1
|
Iasakov T. Evolution End Classification of tfd Gene Clusters Mediating Bacterial Degradation of 2,4-Dichlorophenoxyacetic Acid (2,4-D). Int J Mol Sci 2023; 24:14370. [PMID: 37762674 PMCID: PMC10531765 DOI: 10.3390/ijms241814370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/11/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The tfd (tfdI and tfdII) are gene clusters originally discovered in plasmid pJP4 which are involved in the bacterial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) via the ortho-cleavage pathway of chlorinated catechols. They share this activity, with respect to substituted catechols, with clusters tcb and clc. Although great effort has been devoted over nearly forty years to exploring the structural diversity of these clusters, their evolution has been poorly resolved to date, and their classification is clearly obsolete. Employing comparative genomic and phylogenetic approaches has revealed that all tfd clusters can be classified as one of four different types. The following four-type classification and new nomenclature are proposed: tfdI, tfdII, tfdIII and tfdIV(A,B,C). Horizontal gene transfer between Burkholderiales and Sphingomonadales provides phenomenal linkage between tfdI, tfdII, tfdIII and tfdIV type clusters and their mosaic nature. It is hypothesized that the evolution of tfd gene clusters proceeded within first (tcb, clc and tfdI), second (tfdII and tfdIII) and third (tfdIV(A,B,C)) evolutionary lineages, in each of which, the genes were clustered in specific combinations. Their clustering is discussed through the prism of hot spots and driving forces of various models, theories, and hypotheses of cluster and operon formation. Two hypotheses about series of gene deletions and displacements are also proposed to explain the structural variations across members of clusters tfdII and tfdIII, respectively. Taking everything into account, these findings reconstruct the phylogeny of tfd clusters, have delineated their evolutionary trajectories, and allow the contribution of various evolutionary processes to be assessed.
Collapse
Affiliation(s)
- Timur Iasakov
- Ufa Institute of Biology, Ufa Federal Research Centre, Russian Academy of Sciences, Prospekt Oktyabrya, 69, 450054 Ufa, Russia
| |
Collapse
|
2
|
Moriuchi R, Dohra H, Kanesaki Y, Ogawa N. Transcriptome differences between Cupriavidus necator NH9 grown with 3-chlorobenzoate and that grown with benzoate. Biosci Biotechnol Biochem 2021; 85:1546-1561. [PMID: 33720310 DOI: 10.1093/bbb/zbab044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/08/2021] [Indexed: 01/05/2023]
Abstract
RNA-seq analysis of Cupriavidus necator NH9, a 3-chlorobenzoate degradative bacterium, cultured with 3-chlorobenzaote and benzoate, revealed strong induction of genes encoding enzymes in degradation pathways of the respective compound, including the genes to convert 3-chlorobenzaote and benzoate to chlorocatechol and catechol, respectively, and the genes of chlorocatechol ortho-cleavage pathway for conversion to central metabolites. The genes encoding transporters, components of the stress response, flagellar proteins, and chemotaxis proteins showed altered expression patterns between 3-chlorobenzoate and benzoate. Gene Ontology enrichment analysis revealed that chemotaxis-related terms were significantly upregulated by benzoate compared with 3-chlorobenzoate. Consistent with this, in semisolid agar plate assays, NH9 cells showed stronger chemotaxis to benzoate than to 3-chlorobenzoate. These results, combined with the absence of genes related to uptake/chemotaxis for 3-chlorobenzoate located closely to the degradation genes of 3-chlorobenzoate, suggested that NH9 has not fully adapted to the utilization of chlorinated benzoate, unlike benzoate, in nature.
Collapse
Affiliation(s)
- Ryota Moriuchi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka-shi, Shizuoka, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu-shi, Gifu, Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka-shi, Shizuoka, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka-shi, Shizuoka, Japan
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu-shi, Gifu, Japan.,Graduate School of Integrated Science and Technology, Shizuoka University, Shizuoka-shi, Shizuoka, Japan
| |
Collapse
|
3
|
Gao YZ, Palatucci ML, Waidner LA, Li T, Guo Y, Spain JC, Zhou NY. A Nag-like dioxygenase initiates 3,4-dichloronitrobenzene degradation via 4,5-dichlorocatechol in Diaphorobacter sp. strain JS3050. Environ Microbiol 2021; 23:1053-1065. [PMID: 33103811 DOI: 10.1111/1462-2920.15295] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 10/20/2020] [Accepted: 10/23/2020] [Indexed: 11/30/2022]
Abstract
The chemical synthesis intermediate 3,4-dichloronitrobenzene (3,4-DCNB) is an environmental pollutant. Diaphorobacter sp. strain JS3050 utilizes 3,4-DCNB as a sole source of carbon, nitrogen and energy. However, the molecular determinants of its catabolism are poorly understood. Here, the complete genome of strain JS3050 was sequenced and key genes were expressed heterologously to establish the details of its degradation pathway. A chromosome-encoded three-component nitroarene dioxygenase (DcnAaAbAcAd) converted 3,4-DCNB stoichiometrically to 4,5-dichlorocatechol, which was transformed to 3,4-dichloromuconate by a plasmid-borne ring-cleavage chlorocatechol 1,2-dioxygenase (DcnC). On the chromosome, there are also genes encoding enzymes (DcnDEF) responsible for the subsequent transformation of 3,4-dichloromuconate to β-ketoadipic acid. The fact that the genes responsible for the catabolic pathway are separately located on plasmid and chromosome indicates that recent assembly and ongoing evolution of the genes encoding the pathway is likely. The regiospecificity of 4,5-dichlorocatechol formation from 3,4-DCNB by DcnAaAbAcAd represents a sophisticated evolution of the nitroarene dioxygenase that avoids misrouting of toxic intermediates. The findings enhance the understanding of microbial catabolic diversity during adaptive evolution in response to xenobiotics released into the environment.
Collapse
Affiliation(s)
- Yi-Zhou Gao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Mallory L Palatucci
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Lisa A Waidner
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Tao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yuan Guo
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jim C Spain
- Center for Environmental Diagnostics and Bioremediation, University of West Florida, 11000 University Parkway, Pensacola, FL, 32514-5751, USA
| | - Ning-Yi Zhou
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
4
|
Al-Nussairawi M, Risa A, Garai E, Varga E, Szabó I, Csenki-Bakos Z, Kriszt B, Cserháti M. Mycotoxin Biodegradation Ability of the Cupriavidus Genus. Curr Microbiol 2020; 77:2430-2440. [PMID: 32504322 PMCID: PMC7415022 DOI: 10.1007/s00284-020-02063-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/27/2020] [Indexed: 10/25/2022]
Abstract
The biodegradation and biodetoxification ability of five prominent mycotoxins, namely aflatoxin B1 (AFB1), ochratoxin-A (OTA), zearalenone (ZON), T-2 toxin (T-2) and deoxynivalenol (DON) of Cupriavidus genus were investigated. Biological methods are the most appropriate approach to detoxify mycotoxins. The Cupriavidus genus has resistance to heavy metals and can be found in several niches such as root nodules and aquatic environments. The genus has 17 type strains, 16 of which have been investigated in the present study. According to the results, seven type strains can degrade OTA, four strains can degrade AFB1, four strains can degrade ZON and three strains can degrade T-2. None of the strains can degrade DON. The biodetoxification was measured using different biotests. SOS-chromotest was used for detecting the genotoxicity of AFB1, the BLYES test was used to evaluate the oestrogenicity of ZON, and the zebrafish embryo microinjection test was conducted to observe the teratogenicity of OTA, T-2 and their by-products. Two type strains, namely C. laharis CCUG 53908T and C. oxalaticus JCM 11285T reduced the genotoxicity of AFB1, whilst C. basilensis DSM 11853T decreased the oestrogenic of ZON. There were strains which were able to biodegrade more than two mycotoxins. Two strains degraded two mycotoxins, namely C. metalliduriens CCUG 13724T (AFB1, T-2) and C. oxalaticus (AFB1, ZON) whilst two strains C. pinatubonensis DSM 19553T and C. basilensis degraded three toxins (ZON, OTA, T-2) and C. numazuensis DSM 15562T degraded four mycotoxins (AFB1, ZON, OTA, T-2), which is unique a phenomenon amongst bacteria.
Collapse
Affiliation(s)
- Mohammed Al-Nussairawi
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Anita Risa
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Edina Garai
- Department of Aquaculture, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Emese Varga
- Department of Applied Chemistry, Faculty of Food Sciences, Szent István University, Villanyi Road, Budapest, 1118, Hungary
| | - István Szabó
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Zsolt Csenki-Bakos
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Balázs Kriszt
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary
| | - Mátyás Cserháti
- Department of Environmental Safety and Ecotoxicology, Faculty of Agricultural and Environmental Sciences, Szent István University, 1 Páter Károly Street, Gödöllő, 2100, Hungary.
| |
Collapse
|
5
|
Moriuchi R, Dohra H, Kanesaki Y, Ogawa N. Complete Genome Sequence of 3-Chlorobenzoate-Degrading Bacterium Cupriavidus necator NH9 and Reclassification of the Strains of the Genera Cupriavidus and Ralstonia Based on Phylogenetic and Whole-Genome Sequence Analyses. Front Microbiol 2019; 10:133. [PMID: 30809202 PMCID: PMC6379261 DOI: 10.3389/fmicb.2019.00133] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/21/2019] [Indexed: 01/05/2023] Open
Abstract
Cupriavidus necator NH9, a 3-chlorobenzoate (3-CB)-degrading bacterium, was isolated from soil in Japan. In this study, the complete genome sequence of NH9 was obtained via PacBio long-read sequencing to better understand the genetic components contributing to the strain's ability to degrade aromatic compounds, including 3-CB. The genome of NH9 comprised two circular chromosomes (4.3 and 3.4 Mb) and two circular plasmids (427 and 77 kb) containing 7,290 coding sequences, 15 rRNA and 68 tRNA genes. Kyoto Encyclopedia of Genes and Genomes pathway analysis of the protein-coding sequences in NH9 revealed a capacity to completely degrade benzoate, 2-, 3-, or 4-hydroxybenzoate, 2,3-, 2,5-, or 3,4-dihydroxybenzoate, benzoylformate, and benzonitrile. To validate the identification of NH9, phylogenetic analyses (16S rRNA sequence-based tree and multilocus sequence analysis) and whole-genome sequence analyses (average nucleotide identity, percentage of conserved proteins, and tetra-nucleotide analyses) were performed, confirming that NH9 is a C. necator strain. Over the course of our investigation, we noticed inconsistencies in the classification of several strains that were supposed to belong to the two closely-related genera Cupriavidus and Ralstonia. As a result of whole-genome sequence analysis of 46 Cupriavidus strains and 104 Ralstonia strains, we propose that the taxonomic classification of 41 of the 150 strains should be changed. Our results provide a clear delineation of the two genera based on genome sequences, thus allowing taxonomic identification of strains belonging to these two genera.
Collapse
Affiliation(s)
- Ryota Moriuchi
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan.,The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan
| | - Hideo Dohra
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Yu Kanesaki
- Research Institute of Green Science and Technology, Shizuoka University, Shizuoka, Japan
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu, Japan.,Graduate School of Agriculture, Shizuoka University, Shizuoka, Japan
| |
Collapse
|
6
|
Koentjoro MP, Ogawa N. STRUCTURAL STUDIES OF TRANSCRIPTIONAL REGULATION BY LysR-TYPE TRANSCRIPTIONAL REGULATORS IN BACTERIA. ACTA ACUST UNITED AC 2018. [DOI: 10.7831/ras.6.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University
- Faculty of Agriculture, Shizuoka University
| |
Collapse
|
7
|
Moriuchi R, Takada K, Takabayashi M, Yamamoto Y, Shimodaira J, Kuroda N, Akiyama E, Udagawa M, Minai R, Fukuda M, Senda T, Ogawa N. Amino acid residues critical for DNA binding and inducer recognition in CbnR, a LysR-type transcriptional regulator from Cupriavidus necator NH9. Biosci Biotechnol Biochem 2017; 81:2119-2129. [DOI: 10.1080/09168451.2017.1373592] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Abstract
CbnR, a LysR-type transcriptional regulator from Cupriavidus necator NH9, activates the transcription of chlorocatechol-degradative enzymes. To activate the transcription, CbnR needs to bind not only to the cbnA promoter but also to the inducer. In this study, the transcriptional activity and DNA-binding activity of twenty-five mutants of CbnR were analyzed. Of the 17 mutants of the DNA-binding domain, 11 mutants lost their ability to activate transcription. While most mutants without transcriptional activation did not show DNA-binding activity, Asn17Ala, Gln29Ala, and Pro30Ala retained DNA-binding activity, suggesting that transcriptional activation by CbnR requires more than its binding to promoter DNA. Of the 8 mutants of the regulatory domain, 6 mutants changed their responses to the inducer, when compared with wild-type CbnR. Interestingly, Arg199Ala and Val246Ala induced constitutive expression of the cbnA promoter without the inducer, suggesting that these mutations brought about a conformational change mimicking that induced by the inducer molecule.
Collapse
Affiliation(s)
- Ryota Moriuchi
- The United Graduate School of Agricultural Science, Gifu University, Gifu-shi, Japan
| | - Kaori Takada
- Faculty of Agriculture, Shizuoka University, Shizuoka-shi, Japan
| | | | - Yuko Yamamoto
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Jun Shimodaira
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Naoko Kuroda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Emiko Akiyama
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Mayumi Udagawa
- National Institute for Agro-Environmental Sciences, Tsukuba, Japan
| | - Ryoichi Minai
- Faculty of Agriculture, Shizuoka University, Shizuoka-shi, Japan
| | - Masao Fukuda
- Department of Bioengineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Toshiya Senda
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Tsukuba, Japan
- Department of Materials Structure Science, School of High Energy Accelerator Science, The Graduate University of Advanced Studies (Soken-dai), Tsukuba, Japan
| | - Naoto Ogawa
- The United Graduate School of Agricultural Science, Gifu University, Gifu-shi, Japan
- Faculty of Agriculture, Shizuoka University, Shizuoka-shi, Japan
| |
Collapse
|
8
|
Dong WH, Zhang P, Lin XY, Zhang Y, Tabouré A. Natural attenuation of 1,2,4-trichlorobenzene in shallow aquifer at the Luhuagang's landfill site, Kaifeng, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 505:216-222. [PMID: 25461023 DOI: 10.1016/j.scitotenv.2014.10.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 09/30/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
The natural attenuation of 1,2,4-trichlorobenzene (1,2,4-TCB) in shallow aquifer was investigated at the Luhuagang's landfill site (LLS), where the subsoil and shallow aquifer have been contaminated by certain chemicals owning to a lack of protective structures and leachate collection systems. Batch natural attenuation experiments and molecular biology experiments were conducted to study the natural attenuation characteristics of 1,2,4-TCB, the relative contributions of the primary natural attenuation processes and the functional microorganisms degrading 1,2,4-TCB, respectively. The results indicated that the relationship between degradation rate and 1,2,4-TCB concentrations was in line with first-order decay kinetics, and the natural attenuation rate of 1,2,4-TCB in the three media followed the order silt>fine sand>medium sand, which was related to the size of the media and the microbial population. The relative contribution of adsorption to natural attenuation was 97.7%, 98.2%, and 95.7% in unsterilized silt, fine sand and medium sand, respectively, and that of biodegradation was 2.3%, 1.8%, and 4.3%, respectively. These properties are related to the characteristics of the pollutants and the specific conditions at the contaminated sites, such as the characteristics of the aquifer media and microbial communities. The functional microorganisms degrading 1,2,4-TCB at the site were proved to be primarily Pseudomonas sp. This study indicates the feasibility of bioremediation (bioaugmentation and biostimulation) by indigenous microorganisms to treat 1,2,4-TCB contamination at the site.
Collapse
Affiliation(s)
- Wei Hong Dong
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education/College of Environment and Resources, Jilin University, Changchun 130021, China.
| | - Pan Zhang
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education/College of Environment and Resources, Jilin University, Changchun 130021, China
| | - Xue Yu Lin
- Key Laboratory of Groundwater Resources and Environment, Ministry of Education/College of Environment and Resources, Jilin University, Changchun 130021, China
| | - Yan Zhang
- Key Laboratory of Earth Geological Disaster, Ministry of Land and Resources Jiangsu Province, Nanjing 210018, China
| | - Aboubacar Tabouré
- Hudon Desbiens St-Germain Environnement Inc., Montreal, QC H3C 1L9, Canada
| |
Collapse
|
9
|
Analysis of Two Gene Clusters Involved in 2,4,6-Trichlorophenol Degradation byRalstonia pickettiiDTP0602. Biosci Biotechnol Biochem 2014; 76:892-9. [DOI: 10.1271/bbb.110843] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Liang B, Jiang J, Zhang J, Zhao Y, Li S. Horizontal transfer of dehalogenase genes involved in the catalysis of chlorinated compounds: evidence and ecological role. Crit Rev Microbiol 2011; 38:95-110. [DOI: 10.3109/1040841x.2011.618114] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
11
|
Biodegradation of aromatic compounds: current status and opportunities for biomolecular approaches. Appl Microbiol Biotechnol 2010; 85:207-28. [PMID: 19730850 DOI: 10.1007/s00253-009-2192-4] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Revised: 08/05/2009] [Accepted: 08/05/2009] [Indexed: 02/03/2023]
Abstract
Biodegradation can achieve complete and cost-effective elimination of aromatic pollutants through harnessing diverse microbial metabolic processes. Aromatics biodegradation plays an important role in environmental cleanup and has been extensively studied since the inception of biodegradation. These studies, however, are diverse and scattered; there is an imperative need to consolidate, summarize, and review the current status of aromatics biodegradation. The first part of this review briefly discusses the catabolic mechanisms and describes the current status of aromatics biodegradation. Emphasis is placed on monocyclic, polycyclic, and chlorinated aromatic hydrocarbons because they are the most prevalent aromatic contaminants in the environment. Among monocyclic aromatic hydrocarbons, benzene, toluene, ethylbenzene, and xylene; phenylacetic acid; and structurally related aromatic compounds are highlighted. In addition, biofilms and their applications in biodegradation of aromatic compounds are briefly discussed. In recent years, various biomolecular approaches have been applied to design and understand microorganisms for enhanced biodegradation. In the second part of this review, biomolecular approaches, their applications in aromatics biodegradation, and associated biosafety issues are discussed. Particular attention is given to the applications of metabolic engineering, protein engineering, and "omics" technologies in aromatics biodegradation.
Collapse
|
12
|
Ruff J, Smits THM, Cook AM, Schleheck D. Identification of two vicinal operons for the degradation of 2-aminobenzenesulfonate encoded on plasmid pSAH in Alcaligenes sp. strain O-1. Microbiol Res 2009; 165:288-99. [PMID: 19577910 DOI: 10.1016/j.micres.2009.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 05/20/2009] [Accepted: 05/25/2009] [Indexed: 11/18/2022]
Abstract
Alcaligenes sp. strain O-1 inducibly deaminates 2-aminobenzenesulfonate (ABS) via dioxygenation to 3-sulfocatechol, which is desulfonated during meta ring-cleavage to yield 2-hydroxymuconate. This intermediate is transformed through the oxalocrotonate-branch of the sulfocatechol meta-pathway (Scm). The complete pathway is encoded on the 180-kb plasmid pSAH, 20kb of which was sequenced. Twenty open reading frames (ORFs) were detected. Two clusters (abs and scm) with degradative genes were surrounded by several transposon-related ORFs. The six genes of the abs cluster were shown to be co-transcribed, and contained the genes for two characterised subunits of the oxygenase component of the ABS-dioxygenase system, and genes putatively encoding ABS-transport functions with similarities to (a) an ABC-type transporter system and (b) a putative major facilitator superfamily transporter. No gene encoding the reductase for the oxygenase system was present in the abs gene cluster, but a candidate gene was found in the scm cluster. The seven-gene scm cluster was also transcribed as single polycistronic message. Functions could be attributed to the gene products, but one enzyme, which was shown to be present, 2-hydroxymuconate isomerase, was not encoded in the scm cluster. No transcriptional regulator was found. This genetic information on the degradation of ABS in strain O-1 provides another example of both split operons and dispersed pathway genes.
Collapse
Affiliation(s)
- Jürgen Ruff
- Fachbereich Biologie der Universität Konstanz, Universitätsstrasse 10, D-78457 Konstanz, Germany
| | | | | | | |
Collapse
|
13
|
Pérez-Pantoja D, De la Iglesia R, Pieper DH, González B. Metabolic reconstruction of aromatic compounds degradation from the genome of the amazing pollutant-degrading bacteriumCupriavidus necatorJMP134. FEMS Microbiol Rev 2008; 32:736-94. [DOI: 10.1111/j.1574-6976.2008.00122.x] [Citation(s) in RCA: 178] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
14
|
Jencova V, Strnad H, Chodora Z, Ulbrich P, Vlcek C, Hickey WJ, Paces V. Nucleotide sequence, organization and characterization of the (halo)aromatic acid catabolic plasmid pA81 from Achromobacter xylosoxidans A8. Res Microbiol 2007; 159:118-27. [PMID: 18249097 DOI: 10.1016/j.resmic.2007.11.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Revised: 11/26/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
The complete 98,192bp nucleotide sequence was determined for plasmid pA81, which is harbored by the haloaromatic acid-degrading bacterium Achromobacter xylosoxidans A8. The majority of the 103 open reading frames identified on pA81 could be categorized as either "backbone" genes, genes encoding (halo)aromatic compound degradation, or heavy metal resistance determinants. The backbone genes controlled conjugative transfer, replication and plasmid stability, and were well conserved with other IncP1-beta plasmids. Genes encoding (halo)aromatic degradation were clustered within a type I transposon, TnAxI, and included two ring-hydroxylating oxygenases (ortho-halobenzoate oxygenase, salicylate 5-hydroxylase) and a modified ortho-cleavage pathway for chlorocatechol degradation. The cluster of heavy metal resistance determinants was contained within a Type II transposon TnAxII, and included a predicted P-type ATPase and cation diffusion facilitator system. Genes identical to those carried by TnAxI and TnAxII were identified on other biodegradative/resistance plasmids and genomic islands, indicating an evolutionary relationship between these elements. Collectively, these insights further our understanding of how mobile elements, and interactions between mobile elements affect the fate of organic and inorganic toxicants in the environment.
Collapse
Affiliation(s)
- Vera Jencova
- Department of Biochemistry and Microbiology, Institute of Chemical Technology in Prague, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
15
|
Ezezika OC, Haddad S, Clark TJ, Neidle EL, Momany C. Distinct effector-binding sites enable synergistic transcriptional activation by BenM, a LysR-type regulator. J Mol Biol 2006; 367:616-29. [PMID: 17291527 DOI: 10.1016/j.jmb.2006.09.090] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 09/25/2006] [Accepted: 09/27/2006] [Indexed: 11/23/2022]
Abstract
BenM, a bacterial transcriptional regulator, responds synergistically to two effectors, benzoate and cis,cis-muconate. CatM, a paralog with overlapping function, responds only to muconate. Structures of their effector-binding domains revealed two effector-binding sites in BenM. BenM and CatM are the first LysR-type regulators to be structurally characterized while bound with physiologically relevant exogenous inducers. The effector complexes were obtained by soaking crystals with stabilizing solutions containing high effector concentrations and minimal amounts of competing ions. This strategy, including data collection with fragments of fractured crystals, may be generally applicable to related proteins. In BenM and CatM, the binding of muconate to an interdomain pocket was facilitated by helix dipoles that provide charge stabilization. In BenM, benzoate also bound in an adjacent hydrophobic region where it alters the effect of muconate bound in the primary site. A charge relay system within the BenM protein appears to underlie synergistic transcriptional activation. According to this model, Glu162 is a pivotal residue that forms salt-bridges with different arginine residues depending on the occupancy of the secondary effector-binding site. Glu162 interacts with Arg160 in the absence of benzoate and with Arg146 when benzoate is bound. This latter interaction enhances the negative charge of muconate bound to the adjacent primary effector-binding site. The redistribution of the electrostatic potential draws two domains of the protein more closely towards muconate, with the movement mediated by the dipole moments of four alpha helices. Therefore, with both effectors, BenM achieves a unique conformation capable of high level transcriptional activation.
Collapse
Affiliation(s)
- Obidimma C Ezezika
- Department of Microbiology, University of Georgia, Athens, GA 30602-2605, USA
| | | | | | | | | |
Collapse
|
16
|
Liu S, Ogawa N, Senda T, Hasebe A, Miyashita K. Amino acids in positions 48, 52, and 73 differentiate the substrate specificities of the highly homologous chlorocatechol 1,2-dioxygenases CbnA and TcbC. J Bacteriol 2005; 187:5427-36. [PMID: 16030237 PMCID: PMC1196051 DOI: 10.1128/jb.187.15.5427-5436.2005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlorocatechol 1,2-dioxygenase (CCD) is the first-step enzyme of the chlorocatechol ortho-cleavage pathway, which plays a central role in the degradation of various chloroaromatic compounds. Two CCDs, CbnA from the 3-chlorobenzoate-degrader Ralstonia eutropha NH9 and TcbC from the 1,2,4-trichlorobenzene-degrader Pseudomonas sp. strain P51, are highly homologous, having only 12 different amino acid residues out of identical lengths of 251 amino acids. But CbnA and TcbC are different in substrate specificities against dichlorocatechols, favoring 3,5-dichlorocatechol (3,5-DC) and 3,4-dichlorocatechol (3,4-DC), respectively. A study of chimeric mutants constructed from the two CCDs indicated that the N-terminal parts of the enzymes were responsible for the difference in the substrate specificities. Site-directed mutagenesis studies further identified the amino acid in position 48 (Leu in CbnA and Val in TcbC) as critical in differentiating the substrate specificities of the enzymes, which agreed well with molecular modeling of the two enzymes. Mutagenesis studies also demonstrated that Ile-73 of CbnA and Ala-52 of TcbC were important for their high levels of activity towards 3,5-DC and 3,4-DC, respectively. The importance of Ile-73 for 3,5-DC specificity determination was also shown with other CCDs such as TfdC from Burkholderia sp. NK8 and TfdC from Alcaligenes sp. CSV90 (identical to TfdC from R. eutropha JMP134), which convert 3,5-DC preferentially. Together with amino acid sequence comparisons indicating high conservation of Leu-48 and Ile-73 among CCDs, these results suggested that TcbC of strain P51 had diverged from other CCDs to be adapted to conversion of 3,4-DC.
Collapse
Affiliation(s)
- Shenghao Liu
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | | | | | | |
Collapse
|
17
|
Lang GH, Ogawa N, Tanaka Y, Fujii T, Fulthorpe RR, Fukuda M, Miyashita K. Two kinds of chlorocatechol 1,2-dioxygenase from 2,4-dichlorophenoxyacetate-degrading Sphingomonas sp. strain TFD44. Biochem Biophys Res Commun 2005; 332:941-8. [PMID: 15916749 DOI: 10.1016/j.bbrc.2005.05.045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2005] [Accepted: 05/10/2005] [Indexed: 11/23/2022]
Abstract
Two kinds of chlorocatechol 1,2-dioxygenase (CCD), TfdC and TfdC2 were detected in Sphingomonas sp. strain TFD44. These two CCDs could be simultaneously synthesized in TFD44 during its growth with 2,4-D as the sole carbon and energy sources. The apparent subunit molecular masses of TfdC and TfdC2 estimated by SDS-PAGE analysis were 33.8 and 33.1 kDa, respectively. The genes encoding the two CCDs were cloned and expressed in Escherichia coli. The two purified CCDs showed broad substrate specificities but had different specificity patterns. TfdC showed the highest specificity constant for 3-chlorocatechol and TfdC2 showed the highest specificity constant for 3,5-dichlorocatechol. The substrate specificity difference seemed to correlate with the alternation of amino acid supposed to be involved in the interaction with substrates. Whereas phylogenetic analysis indicated that the CCDs of Sphingomonas constitute a distinctive group among Gram-negative bacteria, TfdC and TfdC2 of TFD44 have divergently evolved in terms of their substrate specificity.
Collapse
Affiliation(s)
- Gang-hua Lang
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Maillard J, Regeard C, Holliger C. Isolation and characterization of Tn-Dha1, a transposon containing the tetrachloroethene reductive dehalogenase of Desulfitobacterium hafniense strain TCE1. Environ Microbiol 2005; 7:107-17. [PMID: 15643941 DOI: 10.1111/j.1462-2920.2004.00671.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A new 9.9 kb catabolic transposon, Tn-Dha1, containing the gene responsible for tetrachloroethene (PCE) reductive dechlorination activity, was isolated from Desulfitobacterium hafniense strain TCE1. Two fully identical copies of the insertion sequence ISDha1, a new member of the IS256 family, surround the gene cluster pceABCT, a truncated gene for another transposase and a short open reading frame with homology to a member of the twin-arginine transport system (tatA). Evidence was obtained by Southern blot for an alternative form of the transposon element as a circular molecule containing only one copy of ISDha1. This latter structure most probably represents a dead-end product of the transposition of Tn-Dha1. Strong indications for the transposition activity of ISDha1 were given by polymerase chain reaction (PCR) amplification and sequencing of the intervening sequence located between both inverted repeats (IR) of ISDha1 (IR junction). A stable genomic ISDha1 tandem was excluded by quantitative real-time PCR. Promoter mapping of the pceA gene, encoding the reductive dehalogenase, revealed the presence of a strong promoter partially encoded in the right inverted repeat of ISDha1. A sequence comparison with pce gene clusters from Desulfitobacterium sp. strains PCE-S and Y51 and from Dehalobacter restrictus, all of which show 100% identity for the pceAB genes, indicated that both Desulfitobacterium strains seem to possess the same transposon structure, whereas only the pceABCT gene cluster is conserved in D. restrictus.
Collapse
Affiliation(s)
- Julien Maillard
- Swiss Federal Institute of Technology (EPFL), ENAC-Laboratory for Environmental Biotechnology, Bâtiment CH-B Ecublens, CH-1015 Lausanne, Switzerland
| | | | | |
Collapse
|
19
|
Pieper DH. Aerobic degradation of polychlorinated biphenyls. Appl Microbiol Biotechnol 2004; 67:170-91. [PMID: 15614564 DOI: 10.1007/s00253-004-1810-4] [Citation(s) in RCA: 214] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Revised: 10/10/2004] [Accepted: 10/19/2004] [Indexed: 10/26/2022]
Abstract
The microbial degradation of polychlorinated biphenyls (PCBs) has been extensively studied in recent years. The genetic organization of biphenyl catabolic genes has been elucidated in various groups of microorganisms, their structures have been analyzed with respect to their evolutionary relationships, and new information on mobile elements has become available. Key enzymes, specifically biphenyl 2,3-dioxygenases, have been intensively characterized, structure/sequence relationships have been determined and enzymes optimized for PCB transformation. However, due to the complex metabolic network responsible for PCB degradation, optimizing degradation by single bacterial species is necessarily limited. As PCBs are usually not mineralized by biphenyl-degrading organisms, and cometabolism can result in the formation of toxic metabolites, the degradation of chlorobenzoates has received special attention. A broad set of bacterial strategies to degrade chlorobenzoates has recently been elucidated, including new pathways for the degradation of chlorocatechols as central intermediates of various chloroaromatic catabolic pathways. To optimize PCB degradation in the environment beyond these metabolic limitations, enhancing degradation in the rhizosphere has been suggested, in addition to the application of surfactants to overcome bioavailability barriers. However, further research is necessary to understand the complex interactions between soil/sediment, pollutant, surfactant and microorganisms in different environments.
Collapse
Affiliation(s)
- Dietmar H Pieper
- Department of Environmental Microbiology, German Research Center for Biotechnology, Mascheroder Weg 1, 38124, Braunschweig, Germany.
| |
Collapse
|
20
|
Thiel M, Kaschabek SR, Gröning J, Mau M, Schlömann M. Two unusual chlorocatechol catabolic gene clusters in Sphingomonas sp. TFD44. Arch Microbiol 2004; 183:80-94. [PMID: 15688254 DOI: 10.1007/s00203-004-0748-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2004] [Revised: 10/26/2004] [Accepted: 11/03/2004] [Indexed: 11/29/2022]
Abstract
The genes responsible for the degradation of 2,4-dichlorophenoxyacetate (2,4-D) by alpha-Proteobacteria have previously been difficult to detect by using gene probes or polymerase chain reaction (PCR) primers. PCR products of the chlorocatechol 1,2-dioxygenase gene, tfdC, now allowed cloning of two chlorocatechol gene clusters from the Sphingomonas sp. strain TFD44. Sequence characterization showed that the first cluster, tfdD,RFCE, comprises all the genes necessary for the conversion of 3,5-dichlorocatechol to 3-oxoadipate, including a presumed regulatory gene, tfdR, of the LysR-type family. The second gene cluster, tfdC2E2F2, is incomplete and appears to lack a chloromuconate cycloisomerase gene and a regulatory gene. Purification and N-terminal sequencing of selected enzymes suggests that at least representatives of both gene clusters (TfdD of cluster 1 and TfdC2 of cluster 2) are induced during the growth of strain TFD44 with 2,4-D. A mutant constructed to contain an insertion in the chloromuconate cycloisomerase gene tfdD still was able to grow with 2,4-D, but more slowly and with a longer lag phase. This, and the detection of additional activity peaks during protein purification suggest that strain TFD44 harbors at least another chloromuconate cycloisomerase gene. The sequence of the tfdCE region was almost identical to that of a partially characterized chlorocatechol catabolic gene cluster of Sphingomonas herbicidovorans MH, whereas the sequence of the tfdC2E2F2 cluster was different. The similarity of the predicted proteins of the tfdD,RFCE and tfdC2E2F2 clusters to known sequences of other Proteobacteria in the database ranged from 42 to 61% identical positions for the first cluster and from 45.5 to 58% identical positions for the second cluster. Between both clusters, the similarities of their predicted proteins ranged from 44.5 to 64% identical positions. Thus, both clusters (together with those of S. herbicidovorans MH) represent deep-branching lines in the respective dendrograms, and the sequence information will help future primer design for the detection of corresponding genes in the environment.
Collapse
Affiliation(s)
- Monika Thiel
- Interdisciplinary Ecological Center, Technische Universität Bergakademie Freiberg, Leipziger Strasse 29, 09599 Freiberg, Germany
| | | | | | | | | |
Collapse
|
21
|
Vedler E, Vahter M, Heinaru A. The completely sequenced plasmid pEST4011 contains a novel IncP1 backbone and a catabolic transposon harboring tfd genes for 2,4-dichlorophenoxyacetic acid degradation. J Bacteriol 2004; 186:7161-74. [PMID: 15489427 PMCID: PMC523222 DOI: 10.1128/jb.186.21.7161-7174.2004] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The herbicide 2,4-dichlorophenoxyacetic acid (2,4-D)-degrading bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002 contains plasmid pEST4011. This plasmid ensures its host a stable 2,4-D(+) phenotype. We determined the complete 76,958-bp nucleotide sequence of pEST4011. This plasmid is a deletion and duplication derivative of pD2M4, the 95-kb highly unstable laboratory ancestor of pEST4011, and was self-generated during different laboratory manipulations performed to increase the stability of the 2,4-D(+) phenotype of the original strain, strain D2M4(pD2M4). The 47,935-bp catabolic region of pEST4011 forms a transposon-like structure with identical copies of the hybrid insertion element IS1071::IS1471 at the two ends. The catabolic regions of pEST4011 and pJP4, the best-studied 2,4-D-degradative plasmid, both contain homologous, tfd-like genes for complete 2,4-D degradation, but they have little sequence similarity other than that. The backbone genes of pEST4011 are most similar to the corresponding genes of broad-host-range self-transmissible IncP1 plasmids. The backbones of the other three IncP1 catabolic plasmids that have been sequenced (the 2,4-D-degradative plasmid pJP4, the haloacetate-catabolic plasmid pUO1, and the atrazine-catabolic plasmid pADP-1) are nearly identical to the backbone of R751, the archetype plasmid of the IncP1 beta subgroup. We show that despite the overall similarity in plasmid organization, the pEST4011 backbone is sufficiently different (51 to 86% amino acid sequence identity between individual backbone genes) from the backbones of members of the three IncP1 subgroups (the alpha, beta, and gamma subgroups) that it belongs to a new IncP1subgroup, the delta subgroup. This conclusion was also supported by a phylogenetic analysis of the trfA2, korA, and traG gene products of different IncP1 plasmids.
Collapse
Affiliation(s)
- Eve Vedler
- Department of Genetics, Institute of Molecular and Cell Biology, 23 Riia Street, Tartu 51010, Estonia.
| | | | | |
Collapse
|
22
|
Ogawa N, Miyashita K, Chakrabarty AM. Microbial genes and enzymes in the degradation of chlorinated compounds. CHEM REC 2003; 3:158-71. [PMID: 12900936 DOI: 10.1002/tcr.10059] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Microorganisms are well known for degrading numerous natural compounds. The synthesis of a multitude of chlorinated compounds by the chemical industry and their release into the natural environment have created major pollution problems. Part of the cause of such pollution is the inability of natural microorganisms to efficiently degrade synthetic chlorinated compounds. Microorganisms are, however, highly adaptable to changes in the environment and have consequently evolved the genes that specify the degradation of chlorinated compounds to varying degrees. Highly selective laboratory techniques have also enabled the isolation of microbial strains capable of utilizing normally recalcitrant highly chlorinated compounds as their sole source of carbon and energy. The evolution and role of microbial genes and enzymes, as well as their mode of regulation and genetic interrelationships, have therefore been the subjects of intense study. This review emphasizes the genetic organization and the regulation of gene expression, as well as evolutionary considerations, regarding the microbial degradation of chlorobenzoates, chlorocatechols, and chlorophenoxyacetic acids.
Collapse
Affiliation(s)
- Naoto Ogawa
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | |
Collapse
|
23
|
Hoffmann D, Kleinsteuber S, Müller RH, Babel W. A transposon encoding the complete 2,4-dichlorophenoxyacetic acid degradation pathway in the alkalitolerant strain Delftia acidovorans P4a. MICROBIOLOGY (READING, ENGLAND) 2003; 149:2545-2556. [PMID: 12949179 DOI: 10.1099/mic.0.26260-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The bacterial strain Delftia acidovorans P4a, isolated from an extreme environment (heavily contaminated with organochlorines, highly alkaline conditions in an aqueous environment), was found to mineralize 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxyacetic acid under alkaline conditions. Screening a genomic DNA library of the alkalitolerant strain for 2,4-D genes revealed the presence of the two 2,4-D gene clusters tfdCDEF and tfdC(II)E(II)BKA, tfdR genes being located in the vicinity of each tfd gene cluster. The results showed that the putative genes of the complete 2,4-D degradation pathway are organized in a single genomic unit. Sequence similarities to homologous gene clusters indicate that the individual tfd elements of strain P4a do not share a common origin, but were brought together by recombination events. The entire region is flanked by insertion elements of the IS1071 and IS1380 families, forming a transposon-like structure of about 30 kb, of which 28.4 kb were analysed. This element was shown to be located on the bacterial chromosome. The present study provides the first reported case of a chromosomally located catabolic transposon which carries the genes for the complete 2,4-D degradation pathway.
Collapse
Affiliation(s)
- Doreen Hoffmann
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Sabine Kleinsteuber
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Roland H Müller
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Wolfgang Babel
- UFZ Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| |
Collapse
|
24
|
Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 2003; 14:262-9. [PMID: 12849778 DOI: 10.1016/s0958-1669(03)00066-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retrospective studies clearly indicate that mobile genetic elements (MGEs) play a major role in the in situ spread and even de novo construction of catabolic pathways in bacteria, allowing bacterial communities to rapidly adapt to new xenobiotics. The construction of novel pathways seems to occur by an assembly process that involves horizontal gene transfer: different appropriate genes or gene modules that encode different parts of the novel pathway are recruited from phylogenetically related or distant hosts into one single host. Direct evidence for the importance of catabolic MGEs in bacterial adaptation to xenobiotics stems from observed correlations between catabolic gene transfer and accelerated biodegradation in several habitats and from studies that monitor catabolic MGEs in polluted sites.
Collapse
Affiliation(s)
- Eva M Top
- Department of Biological Sciences, 347 Life Sciences Building South, University of Idaho, Moscow, ID 83844-3051, USA.
| | | |
Collapse
|
25
|
Muraoka S, Okumura R, Ogawa N, Nonaka T, Miyashita K, Senda T. Crystal structure of a full-length LysR-type transcriptional regulator, CbnR: unusual combination of two subunit forms and molecular bases for causing and changing DNA bend. J Mol Biol 2003; 328:555-66. [PMID: 12706716 DOI: 10.1016/s0022-2836(03)00312-7] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The LysR-type transcriptional regulator (LTTR) proteins are one of the most common transcriptional regulators in prokaryotes. Here we report the crystal structure of CbnR, which is one of the LTTRs derived from Ralstonia eutropha NH9. This is the first crystal structure of a full-length LTTR. CbnR was found to form a homo-tetramer, which seems to be a biologically active form. Surprisingly, the tetramer can be regarded as a dimer of dimers, whereby each dimer is composed of two subunits in different conformations. In the CbnR tetramer, the DNA-binding domains are located at the V-shaped bottom of the main body of the tetramer, and seem to be suitable to interact with a long stretch of the promoter DNA, which is approximately 60bp. Interaction between the four DNA-binding domains and the two binding sites on the target DNA is likely to bend the target DNA along the V-shaped bottom of the CbnR tetramer. The relaxation of the bent DNA, which occurs upon inducer binding to CbnR, seems to be associated with a quaternary structure change of the tetramer.
Collapse
Affiliation(s)
- Shin Muraoka
- Biological Information Research Center, National Institute of Advanced Industrial Science and Technology, 2-41-6 Aomi, Koto-ku, Tokyo 135-0064, Japan
| | | | | | | | | | | |
Collapse
|
26
|
Alfreider A, Vogt C, Babel W. Expression of chlorocatechol 1,2-dioxygenase and chlorocatechol 2,3-dioxygenase genes in chlorobenzene-contaminated subsurface samples. Appl Environ Microbiol 2003; 69:1372-6. [PMID: 12620818 PMCID: PMC150083 DOI: 10.1128/aem.69.3.1372-1376.2003] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to evaluate the in situ degradative capabilities of microorganisms in an underground reactor facility housing two flowthrough columns filled with aquifer soil, we examined the distribution and phylogeny of gene transcripts encoding enzymes capable of catalyzing the cleavage of the chlorinated aromatic ring during transformation of the main pollutant, chlorobenzene. Initial biostimulation of the autochthonous bacteria in the originally anaerobic reactor columns was achieved by injecting nitrate and oxygen in the form of H(2)O(2). Two broad-range primer pairs were used for reverse transcriptase PCR (RT-PCR) of partial subunit genes of chlorocatechol 1,2-dioxygenase and catechol 2,3-dioxygenase from RNA directly extracted from different groundwater and aquifer samples. Samples retrieved from the lowermost sections of the reactor columns, which were operated in upflow mode, were positive for the presence of chlorocatechol 1,2-dioxygenase and catechol 2,3-dioxygenase mRNA. On the other hand, chlorocatechol 1,2-dioxygenase RT-PCR products were detected in a larger part of each reactor column, up to a zone 5.5 m above the bottom. Phylogenetic analyses of these chlorocatechol 1,2-dioxygenase sequences clearly separated them into two main clusters, one of which was closely affiliated with the broad-spectrum chlorocatechol 1,2-dioxygenase from Pseudomonas chlororaphis RW71. Analysis of sequences obtained from RT-PCR products amplified with catechol 2,3-dioxygenase primers revealed that their closest relative was the chlorocatechol 2,3-dioxygenase gene cbzE from Pseudomonas putida GJ31 (A. E. Mars, J. Kingma, S. R. Kaschabek, W. Reineke, and D. B. Janssen, J. Bacteriol. 181:1309-1318, 1999), with sequence similarities between 97.8 and 99.0%.
Collapse
Affiliation(s)
- Albin Alfreider
- Department of Environmental Microbiology, UFZ Centre for Environmental Research, Leipzig 04318, Germany.
| | | | | |
Collapse
|
27
|
Top EM, Springael D, Boon N. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 2002; 42:199-208. [DOI: 10.1111/j.1574-6941.2002.tb01009.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
28
|
Suzuki K, Ichimura A, Ogawa N, Hasebe A, Miyashita K. Differential expression of two catechol 1,2-dioxygenases in Burkholderia sp. strain TH2. J Bacteriol 2002; 184:5714-22. [PMID: 12270830 PMCID: PMC139607 DOI: 10.1128/jb.184.20.5714-5722.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Burkholderia sp. strain TH2, a 2-chlorobenzoate (2CB)-degrading bacterium, metabolizes benzoate (BA) and 2CB via catechol. Two different gene clusters for the catechol ortho-cleavage pathway (cat1 and cat2) were cloned from TH2 and analyzed. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and Western blot analysis showed that while both catechol dioxygenases (CatA1 and CatA2) were produced in BA-grown cells, CatA1 was undetectable when strain TH2 was grown on 2CB or cis,cis-muconate (CCM), an intermediate of catechol degradation. However, production of CatA1 during growth on 2CB or CCM was observed when cat2 genes were disrupted. The difference in the production of CatA1 and CatA2 was apparently due to a difference in inducer recognition by the regulators of the gene clusters. The inducer of CatA1 was found to be BA, not 2CB, by using a 2-halobenzoate dioxygenase gene (cbd) disruptant, which is incapable of transforming (chloro)benzoate. It was also found that CCM or its metabolite acts as an inducer for CatA2. When cat2 genes were disrupted, the growth rate in 2CB culture was reduced while that in BA culture was not. These results suggest that although cat2 genes are not indispensable for growth of TH2 on 2CB, they are advantageous.
Collapse
Affiliation(s)
- Katsuhisa Suzuki
- National Institute for Agro-Environmental Sciences, 3-1-3 Kan-nondai, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | | | |
Collapse
|
29
|
Plumeier I, Pérez-Pantoja D, Heim S, González B, Pieper DH. Importance of different tfd genes for degradation of chloroaromatics by Ralstonia eutropha JMP134. J Bacteriol 2002; 184:4054-64. [PMID: 12107121 PMCID: PMC135226 DOI: 10.1128/jb.184.15.4054-4064.2002] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The tfdC(I)D(I)E(I)F(I,) and tfdD(II)C(II)E(II)F(II) gene modules of plasmid pJP4 of Ralstonia eutropha JMP134 encode complete sets of functional enzymes for the transformation of chlorocatechols into 3-oxoadipate, which are all expressed during growth on 2,4-dichlorophenoxyacetate (2,4-D). However, activity of tfd(I)-encoded enzymes was usually higher than that of tfd(II)-encoded enzymes, both in the wild-type strain grown on 2,4-D and in 3-chlorobenzoate-grown derivatives harboring only one tfd gene module. The tfdD(II)-encoded chloromuconate cycloisomerase exhibited special kinetic properties, with high activity against 3-chloromuconate and poor activity against 2-chloromuconate and unsubstituted muconate, thus explaining the different phenotypic behaviors of R. eutropha strains containing different tfd gene modules. The enzyme catalyzes the formation of an equilibrium between 2-chloromuconate and 5-chloro- and 2-chloromuconolactone and very inefficiently catalyzes dehalogenation to form trans-dienelactone as the major product, thus differing from all (chloro)muconate cycloisomerases described thus far.
Collapse
Affiliation(s)
- Iris Plumeier
- Department of Environmental Biotechnology, GBF-German Research Center for Biotechnology, D-38124 Braunschweig, Germany
| | | | | | | | | |
Collapse
|
30
|
Hashimoto M, Fukui M, Hayano K, Hayatsu M. Nucleotide sequence and genetic structure of a novel carbaryl hydrolase gene (cehA) from Rhizobium sp. strain AC100. Appl Environ Microbiol 2002; 68:1220-7. [PMID: 11872471 PMCID: PMC123766 DOI: 10.1128/aem.68.3.1220-1227.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain AC100, which is capable of degrading carbaryl (1-naphthyl-N-methylcarbamate), was isolated from soil treated with carbaryl. This bacterium hydrolyzed carbaryl to 1-naphthol and methylamine. Carbaryl hydrolase from the strain was purified to homogeneity, and its N-terminal sequence, molecular mass (82 kDa), and enzymatic properties were determined. The purified enzyme hydrolyzed 1-naphthyl acetate and 4-nitrophenyl acetate indicating that the enzyme is an esterase. We then cloned the carbaryl hydrolase gene (cehA) from the plasmid DNA of the strain and determined the nucleotide sequence of the 10-kb region containing cehA. No homologous sequences were found by a database homology search using the nucleotide and deduced amino acid sequences of the cehA gene. Six open reading frames including the cehA gene were found in the 10-kb region, and sequencing analysis shows that the cehA gene is flanked by two copies of insertion sequence-like sequence, suggesting that it makes part of a composite transposon.
Collapse
Affiliation(s)
- Masayuki Hashimoto
- Bio-Oriented Technology Research Advancement Institution, Minatoku, Tokyo 105-0001, Japan
| | | | | | | |
Collapse
|
31
|
Hoffmann D, Kleinsteuber S, Müller R, Babel W. Development and Application of PCR Primers for the Detection of thetfd Genes inDelftia acidovorans P4a Involved in the Degradation of 2,4-D. ACTA ACUST UNITED AC 2001. [DOI: 10.1002/1521-3846(200111)21:4<321::aid-abio321>3.0.co;2-i] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
32
|
Liu S, Ogawa N, Miyashita K. The chlorocatechol degradative genes, tfdT-CDEF, of Burkholderia sp. strain NK8 are involved in chlorobenzoate degradation and induced by chlorobenzoates and chlorocatechols. Gene 2001; 268:207-14. [PMID: 11368916 DOI: 10.1016/s0378-1119(01)00435-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The modified-ortho pathway genes responsible for the degradation of chlorocatechols produced from 3- and 4-chlorobenzoate in Burkholderia sp. NK8 were cloned and analyzed. The five genes predicted to encode a LysR-type transcriptional regulator, chlorocatechol 1,2-dioxygenase, chloromuconate cycloisomerase, dienelactone hydrolase, and maleylacetate reductase were designated tfdT, tfdC, tfdD, tfdE, and tfdF, respectively since they show the highest similarity to the corresponding genes of the chlorocatechol degradation gene cluster (tfdT-CDEF) of 2,4-dichlorophenoxyacetic acid degrading plasmid pJP4 from Ralstonia eutropha JMP134 (79-88% amino acid identity). TfdC of NK8 showed the highest activity against 3,5-dichlorocatechol in all kinds of chlorocatechols tested, which is a characteristic of TfdC of pJP4. By reporter gene (lacZ) analysis, tfdT of NK8 was shown to activate the transcription from the tfdC promoter. Unlike the regulators of other chlorocatechol degradation genes so far reported, 2-chlorobenzoate, 3-chlorobenzoate, 3-chlorocatechol and 4-chlorocatechol, were shown to act as effectors of TfdT.
Collapse
Affiliation(s)
- S Liu
- National Institute for Agro-Environmental Sciences, 3-1-3 Kannondai, Tsukuba, 305-8604, Ibaraki, Japan
| | | | | |
Collapse
|
33
|
Potrawfke T, Armengaud J, Wittich RM. Chlorocatechols substituted at positions 4 and 5 are substrates of the broad-spectrum chlorocatechol 1,2-dioxygenase of Pseudomonas chlororaphis RW71. J Bacteriol 2001; 183:997-1011. [PMID: 11208799 PMCID: PMC94968 DOI: 10.1128/jb.183.3.997-1011.2001] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nucleotide sequence of a 10,528-bp region comprising the chlorocatechol pathway gene cluster tetRtetCDEF of the 1,2,3,4-tetrachlorobenzene via the tetrachlorocatechol-mineralizing bacterium Pseudomonas chlororaphis RW71 (T. Potrawfke, K. N. Timmis, and R.-M. Wittich, Appl. Environ. Microbiol. 64:3798-3806, 1998) was analyzed. The chlorocatechol 1,2-dioxygenase gene tetC was cloned and overexpressed in Escherichia coli. The recombinant gene product was purified, and the alpha,alpha-homodimeric TetC was characterized. Electron paramagnetic resonance measurements confirmed the presence of a high-spin-state Fe(III) atom per monomer in the holoprotein. The productive transformation by purified TetC of chlorocatechols bearing chlorine atoms in positions 4 and 5 provided strong evidence for a significantly broadened substrate spectrum of this dioxygenase compared with other chlorocatechol dioxygenases. The conversion of 4,5-dichloro- or tetrachlorocatechol, in the presence of catechol, displayed strong competitive inhibition of catechol turnover. 3-Chlorocatechol, however, was simultaneously transformed, with a rate similar to that of the 4,5-halogenated catechols, indicating similar specificity constants. These novel characteristics of TetC thus differ significantly from results obtained from hitherto analyzed catechol 1,2-dioxygenases and chlorocatechol 1,2-dioxygenases.
Collapse
Affiliation(s)
- T Potrawfke
- Division of Microbiology, GBF-German Research Centre for Biotechnology, D-38124 Braunschweig, Germany
| | | | | |
Collapse
|
34
|
Francisco P, Ogawa N, Suzuki K, Miyashita K. The chlorobenzoate dioxygenase genes of Burkholderia sp. strain NK8 involved in the catabolism of chlorobenzoates. MICROBIOLOGY (READING, ENGLAND) 2001; 147:121-33. [PMID: 11160806 DOI: 10.1099/00221287-147-1-121] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Burkholderia sp. NK8 grows abundantly on 3-chlorobenzoate (3CB),4-chlorobenzoate (4CB) and benzoate. The genes encoding the oxidation of (chloro)benzoates (cbeABCD) and catechol (catA, catBC), the LysR-type regulatory gene cbeR and the gene cbeE with unknown function, all of which form a single cluster in NK8, were cloned and analysed. The protein sequence of chlorobenzoate 1,2-dioxygenase (CbeABC) is 50-65% identical to the benzoate dioxygenase (BenABC) of Acinetobacter sp. ADP1, toluate dioxygenase (XylXYZ) of the TOL plasmid pWW0 and 2-halobenzoate dioxygenase (CbdABC) of Burkholderia cepacia 2CBS. Disruption of the cbeA gene resulted in the simultaneous loss of the ability to grow on benzoate and monochlorobenzoates, indicating the involvement of the cbeABCD genes in the degradation of these aromatics. The cbeABCD genes are preceded by catA, the gene for catechol dioxygenase. lacZ transcriptional fusion studies in Pseudomonas putida showed that catA and cbeA are co-expressed under the positive control of cbeR, a LysR-type transcriptional regulatory gene. The cbeA::lacZ transcriptional fusion studies showed that the inducers of the genes are 3CB, 4CB, benzoate and probably cis,cis-muconate. On the other hand, 2-chlorobenzoate (2CB) did not activate the expression of the genes. The chlorobenzoate dioxygenase was able to transform 2CB, 3CB, 4CB and benzoate at considerable rates. 2CB yielded both catechol and 3-chlorocatechol (3CC), and 3CB gave rise to 4-chlorocatechol and 3CC as the major and minor intermediate products, respectively, indicating that the NK8 dioxygenase lacks absolute regiospecificity. The absence of growth of NK8 on 2CB, despite its considerable degradation activity against 2CB, is apparently due to the inability of CbeR to recognize 2CB as an inducer of the expression of the cbe genes.
Collapse
Affiliation(s)
- P Francisco
- Soil General Microbiology Laboratory, National Institute of Agro-Environmental Sciences, 3-1-1 Kannondai, Tsukuba City, Ibaraki 305-8604, Japan
| | | | | | | |
Collapse
|
35
|
Vedler E, Kõiv V, Heinaru A. Analysis of the 2,4-dichlorophenoxyacetic acid-degradative plasmid pEST4011 of Achromobacter xylosoxidans subsp. denitrificans strain EST4002. Gene 2000; 255:281-8. [PMID: 11024288 DOI: 10.1016/s0378-1119(00)00329-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The 2,4-dichlorophenoxyacetic acid (2,4-D)-degradative bacterium Achromobacter xylosoxidans subsp. denitrificans strain EST4002, isolated in Estonia more than 10years ago, was found to contain the 70kb plasmid pEST4011 that is responsible for the bacterium having had obtained a stable 2,4-D(+) phenotype. The tfd-like genes for 2, 4-D degradation of the strain EST4002 were located on a 10.5kb region of pEST4011, but without functional genes coding for chloromuconate cycloisomerase and chlorodienelactone hydrolase. The latter two genes are probably encoded by homologous, tcb-like genes, located elsewhere on pEST4011. We also present evidence of two copies of insertion element IS1071-like sequences on pEST4011. IS1071 is a class II (Tn3 family) insertion element, associated with different catabolic genes and operons and globally distributed in the recent past. We speculate that this insertion element might have had a role in the formation of plasmid pEST4011. The 28kb plasmid pEST4012 is generated by deletion from pEST4011 when cells of A. xylosoxidans EST4002 are grown in the absence of 2,4-D in growth medium. We propose that this is the result of homologous recombination between the two putative copies of IS1071-like sequences on pEST4011.
Collapse
Affiliation(s)
- E Vedler
- Institute of Molecular and Cell Biology, Tartu University, 23 Riia Street, 51010, Tartu, Estonia.
| | | | | |
Collapse
|
36
|
Klemba M, Jakobs B, Wittich RM, Pieper D. Chromosomal integration of tcb chlorocatechol degradation pathway genes as a means of expanding the growth substrate range of bacteria to include haloaromatics. Appl Environ Microbiol 2000; 66:3255-61. [PMID: 10919778 PMCID: PMC92142 DOI: 10.1128/aem.66.8.3255-3261.2000] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2000] [Accepted: 05/05/2000] [Indexed: 11/20/2022] Open
Abstract
The tcbR-tcbCDEF gene cluster, coding for the chlorocatechol ortho-cleavage pathway in Pseudomonas sp. strain P51, has been cloned into a Tn5-based minitransposon. The minitransposon carrying the tcb gene cluster and a kanamycin resistance gene was transferred to Pseudomonas putida KT2442, and chromosomal integration was monitored by selection either for growth on 3-chlorobenzoate or for kanamycin resistance. Transconjugants able to utilize 3-chlorobenzoate as a sole carbon source were obtained, although at a >100-fold lower frequency than kanamycin-resistant transconjugants. The vast majority of kanamycin-resistant transconjugants were not capable of growth on 3-chlorobenzoate. Southern blot analysis revealed that many transconjugants selected directly on 3-chlorobenzoate contained multiple chromosomal copies of the tcb gene cluster, whereas those selected for kanamycin resistance possessed a single copy. Subsequent selection of kanamycin resistance-selected single-copy transconjugants for growth on 3-chlorobenzoate yielded colonies capable of utilizing this carbon source, but no amplification of the tcb gene cluster was apparent. Introduction of two copies of the tcb gene cluster without prior 3-chlorobenzoate selection resulted in transconjugants able to grow on this carbon source. Expression of the tcb chlorocatechol catabolic operon in P. putida thus represents a useful model system for analysis of the relationship among gene dosage, enzyme expression level, and growth on chloroaromatic substrates.
Collapse
Affiliation(s)
- M Klemba
- Division of Microbiology, GBF-National Research Center for Biotechnology, Braunschweig, Germany.
| | | | | | | |
Collapse
|
37
|
Fong KP, Goh CB, Tan HM. The genes for benzene catabolism in Pseudomonas putida ML2 are flanked by two copies of the insertion element IS1489, forming a class-I-type catabolic transposon, Tn5542. Plasmid 2000; 43:103-10. [PMID: 10686128 DOI: 10.1006/plas.1999.1442] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Two directly repeated sequences of the IS elements IS1489v1 and IS1489v2 flank the benzene dioxygenase (bedC1C2BA) and the cis-benzene dihydrodiol dehydrogenase (bedD) genes on the catabolic plasmid pHMT112 in Pseudomonas putida ML2, forming a Class-I-type composite transposon, Tn5542. Both IS1489v1 and IS1489v2 contain an identical 1371-bp open reading frame, tnpA, that is preceded by a possible ribosome binding site. The tnpA gene of IS1489v1 is bound by a pair of 40-bp imperfect inverted repeats while that of IS1489v2 is flanked only by the left inverted repeat. The tnpA gene codes for a putative 53-kDa polypeptide of 456 amino acids bearing similarity to transposases encoded on IS elements of P. alcaligenes, P. aeruginosa, P. stutzeri, and Serratia marcescens. The basic nature of the putative TnpA protein with a deduced pI of 8.93 is typical of IS-encoded transposases. Similar to other IS elements, an outward facing promoter was detected at the right end of IS1489v1. Experiments involving the suicide vector, pKNG101, failed to show transposition of Tn5542.
Collapse
Affiliation(s)
- K P Fong
- Department of Microbiology, National University of Singapore, Singapore, 119260
| | | | | |
Collapse
|
38
|
Park HS, Kim HS. Identification and characterization of the nitrobenzene catabolic plasmids pNB1 and pNB2 in Pseudomonas putida HS12. J Bacteriol 2000; 182:573-80. [PMID: 10633088 PMCID: PMC94317 DOI: 10.1128/jb.182.3.573-580.2000] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pseudomonas putida HS12, which is able to grow on nitrobenzene, was found to carry two plasmids, pNB1 and pNB2. The activity assay experiments of wild-type HS12(pNB1 and pNB2), a spontaneous mutant HS121(pNB2), and a cured derivative HS124(pNB1) demonstrated that the catabolic genes coding for the nitrobenzene-degrading enzymes, designated nbz, are located on two plasmids, pNB1 and pNB2. The genes nbzA, nbzC, nbzD, and nbzE, encoding nitrobenzene nitroreductase, 2-aminophenol 1,6-dioxygenase, 2-aminomuconic 6-semialdehyde dehydrogenase, and 2-aminomuconate deaminase, respectively, are located on pNB1 (59.1 kb). Meanwhile, the nbzB gene encoding hydroxylaminobenzene mutase, a second-step enzyme in the nitrobenzene catabolic pathway, was found in pNB2 (43.8 kb). Physical mapping, cloning, and functional analysis of the two plasmids and their subclones in Escherichia coli strains revealed in more detail the genetic organization of the catabolic plasmids pNB1 and pNB2. The genes nbzA and nbzB are located on the 1.1-kb SmaI-SnaBI fragment of pNB1 and the 1.0-kb SspI-SphI fragment of pNB2, respectively, and their expressions were not tightly regulated. On the other hand, the genes nbzC, nbzD, and nbzE, involved in the ring cleavage pathway of 2-aminophenol, are localized on the 6.6-kb SnaBI-SmaI fragment of pNB1 and clustered in the order nbzC-nbzD-nbzE as an operon. The nbzCDE genes, which are transcribed in the opposite direction of the nbzA gene, are coordinately regulated by both nitrobenzene and a positive transcriptional regulator that seems to be encoded on pNB2.
Collapse
Affiliation(s)
- H S Park
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 373-1, Kusung-dong, Yusong-gu, Taejon 305-701, Korea
| | | |
Collapse
|
39
|
Ogawa N, McFall SM, Klem TJ, Miyashita K, Chakrabarty AM. Transcriptional activation of the chlorocatechol degradative genes of Ralstonia eutropha NH9. J Bacteriol 1999; 181:6697-705. [PMID: 10542171 PMCID: PMC94134 DOI: 10.1128/jb.181.21.6697-6705.1999] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ralstonia eutropha (formerly Alcaligenes eutrophus) NH9 degrades 3-chlorobenzoate via the modified ortho-cleavage pathway. A ca. 5.7-kb six-gene cluster is responsible for chlorocatechol degradation: the cbnABCD operon encoding the degradative enzymes (including orfX of unknown function) and the divergently transcribed cbnR gene encoding the LysR-type transcriptional regulator of the cbn operon. The cbnRAB orfXCD gene cluster is nearly identical to the chlorocatechol genes (tcbRCD orfXEF) of the 1,2, 4-trichlorobenzene-degrading bacterium Pseudomonas sp. strain P51. Transcriptional fusion studies demonstrated that cbnR regulates the expression of cbnABCD positively in the presence of either 3-chlorobenzoate or benzoate, which are catabolized via 3-chlorocatechol and catechol, respectively. In vitro transcription assays confirmed that 2-chloro-cis,cis-muconate (2-CM) and cis, cis-muconate (CCM), intermediate products from 3-chlorocatechol and catechol, respectively, were inducers of this operon. This inducer-recognizing specificity is different from those of the homologous catechol (catBCA) and chlorocatechol (clcABD) operons of Pseudomonas putida, in which only the intermediates of the regulated pathway, CCM for catBCA and 2-CM for clcABD, act as significant inducers. Specific binding of CbnR protein to the cbnA promoter region was demonstrated by gel shift and DNase I footprinting analysis. In the absence of inducer, a region of ca. 60 bp from position -20 to position -80 upstream of the cbnA transcriptional start point was protected from DNase I cleavage by CbnR, with a region of hypersensitivity to DNase I cleavage clustered at position -50. Circular permutation gel shift assays demonstrated that CbnR bent the cbnA promoter region to an angle of 78 degrees and that this angle was relaxed to 54 degrees upon the addition of inducer. While a similar relaxation of bending angles upon the addition of inducer molecules observed with the catBCA and clcABD promoters may indicate a conserved transcriptional activation mechanism of ortho-cleavage pathway genes, CbnR is unique in having a different specificity of inducer recognition and the extended footprint as opposed to the restricted footprint of CatR without CCM.
Collapse
Affiliation(s)
- N Ogawa
- National Institute of Agro-Environmental Sciences, Tsukuba, Ibaraki 305-8604, Japan.
| | | | | | | | | |
Collapse
|