantly increased, even if it represents only a tiny fraction of the sequence diversity found in a soil metagenome.
Collapse
Affiliation(s)
- Samuel Jacquiod
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- Microbial Molecular Ecology Group, Section of Microbiology, København Universitat, København, Denmark
| | - Laure Franqueville
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Sébastien Cécillon
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Timothy M. Vogel
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
| | - Pascal Simonet
- Environmental Microbial Genomics Group, Ecole Centrale de Lyon, Laboratoire Ampère UMR5005 CNRS, Ecully, France
- * E-mail:
| |
Collapse
|
12
|
Somaraja PK, Gayathri D, Ramaiah N. Molecular characterization of 2-chlorobiphenyl degrading Stenotrophomonas maltophilia GS-103. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 91:148-153. [PMID: 23801320 DOI: 10.1007/s00128-013-1044-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 06/11/2013] [Indexed: 06/02/2023]
Abstract
The catabolic potential of transformer oil contaminated soil bacteria in aerobic degradation of polychlorinated biphenyls (PCB) were assessed. Transformer oil contaminated soil sample was subjected to microcosm enrichment experiments (PAS medium/biphenyl as sole carbon source). PCB-degrading activity of the enrichment cultures in PAS medium with the addition of 2-chlorobiphenyl were analysed by GC-MS indicated that, although the isolates differed in PCB-degrading capabilities, all of the enrichment cultures expressed activity toward at least some of the lower chlorinated congeners. Biphenyl-utilizing bacteria isolated from the most active PCB-degrading mixed cultures showed little taxonomic diversity and identified as Stenotrophomonas maltophilia GS-103.
Collapse
Affiliation(s)
- P K Somaraja
- Department of Studies in Microbiology, Davangere University, Shivagangothri, Davanagere, 577002 Karnataka, India
| | | | | |
Collapse
|
13
|
Tracking temporal changes of bacterial community fingerprints during the initial stages of composting. FEMS Microbiol Ecol 2012; 46:1-9. [PMID: 19719577 DOI: 10.1016/s0168-6496(03)00153-3] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Abstract The initial phase of composting is the most dynamic part of the process and is characterized by rapid increases in temperature, large swings in pH, and the degradation of simple organic compounds. DNA samples were taken from an active compost system to determine the microbial 16S rRNA gene sequences that were present during this phase. We observed two significant shifts in the composition of the microbial community, one between 12 and 24 h and the other between 60 and 72 h into the process using automated 16S-23S rRNA intergenic spacer amplification (ARISA). The 16S rRNA gene sequences adjoining the most common ARISA fragments at each time point were determined. We found that sequences related to lactic acid bacteria were most common during the first 60 h and Bacillus-type sequences were most common between 72 and 96 h. While the temperature increased steadily over the first 96 h, the pH dropped after 12 h and increased after 60 h correlating with the shift from Bacillus to lactic acid sequences and the later return to Bacillus-type sequences.
Collapse
|
14
|
Nunes LM, Zhu YG, Stigter TY, Monteiro JP, Teixeira MR. Environmental impacts on soil and groundwater at airports: origin, contaminants of concern and environmental risks. ACTA ACUST UNITED AC 2011; 13:3026-39. [DOI: 10.1039/c1em10458f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Effect of pesticide inoculation, duration of composting, and degradation time on the content of compost fatty acids, quantified using two methods. Appl Environ Microbiol 2010; 76:6600-6. [PMID: 20693445 DOI: 10.1128/aem.00824-10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Compost biobeds can promote biodegradation of pesticides. The microbial community structure changes during the composting process, and simple methods can potentially be used to follow these changes. In this study the microbial identification (MIDI) and ester-linked (EL) procedures were used to determine the composition of fatty acid methyl esters (FAMEs) in composts aged 3 and 12 months, inoculated with 3 recalcitrant pesticides (azoxystrobin, chlorotoluron, and epoxyconazole and a coapplication of all three) after 0, 56, and 125 days of degradation. Pesticide persistence was high, and after 125 days the residue was 22 to 70% of the applied amount depending mostly on the composting age. Seventy-one FAMEs belonging to nine groups were detected. The EL method provided three times as many detections as did the MIDI method and was more sensitive for all FAME groups except alcohol. Thirty-six and five FAMEs were unique to the EL and MIDI methods, respectively. The extraction method was of importance. The EL method provided a higher number of detections for 57 FAMEs, and the MIDI method provided a higher number for 9 FAMEs, while the two methods were equal for 5 FAMEs; thus, the EL method provided a more uniform overall FAME profile. Effects of the other factors were not always clear. Inoculation with pesticide did not influence the FAME profile with the MIDI method, while it influenced cyclopropane and monounsaturated content with the EL method. Composting age and degradation time had an effect on some groups of FAMEs, and this effect was greater with the EL method. The use of some FAMEs as biomarkers to follow microbial community succession was likely influenced by the type of compost and other factors.
Collapse
|
16
|
Teng Y, Luo Y, Sun X, Tu C, Xu L, Liu W, Li Z, Christie P. Influence of arbuscular mycorrhiza and Rhizobium on phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs: a field study. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2010; 12:516-533. [PMID: 21166292 DOI: 10.1080/15226510903353120] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A field experiment was conducted to study the effects of inoculation with the arbuscular mycorrhizal fungus Glomus caledonium and/or Rhizobium meliloti on phytoremediation of an agricultural soil contaminated with weathered PCBs by alfalfa grown for 180 days. Planting alfalfa (P), alfalfa inoculated with G. caledonium (P + AM), alfalfa inoculated with R. meliloti (P + R), and alfalfa co-inoculated with R. meliloti and G. caledonium (P+AM+R) decreased significantly initial soil PCB concentrations by 8.1, 12.0, 33.8, and 43.5%, respectively. Inoculation with R. meliloti and/or G. caledonium (P+AM+R) increased the yield of alfalfa, and the accumulation of PCBs in the shoots. Soil microbial counts and the carbon utilization ability of the soil microbial community increased when alfalfa was inoculated with R. meliloti and/or G. caledonium. Results of this field study suggest that synergistic interactions between AMF and Rhizobium may have great potential to enhance phytoremediation by alfalfa of an agricultural soil contaminated with weathered PCBs.
Collapse
Affiliation(s)
- Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Manter DK, Delgado JA, Holm DG, Stong RA. Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots. MICROBIAL ECOLOGY 2010; 42:35-59. [PMID: 20414647 DOI: 10.1146/annurev.phyto.42.040803.140408] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 03/12/2010] [Indexed: 05/20/2023]
Abstract
In this study, we examined the bacterial endophyte community of potato (Solanum tuberosum) cultivar/clones using two different molecular-based techniques (bacterial automated ribosomal intergenic spacer analysis (B-ARISA) and pyrosequencing). B-ARISA profiles revealed a significant difference in the endophytic community between cultivars (perMANOVA, p < 0.001), and canonical correspondence analysis showed a significant correlation between the community structure and plant biomass (p = 0.001). Pyrosequencing detected, on average, 477 +/- 71 bacterial operational taxonomic units (OTUs, 97% genetic similarity) residing within the roots of each cultivar, with a Chao estimated total OTU richness of 1,265 +/- 313. Across all cultivars, a total of 238 known genera from 15 phyla were identified. Interestingly, five of the ten most common genera (Rheinheimera, Dyadobacter, Devosia, Pedobacter, and Pseudoxanthomonas) have not, to our knowledge, been previously reported as endophytes of potato. Like the B-ARISA analysis, the endophytic communities differed between cultivar/clones (integral-libshuff, p < 0.001) and exhibited low similarities on both a presence/absence (0.145 +/- 0.019) and abundance (0.420 +/- 0.081) basis. Seventeen OTUs showed a strong positive (r > 0.600) or negative (r < -0.600) correlation with plant biomass, suggesting a possible link between plant production and endophyte abundance. This study represents one of the most comprehensive assessments of the bacterial endophytic communities to date, and similar analyses in other plant species, cultivars, or tissues could be utilized to further elucidate the potential contribution(s) of endophytic communities to plant physiology and production.
Collapse
Affiliation(s)
- Daniel K Manter
- USDA-ARS, Soil-Plant-Nutrient Research Unit, Fort Collins, CO, USA.
| | | | | | | |
Collapse
|
18
|
Application of Rhodococcus in Bioremediation of Contaminated Environments. BIOLOGY OF RHODOCOCCUS 2010. [DOI: 10.1007/978-3-642-12937-7_9] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Alvarez HM, Silva RA, Cesari AC, Zamit AL, Peressutti SR, Reichelt R, Keller U, Malkus U, Rasch C, Maskow T, Mayer F, Steinbüchel A. Physiological and morphological responses of the soil bacterium Rhodococcus opacus strain PD630 to water stress. FEMS Microbiol Ecol 2009; 50:75-86. [PMID: 19712366 DOI: 10.1016/j.femsec.2004.06.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Rhodococcus opacus PD630 was investigated for physiological and morphological changes under water stress challenge. Gluconate- and hexadecane-grown cells were extremely resistant to these conditions, and survival accounted for up to 300 and 400 days; respectively, when they were subjected to slow air-drying. Results of this study suggest that strain PD630 has specific mechanisms to withstand water stress. Water-stressed cells were sensitive to the application of ethanol, high temperatures and oxidative stress, whereas they exhibited cross-protection solely against osmotic stress during the first hours of application. Results indicate that the resistance programme for water stress in R. opacus PD630 includes the following physiological and morphological changes, among others: (1) energetic adjustments with drastic reduction of the metabolic activity ( approximately 39% decrease during the first 24 h and about 90% after 190 days under dehydration), (2) endogenous metabolism using intracellular triacylglycerols for generating energy and precursors, (3) biosynthesis of different osmolytes such as trehalose, ectoine and hydroxyectoine, which may achieve a water balance through osmotic adjustment and may explain the overlap between water and osmotic stress, (4) adjustments of the cell-wall through the turnover of mycolic acid species, as preliminary experiments revealed no evident changes in the thickness of the cell envelope, (5) formation of short fragmenting-cells as probable resistance forms, (6) production of an extracellular slime covering the surface of colonies, which probably regulates internal and external changes in water potential, and (7) formation of compact masses of cells. This contributes to understanding the water stress resistance processes in the soil bacterium R. opacus PD630.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, (9000) Comodoro Rivadavia, Argentina.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Delille D, Pelletier E, Rodriguez-Blanco A, Ghiglione JF. Effects of nutrient and temperature on degradation of petroleum hydrocarbons in sub-Antarctic coastal seawater. Polar Biol 2009. [DOI: 10.1007/s00300-009-0652-z] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
21
|
Lacerda CMR, Reardon KF. Environmental proteomics: applications of proteome profiling in environmental microbiology and biotechnology. BRIEFINGS IN FUNCTIONAL GENOMICS AND PROTEOMICS 2009; 8:75-87. [PMID: 19279070 DOI: 10.1093/bfgp/elp005] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
In this review, we present the use of proteomics to advance knowledge in the field of environmental biotechnology, including studies of bacterial physiology, metabolism and ecology. Bacteria are widely applied in environmental biotechnology for their ability to catalyze dehalogenation, methanogenesis, denitrification and sulfate reduction, among others. Their tolerance to radiation and toxic compounds is also of importance. Proteomics has an important role in helping uncover the pathways behind these cellular processes. Environmental samples are often highly complex, which makes proteome studies in this field especially challenging. Some of these challenges are the lack of genome sequences for the vast majority of environmental bacteria, difficulties in isolating bacteria and proteins from certain environments, and the presence of complex microbial communities. Despite these challenges, proteomics offers a unique dynamic view into cellular function. We present examples of environmental proteomics of model organisms, and then discuss metaproteomics (microbial community proteomics), which has the potential to provide insights into the function of a community without isolating organisms. Finally, the environmental proteomics literature is summarized as it pertains to the specific application areas of wastewater treatment, metabolic engineering, microbial ecology and environmental stress responses.
Collapse
Affiliation(s)
- Carla M R Lacerda
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523-1370, USA
| | | |
Collapse
|
22
|
Microbial diversity of traditional Vietnamese alcohol fermentation starters (banh men) as determined by PCR-mediated DGGE. Int J Food Microbiol 2008; 128:268-73. [DOI: 10.1016/j.ijfoodmicro.2008.08.020] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/03/2008] [Accepted: 08/28/2008] [Indexed: 11/23/2022]
|
23
|
Li AJ, Yang SF, Li XY, Gu JD. Microbial population dynamics during aerobic sludge granulation at different organic loading rates. WATER RESEARCH 2008; 42:3552-3560. [PMID: 18541284 DOI: 10.1016/j.watres.2008.05.005] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Revised: 04/19/2008] [Accepted: 05/07/2008] [Indexed: 05/26/2023]
Abstract
Laboratory experiments were carried out to investigate the evolution of the bacterial community during aerobic sludge granulation. The experiments were conducted in three 2.4L sequencing batch reactors (SBRs) that were seeded with activated sludge and fed with glucose-based synthetic wastewater. Three different influent organic concentrations were introduced into the three SBRs, R1, R2 and R3, resulting in chemical oxygen demand (COD) loading rates of 1.5 (R1), 3.0 (R2) and 4.5 (R3)kg/m(3)d, respectively. Changes in bacterial diversity throughout the granulation process were monitored and analysed using polymerase chain reaction (PCR) and denaturing gradient gel electrophoresis (DGGE) techniques. The experimental results demonstrate that glucose-fed aerobic granules could be formed without significant presence of filamentous bacteria. Granules formed at different loading rates had different morphology, structural properties and bacterial species. A higher loading rate resulted in faster formation of larger and loose granules, while a lower loading rate resulted in slower formation of smaller and more tightly packed granules. The biomass underwent a dynamic transformation in terms of bacterial species richness and dominance during the granulation process. The reactor with the highest substrate loading rate had the lowest species diversity, while the reactor with the lowest substrate loading rate had the highest species diversity. Different dominant species of beta- and gamma-Proteobacteria and Flavobacterium within the granule communities from the three different SBRs were confirmed by analysis of 16S rDNA sequences of the PCR products separated by DGGE. It is apparent that a few common bacterial species play an important role in the formation and growth of aerobic granules and help sustain the granular sludge structure in the bioreactors.
Collapse
Affiliation(s)
- An-jie Li
- Department of Civil Engineering, Environmental Engineering Research Centre, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | | | | | | |
Collapse
|
24
|
Solyanikova IP, Travkin VM, Rybkina DO, Plotnikova EG, Golovleva LA. Variability of enzyme system of Nocardioform bacteria as a basis of their metabolic activity. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2008; 43:241-252. [PMID: 18368545 DOI: 10.1080/03601230701771180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The present review describes some aspects of organization of biodegradative pathways of Nocardioform microorganisms, first of all, with respect to their ability to degrade aromatic compounds, mostly methylbenzoate, chlorosubstituted phenols, and chlorinated biphenyls and the intermediates of their transformation: 4-chlorobenzoate and para-hydroxybenzoate. Various enzyme systems induced during degradation processes are defined. The ability of microorganisms to induce a few key enzymes under the influence of xenobiotics is described. This ability may increase the biodegradative potential of strains allowing them to survive in the changing environment or demonstrate to some extent the unspecific response of microorganisms to the effect of toxicants. Nocardioform microorganisms responsible for degradation of such persistent compounds as polychlorinated biphenyls, polyaromatic hydrocarbons, chlorinated benzoates and phenols and other xenobiotics are characterized. The possibility of using Nocardioform microorganisms in some aspects of biotechnology due to their ability to produce some compounds important for industry is also estimated.
Collapse
Affiliation(s)
- Inna P Solyanikova
- Skryabin' Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
25
|
Yang S, Yoshida N, Baba D, Katayama A. Anaerobic biodegradation of biphenyl in various paddy soils and river sediment. CHEMOSPHERE 2008; 71:328-336. [PMID: 17950776 DOI: 10.1016/j.chemosphere.2007.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2007] [Revised: 08/26/2007] [Accepted: 09/02/2007] [Indexed: 05/25/2023]
Abstract
The anaerobic degradation of biphenyl was investigated in four uncontaminated Japanese paddy soils and one river sediment sample contaminated with benzene and chlorinated aliphatics. Two of the paddy soils and the sediment were capable of degrading biphenyl anaerobically without any additional medium or electron acceptors. The half-lives of biphenyl biodegradation in the three samples were 212 d in the Kuridashi soil, 327 d in the Kamajima soil, and 429 d in the river sediment. The Kuridashi soil metabolized 1+/-0.3% of [U-14C]-biphenyl into CO2 and 5+/-2% into water-soluble metabolites after 45 d of incubation. Submerged conditions, which result in lower nitrate and iron oxide contents, and neutral pH, appeared to be the common properties among the samples that influenced their degradation capacities. The addition of 10mM sulfate and 20mM Fe(III) as electron acceptors did not enhance the biphenyl degradation rate, whereas 10mM nitrate completely inhibited biphenyl degradation. The addition of different electron donors (lactate, acetate, or pyruvate) slightly slowed the degradation. Molybdate (an inhibitor of sulfate-reducing bacteria) had an inhibitory effect on biphenyl biodegradation, but bromoethanesulfonic acid (an inhibitor of methanogens) did not. Most biphenyl degradation was observed when only water was added, with no other electron acceptors or donors. These results suggest that sulfate-reducing bacteria and fermentative microbial populations play important roles in anaerobic biphenyl biodegradation in paddy soil.
Collapse
Affiliation(s)
- Suyin Yang
- Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
| | | | | | | |
Collapse
|
26
|
Leigh MB, Prouzová P, Macková M, Macek T, Nagle DP, Fletcher JS. Polychlorinated biphenyl (PCB)-degrading bacteria associated with trees in a PCB-contaminated site. Appl Environ Microbiol 2006; 72:2331-42. [PMID: 16597927 PMCID: PMC1449058 DOI: 10.1128/aem.72.4.2331-2342.2006] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2005] [Accepted: 01/12/2006] [Indexed: 11/20/2022] Open
Abstract
The abundance, identities, and degradation abilities of indigenous polychlorinated biphenyl (PCB)-degrading bacteria associated with five species of mature trees growing naturally in a contaminated site were investigated to identify plants that enhance the microbial PCB degradation potential in soil. Culturable PCB degraders were associated with every plant species examined in both the rhizosphere and root zone, which was defined as the bulk soil in which the plant was rooted. Significantly higher numbers of PCB degraders (2.7- to 56.7-fold-higher means) were detected in the root zones of Austrian pine (Pinus nigra) and goat willow (Salix caprea) than in the root zones of other plants or non-root-containing soil in certain seasons and at certain soil depths. The majority of culturable PCB degraders throughout the site and the majority of culturable PCB degraders associated with plants were identified as members of the genus Rhodococcus by 16S rRNA gene sequence analysis. Other taxa of PCB-degrading bacteria included members of the genera Luteibacter and Williamsia, which have not previously been shown to include PCB degraders. PCB degradation assays revealed that some isolates from the site have broad congener specificities; these isolates included one Rhodococcus strain that exhibited degradation abilities similar to those of Burkholderia xenovorans LB400. Isolates with broad congener specificity were widespread at the site, including in the biostimulated root zone of willow. The apparent association of certain plant species with increased abundance of indigenous PCB degraders, including organisms with outstanding degradation abilities, throughout the root zone supports the notion that biostimulation through rhizoremediation is a promising strategy for enhancing PCB degradation in situ.
Collapse
Affiliation(s)
- Mary Beth Leigh
- Center for Microbial Ecology, Michigan State University, 540 Plant and Soil Sciences Building, East Lansing, MI 48824, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Jussila MM, Jurgens G, Lindström K, Suominen L. Genetic diversity of culturable bacteria in oil-contaminated rhizosphere of Galega orientalis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 139:244-57. [PMID: 16055251 DOI: 10.1016/j.envpol.2005.05.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Accepted: 05/13/2005] [Indexed: 05/03/2023]
Abstract
A collection of 50 indigenous meta-toluate tolerating bacteria isolated from oil-contaminated rhizosphere of Galega orientalis on selective medium was characterized and identified by classical and molecular methods. 16S rDNA partial sequencing showed the presence of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. Only one-fifth of the strains that tolerated m-toluate also degraded m-toluate. The inoculum Pseudomonas putida PaW85 was not found in the rhizosphere samples. The ability to degrade m-toluate by the TOL plasmid was detected only in species of the genus Pseudomonas. However, a few Rhodococcus erythropolis strains were found which were able to degrade m-toluate. A new finding was that Pseudomonas migulae strains and a few P. oryzihabitans strains were able to grow on m-toluate and most likely contained the TOL plasmid. Because strain specific differences in degradation abilities were found for P. oryzihabitans, separation at the strain level was important. For strain specific separation (GTG)5 fingerprinting was the best method. A combination of the single locus ribotyping and the whole genomic fingerprinting techniques with the selective partial sequencing formed a practical molecular toolbox for studying genetic diversity of culturable bacteria in oil-contaminated rhizosphere.
Collapse
Affiliation(s)
- Minna M Jussila
- Department of Applied Chemistry and Microbiology, Viikki Biocenter, PO Box 56, FI-00014, University of Helsinki, Finland.
| | | | | | | |
Collapse
|
28
|
Gomes NCM, Kosheleva IA, Abraham WR, Smalla K. Effects of the inoculant strain Pseudomonas putida KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community. FEMS Microbiol Ecol 2005; 54:21-33. [PMID: 16329969 DOI: 10.1016/j.femsec.2005.02.005] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2004] [Revised: 02/10/2005] [Accepted: 02/15/2005] [Indexed: 10/25/2022] Open
Abstract
The naphthalene-degrading activity of a Pseudomonas sp. strain isolated from a creosote-contaminated soil was shown to be encoded by the IncP9 plasmid pNF142 by transfer to Pseudomonas putida KT2442. The effects of the inoculant strain KT2442 (pNF142) and of naphthalene contamination on the soil bacterial community were studied in microcosms with the following treatments: (I) soil, (II) soil with naphthalene, (III) soil with naphthalene and inoculated with KT2442 (pNF142). The inoculant became the dominant bacterial population in treatment (III) as evidenced by cultivation and denaturing gradient gel electrophoresis (DGGE) analysis. The bacterial DGGE profiles revealed drastically reduced complexity due to the numerical dominance of the inoculant. However, group-specific fingerprints (beta-proteobacteria, actinobacteria) that excluded KT2442 (pNF142) showed less severe changes in the bacterial community patterns. A major effect of naphthalene on the soil bacterial community was observed in treatment (II) after 21 days. Two dominant bands appeared whose sequences showed the highest similarity to those of Burkholderia sp. RP007 and Nocardia vinaceae based on 16S rRNA gene sequencing. These bands were less intense in treatment (III). The increased abundance of RP007-like populations due to naphthalene contamination was also confirmed by PCR amplification of the phnAc gene. The nahAc and nahH genes were detected in DNA and cDNA only in treatment III. Although the inoculant strain KT2442 (pNF142) showed good survival and expression of genes involved in naphthalene degradation, this study suggests that KT2442 (pNF142) suppressed the enrichment of indigenous naphthalene degraders.
Collapse
Affiliation(s)
- Newton C M Gomes
- Federal Biological Research Centre for Agriculture and Forestry (BBA), Braunschweig, Germany
| | | | | | | |
Collapse
|
29
|
Investigation of bacterial diversity in Brazilian tropical estuarine sediments reveals high actinobacterial diversity. Antonie van Leeuwenhoek 2005. [DOI: 10.1007/s10482-005-0162-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
30
|
Gürtler V, Mayall BC, Seviour R. Can whole genome analysis refine the taxonomy of the genus Rhodococcus? FEMS Microbiol Rev 2004; 28:377-403. [PMID: 15449609 DOI: 10.1016/j.femsre.2004.01.001] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The current systematics of the genus Rhodococcus is unclear, partly because many members were originally included before the application of a polyphasic taxonomic approach, central to which is the acquisition of 16S rRNA sequence data. This has resulted in the reclassification and description of many new species. Hence, the literature is replete with new species names that have not been brought together in an organized and easily interpreted form. This taxonomic confusion has been compounded by assigning many xenobiotic degrading isolates with phylogenetic positions but without formal taxonomic descriptions. In order to provide a framework for a taxonomic approach based on multiple genetic loci, a survey was undertaken of the known genome characteristics of members of the genus Rhodococcus including: (i) genetics of cell envelope biosynthesis; (ii) virulence genes; (iii) gene clusters involved in metabolic degradation and industrially relevant pathways; (iv) genetic analysis tools; (v) rapid identification of bacteria including rhodococci with specific gene RFLPs; (vi) genomic organization of rrn operons. Genes encoding virulence factors have been characterized for Rhodococcus equi and Rhodococcus fascians. Based on peptide signature comparisons deduced from gene sequences for cytochrome P-450, mono- and dioxygenases, alkane degradation, nitrile metabolism, proteasomes and desulfurization, phylogenetic relationships can be deduced for Rhodococcus erythropolis, Rhodococcus globerulus, Rhodococcus ruber and a number of undesignated Rhodococcus spp. that may distinguish the genus Rhodococcus into two further genera. The linear genome topologies that exist in some Rhodococcus species may alter a previously proposed model for the analysis of genomic fingerprinting techniques used in bacterial systematics.
Collapse
Affiliation(s)
- Volker Gürtler
- Department of Microbiology, Austin Health, Studley Road, Heidelberg, Vic. 3084, Australia.
| | | | | |
Collapse
|
31
|
Delille D, Coulon F, Pelletier E. Biostimulation of natural microbial assemblages in oil-amended vegetated and desert sub-Antarctic soils. MICROBIAL ECOLOGY 2004; 47:407-415. [PMID: 14681739 DOI: 10.1007/s00248-003-2024-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2003] [Accepted: 07/15/2003] [Indexed: 05/24/2023]
Abstract
A field study was initiated in December 2000 in two selected soils of The Grande Terre (Kerguelen Archipelago) with the objective of determining the long-term effects of fertilizer addition on the biodegradation rate and the toxicity of oil residues under severe sub-Antarctic conditions. Two soils were selected. The first site supports an abundant vegetal cover; the second one was desert soil, devoid of plant material. These two soils were located in the vicinity of the permanent station of Port-aux-Français (69 degrees 42'E; 49 degrees 19'S). A series of five experimental plots (0.75 x 0.75 m) were settled firmly into each of the studied soils. Each plot received 500 mL of diesel or Arabian light crude oil, and some of them were treated with a bioremediation agent: slow-release fertilizer Inipol EAP-22 (Elf Atochem). All the plots were sampled on a regular basis over a 1 year period. Heterotrophic and hydrocarbon-degrading microorganisms increased by two orders of magnitude during the first month of the experimentation in all treated enclosures, but differences appeared between the different plots. The microbial response was improved by bioremediation treatments. However, fertilizer addition had a greater impact on the desert soil when compared to the vegetated one. All chemical indices show a reduction of alkanes and light aromatics. Toxicity results show a high variability between treatments and environmental conditions. As a conclusion, it is clear that the microbial response was rapid and efficient in spite of the severe weather conditions, and the rate of degradation was improved by bioremediation treatments. However, after 1 year of treatment, the signal of a relatively high toxicity of oiled residues remained present in the two studied soils.
Collapse
Affiliation(s)
- D Delille
- Observatoire Océanologique de Banyuls, Université P et M Curie UMR-CNRS 7621, Laboratoire Arago 66650 Banyuls sur mer, France.
| | | | | |
Collapse
|
32
|
Piza FF, Prado PI, Manfio GP. Investigation of bacterial diversity in Brazilian tropical estuarine sediments reveals high actinobacterial diversity. Antonie van Leeuwenhoek 2004; 86:317-28. [PMID: 15702384 DOI: 10.1007/s10482-004-0162-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Phylogenetic and statistical analyses of 16S rRNA gene libraries were used for the investigation of actinobacterial communities present in two tropical estuarine sediments (Santos-São Vicente estuary, Brazil). The libraries were constructed from samples collected at the brackish end of the estuary, highly hydrocarbon-contaminated, and at the marine end, uncontaminated. Clones from the marine end of the estuary were all related to sequences from non-cultured Actinobacteria and unidentified bacteria recovered from a wide range of environmental samples, whereas clones from the brackish end were mainly related to sequences from cultured Actinobacteria. Statistical analyses showed that the community recovered from the hydrocarbon-contaminated sediment sample, at the brackish end, was less diverse than the uncontaminated one, at the marine end, and that the communities from the two libraries were differently structured, suggesting that these may have not originated from the same community. The recognition of the spatial pattern of actinobacterial distribution in a natural environment is a first step towards understanding the way these communities are organized, providing valuable data for further investigations of their taxonomic and functional diversity.
Collapse
Affiliation(s)
- Fernanda Francischetti Piza
- Microbial Resources Division, CPQBA, State University of Campinas (UNICAMP), PO Box 6171, CEP 13081-970, Campinas, SP, Brazil.
| | | | | |
Collapse
|
33
|
Kahl S, Hofer B. A genetic system for the rapid isolation of aromatic-ring-hydroxylating dioxygenase activities. MICROBIOLOGY (READING, ENGLAND) 2003; 149:1475-1481. [PMID: 12777487 DOI: 10.1099/mic.0.25976-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Aromatic-ring-hydroxylating dioxygenases (ARHDOs) are key enzymes in the aerobic bacterial metabolism of aromatic compounds. They are of biotechnological importance as they function as biocatalysts in the stereospecific synthesis of chiral synthons and the degradation of aromatic pollutants. This report describes the development and validation of a system for the rapid isolation and characterization of specific ARHDO activities. The system is based on the identification of ARHDO gene segments that encode the enzymes' major functional determinants, on consensus primers for the direct amplification of such partial genes and on a 'recipient' ARHDO gene cluster for the insertion of the amplified segments. Previously, it has been shown that neither the N- nor the C-terminal portions but only the core region of the large or alpha-subunit of a class II ARHDO significantly influence substrate and product spectra. On the basis of these observations, consensus primers were designed for the amplification of the gene segment encoding the catalytic core of the large subunit. These primers were tested on 11 bacterial isolates known to metabolize aromatic compounds. In 10 cases, a gene fragment of expected length was amplified. DNA sequencing confirmed similarity to ARHDO alpha-subunit gene cores. The heterologously well-expressible bphA gene cluster of Burkholderia sp. strain LB400 was modified to facilitate the in-frame insertion of amplified segments. It was used successfully to express the resulting hybrid gene clusters and to form catalytically active chimaeric ARHDOs. The metabolic properties of these enzymes differed significantly from each other and from the parental ARHDO of strain LB400. These results indicate that the system described here can be used to rapidly isolate and functionally characterize ARHDO activities, starting from isolated strains, mixtures of organisms or samples of nucleic acids. Applications of the system range from the recruitment of novel ARHDO activities to an improved characterization of natural ARHDO diversity.
Collapse
Affiliation(s)
- Silke Kahl
- German Research Centre for Biotechnology (GBF), Division of Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| | - Bernd Hofer
- German Research Centre for Biotechnology (GBF), Division of Microbiology, Mascheroder Weg 1, D-38124 Braunschweig, Germany
| |
Collapse
|
34
|
Fava F, Bertin L, Fedi S, Zannoni D. Methyl-beta-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils. Biotechnol Bioeng 2003; 81:381-90. [PMID: 12491523 DOI: 10.1002/bit.10579] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The bioremediation of aged polychlorinated biphenyl (PCB)-contaminated soils is adversely affected by the low bioavailability of the pollutants. Randomly methylated-beta-cyclodextrins (RAMEB) were tested as a potential PCB-bioavailability-enhancing agent in the aerobic treatment of two aged-contaminated soils. The soils, contaminated by about 890 and 8500 mg/kg of Aroclor 1260 PCBs, were amended with biphenyl (4 g/kg), inorganic nutrients (to adjust their C:N ratio to 20:1), and variable amounts of RAMEB (0%, 0.5%, or 1.0% [w/w]) and treated in both aerobic 3-L solid-phase reactors and 1.5-L packed-bed loop reactors for 6 months. Notably, significant enhancement of the PCB biodegradation and dechlorination, along with a detectable depletion of the initial soil ecotoxicity, were generally observed in the RAMEB-treated reactors of both soils. RAMEB effects were different in the two soils, depending upon the treatment conditions employed, and generally increased proportionally with the concentration at which RAMEB was applied. RAMEB, which was slowly metabolized by the soil's aerobic microorganisms, was found to markedly enhance the occurrence of the indigenous aerobic, cultivable biphenyl-growing bacteria harboring genes homologous to those of two highly specialized PCB degraders (i.e., bphABC genes of Pseudomonas pseudoalcaligenes KF707 and bphA1A2A3A4BC1 genes of Rhodococcus globerulus P6) and chlorobenzoic acid-degrading bacteria as well as the occurrence of PCBs in the water phase of the soil reactors. These findings indicate that RAMEB enhanced the aerobic bioremediation of the two soils by increasing the bioavailability of PCBs and the occurrence of specialized bacteria in the soil reactors.
Collapse
Affiliation(s)
- Fabio Fava
- DICASM, Faculty of Engineering, University of Bologna, Viale Risorgimento 2, I-40136 Bologna, Italy.
| | | | | | | |
Collapse
|
35
|
Stamper DM, Walch M, Jacobs RN. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments. Appl Environ Microbiol 2003; 69:852-60. [PMID: 12571004 PMCID: PMC143598 DOI: 10.1128/aem.69.2.852-860.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The bacterial population of a graywater treatment system was monitored over the course of 100 days, along with several wastewater biochemical parameters. The graywater treatment system employed an 1,800-liter membrane bioreactor (MBR) to process the waste, with essentially 100% recycling of the biomass. Graywater feed consisting of 10% galley water and 90% laundry water, selected to approximate the graywater composition on board U.S. Navy ships, was collected offsite. Five-day biological oxygen demand (BOD(5)), oils and greases (O/G), nitrogen, and phosphorus were monitored in the feed and were found to vary greatly day to day. Changes in the bacterial population were monitored by PCR amplification of region 332 to 518 (Escherichia coli numbering) of the 16S rRNA gene and denaturing gradient gel electrophoresis (DGGE) analysis of the resultant PCR products. DGGE analysis indicated a diverse and unstable bacterial population throughout the 100-day period, with spikes in feed strength causing significant changes in community structure. Long-term similarity between the communities was 0 to 25%, depending on the method of analysis. In spite of the unstable bacterial population, the MBR system was able to meet effluent quality parameters approximately 90% of the time.
Collapse
Affiliation(s)
- David M Stamper
- Naval Surface Warfare Center, Carderock Division, West Bethesda, Maryland 20817, USA.
| | | | | |
Collapse
|
36
|
Asolkar RN, Kamat VP, Wagner-Döbler I, Laatsch H. Limnazine, the first bacterial azine derivative from Bacillus sp. GW90a. JOURNAL OF NATURAL PRODUCTS 2002; 65:1664-1666. [PMID: 12444695 DOI: 10.1021/np020108n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A novel dimeric azine derivative designated as limnazine (1) has been isolated from the culture broth of an aquatic Bacillus sp. strain GW90a. The structure has been elucidated, on the basis of spectral data, as N,N'-bis(2,2,6-trimethylchroman-4-ylidene)azine and was additionally confirmed by synthesis. Limnazine (1) is inactive against algae, fungi, and bacteria.
Collapse
Affiliation(s)
- Ratnakar N Asolkar
- Department of Organic Chemistry, University of Göttingen, Tammanstrasse 2, D-37077 Göttingen, Germany
| | | | | | | |
Collapse
|
37
|
Brandão PFB, Clapp JP, Bull AT. Discrimination and taxonomy of geographically diverse strains of nitrile-metabolizing actinomycetes using chemometric and molecular sequencing techniques. Environ Microbiol 2002; 4:262-76. [PMID: 12030852 DOI: 10.1046/j.1462-2920.2002.00292.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mycolic acid-containing actinomycetes capable of metabolizing nitriles were recovered from deep-sea sediments and terrestrial soils by enrichment culture on acetonitrile, benzonitrile, succinonitrile or bromoxynil. A total of 43 nitrile-degrading strains were isolated and, together with previously recovered nitrile-degrading rhodococci, were identified by a polyphasic taxonomic approach, which included mycolic acid profiles, pyrolysis mass spectrometry (PyMS), genomic fingerprinting based on sequence variability of the 16S ribosomal RNA gene using polymerase chain reaction-restriction fragment length polymorphism-single-strand conformational polymorphism, and 16S rRNA gene sequence comparison. Isolates phylogenetically related to Rhodococcus erythropolis dominated the culturable microorganisms from most marine and terrestrial samples. These isolates clustered together in a major pyrogroup that showed high congruence with PRS profiles of the 16S rRNA gene. Such high congruence also was obtained for other recovered isolates that were assigned to species of Rhodococcus and Gordonia. Sequencing data validated the results obtained by PRS analysis and enabled phylogenetic relationships to be established. Some of the recovered bacteria probably represent novel microbial species. The fact that nitrile-metabolizing microorganisms were recovered from a wide range of habitat types suggests that nitrile transforming enzymatic activity is geographically widely distributed in nature.
Collapse
Affiliation(s)
- Pedro F B Brandão
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
38
|
Alvarez HM, Luftmann H, Silva RA, Cesari AC, Viale A, Wältermann M, Steinbüchel A. Identification of phenyldecanoic acid as a constituent of triacylglycerols and wax ester produced by Rhodococcus opacus PD630. MICROBIOLOGY (READING, ENGLAND) 2002; 148:1407-12. [PMID: 11988514 DOI: 10.1099/00221287-148-5-1407] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phenyldecane supported growth and lipid accumulation of Rhodococcus opacus PD630 during cultivation under nitrogen-limiting conditions. The results of this study suggested that the hydrocarbon phenyldecane was degraded by monoterminal oxidation, followed by beta-oxidation of the alkyl side-chain to phenylacetic acid, and by an additional degradative route for the oxidation of the latter to intermediates of the central metabolism. alpha-Oxidation of phenyldecanoic acid also occurred to some extent. Phenyldecanoic acid, the monoterminal oxidation product, was also utilized for the biosynthesis of a novel wax ester and novel triacylglycerols. The formation of the wax ester phenyldecylphenyldecanoate probably resulted from the condensation of phenyldecanoic acid and phenyldecanol, which were produced as metabolites during the catabolism of phenyldecane. Two types of triacylglycerol were detected in phenyldecane-grown cells of strain PD630. Triacylglycerols containing only odd- and even-numbered aliphatic fatty acids, as well as triacylglycerols in which one fatty acid was replaced by a phenyldecanoic acid residue, occurred. Other phenyl intermediates, such as phenylacetic acid, phenylpropionic acid, 4-hydroxyphenylpropionic acid, protocatechuate and homogentisic acid, were excreted into the medium during cultivation on phenyldecane. On the basis of the results obtained, pathways for the catabolism and assimilation of phenyldecane by R. opacus PD630 are discussed.
Collapse
Affiliation(s)
- Héctor M Alvarez
- Departamento de Bioquímica, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia San Juan Bosco, CC 1078, Km 4, 9000 Comodoro Rivadavia, Chubut, Argentina.
| | | | | | | | | | | | | |
Collapse
|
39
|
Tartakovsky B, Michott A, Cadieux JC, Hawari J, Guiot SR. Degradation of aroclor 1242 in a single-stage coupled anaerobic/aerobic bioreactor. WATER RESEARCH 2001; 35:4323-4330. [PMID: 11763034 DOI: 10.1016/s0043-1354(01)00175-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Degradation of Aroclor 1242 was studied in granular biofilm reactors with limited aeration. An aerobic biphenyl degrader, Rhodococcus sp. M5, was used to supplement a natural bacterial population present in a "bioaugmented" reactor, while the "non-bioaugmented" reactor only contained natural granular sludge. The bioaugmentation, however appeared to have no effect on the reactor performance. Aroclor measurements showed its disappearance in both reactors with only 16-19% of Aroclor recovered from the reactor biomass and effluent. Simultaneously, a chlorine balance indicated that dechlorination occurred at a specific rate of 1.43 mg PCB (g volatile suspended solids)(-1) d(-1), which was comparable to the observed rate of Aroclor disappearance. Intermediates detected in both reactors were biphenyl, benzoic acid, and mono-hydroxybiphenyls. This suggests that a near-complete mineralization of Aroclor can be achieved in a single-stage anaerobic/aerobic system due to a combination of reductive and oxidative degradation mechanisms.
Collapse
Affiliation(s)
- B Tartakovsky
- Biotechnology Research Institute, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|
40
|
Fedi S, Carnevali M, Fava F, Andracchio A, Zappoli S, Zannoni D. Polychlorinated biphenyl degradation activities and hybridization analyses of fifteen aerobic strains isolated from a PCB-contaminated site. Res Microbiol 2001; 152:583-92. [PMID: 11501677 DOI: 10.1016/s0923-2508(01)01233-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Fifteen bacterial strains using biphenyl as sole carbon and energy source, obtained from different positions and depths of a polychlorinated biphenyl (PCB)-contaminated area, were analyzed for their basic metabolic phenotypes and subjected to genomic DNA hybridization screening for the presence of well characterized bph operons such as those of Pseudomonas pseudoalcaligenes KF707 and Rhodococcus globerulus P6. Most of the isolates belonged to the gamma-subdivision (Pseudomonas stutzeri, P. plutida, P. fluorescens and Vibrio logei species) and to the beta-subdivision (genera Alcaligenes, Comamonas, Ralstonia) of the Proteobacteria. All the isolates were able to cometabolize different low chlorinated PCB congeners. Among the dichlorinated biphenyls tested, a lower degradation capacity was observed for the di-ortho substituted congeners, whereas high levels of degradation were observed for the di-meta and di-para isomers, whether they were chlorinated on one or on both rings. The PCB congeners nonsubstituted in the 2,3 or 2,3 and 3,4 positions were also degraded by most of the isolated strains, which were, however, unable to significantly metabolize PCBs with more than 3 chlorine atoms. Five of the isolated strains were also able to degrade some of the tri- and tetrachlorobiphenyls tested. Southern hybridization analysis showed a strong homology between four of the fifteen isolated strains and the bph operon obtained from P. pseudoalcaligenes strain KF707. Conversely, none of the isolates here examined showed homology with the bph operon of R. globerulus strain P6. In line with this, the KF707 bph probe strongly hybridized with DNA of a significant number of bacterial colonies obtained from selected locations in the contaminated area using biphenyl-supplemented minimal medium agar plates.
Collapse
Affiliation(s)
- S Fedi
- Department of Biology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Alvarez HM, Souto MF, Viale A, Pucci OH. Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett 2001; 200:195-200. [PMID: 11425475 DOI: 10.1111/j.1574-6968.2001.tb10715.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Nocardia globerula strain 432 was able to synthesize triacylglycerols (TAG) during cultivation on 2,6,10,14-tetramethyl pentadecane (pristane) under nitrogen-limiting conditions. Within these cells, 4,8,12-trimethyl tridecanoic acid was the major fatty acid detected. Fatty acids with an odd number of carbon atoms and minor amounts of even-numbered fatty acids were also observed. Experiments carried out with acrylic acid, an inhibitor of beta-oxidation, suggested that odd-numbered fatty acids such as C15:0, C17:0 and 10-methyl C17:0 were synthesized de novo using propionyl-CoA, the beta-oxidation product, as precursor. Although N. globerula 432 incorporated mainly straight chain fatty acids into TAG, the branched fatty acid 4,8,12-trimethyl tridecanoic acid also appeared, to some extent, in the acylglycerols. The importance of TAG biosynthesis by pristane-grown cells of N. globerula strain 432 is discussed.
Collapse
Affiliation(s)
- H M Alvarez
- CEIMA, Facultad de Ciencias Naturales, Universidad Nacional de la Patagonia SanJuan Bosco, Chubut, Argentina.
| | | | | | | |
Collapse
|
42
|
Cheung PY, Kinkle BK. Mycobacterium diversity and pyrene mineralization in petroleum-contaminated soils. Appl Environ Microbiol 2001; 67:2222-9. [PMID: 11319104 PMCID: PMC92859 DOI: 10.1128/aem.67.5.2222-2229.2001] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Degradative strains of fast-growing Mycobacterium spp. are commonly isolated from polycyclic aromatic hydrocarbon (PAH)-contaminated soils. Little is known, however, about the ecology and diversity of indigenous populations of these fast-growing mycobacteria in contaminated environments. In the present study 16S rRNA genes were PCR amplified using Mycobacterium-specific primers and separated by temperature gradient gel electrophoresis (TGGE), and prominent bands were sequenced to compare the indigenous Mycobacterium community structures in four pairs of soil samples taken from heavily contaminated and less contaminated areas at four different sites. Overall, TGGE profiles obtained from heavily contaminated soils were less diverse than those from less contaminated soils. This decrease in diversity may be due to toxicity, since significantly fewer Mycobacterium phylotypes were detected in soils determined to be toxic by the Microtox assay than in nontoxic soils. Sequencing and phylogenetic analysis of prominent TGGE bands indicated that novel strains dominated the soil Mycobacterium community. Mineralization studies using [(14)C]pyrene added to four petroleum-contaminated soils, with and without the addition of the known pyrene degrader Mycobacterium sp. strain RJGII-135, indicated that inoculation increased the level of degradation in three of the four soils. Mineralization results obtained from a sterilized soil inoculated with strain RJGII-135 suggested that competition with indigenous microorganisms may be a significant factor affecting biodegradation of PAHs. Pyrene-amended soils, with and without inoculation with strain RJGII-135, experienced both increases and decreases in the population sizes of the inoculated strain and indigenous Mycobacterium populations during incubation.
Collapse
MESH Headings
- Biodegradation, Environmental
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Ecosystem
- Electrophoresis, Polyacrylamide Gel
- Genes, rRNA
- Molecular Sequence Data
- Mycobacterium/classification
- Mycobacterium/genetics
- Mycobacterium/isolation & purification
- Petroleum
- Phylogeny
- Polymerase Chain Reaction/methods
- Pyrenes/metabolism
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Soil Microbiology
- Soil Pollutants
- Temperature
Collapse
Affiliation(s)
- P Y Cheung
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221-0006, USA
| | | |
Collapse
|
43
|
Fava F, Di Gioia D. Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially contaminated soil. Biotechnol Bioeng 2001; 72:177-84. [PMID: 11114655 DOI: 10.1002/1097-0290(20000120)72:2<177::aid-bit6>3.0.co;2-k] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The effects of the phytogenic surfactant soya lecithin (SL) on the aerobic biodegradation of polychlorinated biphenyls (PCBs) spiked into a synthetic soil were studied. Soil was spiked with both biphenyl (4 g/kg) and Fenclor 42 (1,000 mg/kg) and treated in aerobic batch slurry-phase microcosms (17.5% w/v). Microcosms were prepared either with or without the exogenous aerobic PCB-dechlorinating bacterial co-culture ECO3 (inoculum:10(8) CFU/mL). In some inoculated microcosms, SL was added at 15 or 30 g/kg. Indigenous bacteria having the capability of metabolizing biphenyl and 2-chlorobenzoic acid were found to develop in the microcosms during the experiment, and were responsible for the significant PCB biodegradation and dechlorination observed in the uninoculated controls. The addition of ECO3 bacteria resulted in only a slight PCB biodegradation increase. In the presence of SL, a higher availability of biphenyl- and chlorobenzoic acid-degrading bacteria and higher PCB biodegradation and dechlorination yields were observed; the effects increased proportionally with the concentration of the applied SL. A significant decrease of soil ecotoxicity was also revealed in SL-supplemented microcosms. At both concentrations, SL was found to be a good carbon source for both the indigenous and ECO3 bacteria, as well as a product capable of enhancing the PCB bioavailability in the microcosms.
Collapse
Affiliation(s)
- F Fava
- DICASM, Faculty of Engineering, University of Bologna, Viale Risorgimento, 2, I - 40136, Bologna, Italy.
| | | |
Collapse
|
44
|
Wagner-Döbler I, Lünsdorf H, Lübbehüsen T, von Canstein HF, Li Y. Structure and species composition of mercury-reducing biofilms. Appl Environ Microbiol 2000; 66:4559-63. [PMID: 11010917 PMCID: PMC92343 DOI: 10.1128/aem.66.10.4559-4563.2000] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Mercury-reducing biofilms from packed-bed bioreactors treating nonsterile industrial effluents were shown to consist of a monolayer of bacteria by scanning electron microscopy. Droplets of several micrometers in diameter which accumulated outside of the bacterial cells were identified as elemental mercury by electron-dispersive X-ray analysis. The monospecies biofilms of Pseudomonas putida Spi3 initially present were invaded by additional strains, which were identified to the species level by thermogradient gel electrophoresis (TGGE) and 16S rDNA sequencing. TGGE community fingerprints of the biofilms showed that they were composed of the effluent bacteria and did not contain uncultivable microorganisms. Of the 13 effluent bacterial strains, 2 were not mercury resistant, while all the others had resistance levels similar to or higher than the inoculant strain.
Collapse
Affiliation(s)
- I Wagner-Döbler
- National Research Centre for Biotechnology (GBF), Division of Microbiology, D-38124 Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
45
|
Swenson W, Arendt J, Wilson DS. Artificial selection of microbial ecosystems for 3-chloroaniline biodegradation. Environ Microbiol 2000; 2:564-71. [PMID: 11233164 DOI: 10.1046/j.1462-2920.2000.00140.x] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We present a method for selecting entire microbial ecosystems for bioremediation and other practical purposes. A population of ecosystems is established in the laboratory, each ecosystem is measured for a desired property (in our case, degradation of the environmental pollutant 3-chloroaniline), and the best ecosystems are used as 'parents' to inoculate a new generation of 'offspring' ecosystems. Over many generations of variation and selection, the ecosystems become increasingly well adapted to produce the desired property. The procedure is similar to standard artificial selection experiments except that whole ecosystems, rather than single individuals, are the units of selection. The procedure can also be understood in terms of complex system theory as a way of searching a vast combinatorial space (many thousands of microbial species and many thousands of genes within species) for combinations that are especially good at producing the desired property. Ecosystem-level selection can be performed without any specific knowledge of the species that comprise the ecosystems and can select ensembles of species that would be difficult to discover with more reductionistic methods. Once a 'designer ecosystem' has been created by ecosystem-level selection, reductionistic methods can be used to identify the component species and to discover how they interact to produce the desired effect.
Collapse
Affiliation(s)
- W Swenson
- Department of Biological Sciences, Binghamton University, NY 13902-6000, USA.
| | | | | |
Collapse
|
46
|
Delille D, Delille B. Field observations on the variability of crude oil impact on indigenous hydrocarbon-degrading bacteria from sub-Antarctic intertidal sediments. MARINE ENVIRONMENTAL RESEARCH 2000; 49:403-417. [PMID: 11285720 DOI: 10.1016/s0141-1136(99)00080-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Oil pollution of the oceans has been a problem ever since man began to use fossil fuels. Biodegradation by naturally occurring populations of micro-organisms is a major mechanism for the removal of petroleum from the environment. To examine the effects of crude oil pollution on intertidal bacteria, we repeated the same contamination experiments on nine different sub-Antarctic intertidal beaches using specifically built enclosures (PVC pipe, 15 cm in inner diameter and 30 cm in height). Despite the pristine environmental conditions, significant numbers of indigenous hydrocarbon-degrading bacteria were observed in all the studied beaches. Introduction of oil into these previously oil-free environments resulted in several orders of magnitude of increase in hydrocarbon-degrading micro-organisms within a few days in some of the studied sites but has no obvious effects on two others. The physical environment of the bacterial assemblage seems to play a major role in the biodegradation capacities. After 3 months of contamination, both remaining oil concentrations and biodegradation indexes differ strongly between the different stations. Thus, chemical and biological parameters reveal a strong heterogeneity of biodegradation capacities between the different sites.
Collapse
Affiliation(s)
- D Delille
- Observatoire Océanologique de Banyuls, Université P. et M. Curie U.A. 117, Laboratoire Arago, 66650 Banyuls sur mer, France.
| | | |
Collapse
|