1
|
Kavitha V, Anandhan R, Alharbi NS, Kadaikunnan S, Khaled JM, Almanaa TN, Govindarajan M. Impact of pesticide monocrotophos on microbial populations and histology of intestine in the Indian earthworm Lampito mauritii (Kinberg). Microb Pathog 2019; 139:103893. [PMID: 31778757 DOI: 10.1016/j.micpath.2019.103893] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Revised: 11/23/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022]
Abstract
Soil contamination has enlarged over the decades due to intensive use of pesticides and chemical fertilizers in agronomy. Earthworms are significant organisms in the soil community. Earthworms are the major role in soil fertility in most ecological system and the production of biogenic structures. Moreover, earthworm gut mucus enhances the beneficial soil microorganism potential biological activities. They are used as model organisms for assessing the ecological risks of chemicals. Enrichment of essential nutrients in soil through earthworm is a cost-effective and eco-friendly approach. In India, the organophosphorus pesticide monocrotophos is commonly used to control agricultural pests. Hence, it is important to study the effect of monocrotophos on the gut microbiota in Lampito mauritii. A 15-day exposure to a low (1/10th of the LC50 after 96 h i.e., 0.093 ppm kg-1) and high sublethal concentration (1/3rd of the LC50 after 96 h i.e., 0.311 ppm kg-1) of monocrotophos led to reduced proliferation of the gut microbiota in L. mauritii. However, exposure for 30 days led to a recuperation of the microbial populations to near control values. Among the eight bacterial and five fungal species that inhabit the gut of L. mauritii, only six bacterial and three fungal species were able to survive after exposure to monocrotophos. In addition to the study, histopathological changes were observed in the intestine of L.mauritii after application of lower sublethal concentration of monocrotophos. Severe pathological changes such as vacuolization, degenerated nuclei, damaged villi and congestion of the blood sinuses were noticed in the intestine on 1st and, 5th day of the experiment. But in 30th day the damages were slowly recovered due to degradation of monocrotophos by the presence of some pesticides degrading bacterial and fungal species and regenerative capability of chloragogen cells in the intestine. The results suggested that reduced microbial populations and pathological damages in intestine were observed during the application of monocrotophos. So, the monocrotophos have several harmful impacts on earthworms.
Collapse
Affiliation(s)
- Vaithiyanathasamy Kavitha
- Department of Zoology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India; Department of Zoology, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, 612 001, India.
| | - Ramachandran Anandhan
- Department of Zoology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India; Department of Zoology, Government Arts College (Autonomous), Kumbakonam, Tamil Nadu, 612 001, India
| | - Naiyf S Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shine Kadaikunnan
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Jamal M Khaled
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Taghreed N Almanaa
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Marimuthu Govindarajan
- Department of Zoology, Annamalai University, Annamalai Nagar, Tamil Nadu, 608 002, India; Department of Zoology, Government College for Women (Autonomous), Kumbakonam, Tamil Nadu, 612 001, India.
| |
Collapse
|
2
|
Ortíz-Ceballos AI, Ortiz-Gamino D, Andrade-Torres A, Pérez-Rodríguez P, López-Ortega M. Pontoscolex corethrurus: A homeless invasive tropical earthworm? PLoS One 2019; 14:e0222337. [PMID: 31539381 PMCID: PMC6754163 DOI: 10.1371/journal.pone.0222337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 08/27/2019] [Indexed: 11/18/2022] Open
Abstract
The presence of earthworm species in crop fields is as old as agriculture itself. The earthworms Pontoscolex corethrurus (invasive) and Balanteodrilus pearsei (native) are associated with the emergence of agriculture and sedentism in the region Amazon and Maya, respectively. Both species have shifted their preference from their natural habitat to the cropland niche. They contrast in terms of intensification of agricultural land use (anthropic impact to the symbiotic soil microbiome). P. corethrurus inhabits conventional agroecosystems, while B. pearsei thrives in traditional agroecosystems, i.e., P. corethrurus has not yet been recorded in soils where B. pearsei dwells. The demographic behavior of these two earthworm species was assessed in the laboratory over 100 days, according to their origin (OE; P. corethrurus and B. pearsei) food quality (FQ; soil only, maize stubble, Mucuna pruriens), and soil moisture (SM; 25, 33, 42%). The results showed that OE, FQ, SM, and the OE x FQ interaction were highly significant for the survival, growth, and reproduction of earthworms. P. corethrurus showed a lower survival rate (> mortality). P. corethrurus survivors fed a diet of low-to-intermediate nutritional quality (soil and stubble maize, respectively) showed a greater capacity to grow and reproduce; however, it was surpassed by the native earthworm when fed a high-quality diet (M. pruriens). Besides, P. corethrurus displayed a low cocoon hatching (emergence of juveniles). These results suggest that the presence of the invasive species was associated with a negative interaction with the soil microbiota where the native species dwells, and with the absence of natural mutualistic bacteria (gut, nephridia, and cocoons). These results are consistent with the absence of P. corethrurus in milpa and pasture-type agricultural niches managed by peasants (agroecologists) to grow food regularly through biological soil management. Results reported here suggest that P. corethrurus is an invasive species that is neither wild nor domesticated, that is, its eco-evolutionary phylogeny needs to be derived based on its symbionts.
Collapse
Affiliation(s)
- Angel I. Ortíz-Ceballos
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
- * E-mail:
| | - Diana Ortiz-Gamino
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
| | - Antonio Andrade-Torres
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
| | - Paulino Pérez-Rodríguez
- Programa de Estadística, Campus Montecillo, Colegio de Postgraduados, Montecillo, Estado de México, México
| | - Maurilio López-Ortega
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Col. Emiliano Zapata, Xalapa, Veracruz, México
| |
Collapse
|
3
|
Yang Z, Xu X, Dai M, Wang L, Shi X, Guo R. Combination of bioaugmentation and biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:490-495. [PMID: 29705662 DOI: 10.1016/j.jhazmat.2018.04.052] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/19/2018] [Accepted: 04/21/2018] [Indexed: 06/08/2023]
Abstract
The batch and fed-batch tests were performed to evaluate the efficiency of bioaugmentation in combination with biostimulation for remediation of paddy soil contaminated with 2,4-dichlorophenoxyacetic acid (2,4-D). 2,4-D degrading enrichments were used for bioaugmentation, and effluents prepared through biological hydrogen production process were used as substrate for biostimulation. The batch tests indicated that 2,4-D degradation depended on the enrichment/substrate ratio (E/S), where E/S of 0.03 showed an excellent performance. The fed-batch tests showed that biostimulation only led to an improvement in 2,4-D degradation, while the pattern of repeated augmentation of enrichments (FRA) together with biostimulation obviously improved degradation of 2,4-D, 2-chlorophenol (2-CP) and phenol. DNA-sequencing approach showed that the FRA pattern altered the bacterial community composition, and high removal of 2,4-D, 2-CP and phenol may be attributed to the acclimation and persistence of Thauera. The findings demonstrated the importance of the FRA pattern on remediation of paddy soil contaminated with 2,4-D.
Collapse
Affiliation(s)
- Zhiman Yang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaohui Xu
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Meng Dai
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Lin Wang
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Xiaoshuang Shi
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China
| | - Rongbo Guo
- Shandong Industrial Engineering Laboratory of Biogas Production & Utilization, Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Synthetic Biology, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong Province 266101, PR China.
| |
Collapse
|
4
|
Xia ZY, Zhang L, Zhao Y, Yan X, Li SP, Gu T, Jiang JD. Biodegradation of the Herbicide 2,4-Dichlorophenoxyacetic Acid by a New Isolated Strain of Achromobacter sp. LZ35. Curr Microbiol 2016; 74:193-202. [PMID: 27933337 DOI: 10.1007/s00284-016-1173-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 11/25/2016] [Indexed: 01/18/2023]
Abstract
In this study, a bacterial strain of Achromobacter sp. LZ35, which was capable of utilizing 2,4-dichlorophenoxyacetic acid (2,4-D) and 2-methyl-4-chlorophenoxy acetic acid (MCPA) as the sole sources of carbon and energy for growth, was isolated from the soil in a disused pesticide factory in Suzhou, China. The optimal 2,4-D degradation by strain LZ35 occurred at 30 °C and pH 8.0 when the initial 2,4-D concentration was 200 mg L-1. Strain LZ35 harbored the conserved 2,4-D/alpha-ketoglutarate dioxygenase (96%) and 2,4-dichlorophenol hydroxylase (99%), and catabolized 2,4-D via the intermediate 2,4-dichlorophenol. The inoculation of 7.8 × 106 CFU g-1 soil of strain LZ35 cells to 2,4-D-contaminated soil could efficiently remove over 75 and 90% of 100 and 50 mg L-1 2,4-D in 12 days and significantly released the phytotoxicity of maize caused by the 2,4-D residue. This is the first report of an Achromobacter sp. strain that was capable of mineralizing both 2,4-D and MCPA. This study provides us a promising candidate for its application in the bioremediation of 2,4-D- or MCPA-contaminated sites.
Collapse
Affiliation(s)
- Zhen-Yuan Xia
- Yunnan Academy of Tobacco Agricultural Science, Kunming, 650031, People's Republic of China
| | - Long Zhang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yan Zhao
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Xin Yan
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Shun-Peng Li
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Tao Gu
- The Institute of Plant Protection, Jiangsu Agricultural Academy Science, Nanjing, People's Republic of China.
| | - Jian-Dong Jiang
- Department of Microbiology, Key Lab of Microbiological Engineering of Agricultural Environment, Ministry of Agriculture, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
5
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Lebeau T. Bioaugmentation for In Situ Soil Remediation: How to Ensure the Success of Such a Process. SOIL BIOLOGY 2011. [DOI: 10.1007/978-3-642-19769-7_7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
7
|
Fiołka MJ, Zagaja MP, Piersiak TD, Wróbel M, Pawelec J. Gut bacterium of Dendrobaena veneta (Annelida: Oligochaeta) possesses antimycobacterial activity. J Invertebr Pathol 2010; 105:63-73. [DOI: 10.1016/j.jip.2010.05.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Revised: 04/30/2010] [Accepted: 05/03/2010] [Indexed: 10/19/2022]
|
8
|
The earthworm Aporrectodea caliginosa stimulates abundance and activity of phenoxyalkanoic acid herbicide degraders. ISME JOURNAL 2010; 5:473-85. [PMID: 20740027 DOI: 10.1038/ismej.2010.140] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
2-Methyl-4-chlorophenoxyacetic acid (MCPA) is a widely used phenoxyalkanoic acid (PAA) herbicide. Earthworms represent the dominant macrofauna and enhance microbial activities in many soils. Thus, the effect of the model earthworm Aporrectodea caliginosa (Oligochaeta, Lumbricidae) on microbial MCPA degradation was assessed in soil columns with agricultural soil. MCPA degradation was quicker in soil with earthworms than without earthworms. Quantitative PCR was inhibition-corrected per nucleic acid extract and indicated that copy numbers of tfdA-like and cadA genes (both encoding oxygenases initiating aerobic PAA degradation) in soil with earthworms were up to three and four times higher than without earthworms, respectively. tfdA-like and 16S rRNA gene transcript copy numbers in soil with earthworms were two and six times higher than without earthworms, respectively. Most probable numbers (MPNs) of MCPA degraders approximated 4 × 10(5) g(dw)(-1) in soil before incubation and in soil treated without earthworms, whereas MPNs of earthworm-treated soils were approximately 150 × higher. The aerobic capacity of soil to degrade MCPA was higher in earthworm-treated soils than in earthworm-untreated soils. Burrow walls and 0-5 cm depth bulk soil displayed higher capacities to degrade MCPA than did soil from 5-10 cm depth bulk soil, expression of tfdA-like genes in burrow walls was five times higher than in bulk soil and MCPA degraders were abundant in burrow walls (MPNs of 5 × 10(7) g(dw)(-1)). The collective data indicate that earthworms stimulate abundance and activity of MCPA degraders endogenous to soil by their burrowing activities and might thus be advantageous for enhancing PAA degradation in soil.
Collapse
|
9
|
Ma F, Guo JB, Zhao LJ, Chang CC, Cui D. Application of bioaugmentation to improve the activated sludge system into the contact oxidation system treating petrochemical wastewater. BIORESOURCE TECHNOLOGY 2009; 100:597-602. [PMID: 18768314 DOI: 10.1016/j.biortech.2008.06.066] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2008] [Revised: 06/29/2008] [Accepted: 06/30/2008] [Indexed: 05/15/2023]
Abstract
In this paper, bioaugmentation was applied to upgrade a full-scale activated sludge system (S2) into a contact oxidation system (S1). Results showed that when chemical oxygen demand (COD) and ammonia nitrogen (NH(4)(+)-N) concentration of the petrochemical wastewater were 320-530 mg/L and 8-25mg/L, respectively, the bioaugmented process (S1) took only 20 days when they were below 80 mg/L and 10mg/L, respectively. However, the unbioaugmented conventional activated sludge process (S2) spent 30 days to reach the similar effluent quality. As the organic loading rate (OLR) increased from 0.6 to 0.9 and finally up to 1.10 kg COD/m(3)d, S1 showed strong resistance to shock loadings and restored after three days compared to the seven days required by S2. Based on the results of this paper, it shows that bioaugementation application is feasible and efficient for the process upgrade due to the availability of the bioaugmented specialized consortia.
Collapse
Affiliation(s)
- Fang Ma
- School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, PR China.
| | | | | | | | | |
Collapse
|
10
|
Fera MT, Maugeri TL, Gugliandolo C, Bonanno D, La Camera E, Papasergi S, Carbone M. Occurrence of Burkholderia cepacia complex, Ralstonia and Pandoraea species DNAs in the coastal environment of the Straits of Messina (Italy). MARINE POLLUTION BULLETIN 2007; 54:803-8. [PMID: 17360005 DOI: 10.1016/j.marpolbul.2007.01.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 01/18/2007] [Accepted: 01/21/2007] [Indexed: 05/14/2023]
Affiliation(s)
- M T Fera
- Dipartimento di Patologia e Microbiologia Sperimentale, Policlinico Universitario, Torre Biologica 2 piano, Università di Messina, 98125 Messina, Italy.
| | | | | | | | | | | | | |
Collapse
|
11
|
Hendrix PF, Baker GH, Callaham MA, Damoff GA, Fragoso C, González G, James SW, Lachnicht SL, Winsome T, Zou X. Invasion of exotic earthworms into ecosystems inhabited by native earthworms. Biol Invasions 2006. [DOI: 10.1007/s10530-006-9022-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Shin KH, Lim Y, Ahn JH, Khil J, Cha CJ, Hur HG. Anaerobic biotransformation of dinitrotoluene isomers by Lactococcus lactis subsp. lactis strain 27 isolated from earthworm intestine. CHEMOSPHERE 2005; 61:30-9. [PMID: 16157167 DOI: 10.1016/j.chemosphere.2005.03.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2004] [Revised: 02/21/2005] [Accepted: 03/09/2005] [Indexed: 05/04/2023]
Abstract
Dinitrotoluenes are widely used as solvents and are intermediates in the synthesis of dyes, explosives, and pesticides. Environmental concerns regarding DNTs have increased due to their widespread use and their discharge into the environment. In this study, the anaerobic biodegradation of four dinitrotoluene isomers, 2,3-, 2,4-, 2,6- and 3,4-DNT, was investigated using Lactococcus lactis subsp. lactis strain 27, which was isolated from the intestines of earthworms. Liquid chromatography/mass spectrometry and NMR spectroscopy showed that L. lactis strain 27 non-specifically reduced the nitro groups on the tested dinitrotoluenes to their corresponding aminonitrotoluenes. L. lactis strain 27, however, did not reduce either sequentially or simultaneously two nitro groups of the dinitrotoluenes, resulting in the formation of the corresponding diaminotoluenes. In vitro formation of dinitroazoxytoluenes suggested the presence of oxygen-sensitive hydroxylaminonitrotoluenes. L. lactis strain 27 was capable of reducing 2,4-, 2,6-, 2,3-, and 3,4-dinitrotoluenes up to 173.6, 66.6, 287.1, and 355 microM, respectively in 12 h incubation. A relatively rapid reduction was observed in the case of the 2,3-, and 3,4-dinitrotoluenes, which have vicinal nitro groups on their arene structure. Non-specific anaerobic reduction of dinitrotoluenes by the intestinal bacterium L. lactis strain 27 differentiated the extent of reduction of DNTs according to the substitutional position of the nitro groups and produced in vitro more toxic dinitroazoxytoluenes, suggesting that anaerobic biotransformation of dinitrotoluenes could increase environmental risk.
Collapse
Affiliation(s)
- Kwang-Hee Shin
- Department of Environmental Science and Engineering, and International Environmental Research Center, Gwangju Institute of Science and Technology, 1 Oryong-dong, Buk-gu, Gwangju 500-712, Republic of Korea
| | | | | | | | | | | |
Collapse
|
13
|
El Fantroussi S, Agathos SN. Is bioaugmentation a feasible strategy for pollutant removal and site remediation? Curr Opin Microbiol 2005; 8:268-75. [PMID: 15939349 DOI: 10.1016/j.mib.2005.04.011] [Citation(s) in RCA: 277] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2005] [Accepted: 04/25/2005] [Indexed: 11/29/2022]
Abstract
Microorganisms can degrade numerous organic pollutants owing to their metabolic machinery and to their capacity to adapt to inhospitable environments. Thus, microorganisms are major players in site remediation. However, their efficiency depends on many factors, including the chemical nature and the concentration of pollutants, their availability to microorganisms, and the physicochemical characteristics of the environment. The capacity of a microbial population to degrade pollutants within an environmental matrix (e.g. soil, sediment, sludge or wastewater) can be enhanced either by stimulation of the indigenous microorganisms by addition of nutrients or electron acceptors (biostimulation) or by the introduction of specific microorganisms to the local population (bioaugmentation). Although it has been practiced in agriculture and in wastewater treatment for years, bioaugmentation is still experimental. Many factors (e.g. predation, competition or sorption) conspire against it. However, several strategies are currently being explored to make bioaugmentation a successful technology in sites that lack significant populations of biodegrading microorganisms. Under optimal local conditions, the rate of pollutant degradation might increase upon addition of an inoculant to remediate a chemical spill; however, the most successful cases of bioaugmentation occur in confined systems, such as bioreactors in which the conditions can be controlled to favour survival and prolonged activity of the exogenous microbial population.
Collapse
Affiliation(s)
- Saïd El Fantroussi
- Unit of Bioengineering, Catholic University of Louvain, Place Croix du Sud 2/19, B-1348 Louvain-la-Neuve, Belgium
| | | |
Collapse
|
14
|
Sánchez MA, Vásquez M, González B. A previously unexposed forest soil microbial community degrades high levels of the pollutant 2,4,6-trichlorophenol. Appl Environ Microbiol 2005; 70:7567-70. [PMID: 15574963 PMCID: PMC535199 DOI: 10.1128/aem.70.12.7567-7570.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
2,4,6-trichlorophenol (2,4,6-TCP) is a hazardous pollutant that is efficiently degraded by some aerobic soil bacterial isolates under laboratory conditions. The degradation of this pollutant in soils and its effect on the soil microbial community are poorly understood. We report here the ability of a previously unexposed forest soil microbiota to degrade high levels of 2,4,6-TCP and describe the changes in the soil microbial community found by terminal restriction fragment length polymorphism (T-RFLP) analysis. After 30 days of incubation, about 50% degradation of this pollutant was observed in soils amended with 50 to 5,000 ppm of 2,4,6-TCP. The T-RFLP analysis showed that the soil bacterial community was essentially unchanged after exposure to up to 500 ppm of 2,4,6-TCP. However, a significant decrease in richness was found with 2,000 and 5,000 ppm of 2,4,6-TCP, even though the removal of this pollutant remained high. The introduction of Ralstonia eutropha JMP134 or R. eutropha MS1, two efficient 2,4,6-TCP degraders, to this soil did not improve degradation of this pollutant, supporting the significant bioremediation potential of this previously unexposed, endogenous forest soil microbial community.
Collapse
Affiliation(s)
- M A Sánchez
- Departamento de Genética Molecular y Microbiología, Center for Advanced Studies in Ecology and Biodiversity, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | | | | |
Collapse
|
15
|
Fischer OA, Matlova L, Bartl J, Dvorska L, Svastova P, du Maine R, Melicharek I, Bartos M, Pavlik I. Earthworms (Oligochaeta, Lumbricidae) and mycobacteria. Vet Microbiol 2003; 91:325-38. [PMID: 12477646 DOI: 10.1016/s0378-1135(02)00302-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The objective of the study was to define the role of earthworms in the survival of mycobacteria in animal populations. In 13 sampling sites mycobacteria were detected in 53 (5.5%) samples of faeces and parenchymatous tissues from animals, in 25 (7.3%) environmental and in nine (8.2%) earthworm samples. In cattle and goat farms affected by Mycobacterium avium subsp. paratuberculosis (M. paratuberculosis) of IS900 restriction fragment length polymorphism (RFLP) type B-C1 was isolated from 37 (4.6%) faecal samples, three (1.4%) environmental and one (3.1%) earthworm sample. Investigations of aviaries affected by avian tuberculosis detected M. avium of genotype IS901+ and IS1245+ in six (7.9%) bird's faecal and in four (4.4%) environmental samples. M. avium (genotype IS901- and IS1245+) was detected in four (4.4%) and M. abscessus in one (1.1%) environmental sample. M. avium of genotype IS901- and IS1245+ and M. gastri were isolated from three (6.4%) earthworm samples. In pig farm with mycobacteriosis M. avium of genotype IS901- and IS1245+ was detected in five (20.0%) faecal samples from pigs and in four (12.9%) environmental samples. M. scrofulaceum was isolated in one (4.6%) sample of Lumbricus rubellus. In laboratory experiments identical RFLP types of M. paratuberculosis were isolated from bodies and faeces of earthworms 1-2 days after the last contact with the faeces contaminated with the same RFLP type of M. paratuberculosis. The results suggest that earthworms may become vectors of mycobacteria.
Collapse
Affiliation(s)
- O A Fischer
- Veterinary Research Institute, Hudcova 70, 62132 Brno, Czech Republic
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
HENDRIX PAULF, BOHLEN PATRICKJ. Exotic Earthworm Invasions in North America: Ecological and Policy Implications. Bioscience 2002. [DOI: 10.1641/0006-3568(2002)052[0801:eeiina]2.0.co;2] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
17
|
Dejonghe W, Boon N, Seghers D, Top EM, Verstraete W. Bioaugmentation of soils by increasing microbial richness: missing links. Environ Microbiol 2001; 3:649-57. [PMID: 11722545 DOI: 10.1046/j.1462-2920.2001.00236.x] [Citation(s) in RCA: 131] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
It is generally assumed that increased microbial diversity corresponds to increased catabolic potential and, hence, to better removal of metabolites and pollutants. Yet, microbial diversity, more specifically richness of species in environmental samples and sites, is difficult to assess. It is proposed to interpret this diversity more in the framework of Pareto's law, i.e. 20% of the species govern 80% of the energy flux of the ecosystem. Ecological studies should attempt to delineate the main energy fluxes and that group of species playing quantitative key roles in the system. Consequently, bioaugmentation should aim at the rearrangement of the group of organisms dominantly involved in the overall energy flux, so that specific catabolic traits necessary for the clean up of pollutants are part of that active group. For soil ecosystems, the capacity of plant roots as creators of physical and chemical discontinuity should be used more strategically to bring about such rearrangements. Overall, this paper identifies a number of ecological concepts, such as the Pareto law, the Gompertz model and plant community-induced microbial competence, which may, given careful underpinning, open new perspectives for microbial ecology and biodegradation.
Collapse
Affiliation(s)
- W Dejonghe
- Laboratory of Microbial Ecology and Technology, Ghent, Belgium
| | | | | | | | | |
Collapse
|
18
|
Roane TM, Josephson KL, Pepper IL. Dual-bioaugmentation strategy to enhance remediation of cocontaminated soil. Appl Environ Microbiol 2001; 67:3208-15. [PMID: 11425743 PMCID: PMC93002 DOI: 10.1128/aem.67.7.3208-3215.2001] [Citation(s) in RCA: 146] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although metals are thought to inhibit the ability of microorganisms to degrade organic pollutants, several microbial mechanisms of resistance to metal are known to exist. This study examined the potential of cadmium-resistant microorganisms to reduce soluble cadmium levels to enhance degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) under conditions of cocontamination. Four cadmium-resistant soil microorganisms were examined in this study. Resistant up to a cadmium concentration of 275 microg ml(-1), these isolates represented the common soil genera Arthrobacter, Bacillus, and Pseudomonas. Isolates Pseudomonas sp. strain H1 and Bacillus sp. strain H9 had a plasmid-dependent intracellular mechanism of cadmium detoxification, reducing soluble cadmium levels by 36%. Isolates Arthrobacter strain D9 and Pseudomonas strain I1a both produced an extracellular polymer layer that bound and reduced soluble cadmium levels by 22 and 11%, respectively. Although none of the cadmium-resistant isolates could degrade 2,4-D, results of dual-bioaugmentation studies conducted with both pure culture and laboratory soil microcosms showed that each of four cadmium-resistant isolates supported the degradation of 500-microg ml(-1) 2,4-D by the cadmium-sensitive 2,4-D degrader Ralstonia eutropha JMP134. Degradation occurred in the presence of up to 24 microg of cadmium ml(-1) in pure culture and up to 60 microg of cadmium g(-1) in amended soil microcosms. In a pilot field study conducted with 5-gallon soil bioreactors, the dual-bioaugmentation strategy was again evaluated. Here, the cadmium-resistant isolate Pseudomonas strain H1 enhanced degradation of 2,4-D in reactors inoculated with R. eutropha JMP134 in the presence of 60 microg of cadmium g(-1). Overall, dual bioaugmentation appears to be a viable approach in the remediation of cocontaminated soils.
Collapse
Affiliation(s)
- T M Roane
- Department of Soil, Water and Environmental Science, The University of Arizona, Tucson, Arizona 85721, USA.
| | | | | |
Collapse
|
19
|
Dejonghe W, Goris J, El Fantroussi S, Höfte M, De Vos P, Verstraete W, Top EM. Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 2000; 66:3297-304. [PMID: 10919784 PMCID: PMC92148 DOI: 10.1128/aem.66.8.3297-3304.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (10(5) CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (10(5) CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.
Collapse
Affiliation(s)
- W Dejonghe
- Laboratory of Microbial Ecology and Technology, Ghent University, Belgium
| | | | | | | | | | | | | |
Collapse
|