1
|
Schröder MP, Pfeiffer IPM, Mordhorst S. Methyltransferases from RiPP pathways: shaping the landscape of natural product chemistry. Beilstein J Org Chem 2024; 20:1652-1670. [PMID: 39076295 PMCID: PMC11285071 DOI: 10.3762/bjoc.20.147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 06/28/2024] [Indexed: 07/31/2024] Open
Abstract
This review article aims to highlight the role of methyltransferases within the context of ribosomally synthesised and post-translationally modified peptide (RiPP) natural products. Methyltransferases play a pivotal role in the biosynthesis of diverse natural products with unique chemical structures and bioactivities. They are highly chemo-, regio-, and stereoselective allowing methylation at various positions. The different possible acceptor regions in ribosomally synthesised peptides are described in this article. Furthermore, we will discuss the potential application of these methyltransferases as powerful biocatalytic tools in the synthesis of modified peptides and other bioactive compounds. By providing an overview of the various methylation options available, this review is intended to emphasise the biocatalytic potential of RiPP methyltransferases and their impact on the field of natural product chemistry.
Collapse
Affiliation(s)
- Maria-Paula Schröder
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Isabel P-M Pfeiffer
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Silja Mordhorst
- Pharmaceutical Institute, Department of Pharmaceutical Biology, University of Tübingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Kröber E, Kanukollu S, Wende S, Bringel F, Kolb S. A putatively new family of alphaproteobacterial chloromethane degraders from a deciduous forest soil revealed by stable isotope probing and metagenomics. ENVIRONMENTAL MICROBIOME 2022; 17:24. [PMID: 35527282 PMCID: PMC9080209 DOI: 10.1186/s40793-022-00416-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Chloromethane (CH3Cl) is the most abundant halogenated organic compound in the atmosphere and substantially responsible for the destruction of the stratospheric ozone layer. Since anthropogenic CH3Cl sources have become negligible with the application of the Montreal Protocol (1987), natural sources, such as vegetation and soils, have increased proportionally in the global budget. CH3Cl-degrading methylotrophs occurring in soils might be an important and overlooked sink. RESULTS AND CONCLUSIONS The objective of our study was to link the biotic CH3Cl sink with the identity of active microorganisms and their biochemical pathways for CH3Cl degradation in a deciduous forest soil. When tested in laboratory microcosms, biological CH3Cl consumption occurred in leaf litter, senescent leaves, and organic and mineral soil horizons. Highest consumption rates, around 2 mmol CH3Cl g-1 dry weight h-1, were measured in organic soil and senescent leaves, suggesting that top soil layers are active (micro-)biological CH3Cl degradation compartments of forest ecosystems. The DNA of these [13C]-CH3Cl-degrading microbial communities was labelled using stable isotope probing (SIP), and the corresponding taxa and their metabolic pathways studied using high-throughput metagenomics sequencing analysis. [13C]-labelled Metagenome-Assembled Genome closely related to the family Beijerinckiaceae may represent a new methylotroph family of Alphaproteobacteria, which is found in metagenome databases of forest soils samples worldwide. Gene markers of the only known pathway for aerobic CH3Cl degradation, via the methyltransferase system encoded by the CH3Cl utilisation genes (cmu), were undetected in the DNA-SIP metagenome data, suggesting that biological CH3Cl sink in this deciduous forest soil operates by a cmu-independent metabolism.
Collapse
Affiliation(s)
- Eileen Kröber
- Max-Planck Institute for Marine Microbiology, Celsiusstrasse 1, 28359 Bremen, Germany
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Saranya Kanukollu
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Sonja Wende
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Françoise Bringel
- Génétique Moléculaire, Génomique, Microbiologie (GMGM), Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France
| | - Steffen Kolb
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Agricultural Landscape Research, Müncheberg, Germany
- Thaer Institute, Faculty of Life Sciences, Humboldt University of Berlin, Berlin, Germany
| |
Collapse
|
3
|
Artuso I, Turrini P, Pirolo M, Lugli GA, Ventura M, Visca P. Phylogenomic Reconstruction and Metabolic Potential of the Genus Aminobacter. Microorganisms 2021; 9:1332. [PMID: 34205374 PMCID: PMC8235418 DOI: 10.3390/microorganisms9061332] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/01/2022] Open
Abstract
Bacteria belonging to the genus Aminobacter are metabolically versatile organisms thriving in both natural and anthropized terrestrial environments. To date, the taxonomy of this genus is poorly defined due to the unavailability of the genomic sequence of A. anthyllidis LMG 26462T and the presence of unclassified Aminobacter strains. Here, we determined the genome sequence of A. anthyllidis LMG 26462T and performed phylogenomic, average nucleotide identity and digital DNA-DNA hybridization analyses of 17 members of genus Aminobacter. Our results indicate that 16S rRNA-based phylogeny does not provide sufficient species-level discrimination, since most of the unclassified Aminobacter strains belong to valid Aminobacter species or are putative new species. Since some members of the genus Aminobacter can utilize certain C1 compounds, such as methylamines and methyl halides, a comparative genomic analysis was performed to characterize the genetic basis of some degradative/assimilative pathways in the whole genus. Our findings suggest that all Aminobacter species are heterotrophic methylotrophs able to generate the methylene tetrahydrofolate intermediate through multiple oxidative pathways of C1 compounds and convey it in the serine cycle. Moreover, all Aminobacter species carry genes implicated in the degradation of phosphonates via the C-P lyase pathway, whereas only A. anthyllidis LMG 26462T contains a symbiosis island implicated in nodulation and nitrogen fixation.
Collapse
Affiliation(s)
- Irene Artuso
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (I.A.); (P.T.)
| | - Paolo Turrini
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (I.A.); (P.T.)
| | - Mattia Pirolo
- Department of Veterinary and Animal Sciences, University of Copenhagen, Stigbøjlen 4, 1870 Frederiksberg C, Denmark;
| | - Gabriele Andrea Lugli
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy; (G.A.L.); (M.V.)
| | - Marco Ventura
- Laboratory of Probiogenomics, Department of Chemistry, Life Sciences, and Environmental Sustainability, University of Parma, Parco Area delle Scienze 11a, 43124 Parma, Italy; (G.A.L.); (M.V.)
- Interdepartmental Research Centre “Microbiome Research Hub”, University of Parma, 43124 Parma, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Viale G. Marconi 446, 00146 Rome, Italy; (I.A.); (P.T.)
| |
Collapse
|
4
|
Volpiano CG, Sant’Anna FH, Ambrosini A, de São José JFB, Beneduzi A, Whitman WB, de Souza EM, Lisboa BB, Vargas LK, Passaglia LMP. Genomic Metrics Applied to Rhizobiales ( Hyphomicrobiales): Species Reclassification, Identification of Unauthentic Genomes and False Type Strains. Front Microbiol 2021; 12:614957. [PMID: 33841347 PMCID: PMC8026895 DOI: 10.3389/fmicb.2021.614957] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 03/04/2021] [Indexed: 12/13/2022] Open
Abstract
Taxonomic decisions within the order Rhizobiales have relied heavily on the interpretations of highly conserved 16S rRNA sequences and DNA-DNA hybridizations (DDH). Currently, bacterial species are defined as including strains that present 95-96% of average nucleotide identity (ANI) and 70% of digital DDH (dDDH). Thus, ANI values from 520 genome sequences of type strains from species of Rhizobiales order were computed. From the resulting 270,400 comparisons, a ≥95% cut-off was used to extract high identity genome clusters through enumerating maximal cliques. Coupling this graph-based approach with dDDH from clusters of interest, it was found that: (i) there are synonymy between Aminobacter lissarensis and Aminobacter carboxidus, Aurantimonas manganoxydans and Aurantimonas coralicida, "Bartonella mastomydis," and Bartonella elizabethae, Chelativorans oligotrophicus, and Chelativorans multitrophicus, Rhizobium azibense, and Rhizobium gallicum, Rhizobium fabae, and Rhizobium pisi, and Rhodoplanes piscinae and Rhodoplanes serenus; (ii) Chelatobacter heintzii is not a synonym of Aminobacter aminovorans; (iii) "Bartonella vinsonii" subsp. arupensis and "B. vinsonii" subsp. berkhoffii represent members of different species; (iv) the genome accessions GCF_003024615.1 ("Mesorhizobium loti LMG 6,125T"), GCF_003024595.1 ("Mesorhizobium plurifarium LMG 11,892T"), GCF_003096615.1 ("Methylobacterium organophilum DSM 760T"), and GCF_000373025.1 ("R. gallicum R-602 spT") are not from the genuine type strains used for the respective species descriptions; and v) "Xanthobacter autotrophicus" Py2 and "Aminobacter aminovorans" KCTC 2,477T represent cases of misuse of the term "type strain". Aminobacter heintzii comb. nov. and the reclassification of Aminobacter ciceronei as A. heintzii is also proposed. To facilitate the downstream analysis of large ANI matrices, we introduce here ProKlust ("Prokaryotic Clusters"), an R package that uses a graph-based approach to obtain, filter, and visualize clusters on identity/similarity matrices, with settable cut-off points and the possibility of multiple matrices entries.
Collapse
Affiliation(s)
- Camila Gazolla Volpiano
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Fernando Hayashi Sant’Anna
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | - Adriana Ambrosini
- Departamento de Genética, Instituto de Biociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Anelise Beneduzi
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - William B. Whitman
- Department of Microbiology, University of Georgia, Athens, GA, United States
| | - Emanuel Maltempi de Souza
- Departamento de Bioquímica e Biologia Molecular, Centro Politécnico, Setor de Ciências Biológicas, Universidade Federal do Paraná, Curitiba, Brazil
| | - Bruno Brito Lisboa
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | - Luciano Kayser Vargas
- Departamento de Diagnóstico e Pesquisa Agropecuária, Secretaria Estadual da Agricultura, Pecuária e Desenvolvimento Rural, Porto Alegre, Brazil
| | | |
Collapse
|
5
|
Chaignaud P, Morawe M, Besaury L, Kröber E, Vuilleumier S, Bringel F, Kolb S. Methanol consumption drives the bacterial chloromethane sink in a forest soil. ISME JOURNAL 2018; 12:2681-2693. [PMID: 29991765 PMCID: PMC6194010 DOI: 10.1038/s41396-018-0228-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 06/01/2018] [Accepted: 06/15/2018] [Indexed: 11/16/2022]
Abstract
Halogenated volatile organic compounds (VOCs) emitted by terrestrial ecosystems, such as chloromethane (CH3Cl), have pronounced effects on troposphere and stratosphere chemistry and climate. The magnitude of the global CH3Cl sink is uncertain since it involves a largely uncharacterized microbial sink. CH3Cl represents a growth substrate for some specialized methylotrophs, while methanol (CH3OH), formed in much larger amounts in terrestrial environments, may be more widely used by such microorganisms. Direct measurements of CH3Cl degradation rates in two field campaigns and in microcosms allowed the identification of top soil horizons (i.e., organic plus mineral A horizon) as the major biotic sink in a deciduous forest. Metabolically active members of Alphaproteobacteria and Actinobacteria were identified by taxonomic and functional gene biomarkers following stable isotope labeling (SIP) of microcosms with CH3Cl and CH3OH, added alone or together as the [13C]-isotopologue. Well-studied reference CH3Cl degraders, such as Methylobacterium extorquens CM4, were not involved in the sink activity of the studied soil. Nonetheless, only sequences of the cmuA chloromethane dehalogenase gene highly similar to those of known strains were detected, suggesting the relevance of horizontal gene transfer for CH3Cl degradation in forest soil. Further, CH3Cl consumption rate increased in the presence of CH3OH. Members of Alphaproteobacteria and Actinobacteria were also 13C-labeled upon [13C]-CH3OH amendment. These findings suggest that key bacterial CH3Cl degraders in forest soil benefit from CH3OH as an alternative substrate. For soil CH3Cl-utilizing methylotrophs, utilization of several one-carbon compounds may represent a competitive advantage over heterotrophs that cannot utilize one-carbon compounds.
Collapse
Affiliation(s)
- Pauline Chaignaud
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Mareen Morawe
- Department of Ecological Microbiology, University of Bayreuth, Bayreuth, Germany
| | - Ludovic Besaury
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.,UMR FARE 614 Fractionnement des AgroRessources et Environnement, Chaire AFERE, INRA, Université de Reims Champagne-Ardenne, Reims, France
| | - Eileen Kröber
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Landscape Research, Müncheberg, Germany
| | - Stéphane Vuilleumier
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Françoise Bringel
- Department of Microbiology, Genomics and the Environment, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France.
| | - Steffen Kolb
- Microbial Biogeochemistry, RA Landscape Functioning, ZALF Leibniz Centre for Landscape Research, Müncheberg, Germany.
| |
Collapse
|
6
|
Yeager CM, Amachi S, Grandbois R, Kaplan DI, Xu C, Schwehr KA, Santschi PH. Microbial Transformation of Iodine: From Radioisotopes to Iodine Deficiency. ADVANCES IN APPLIED MICROBIOLOGY 2017; 101:83-136. [PMID: 29050668 DOI: 10.1016/bs.aambs.2017.07.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Iodine is a biophilic element that is important for human health, both as an essential component of several thyroid hormones and, on the other hand, as a potential carcinogen in the form of radioiodine generated by anthropogenic nuclear activity. Iodine exists in multiple oxidation states (-1, 0, +1, +3, +5, and +7), primarily as molecular iodine (I2), iodide (I-), iodate [Formula: see text] , or organic iodine (org-I). The mobility of iodine in the environment is dependent on its speciation and a series of redox, complexation, sorption, precipitation, and microbial reactions. Over the last 15years, there have been significant advances in iodine biogeochemistry, largely spurred by renewed interest in the fate of radioiodine in the environment. We review the biogeochemistry of iodine, with particular emphasis on the microbial processes responsible for volatilization, accumulation, oxidation, and reduction of iodine, as well as the exciting technological potential of these fascinating microorganisms and enzymes.
Collapse
|
7
|
Nadalig T, Greule M, Bringel F, Keppler F, Vuilleumier S. Probing the diversity of chloromethane-degrading bacteria by comparative genomics and isotopic fractionation. Front Microbiol 2014; 5:523. [PMID: 25360131 PMCID: PMC4197683 DOI: 10.3389/fmicb.2014.00523] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 09/19/2014] [Indexed: 11/13/2022] Open
Abstract
Chloromethane (CH3Cl) is produced on earth by a variety of abiotic and biological processes. It is the most important halogenated trace gas in the atmosphere, where it contributes to ozone destruction. Current estimates of the global CH3Cl budget are uncertain and suggest that microorganisms might play a more important role in degrading atmospheric CH3Cl than previously thought. Its degradation by bacteria has been demonstrated in marine, terrestrial, and phyllospheric environments. Improving our knowledge of these degradation processes and their magnitude is thus highly relevant for a better understanding of the global budget of CH3Cl. The cmu pathway, for chloromethane utilisation, is the only microbial pathway for CH3Cl degradation elucidated so far, and was characterized in detail in aerobic methylotrophic Alphaproteobacteria. Here, we reveal the potential of using a two-pronged approach involving a combination of comparative genomics and isotopic fractionation during CH3Cl degradation to newly address the question of the diversity of chloromethane-degrading bacteria in the environment. Analysis of available bacterial genome sequences reveals that several bacteria not yet known to degrade CH3Cl contain part or all of the complement of cmu genes required for CH3Cl degradation. These organisms, unlike bacteria shown to grow with CH3Cl using the cmu pathway, are obligate anaerobes. On the other hand, analysis of the complete genome of the chloromethane-degrading bacterium Leisingera methylohalidivorans MB2 showed that this bacterium does not contain cmu genes. Isotope fractionation experiments with L. methylohalidivorans MB2 suggest that the unknown pathway used by this bacterium for growth with CH3Cl can be differentiated from the cmu pathway. This result opens the prospect that contributions from bacteria with the cmu and Leisingera-type pathways to the atmospheric CH3Cl budget may be teased apart in the future.
Collapse
Affiliation(s)
- Thierry Nadalig
- Université de Strasbourg, Equipe Adaptations et Interactions Microbiennes dans l'Environnement, Unitès Mixtes de Recherche 7156 Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie Strasbourg, France
| | - Markus Greule
- Institute of Earth Sciences, Ruprecht Karls University Heidelberg Heidelberg, Germany
| | - Françoise Bringel
- Université de Strasbourg, Equipe Adaptations et Interactions Microbiennes dans l'Environnement, Unitès Mixtes de Recherche 7156 Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie Strasbourg, France
| | - Frank Keppler
- Institute of Earth Sciences, Ruprecht Karls University Heidelberg Heidelberg, Germany
| | - Stéphane Vuilleumier
- Université de Strasbourg, Equipe Adaptations et Interactions Microbiennes dans l'Environnement, Unitès Mixtes de Recherche 7156 Centre National de la Recherche Scientifique, Génétique Moléculaire, Génomique, Microbiologie Strasbourg, France
| |
Collapse
|
8
|
Yang G, Ding Y. Recent advances in biocatalyst discovery, development and applications. Bioorg Med Chem 2014; 22:5604-12. [DOI: 10.1016/j.bmc.2014.06.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 12/25/2022]
|
9
|
Ruecker A, Weigold P, Behrens S, Jochmann M, Laaks J, Kappler A. Predominance of biotic over abiotic formation of halogenated hydrocarbons in hypersaline sediments in Western Australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9170-9178. [PMID: 25073729 DOI: 10.1021/es501810g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Volatile halogenated organic compounds (VOX) contribute to ozone depletion and global warming. There is evidence of natural VOX formation in many environments ranging from forest soils to salt lakes. Laboratory studies have suggested that VOX formation can be chemically stimulated by reactive Fe species while field studies have provided evidence for direct biological (enzymatic) VOX formation. However, the relative contribution of abiotic and biotic processes to global VOX budgets is still unclear. The goals of this study were to quantify VOX release from sediments from a hypersaline lake in Western Australia (Lake Strawbridge) and to distinguish between the relative contributions of biotic and abiotic VOX formation in microbially active and sterilized microcosms. Our experiments demonstrated that the release of organochlorines from Lake Strawbridge sediments was mainly biotic. Among the organochlorines detected were monochlorinated, e.g., chloromethane (CH3Cl), and higher chlorinated VOX compounds such as trichloromethane (CHCl3). Amendment of sediments with either Fe(III) oxyhydroxide (ferrihydrite) or a mixture of lactate/acetate or both ferrihydrite and lactate/acetate did not stimulate VOX formation. This suggests that although microbial Fe(III) reduction took place, there was no stimulation of VOX formation via Fe redox transformations or the formation of reactive Fe species under our experimental conditions.
Collapse
Affiliation(s)
- A Ruecker
- Geomicrobiology, Center for Applied Geosciences, University of Tübingen , Tübingen 72074, Germany
| | | | | | | | | | | |
Collapse
|
10
|
Nadalig T, Greule M, Bringel F, Vuilleumier S, Keppler F. Hydrogen and carbon isotope fractionation during degradation of chloromethane by methylotrophic bacteria. Microbiologyopen 2013; 2:893-900. [PMID: 24019296 PMCID: PMC3892336 DOI: 10.1002/mbo3.124] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/10/2013] [Accepted: 07/21/2013] [Indexed: 01/12/2023] Open
Abstract
Chloromethane (CH3 Cl) is a widely studied volatile halocarbon involved in the destruction of ozone in the stratosphere. Nevertheless, its global budget still remains debated. Stable isotope analysis is a powerful tool to constrain fluxes of chloromethane between various environmental compartments which involve a multiplicity of sources and sinks, and both biotic and abiotic processes. In this study, we measured hydrogen and carbon isotope fractionation of the remaining untransformed chloromethane following its degradation by methylotrophic bacterial strains Methylobacterium extorquens CM4 and Hyphomicrobium sp. MC1, which belong to different genera but both use the cmu pathway, the only pathway for bacterial degradation of chloromethane characterized so far. Hydrogen isotope fractionation for degradation of chloromethane was determined for the first time, and yielded enrichment factors (ε) of -29‰ and -27‰ for strains CM4 and MC1, respectively. In agreement with previous studies, enrichment in (13) C of untransformed CH3 Cl was also observed, and similar isotope enrichment factors (ε) of -41‰ and -38‰ were obtained for degradation of chloromethane by strains CM4 and MC1, respectively. These combined hydrogen and carbon isotopic data for bacterial degradation of chloromethane will contribute to refine models of the global atmospheric budget of chloromethane.
Collapse
Affiliation(s)
- Thierry Nadalig
- Equipe Adaptations et Interactions Microbiennes dans l'Environnement, UMR 7156 Université de Strasbourg - CNRS, 28 rue Goethe, Strasbourg, 67083, France
| | | | | | | | | |
Collapse
|
11
|
Fluorescence-based bacterial bioreporter for specific detection of methyl halide emissions in the environment. Appl Environ Microbiol 2013; 79:6561-7. [PMID: 23956392 DOI: 10.1128/aem.01738-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Methyl halides are volatile one-carbon compounds responsible for substantial depletion of stratospheric ozone. Among them, chloromethane (CH3Cl) is the most abundant halogenated hydrocarbon in the atmosphere. Global budgets of methyl halides in the environment are still poorly understood due to uncertainties in their natural sources, mainly from vegetation, and their sinks, which include chloromethane-degrading bacteria. A bacterial bioreporter for the detection of methyl halides was developed on the basis of detailed knowledge of the physiology and genetics of Methylobacterium extorquens CM4, an aerobic alphaproteobacterium which utilizes chloromethane as the sole source of carbon and energy. A plasmid construct with the promoter region of the chloromethane dehalogenase gene cmuA fused to a promotorless yellow fluorescent protein gene cassette resulted in specific methyl halide-dependent fluorescence when introduced into M. extorquens CM4. The bacterial whole-cell bioreporter allowed detection of methyl halides at femtomolar levels and quantification at concentrations above 10 pM (approximately 240 ppt). As shown for the model chloromethane-producing plant Arabidopsis thaliana in particular, the bioreporter may provide an attractive alternative to analytical chemical methods to screen for natural sources of methyl halide emissions.
Collapse
|
12
|
Bowman JS, Larose C, Vogel TM, Deming JW. Selective occurrence of Rhizobiales in frost flowers on the surface of young sea ice near Barrow, Alaska and distribution in the polar marine rare biosphere. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:575-582. [PMID: 23864572 DOI: 10.1111/1758-2229.12047] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Revised: 02/11/2013] [Accepted: 03/03/2013] [Indexed: 06/02/2023]
Abstract
Frost flowers are highly saline ice structures that grow on the surface of young sea ice, a spatially extensive environment of increasing importance in the Arctic Ocean. In a previous study, we reported organic components of frost flowers in the form of elevated levels of bacteria and exopolymers relative to underlying ice. Here, DNA was extracted from frost flowers and young sea ice, collected in springtime from a frozen lead offshore of Barrow, Alaska, to identify bacteria in these understudied environments. Evaluation of the distribution of 16S rRNA genes via four methods (microarray analysis, T-RFLP, clone library and shotgun metagenomic sequencing) indicated distinctive bacterial assemblages between the two environments, with frost flowers appearing to select for Rhizobiales. A phylogenetic placement approach, used to evaluate the distribution of similar Rhizobiales sequences in other polar marine studies, indicated that some of the observed strains represent widely distributed members of the marine rare biosphere in both the Arctic and Antarctic.
Collapse
MESH Headings
- Alaska
- Alphaproteobacteria/classification
- Alphaproteobacteria/isolation & purification
- Arctic Regions
- Biodiversity
- Cloning, Molecular
- Cluster Analysis
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Bacterial/isolation & purification
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- DNA, Ribosomal/isolation & purification
- Ice Cover/microbiology
- Microarray Analysis
- Molecular Sequence Data
- Phylogeny
- Polymorphism, Restriction Fragment Length
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
Collapse
Affiliation(s)
- J S Bowman
- School of Oceanography, University of Washington, Seattle, WA, USA.
| | | | | | | |
Collapse
|
13
|
Cox MJ, Schäfer H, Nightingale PD, McDonald IR, Murrell JC. Diversity of methyl halide-degrading microorganisms in oceanic and coastal waters. FEMS Microbiol Lett 2012; 334:111-8. [DOI: 10.1111/j.1574-6968.2012.02624.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/28/2022] Open
Affiliation(s)
- Michael J. Cox
- School of Life Sciences; University of Warwick; Coventry; UK
| | - Hendrik Schäfer
- School of Life Sciences; University of Warwick; Coventry; UK
| | | | - Ian R. McDonald
- Department of Biological Sciences; University of Waikato; Hamilton; New Zealand
| | | |
Collapse
|
14
|
Nadalig T, Farhan Ul Haque M, Roselli S, Schaller H, Bringel F, Vuilleumier S. Detection and isolation of chloromethane-degrading bacteria from the Arabidopsis thaliana phyllosphere, and characterization of chloromethane utilization genes. FEMS Microbiol Ecol 2011; 77:438-48. [PMID: 21545604 DOI: 10.1111/j.1574-6941.2011.01125.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Chloromethane gas is produced naturally in the phyllosphere, the compartment defined as the aboveground parts of vegetation, which hosts a rich bacterial flora. Chloromethane may serve as a growth substrate for specialized aerobic methylotrophic bacteria, which have been isolated from soil and water environments, and use cmu genes for chloromethane utilization. Evidence for the presence of chloromethane-degrading bacteria on the leaf surfaces of Arabidopsis thaliana was obtained by specific quantitative PCR of the cmuA gene encoding the two-domain methyltransferase corrinoid protein of chloromethane dehalogenase. Bacterial strains were isolated on a solid mineral medium with chloromethane as the sole carbon source from liquid mineral medium enrichment cultures inoculated with leaves of A. thaliana. Restriction analysis-based genotyping of cmuA PCR products was used to evaluate the diversity of chloromethane-degrading bacteria during enrichment and after strain isolation. The isolates obtained, affiliated to the genus Hyphomicrobium based on their 16S rRNA gene sequence and the presence of characteristic hyphae, dehalogenate chloromethane, and grow in a liquid culture with chloromethane as the sole carbon and energy source. The cmu genes of these isolates were analysed using new PCR primers, and their sequences were compared with those of previously reported aerobic chloromethane-degrading strains. The three isolates featured a colinear cmuBCA gene arrangement similar to that of all previously characterized strains, except Methylobacterium extorquens CM4 of known genome sequence.
Collapse
Affiliation(s)
- Thierry Nadalig
- Université de Strasbourg, UMR 7156 CNRS, Strasbourg, France.
| | | | | | | | | | | |
Collapse
|
15
|
O'Hagan D, Schmidberger JW. Enzymes that catalyse SN2 reaction mechanisms. Nat Prod Rep 2010; 27:900-18. [DOI: 10.1039/b919371p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Amachi S. Microbial Contribution to Global Iodine Cycling: Volatilization, Accumulation, Reduction, Oxidation, and Sorption of Iodine. Microbes Environ 2008; 23:269-76. [DOI: 10.1264/jsme2.me08548] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Seigo Amachi
- Graduate School of Horticulture, Chiba University
| |
Collapse
|
17
|
Das A, Fu ZQ, Tempel W, Liu ZJ, Chang J, Chen L, Lee D, Zhou W, Xu H, Shaw N, Rose JP, Ljungdahl LG, Wang BC. Characterization of a corrinoid protein involved in the C1 metabolism of strict anaerobic bacterium Moorella thermoacetica. Proteins 2007; 67:167-76. [PMID: 17211893 DOI: 10.1002/prot.21094] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The strict anaerobic, thermophilic bacterium Moorella thermoacetica metabolizes C1 compounds for example CO(2)/H(2), CO, formate, and methanol into acetate via the Wood/Ljungdahl pathway. Some of the key steps in this pathway include the metabolism of the C1 compounds into the methyl group of methylenetetrahydrofolate (MTHF) and the transfer of the methyl group from MTHF to the methyl group of acetyl-CoA catalyzed by methyltransferase, corrinoid protein and CO dehydrogenase/acetyl CoA synthase. Recently, we reported the crystallization of a 25 kDa methanol-induced corrinoid protein from M. thermoacetica (Zhou et al., Acta Crystallogr F 2005; 61:537-540). In this study we analyzed the crystal structure of the 25 kDa protein and provide genetic and biochemical evidences supporting its role in the methanol metabolism of M. thermoacetia. The 25 kDa protein was encoded by orf1948 of contig 303 in the M. thermoacetica genome. It resembles similarity to MtaC the corrinoid protein of the methanol:CoM methyltransferase system of methane producing archaea. The latter enzyme system also contains two additional enzymes MtaA and MtaB. Homologs of MtaA and MtaB were found to be encoded by orf2632 of contig 303 and orf1949 of contig 309, respectively, in the M. thermoacetica genome. The orf1948 and orf1949 were co-transcribed from a single polycistronic operon. Metal analysis and spectroscopic data confirmed the presence of cobalt and the corrinoid in the purified 25 kDa protein. High resolution X-ray crystal structure of the purified 25 kDa protein revealed corrinoid as methylcobalamin with the imidazole of histidine as the alpha-axial ligand replacing benziimidazole, suggesting base-off configuration for the corrinoid. Methanol significantly activated the expression of the 25 kDa protein. Cyanide and nitrate inhibited methanol metabolism and suppressed the level of the 25 kDa protein. The results suggest a role of the 25 kDa protein in the methanol metabolism of M. thermoacetica.
Collapse
Affiliation(s)
- Amaresh Das
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Rhew RC, Teh YA, Abel T. Methyl halide and methane fluxes in the northern Alaskan coastal tundra. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006jg000314] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
19
|
Schäfer H, Miller LG, Oremland RS, Murrell JC. Bacterial Cycling of Methyl Halides. ADVANCES IN APPLIED MICROBIOLOGY 2007; 61:307-46. [PMID: 17448794 DOI: 10.1016/s0065-2164(06)61009-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Hendrik Schäfer
- Department of Biological Sciences, University of Warwick, Coventry, United Kingdom
| | | | | | | |
Collapse
|
20
|
Warner KL, Larkin MJ, Harper DB, Murrell JC, McDonald IR. Analysis of genes involved in methyl halide degradation in Aminobacter lissarensis CC495. FEMS Microbiol Lett 2006; 251:45-51. [PMID: 16102909 DOI: 10.1016/j.femsle.2005.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 07/17/2005] [Accepted: 07/19/2005] [Indexed: 11/29/2022] Open
Abstract
Aminobacter lissarensis CC495 is an aerobic facultative methylotroph capable of growth on glucose, glycerol, pyruvate and methylamine as well as the methyl halides methyl chloride and methyl bromide. Previously, cells grown on methyl chloride have been shown to express two polypeptides with apparent molecular masses of 67 and 29 kDa. The 67 kDa protein was purified and identified as a halomethane:bisulfide/halide ion methyltransferase. This study describes a single gene cluster in A. lissarensis CC495 containing the methyl halide utilisation genes cmuB, cmuA, cmuC, orf 188, paaE and hutI. The genes correspond to the same order and have a high similarity to a gene cluster found in Aminobacter ciceronei IMB-1 and Hyphomicrobium chloromethanicum strain CM2 indicating that genes encoding methyl halide degradation are highly conserved in these strains.
Collapse
Affiliation(s)
- Karen L Warner
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | | | |
Collapse
|
21
|
McDonald IR, Kämpfer P, Topp E, Warner KL, Cox MJ, Hancock TLC, Miller LG, Larkin MJ, Ducrocq V, Coulter C, Harper DB, Murrell JC, Oremland RS. Aminobacter ciceronei sp. nov. and Aminobacter lissarensis sp. nov., isolated from various terrestrial environments. Int J Syst Evol Microbiol 2005; 55:1827-1832. [PMID: 16166673 DOI: 10.1099/ijs.0.63716-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The bacterial strains IMB-1(T) and CC495(T), which are capable of growth on methyl chloride (CH(3)Cl, chloromethane) and methyl bromide (CH(3)Br, bromomethane), were isolated from agricultural soil in California fumigated with CH(3)Br, and woodland soil in Northern Ireland, respectively. Two pesticide-/herbicide-degrading bacteria, strains ER2 and C147, were isolated from agricultural soil in Canada. Strain ER2 degrades N-methyl carbamate insecticides, and strain C147 degrades triazine herbicides widely used in agriculture. On the basis of their morphological, physiological and genotypic characteristics, these four strains are considered to represent two novel species of the genus Aminobacter, for which the names Aminobacter ciceronei sp. nov. (type strain IMB-1(T)=ATCC 202197(T)=CIP 108660(T)=CCUG 50580(T); strains ER2 and C147) and Aminobacter lissarensis sp. nov. (type strain CC495(T)=NCIMB 13798(T)=CIP 108661(T)=CCUG 50579(T)) are proposed.
Collapse
Affiliation(s)
- Ian R McDonald
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, D-35390 Giessen, Germany
| | - Ed Topp
- Agriculture and Agri-Food Canada, London, Ontario, Canada N5V 4T3
| | - Karen L Warner
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Michael J Cox
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | - Laurence G Miller
- US Geological Survey, 345 Middlefield Rd, MS 480, Menlo Park, CA 94025, USA
| | | | | | - Catherine Coulter
- School of Agriculture and Food Science, Queen's University Belfast, Newforge Lane, Belfast BT9 5PX, UK
| | - David B Harper
- School of Agriculture and Food Science, Queen's University Belfast, Newforge Lane, Belfast BT9 5PX, UK
| | - J Colin Murrell
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Ronald S Oremland
- US Geological Survey, 345 Middlefield Rd, MS 480, Menlo Park, CA 94025, USA
| |
Collapse
|
22
|
Borodina E, Cox MJ, McDonald IR, Murrell JC. Use of DNA-stable isotope probing and functional gene probes to investigate the diversity of methyl chloride-utilizing bacteria in soil. Environ Microbiol 2005; 7:1318-28. [PMID: 16104855 DOI: 10.1111/j.1462-5822.2005.00819.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Enrichment and isolation of methyl chloride-utilizing bacteria from various terrestrial environments, including woodland and forest soils, resulted in the identification of seven methyl chloride-utilizing strains belonging to the genus Hyphomicrobium, an Aminobacter strain TW23 and strain WG1, which grouped closely with the genus Mesorhizobium. Methyl chloride enrichment cultures were dominated by Hyphomicrobium species, indicating that these bacteria were most suited to growth under the enrichment and isolation conditions used. However, the application of culture-independent techniques such as DNA-stable isotope probing and the use of a functional gene probe targeting cmuA, which encodes the methyltransferase catalysing the first step in bacterial methyl chloride metabolism, indicated a greater diversity of methyl chloride-utilizing bacteria in the terrestrial environment, compared with the diversity of soil isolates obtained via the enrichment and isolation procedure. It also revealed the presence of as yet uncultured and potentially novel methyl chloride-degrading bacteria in soil.
Collapse
Affiliation(s)
- Elena Borodina
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK
| | | | | | | |
Collapse
|
23
|
Affiliation(s)
- Kenneth L Brown
- Department of Chemistry and Biochemistry, Ohio University, Athens, 45701, USA.
| |
Collapse
|
24
|
Schäfer H, McDonald IR, Nightingale PD, Murrell JC. Evidence for the presence of a CmuA methyltransferase pathway in novel marine methyl halide-oxidizing bacteria. Environ Microbiol 2005; 7:839-52. [PMID: 15892703 DOI: 10.1111/j.1462-2920.2005.00757.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Marine bacteria that oxidized methyl bromide and methyl chloride were enriched and isolated from seawater samples. Six methyl halide-oxidizing enrichments were established from which 13 isolates that grew on methyl bromide and methyl chloride as sole sources of carbon and energy were isolated and maintained. All isolates belonged to three different clades in the Roseobacter group of the alpha subdivision of the Proteobacteria and were distinct from Leisingera methylohalidivorans, the only other identified marine bacterium that grows on methyl bromide as sole source of carbon and energy. Genes encoding the methyltransferase/corrinoid-binding protein CmuA, which is responsible for the initial step of methyl chloride oxidation in terrestrial methyl halide-oxidizing bacteria, were detected in enrichments and some of the novel marine strains. Gene clusters containing cmuA and other genes implicated in the metabolism of methyl halides were cloned from two of the isolates. Expression of CmuA during growth on methyl halides was demonstrated by analysis of polypeptides expressed during growth on methyl halides by SDS-PAGE and mass spectrometry in two isolates representing two of the three clades. These findings indicate that certain marine methyl halide degrading bacteria from the Roseobacter group contain a methyltransferase pathway for oxidation of methyl bromide that may be similar to that responsible for methyl chloride oxidation in Methylobacterium chloromethanicum. This pathway therefore potentially contributes to cycling of methyl halides in both terrestrial and marine environments.
Collapse
Affiliation(s)
- Hendrik Schäfer
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, England, UK
| | | | | | | |
Collapse
|
25
|
Zhou W, Das A, Habel JE, Liu ZJ, Chang J, Chen L, Lee D, Nguyen D, Chang SH, Tempel W, Rose JP, Ljungdahl LG, Wang BC. Isolation, crystallization and preliminary X-ray analysis of a methanol-induced corrinoid protein from Moorella thermoacetica. Acta Crystallogr Sect F Struct Biol Cryst Commun 2005; 61:537-40. [PMID: 16511090 PMCID: PMC1952305 DOI: 10.1107/s1744309105010511] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2005] [Accepted: 04/04/2005] [Indexed: 05/06/2023]
Abstract
A corrinoid protein was induced and overexpressed in methanol-grown cells of the thermophilic anaerobic bacterium Moorella thermoacetica. The protein was purified from cytosolic extracts. After screening for crystallization conditions and optimization, crystals were obtained that diffracted strongly on a rotating-anode X-ray source. A diffraction data set was collected and processed including reflections to 1.9 A resolution. Reflections were indexed in a primitive orthorhombic cell with unit-cell parameters a = 55.69, b = 62.74, c = 34.54 A. N-terminal amino-acid sequencing indicates that the crystals contain a C-terminal fragment of the protein.
Collapse
Affiliation(s)
- Weihong Zhou
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Amaresh Das
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Jeff E. Habel
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Zhi-Jie Liu
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Jessie Chang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Lirong Chen
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Doowon Lee
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Duong Nguyen
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Shu-Huey Chang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Wolfram Tempel
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - John P. Rose
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
| | - Lars G. Ljungdahl
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
- Correspondence e-mail: ,
| | - Bi-Cheng Wang
- Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, Georgia 30602, USA
- Correspondence e-mail: ,
| |
Collapse
|
26
|
Freedman DL, Swamy M, Bell NC, Verce MF. Biodegradation of chloromethane by Pseudomonas aeruginosa strain NB1 under nitrate-reducing and aerobic conditions. Appl Environ Microbiol 2004; 70:4629-34. [PMID: 15294795 PMCID: PMC492339 DOI: 10.1128/aem.70.8.4629-4634.2004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2004] [Accepted: 04/23/2004] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas aeruginosa strain NB1 uses chloromethane (CM) as its sole source of carbon and energy under nitrate-reducing and aerobic conditions. The observed yield of NB1 was 0.20 (+/-0.06) (mean +/- standard deviation) and 0.28 (+/-0.01) mg of total suspended solids (TSS) mg of CM(-1) under anoxic and aerobic conditions, respectively. The stoichiometry of nitrate consumption was 0.75 (+/-0.10) electron equivalents (eeq) of NO(3)(-) per eeq of CM, which is consistent with the yield when it is expressed on an eeq basis. Nitrate was stoichiometrically converted to dinitrogen (0.51 +/- 0.05 mol of N(2) per mol of NO(3)(-)). The stoichiometry of oxygen use with CM (0.85 +/- 0.21 eeq of O(2) per eeq of CM) was also consistent with the aerobic yield. Stoichiometric release of chloride and minimal accumulation of soluble metabolic products (measured as chemical oxygen demand) following CM consumption, under anoxic and aerobic conditions, indicated complete biodegradation of CM. Acetylene did not inhibit CM use under aerobic conditions, implying that a monooxygenase was not involved in initiating aerobic CM metabolism. Under anoxic conditions, the maximum specific CM utilization rate (k) for NB1 was 5.01 (+/-0.06) micromol of CM mg of TSS(-1) day(-1), the maximum specific growth rate (micro(max)) was 0.0506 day(-1), and the Monod half-saturation coefficient (K(s)) was 0.067 (+/-0.004) microM. Under aerobic conditions, the values for k, micro(max), and K(s) were 10.7 (+/-0.11) micromol of CM mg of TSS(-1) day(-1), 0.145 day(-1), and 0.93 (+/-0.042) microM, respectively, indicating that NB1 used CM faster under aerobic conditions. Strain NB1 also grew on methanol, ethanol, and acetate under denitrifying and aerobic conditions, but not on methane, formate, or dichloromethane.
Collapse
Affiliation(s)
- David L Freedman
- Department of Environmental Engineering and Science, Box 340919, Clemson University, Clemson, SC 29634-0919, USA.
| | | | | | | |
Collapse
|
27
|
Borodina E, McDonald IR, Murrell JC. Chloromethane-dependent expression of the cmu gene cluster of Hyphomicrobium chloromethanicum. Appl Environ Microbiol 2004; 70:4177-86. [PMID: 15240299 PMCID: PMC444766 DOI: 10.1128/aem.70.7.4177-4186.2004] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2004] [Accepted: 03/24/2004] [Indexed: 11/20/2022] Open
Abstract
The methylotrophic bacterium Hyphomicrobium chloromethanicum CM2 can utilize chloromethane (CH(3)Cl) as the sole carbon and energy source. Previously genes cmuB, cmuC, cmuA, and folD were shown to be essential for the growth of Methylobacterium chloromethanicum on CH(3)Cl. These CH(3)Cl-specific genes were subsequently detected in H. chloromethanicum. Transposon and marker exchange mutagenesis studies were carried out to identify the genes essential for CH(3)Cl metabolism in H. chloromethanicum. New developments in genetic manipulation of Hyphomicrobium are presented in this study. An electroporation protocol has been optimized and successfully applied for transformation of mutagenesis plasmids into H. chloromethanicum to generate stable CH(3)Cl-negative mutants. Both transposon and marker exchange mutageneses were highly applicable for genetic analysis of Hyphomicrobium. A reliable and reproducible selection procedure for screening of CH(3)Cl utilization-negative mutants has also been developed. Mutational inactivation of cmuB, cmuC, or hutI resulted in strains that were unable to utilize CH(3)Cl or to express the CH(3)Cl-dependent polypeptide CmuA. Reverse transcription-PCR analysis indicated that cmuB, cmuC, cmuA, fmdB, paaE, hutI, and metF formed a single cmuBCA-metF operon and were coregulated and coexpressed in H. chloromethanicum. This finding led to the conclusion that, in cmuB and cmuC mutants, impaired expression of cmuA was likely to be due to a polar effect of the defective gene (cmuB or cmuC) located upstream (5') of cmuA. The detrimental effect of mutation in hutI on the upstream (5')-located cmuA is not clear but indicated that all the genes located within the cmuBCA-metF operon are coordinately expressed. Expression of the cmuBCA-metF transcript was also shown to be strictly CH(3)Cl inducible and was not repressed by the alternative C(1) substrate methanol. Sequence analysis of a transposon mutant (D20) led to the discovery of the previously undetected hutI and metF genes located 3' of the paaE gene in H. chloromethanicum. MetF, a putative methylene-tetrahydrofolate reductase, had 27% identity to MetF from M. chloromethanicum. Mutational and transcriptional analysis data indicated that, in H. chloromethanicum, CH(3)Cl is metabolized via a corrinoid-specific (cmuA) and tetrahydrofolate-dependent (metF, purU, folD) methyltransfer system.
Collapse
Affiliation(s)
- Elena Borodina
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, United Kingdom.
| | | | | |
Collapse
|
28
|
Bentley R, Chasteen TG. Environmental VOSCs--formation and degradation of dimethyl sulfide, methanethiol and related materials. CHEMOSPHERE 2004; 55:291-317. [PMID: 14987929 DOI: 10.1016/j.chemosphere.2003.12.017] [Citation(s) in RCA: 155] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 12/12/2003] [Accepted: 12/17/2003] [Indexed: 05/07/2023]
Abstract
Volatile organic sulfur compounds (VOSCs) play a major role in the global sulfur cycle. Two components, dimethyl sulfide (DMS) and methanethiol (MT) are formed in large amounts by living systems (e.g. algae, bacteria, plants), particularly in marine environments. A major route to DMS is by action of a lyase enzyme on dimethylsulfoniopropionate (DMSP). DMSP has other roles, for instance as an osmoprotectant and cryoprotectant. Demethiolation of DMSP and other materials leads to MT. A major transport process is release of DMS from the oceans to the atmosphere. Oxidation of DMS in the atmosphere by hydroxyl and nitrate radicals produces many degradation products including CO2, COS, dimethyl sulfoxide, dimethyl sulfone, organic oxyacids of sulfur, and sulfate. These materials also have roles in biotic processes and there are complex metabolic interrelationships between some of them. This review emphasizes the chemical reactions of the organic sulfur cycle. For biotic reactions, details of relevant enzymes are provided when possible.
Collapse
Affiliation(s)
- Ronald Bentley
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
29
|
Abstract
A large number of halogenated compounds is produced by chemical synthesis. Some of these compounds are very toxic and cause enormous problems to human health and to the environment. Investigations on the degradation of halocompounds by microorganisms have led to the detection of various dehalogenating enzymes catalyzing the removal of halogen atoms under aerobic and anaerobic conditions involving different mechanisms. On the other hand, more than 3500 halocompounds are known to be produced biologically, some of them in great amounts. Until 1997, only haloperoxidases were thought to be responsible for incorporation of halogen atoms into organic compounds. However, recent investigations into the biosynthesis of halogenated metabolites by bacteria have shown that a novel type of halogenating enzymes, FADH(2)-dependent halogenases, are involved in biosyntheses of halogenated metabolites. In every gene cluster coding for the biosynthesis of a halogenated metabolite, isolated so far, one or several genes for FADH(2)-dependent halogenases have been identified.
Collapse
|
30
|
Ballschmiter K. Pattern and sources of naturally produced organohalogens in the marine environment: biogenic formation of organohalogens. CHEMOSPHERE 2003; 52:313-24. [PMID: 12738255 DOI: 10.1016/s0045-6535(03)00211-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The pattern of organohalogens found in the marine environment is complex and includes compounds, only assignable to natural (chloromethane) or anthropogenic (hexachlorobenzene, PCBs) sources as well as compounds of a mixed origin (trichloromethane, halogenated methyl phenyl ether).The chemistry of the formation of natural organohalogens is summarized. The focus is put on volatile compounds carrying the halogens Cl, Br, and I, respectively. Though marine natural organohalogens are quite numerous as defined components, they are mostly not produced as major compounds. The most relevant in terms of global annual production is chloromethane (methyl chloride). The global atmospheric mixing ratio requires an annual production of 3.5-5 million tons per year. The chemistry of the group of haloperoxidases is discussed. Incubation experiments reveal that a wide spectrum of unknown compounds is formed in side reactions by haloperoxidases in pathways not yet understood.
Collapse
Affiliation(s)
- Karlheinz Ballschmiter
- Department of Analytical and Environmental Chemistry, University of Ulm, Albert-Einstein-Allee 11, D-89081 Ulm, Germany.
| |
Collapse
|
31
|
McDonald IR, Warner KL, McAnulla C, Woodall CA, Oremland RS, Murrell JC. A review of bacterial methyl halide degradation: biochemistry, genetics and molecular ecology. Environ Microbiol 2002; 4:193-203. [PMID: 12010126 DOI: 10.1046/j.1462-2920.2002.00290.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Methyl halide-degrading bacteria are a diverse group of organisms that are found in both terrestrial and marine environments. They potentially play an important role in mitigating ozone depletion resulting from methyl chloride and methyl bromide emissions. The first step in the pathway(s) of methyl halide degradation involves a methyltransferase and, recently, the presence of this pathway has been studied in a number of bacteria. This paper reviews the biochemistry and genetics of methyl halide utilization in the aerobic bacteria Methylobacterium chloromethanicum CM4T, Hyphomicrobium chloromethanicum CM2T, Aminobacter strain IMB-1 and Aminobacter strain CC495. These bacteria are able to use methyl halides as a sole source of carbon and energy, are all members of the alpha-Proteobacteria and were isolated from a variety of polluted and pristine terrestrial environments. An understanding of the genetics of these bacteria identified a unique gene (cmuA) involved in the degradation of methyl halides, which codes for a protein (CmuA) with unique methyltransferase and corrinoid functions. This unique functional gene, cmuA, is being used to develop molecular ecology techniques to examine the diversity and distribution of methyl halide-utilizing bacteria in the environment and hopefully to understand their role in methyl halide degradation in different environments. These techniques will also enable the detection of potentially novel methyl halide-degrading bacteria.
Collapse
Affiliation(s)
- I R McDonald
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, UK.
| | | | | | | | | | | |
Collapse
|
32
|
Goodwin KD, Varner RK, Crill PM, Oremland RS. Consumption of tropospheric levels of methyl bromide by C(1) compound-utilizing bacteria and comparison to saturation kinetics. Appl Environ Microbiol 2001; 67:5437-43. [PMID: 11722890 PMCID: PMC93327 DOI: 10.1128/aem.67.12.5437-5443.2001] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pure cultures of methylotrophs and methanotrophs are known to oxidize methyl bromide (MeBr); however, their ability to oxidize tropospheric concentrations (parts per trillion by volume [pptv]) has not been tested. Methylotrophs and methanotrophs were able to consume MeBr provided at levels that mimicked the tropospheric mixing ratio of MeBr (12 pptv) at equilibrium with surface waters ( approximately 2 pM). Kinetic investigations using picomolar concentrations of MeBr in a continuously stirred tank reactor (CSTR) were performed using strain IMB-1 and Leisingeria methylohalidivorans strain MB2(T) - terrestrial and marine methylotrophs capable of halorespiration. First-order uptake of MeBr with no indication of threshold was observed for both strains. Strain MB2(T) displayed saturation kinetics in batch experiments using micromolar MeBr concentrations, with an apparent K(s) of 2.4 microM MeBr and a V(max) of 1.6 nmol h(-1) (10(6) cells)(-1). Apparent first-order degradation rate constants measured with the CSTR were consistent with kinetic parameters determined in batch experiments, which used 35- to 1 x 10(7)-fold-higher MeBr concentrations. Ruegeria algicola (a phylogenetic relative of strain MB2(T)), the common heterotrophs Escherichia coli and Bacillus pumilus, and a toluene oxidizer, Pseudomonas mendocina KR1, were also tested. These bacteria showed no significant consumption of 12 pptv MeBr; thus, the ability to consume ambient mixing ratios of MeBr was limited to C(1) compound-oxidizing bacteria in this study. Aerobic C(1) bacteria may provide model organisms for the biological oxidation of tropospheric MeBr in soils and waters.
Collapse
Affiliation(s)
- K D Goodwin
- Cooperative Institute for Marine and Atmospheric Studies, Rosenstiel School of Marine and Atmospheric Sciences, University of Miami, Miami, Florida 33149, USA.
| | | | | | | |
Collapse
|
33
|
Studer A, Stupperich E, Vuilleumier S, Leisinger T. Chloromethane: tetrahydrofolate methyl transfer by two proteins from Methylobacterium chloromethanicum strain CM4. ACTA ACUST UNITED AC 2001; 268:2931-8. [PMID: 11358510 DOI: 10.1046/j.1432-1327.2001.02182.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cmuA and cmuB genes are required for growth of Methylobacterium chloromethanicum strain CM4 with chloromethane as the sole carbon source. While CmuB was previously shown to possess methylcobalamin:tetrahydrofolate methyltransferase activity, sequence analysis indicated that CmuA represented a novel and so far unique two-domain methyltransferase/corrinoid-binding protein involved in methyl transfer from chloromethane to a corrin moiety. CmuA was purified from wild-type M. chloromethanicum strain CM4 and characterized as a monomeric, cobalt-containing and zinc-containing enzyme of molecular mass 67 kDa with a bound vitamin B12 cofactor. In combination, CmuA and CmuB proteins catalyze the in vitro transfer of the methyl group of chloromethane to tetrahydrofolate, thus affording a direct link between chloromethane dehalogenation and core C1 metabolism of Methylobacterium. Chloromethane dehalogenase activity in vitro is limited by CmuB, as formation of methyltetrahydrofolate from chloromethane displays apparent Michaelis-Menten kinetics with respect to methylated CmuA, with an apparent Km of 0.27 microM and a Vmax of 0.45 U x mg(-1). This contrasts with sequence-related systems for methyl transfer from methanogens, which involve methyltransferase and corrinoid protein components in well-defined stoichiometric ratios.
Collapse
Affiliation(s)
- A Studer
- Institut für Mikrobiologie, ETH-Zentrum, Zürich, Switzerland
| | | | | | | |
Collapse
|
34
|
McAnulla C, McDonald IR, Murrell JC. Methyl chloride utilising bacteria are ubiquitous in the natural environment. FEMS Microbiol Lett 2001; 201:151-5. [PMID: 11470354 DOI: 10.1111/j.1574-6968.2001.tb10749.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Enrichment and isolation of methyl chloride utilising bacteria from a variety of pristine terrestrial, freshwater, estuarine and marine environments resulted in the detection of six new methyl chloride utilising Hyphomicrobium strains, strain CMC related to Aminobacter spp. and to two previously isolated methyl halide utilising bacteria CC495 and IMB-1, and a Gram-positive isolate SAC-4 phylogenetically related to Nocardioides spp. All the pristine environments sampled for enrichment resulted in the successful isolation of methyl chloride utilising organisms.
Collapse
Affiliation(s)
- C McAnulla
- Department of Biological Sciences, University of Warwick, CV4 7AL, Coventry, UK
| | | | | |
Collapse
|
35
|
Miller LG, Kalin RM, McCauley SE, Hamilton JT, Harper DB, Millet DB, Oremland RS, Goldstein AH. Large carbon isotope fractionation associated with oxidation of methyl halides by methylotrophic bacteria. Proc Natl Acad Sci U S A 2001; 98:5833-7. [PMID: 11344313 PMCID: PMC33299 DOI: 10.1073/pnas.101129798] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2000] [Accepted: 03/13/2001] [Indexed: 11/18/2022] Open
Abstract
The largest biological fractionations of stable carbon isotopes observed in nature occur during production of methane by methanogenic archaea. These fractionations result in substantial (as much as approximately 70 per thousand) shifts in delta(13)C relative to the initial substrate. We now report that a stable carbon isotopic fractionation of comparable magnitude (up to 70 per thousand) occurs during oxidation of methyl halides by methylotrophic bacteria. We have demonstrated biological fractionation with whole cells of three methylotrophs (strain IMB-1, strain CC495, and strain MB2) and, to a lesser extent, with the purified cobalamin-dependent methyltransferase enzyme obtained from strain CC495. Thus, the genetic similarities recently reported between methylotrophs, and methanogens with respect to their pathways for C(1)-unit metabolism are also reflected in the carbon isotopic fractionations achieved by these organisms. We found that only part of the observed fractionation of carbon isotopes could be accounted for by the activity of the corrinoid methyltransferase enzyme, suggesting fractionation by enzymes further along the degradation pathway. These observations are of potential biogeochemical significance in the application of stable carbon isotope ratios to constrain the tropospheric budgets for the ozone-depleting halocarbons, methyl bromide and methyl chloride.
Collapse
Affiliation(s)
- L G Miller
- United States Geological Survey, Menlo Park, CA 94025, USA.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Woodall CA, Warner KL, Oremland RS, Murrell JC, McDonald IR. Identification of methyl halide-utilizing genes in the methyl bromide-utilizing bacterial strain IMB-1 suggests a high degree of conservation of methyl halide-specific genes in gram-negative bacteria. Appl Environ Microbiol 2001; 67:1959-63. [PMID: 11282657 PMCID: PMC92821 DOI: 10.1128/aem.67.4.1959-1963.2001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Strain IMB-1, an aerobic methylotrophic member of the alpha subgroup of the Proteobacteria, can grow with methyl bromide as a sole carbon and energy source. A single cmu gene cluster was identified in IMB-1 that contained six open reading frames: cmuC, cmuA, orf146, paaE, hutI, and partial metF. CmuA from IMB-1 has high sequence homology to the methyltransferase CmuA from Methylobacterium chloromethanicum and Hyphomicrobium chloromethanicum and contains a C-terminal corrinoid-binding motif and an N-terminal methyltransferase motif. However, cmuB, identified in M. chloromethanicum and H. chloromethanicum, was not detected in IMB-1.
Collapse
Affiliation(s)
- C A Woodall
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, England
| | | | | | | | | |
Collapse
|
37
|
Kalin RM, Hamilton JT, Harper DB, Miller LG, Lamb C, Kennedy JT, Downey A, McCauley S, Goldstein AH. Continuous flow stable isotope methods for study of delta(13)C fractionation during halomethane production and degradation. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2001; 15:357-363. [PMID: 11241767 DOI: 10.1002/rcm.219] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Gas chromatography/mass spectrometry/isotope ratio mass spectrometry (GC/MS/IRMS) methods for delta(13)C measurement of the halomethanes CH(3)Cl, CH(3)Br, CH(3)I and methanethiol (CH(3)SH) during studies of their biological production, biological degradation, and abiotic reactions are presented. Optimisation of gas chromatographic parameters allowed the identification and quantification of CO(2), O(2), CH(3)Cl, CH(3)Br, CH(3)I and CH(3)SH from a single sample, and also the concurrent measurement of delta(13)C for each of the halomethanes and methanethiol. Precision of delta(13)C measurements for halomethane standards decreased (+/-0.3, +/-0.5 and +/-1.3 per thousand) with increasing mass (CH(3)Cl, CH(3)Br, CH(3)I, respectively). Given that carbon isotope effects during biological production, biological degradation and some chemical (abiotic) reactions can be as much as 100 per thousand, stable isotope analysis offers a precise method to study the global sources and sinks of these halogenated compounds that are of considerable importance to our understanding of stratospheric ozone destruction.
Collapse
Affiliation(s)
- R M Kalin
- Environmental Engineering Research Centre, School of Civil Engineering, The Queen's University of Belfast, Belfast BT9 5AG, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
McAnulla C, Woodall CA, McDonald IR, Studer A, Vuilleumier S, Leisinger T, Murrell JC. Chloromethane utilization gene cluster from Hyphomicrobium chloromethanicum strain CM2(T) and development of functional gene probes to detect halomethane-degrading bacteria. Appl Environ Microbiol 2001; 67:307-16. [PMID: 11133460 PMCID: PMC92571 DOI: 10.1128/aem.67.1.307-316.2001] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hyphomicrobium chloromethanicum CM2(T), an aerobic methylotrophic member of the alpha subclass of the class proteobacteria, can grow with chloromethane as the sole carbon and energy source. H. chloromethanicum possesses an inducible enzyme system for utilization of chloromethane, in which two polypeptides (67-kDa CmuA and 35-kDa CmuB) are expressed. Previously, four genes, cmuA, cmuB, cmuC, and purU, were shown to be essential for growth of Methylobacterium chloromethanicum on chloromethane. The cmuA and cmuB genes were used as probes to identify homologs in H. chloromethanicum. A cmu gene cluster (9.5 kb) in H. chloromethanicum contained 10 open reading frames: folD (partial), pduX, orf153, orf207, orf225, cmuB, cmuC, cmuA, fmdB, and paaE (partial). CmuA from H. chloromethanicum (67 kDa) showed high identity to CmuA from M. chloromethanicum and contains an N-terminal methyltransferase domain and a C-terminal corrinoid-binding domain. CmuB from H. chloromethanicum is related to a family of methyl transfer proteins and to the CmuB methyltransferase from M. chloromethanicum. CmuC from H. chloromethanicum shows identity to CmuC from M. chloromethanicum and is a putative methyltransferase. folD codes for a methylene-tetrahydrofolate cyclohydrolase, which may be involved in the C(1) transfer pathway for carbon assimilation and CO(2) production, and paaE codes for a putative redox active protein. Molecular analyses and some preliminary biochemical data indicated that the chloromethane utilization pathway in H. chloromethanicum is similar to the corrinoid-dependent methyl transfer system in M. chloromethanicum. PCR primers were developed for successful amplification of cmuA genes from newly isolated chloromethane utilizers and enrichment cultures.
Collapse
Affiliation(s)
- C McAnulla
- Department of Biological Sciences, University of Warwick, Coventry CV4 7AL, England
| | | | | | | | | | | | | |
Collapse
|
39
|
Topp E, Zhu H, Nour SM, Houot S, Lewis M, Cuppels D. Characterization of an atrazine-degrading Pseudaminobacter sp. isolated from Canadian and French agricultural soils. Appl Environ Microbiol 2000; 66:2773-82. [PMID: 10877767 PMCID: PMC92072 DOI: 10.1128/aem.66.7.2773-2782.2000] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/1999] [Accepted: 04/10/2000] [Indexed: 11/20/2022] Open
Abstract
Atrazine, a herbicide widely used in corn production, is a frequently detected groundwater contaminant. Fourteen bacterial strains able to use this herbicide as a sole source of nitrogen were isolated from soils obtained from two farms in Canada and two farms in France. These strains were indistinguishable from each other based on repetitive extragenic palindromic PCR genomic fingerprinting performed with primers ERIC1R, ERIC2, and BOXA1R. Based on 16S rRNA sequence analysis of one representative isolate, strain C147, the isolates belong to the genus Pseudaminobacter in the family Rhizobiaceae. Strain C147 did not form nodules on the legumes alfalfa (Medicago sativa L.), birdsfoot trefoil (Lotus corniculatus L.), red clover (Trifolium pratense L.), chickpea (Cicer arietinum L.), and soybean (Glycine max L.). A number of chloro-substituted s-triazine herbicides were degraded, but methylthio-substituted s-triazine herbicides were not degraded. Based on metabolite identification data, the fact that oxygen was not required, and hybridization of genomic DNA to the atzABC genes, atrazine degradation occurred via a series of hydrolytic reactions initiated by dechlorination and followed by dealkylation. Most strains could mineralize [ring-U-(14)C]atrazine, and those that could not mineralize atrazine lacked atzB or atzBC. The atzABC genes, which were plasmid borne in every atrazine-degrading isolate examined, were unstable and were not always clustered together on the same plasmid. Loss of atzB was accompanied by loss of a copy of IS1071. Our results indicate that an atrazine-degrading Pseudaminobacter sp. with remarkably little diversity is widely distributed in agricultural soils and that genes of the atrazine degradation pathway carried by independent isolates of this organism are not clustered, can be independently lost, and may be associated with a catabolic transposon. We propose that the widespread distribution of the atrazine-degrading Pseudaminobacter sp. in agricultural soils exposed to atrazine is due to the characteristic ability of this organism to utilize alkylamines, and therefore atrazine, as sole sources of carbon when the atzABC genes are acquired.
Collapse
Affiliation(s)
- E Topp
- Agriculture and Agri-Food Canada, London, Ontario, N5V 4T3, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Schaefer JK, Oremland RS. Oxidation of methyl halides by the facultative methylotroph strain IMB-1. Appl Environ Microbiol 1999; 65:5035-41. [PMID: 10543820 PMCID: PMC91678 DOI: 10.1128/aem.65.11.5035-5041.1999] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Washed cell suspensions of the facultative methylotroph strain IMB-1 grown on methyl bromide (MeBr) were able to consume methyl chloride (MeCl) and methyl iodide (MeI) as well as MeBr. Consumption of >100 microM MeBr by cells grown on glucose, acetate, or monomethylamine required induction. Induction was inhibited by chloramphenicol. However, cells had a constitutive ability to consume low concentrations (<20 nM) of MeBr. Glucose-grown cells were able to readily oxidize [(14)C]formaldehyde to (14)CO(2) but had only a small capacity for oxidation of [(14)C]methanol. Preincubation of cells with MeBr did not affect either activity, but MeBr-induced cells had a greater capacity for [(14)C]MeBr oxidation than did cells without preincubation. Consumption of MeBr was inhibited by MeI, and MeCl consumption was inhibited by MeBr. No inhibition of MeBr consumption occurred with methyl fluoride, propyl iodide, dibromomethane, dichloromethane, or difluoromethane, and in addition cells did not oxidize any of these compounds. Cells displayed Michaelis-Menten kinetics for the various methyl halides, with apparent K(s) values of 190, 280, and 6,100 nM for MeBr, MeI, and MeCl, respectively. These results suggest the presence of a single oxidation enzyme system specific for methyl halides (other than methyl fluoride) which runs through formaldehyde to CO(2). The ease of induction of methyl halide oxidation in strain IMB-1 should facilitate its mass culture for the purpose of reducing MeBr emissions to the atmosphere from fumigated soils.
Collapse
Affiliation(s)
- J K Schaefer
- U.S. Geological Survey, Menlo Park, California 94025, USA
| | | |
Collapse
|