1
|
Goyal RK, Schmidt MA, Hynes MF. Molecular Biology in the Improvement of Biological Nitrogen Fixation by Rhizobia and Extending the Scope to Cereals. Microorganisms 2021; 9:microorganisms9010125. [PMID: 33430332 PMCID: PMC7825764 DOI: 10.3390/microorganisms9010125] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/06/2021] [Indexed: 11/16/2022] Open
Abstract
The contribution of biological nitrogen fixation to the total N requirement of food and feed crops diminished in importance with the advent of synthetic N fertilizers, which fueled the “green revolution”. Despite being environmentally unfriendly, the synthetic versions gained prominence primarily due to their low cost, and the fact that most important staple crops never evolved symbiotic associations with bacteria. In the recent past, advances in our knowledge of symbiosis and nitrogen fixation and the development and application of recombinant DNA technology have created opportunities that could help increase the share of symbiotically-driven nitrogen in global consumption. With the availability of molecular biology tools, rapid improvements in symbiotic characteristics of rhizobial strains became possible. Further, the technology allowed probing the possibility of establishing a symbiotic dialogue between rhizobia and cereals. Because the evolutionary process did not forge a symbiotic relationship with the latter, the potential of molecular manipulations has been tested to incorporate a functional mechanism of nitrogen reduction independent of microbes. In this review, we discuss various strategies applied to improve rhizobial strains for higher nitrogen fixation efficiency, more competitiveness and enhanced fitness under unfavorable environments. The challenges and progress made towards nitrogen self-sufficiency of cereals are also reviewed. An approach to integrate the genetically modified elite rhizobia strains in crop production systems is highlighted.
Collapse
Affiliation(s)
- Ravinder K. Goyal
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Correspondence:
| | - Maria Augusta Schmidt
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB T4L 1W1, Canada;
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| | - Michael F. Hynes
- Department of Biological Sciences, University of Calgary, 2500 University Dr NW, Calgary, AB T2N 1N4, Canada;
| |
Collapse
|
2
|
Rhizobium leguminosarum bv. trifolii NodD2 Enhances Competitive Nodule Colonization in the Clover-Rhizobium Symbiosis. Appl Environ Microbiol 2020; 86:AEM.01268-20. [PMID: 32651206 DOI: 10.1128/aem.01268-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 07/02/2020] [Indexed: 01/01/2023] Open
Abstract
Establishment of the symbiotic relationship that develops between rhizobia and their legume hosts is contingent upon an interkingdom signal exchange. In response to host legume flavonoids, NodD proteins from compatible rhizobia activate expression of nodulation genes that produce lipochitin oligosaccharide signaling molecules known as Nod factors. Root nodule formation commences upon legume recognition of compatible Nod factor. Rhizobium leguminosarum was previously considered to contain one copy of nodD; here, we show that some strains of the Trifolium (clover) microsymbiont R. leguminosarum bv. trifolii contain a second copy designated nodD2. nodD2 genes were present in 8 out of 13 strains of R. leguminosarum bv. trifolii, but were absent from the genomes of 16 R. leguminosarum bv. viciae strains. Analysis of single and double nodD1 and nodD2 mutants in R. leguminosarum bv. trifolii strain TA1 revealed that NodD2 was functional and enhanced nodule colonization competitiveness. However, NodD1 showed significantly greater capacity to induce nod gene expression and infection thread formation. Clover species are either annual or perennial and this phenological distinction is rarely crossed by individual R. leguminosarum bv. trifolii microsymbionts for effective symbiosis. Of 13 strains with genome sequences available, 7 of the 8 effective microsymbionts of perennial hosts contained nodD2, whereas the 3 microsymbionts of annual hosts did not. We hypothesize that NodD2 inducer recognition differs from NodD1, and NodD2 functions to enhance competition and effective symbiosis, which may discriminate in favor of perennial hosts.IMPORTANCE Establishment of the rhizobium-legume symbiosis requires a highly specific and complex signal exchange between both participants. Rhizobia perceive legume flavonoid compounds through LysR-type NodD regulators. Often, rhizobia encode multiple copies of nodD, which is one determinant of host specificity. In some species of rhizobia, the presence of multiple copies of NodD extends their symbiotic host-range. Here, we identified and characterized a second copy of nodD present in some strains of the clover microsymbiont Rhizobium leguminosarum bv. trifolii. The second nodD gene contributed to the competitive ability of the strain on white clover, an important forage legume. A screen for strains containing nodD2 could be utilized as one criterion to select strains with enhanced competitive ability for use as inoculants for pasture production.
Collapse
|
3
|
Teamtisong K, Songwattana P, Noisangiam R, Piromyou P, Boonkerd N, Tittabutr P, Minamisawa K, Nantagij A, Okazaki S, Abe M, Uchiumi T, Teaumroong N. Divergent nod-containing Bradyrhizobium sp. DOA9 with a megaplasmid and its host range. Microbes Environ 2014; 29:370-6. [PMID: 25283477 PMCID: PMC4262360 DOI: 10.1264/jsme2.me14065] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Bradyrhizobium sp. DOA9, a non-photosynthetic bacterial strain originally isolated from the root nodules of the legume Aeschynomene americana, is a divergent nod-containing strain. It exhibits a broad host range, being able to colonize and efficiently nodulate the roots of most plants from the Dalbergioid, Millettioid, and Robinioid tribes (7 species of Papilionoideae). In all cases, nodulation was determinate. The morphology and size of DOA9 bacteroids isolated from the nodules of various species of Papilionoideae were indistinguishable from the free-living form. However, they were spherical in Arachis hypogaea nodules. GusA-tagged DOA9 also colonized rice roots as endophytes. Since broad-host-range legume symbionts often carry multiple replicons in their genome, we analyzed the replicons for symbiosis genes by electrophoresis. DOA9 carried two replicons, a chromosome (cDOA9) and single megaplasmid (pDOA9) larger than 352 kb. The genes for nodulation (nodA, B, C) and nitrogen fixation (nifH) were localized on the megaplasmid. Southern blot hybridization revealed two copies of nodA on the megaplasmid, single copies of nodB and C on the megaplasmid, and one copy each of nifH on the chromosome and megaplasmid. These results suggested that Bradyrhizobium sp. DOA9 may have the unusual combination of a broad host range, bacteroid differentiation, and symbiosis-mediating replicons.
Collapse
Affiliation(s)
- Kamonluck Teamtisong
- Center for Scientific and Technological Equipment, Suranaree University of Technology
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Norris V, Merieau A. Plasmids as scribbling pads for operon formation and propagation. Res Microbiol 2013; 164:779-87. [PMID: 23587635 DOI: 10.1016/j.resmic.2013.04.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Accepted: 04/01/2013] [Indexed: 12/31/2022]
Abstract
Many bacterial genes are in operons and the process whereby operons are formed is therefore fundamental. To help elucidate this process, we propose in the Scribbling Pad hypothesis that bacteria have been constantly using plasmids for genetic experimentation and, in particular, for the construction of operons. This hypothesis simultaneously solves the problems of the creation of operons and the way operons are propagated. We cite results in the literature to support the hypothesis and make experimental predictions to test it.
Collapse
Affiliation(s)
- Vic Norris
- Theoretical Biology Unit, Department of Biology, University of Rouen, 76821 Mont Saint Aignan cedex, France.
| | | |
Collapse
|
5
|
Pretreatment of Clover Seeds with Nod Factors Improves Growth and Nodulation of Trifolium pratense. J Chem Ecol 2009; 35:479-87. [DOI: 10.1007/s10886-009-9620-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2008] [Revised: 03/26/2009] [Accepted: 03/27/2009] [Indexed: 10/20/2022]
|
6
|
Fox JE, Gulledge J, Engelhaupt E, Burow ME, McLachlan JA. Pesticides reduce symbiotic efficiency of nitrogen-fixing rhizobia and host plants. Proc Natl Acad Sci U S A 2007; 104:10282-7. [PMID: 17548832 PMCID: PMC1885820 DOI: 10.1073/pnas.0611710104] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2007] [Indexed: 11/18/2022] Open
Abstract
Unprecedented agricultural intensification and increased crop yield will be necessary to feed the burgeoning world population, whose global food demand is projected to double in the next 50 years. Although grain production has doubled in the past four decades, largely because of the widespread use of synthetic nitrogenous fertilizers, pesticides, and irrigation promoted by the "Green Revolution," this rate of increased agricultural output is unsustainable because of declining crop yields and environmental impacts of modern agricultural practices. The last 20 years have seen diminishing returns in crop yield in response to increased application of fertilizers, which cannot be completely explained by current ecological models. A common strategy to reduce dependence on nitrogenous fertilizers is the production of leguminous crops, which fix atmospheric nitrogen via symbiosis with nitrogen-fixing rhizobia bacteria, in rotation with nonleguminous crops. Here we show previously undescribed in vivo evidence that a subset of organochlorine pesticides, agrichemicals, and environmental contaminants induces a symbiotic phenotype of inhibited or delayed recruitment of rhizobia bacteria to host plant roots, fewer root nodules produced, lower rates of nitrogenase activity, and a reduction in overall plant yield at time of harvest. The environmental consequences of synthetic chemicals compromising symbiotic nitrogen fixation are increased dependence on synthetic nitrogenous fertilizer, reduced soil fertility, and unsustainable long-term crop yields.
Collapse
Affiliation(s)
- Jennifer E. Fox
- *Center for Ecology and Evolutionary Biology, University of Oregon, 335 Pacific Hall, Eugene, OR 97403
- Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699
| | - Jay Gulledge
- Department of Biology, University of Louisville, Louisville, KY 40292
| | | | - Matthew E. Burow
- Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699
- Department of Medicine and Surgery, Hematology and Medical Oncology Section, Tulane University Medical School, 1430 Tulane Avenue, New Orleans, LA 70112-2699
| | - John A. McLachlan
- Center for Bioenvironmental Research, Environmental Endocrinology Laboratory, Tulane University, 1430 Tulane Avenue, New Orleans, LA 70112-2699
| |
Collapse
|
7
|
Puppo A, Groten K, Bastian F, Carzaniga R, Soussi M, Lucas MM, de Felipe MR, Harrison J, Vanacker H, Foyer CH. Legume nodule senescence: roles for redox and hormone signalling in the orchestration of the natural aging process. THE NEW PHYTOLOGIST 2005; 165:683-701. [PMID: 15720680 DOI: 10.1111/j.1469-8137.2004.01285.x] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Research on legume nodule development has contributed greatly to our current understanding of plant-microbe interactions. However, the factors that orchestrate root nodule senescence have received relatively little attention. Accumulating evidence suggests that redox signals contribute to the establishment of symbiosis and senescence. Although degenerative in nature, nodule senescence is an active process programmed in development in which reactive oxygen species (ROS), antioxidants, hormones and proteinases have key roles. Nodules have high levels of the redox buffers, ascorbate and glutathione, which are important in the nodulation process and in senescence. These metabolites decline with N-fixation as the nodule ages but the resultant decrease in redox buffering capacity does not necessarily lead to enhanced ROS or oxidative stress. We propose models by which ROS and antioxidants interact with hormones such as abscisic acid in the orchestration of nodule senescence.
Collapse
Affiliation(s)
- Alain Puppo
- UMR CNRS-UNSA-INRA IPMSV 400, Route des Chappes, BP167 06903 Sophia-Antipolis Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Guan J, Spencer JL, Sampath M, Devenish J. The fate of a genetically modifiedPseudomonasstrain and its transgene during the composting of poultry manure. Can J Microbiol 2004; 50:415-21. [PMID: 15284887 DOI: 10.1139/w04-030] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The fate of the genetically modified (GM) Pseudomonas chlororaphis strain 3732 RN-L11 and its transgene (lacZ insert) during composting of chicken manure was studied using plate count and nested polymerase chain reaction (PCR) methods. The detection sensitivity of the nested PCR method was 165 copies of the modified gene per gram of moist compost or soil. Compost microcosms consisted of a 100-g mixture of chicken manure and peat, whereas soil microcosms were 100-g samples of sandy clay loam. Each microcosm was inoculated with 4 × 1010CFU of P. chlororaphis RN-L11. In controlled temperature studies, neither P. chlororaphis RN-L11 nor its transgene could be detected in compost microcosms after incubation temperature was elevated to 45 °C or above for one or more days. In contrast, in the compost microcosms incubated at 23 °C, the target organism was not detected by the plate count method after 6 days, but its transgene was detectable for at least 45 days. In compost bins, the target organism was not recovered from compost microcosms or soil microcosms at different levels in the bins for 29 days. However, the transgene was detected in 8 of the 9 soil microcosms and in only 1 of the 9 compost microcosms. The compost microcosm in which transgene was detected was at the lower level of the bin where temperatures remained below 45 °C. The findings indicated that composting of organic wastes could be used to reduce or degrade heat sensitive GM microorganisms and their transgenes.Key words: composting, genetically modified Pseudomonas strain, transgene, polymerase chain reaction.
Collapse
Affiliation(s)
- J Guan
- Ottawa Laboratory-Fallowfield, Canadian Food Inspection Agency, Ottawa, Canada.
| | | | | | | |
Collapse
|
9
|
Wernegreen JJ, Moran NA. Vertical transmission of biosynthetic plasmids in aphid endosymbionts (Buchnera). J Bacteriol 2001; 183:785-90. [PMID: 11133977 PMCID: PMC94939 DOI: 10.1128/jb.183.2.785-790.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2000] [Accepted: 10/16/2000] [Indexed: 11/20/2022] Open
Abstract
This study tested for horizontal transfer of plasmids among Buchnera aphidicola strains associated with ecologically and phylogenetically related aphid hosts (Uroleucon species). Phylogenetic congruence of Buchnera plasmid (trpEG and leuABC) and chromosomal (dnaN and trpB) genes supports strictly vertical long-term transmission of plasmids, which persist due to their contributions to host nutrition rather than capacity for infectious transfer. Synonymous divergences indicate elevated mutation on plasmids relative to chromosomal genes.
Collapse
Affiliation(s)
- J J Wernegreen
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, Arizona 85721, USA.
| | | |
Collapse
|