1
|
Wang Z, Zhu T, Simpson DJ, Gänzle MG. Supercharged MPNs? Automated Determination of High-Throughput Most Probable Number (htMPN) Using Chip-Based 3D Digital PCR. Appl Environ Microbiol 2022; 88:e0082222. [PMID: 35856687 PMCID: PMC9361819 DOI: 10.1128/aem.00822-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/10/2022] [Indexed: 01/22/2023] Open
Abstract
Surface plating on agar and most probable number (MPN) are the standard methods for determining bacterial viability but both have limitations. Here we present a novel cell count method, high-throughput MPN (htMPN), that uses a chip-based digital PCR instrument to accelerate and to improve the quantification of viable or sublethally injured cells. This method tracks growth of up to 20,000 individual bacterial cells on a single chip. Single cells were grown in the individual wells of the chip at their optimal temperature until the cell density was high enough to detect the fluorescent signal with cell-permeant or cell-impermeant DNA-intercalating fluorescent dyes. This method based on microfluidic devices implemented in digital PCR equipment was equivalent to surface plating in determining cell counts of Escherichia coli, Salmonella enterica serovar Typhimurium, Fructilactobacillus sanfranciscensis, Pseudomonas putida, and vegetative cells but not spores of Bacillus subtilis. Viable E. coli could be enumerated within 7 h. Culture of strict aerobes was restricted to strains that are capable of nitrate respiration; organisms requiring complex media that also contain double-stranded DNA were detected after treatment of growth media with DNase before inoculation. Our approach not only monitors the frequency distribution of bacterial growth and determines cell counts with high reliability but also detected heat-injured cells of S. Typhimurium that escaped detection by the surface plating. Overall, the method accelerates detection of viable bacterial cells, facilitates automation, and offers new possibilities for the analysis of individual bacterial cells. IMPORTANCE htMPN uses chip-based fluorescence acquisition and is a simple and compact tool for automatic viable cell enumeration with applications in microbiological research. This method applies to a wide range of anaerobic or facultative anaerobic species and improves accuracy by reducing the number of pipetting steps. In addition, the method offers an additional tool for single-cell microbiology. The single cell time-to-detection times have been used as an important criterion for the physiological state of bacterial cells after sublethal stress, and htMPNs support the acquisition of such data with an unprecedented number of cells. In particular, htMPN provides an anaerobic environment and enables a long incubation time to increase the recovery rate of sublethally injured cells. Given its reproducibility and reliability, our approach can potentially be applied to quantify viable cells in samples from environmental, clinical, or food samples to reduce the risk of underestimation of the number of viable bacterial cells.
Collapse
Affiliation(s)
- Zhiying Wang
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Tongbo Zhu
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - David J. Simpson
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| | - Michael G. Gänzle
- University of Alberta, Department of Agricultural, Food and Nutritional Science, Edmonton, Alberta, Canada
| |
Collapse
|
2
|
Mendes Silva D, Domingues L. On the track for an efficient detection of Escherichia coli in water: A review on PCR-based methods. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 113:400-11. [PMID: 25540852 DOI: 10.1016/j.ecoenv.2014.12.015] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 12/03/2014] [Accepted: 12/08/2014] [Indexed: 05/11/2023]
Abstract
Ensuring water safety is an ongoing challenge to public health providers. Assessing the presence of fecal contamination indicators in water is essential to protect public health from diseases caused by waterborne pathogens. For this purpose, the bacteria Escherichia coli has been used as the most reliable indicator of fecal contamination in water. The methods currently in use for monitoring the microbiological safety of water are based on culturing the microorganisms. However, these methods are not the desirable solution to prevent outbreaks as they provide the results with a considerable delay, lacking on specificity and sensitivity. Moreover, viable but non-culturable microorganisms, which may be present as a result of environmental stress or water treatment processes, are not detected by culture-based methods and, thus, may result in false-negative assessments of E. coli in water samples. These limitations may place public health at significant risk, leading to substantial monetary losses in health care and, additionally, in costs related with a reduced productivity in the area affected by the outbreak, and in costs supported by the water quality control departments involved. Molecular methods, particularly polymerase chain reaction-based methods, have been studied as an alternative technology to overcome the current limitations, as they offer the possibility to reduce the assay time, to improve the detection sensitivity and specificity, and to identify multiple targets and pathogens, including new or emerging strains. The variety of techniques and applications available for PCR-based methods has increased considerably and the costs involved have been substantially reduced, which together have contributed to the potential standardization of these techniques. However, they still require further refinement in order to be standardized and applied to the variety of environmental waters and their specific characteristics. The PCR-based methods under development for monitoring the presence of E. coli in water are here discussed. Special emphasis is given to methodologies that avoid pre-enrichment during the water sample preparation process so that the assay time is reduced and the required legislated sensitivity is achieved. The advantages and limitations of these methods are also reviewed, contributing to a more comprehensive overview toward a more conscious research in identifying E. coli in water.
Collapse
Affiliation(s)
- Diana Mendes Silva
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Lucília Domingues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| |
Collapse
|
3
|
Metal resistance and lithoautotrophy in the extreme thermoacidophile Metallosphaera sedula. J Bacteriol 2012; 194:6856-63. [PMID: 23065978 DOI: 10.1128/jb.01413-12] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Archaea such as Metallosphaera sedula are thermophilic lithoautotrophs that occupy unusually acidic and metal-rich environments. These traits are thought to underlie their industrial importance for bioleaching of base and precious metals. In this study, a genetic approach was taken to investigate the specific relationship between metal resistance and lithoautotrophy during biotransformation of the primary copper ore, chalcopyrite (CuFeS(2)). In this study, a genetic system was developed for M. sedula to investigate parameters that limit bioleaching of chalcopyrite. The functional role of the M. sedula copRTA operon was demonstrated by cross-species complementation of a copper-sensitive Sulfolobus solfataricus copR mutant. Inactivation of the gene encoding the M. sedula copper efflux protein, copA, using targeted recombination compromised metal resistance and eliminated chalcopyrite bioleaching. In contrast, a spontaneous M. sedula mutant (CuR1) with elevated metal resistance transformed chalcopyrite at an accelerated rate without affecting chemoheterotrophic growth. Proteomic analysis of CuR1 identified pleiotropic changes, including altered abundance of transport proteins having AAA-ATPase motifs. Addition of the insoluble carbonate mineral witherite (BaCO(3)) further stimulated chalcopyrite lithotrophy, indicating that carbon was a limiting factor. Since both mineral types were actively colonized, enhanced metal leaching may arise from the cooperative exchange of energy and carbon between surface-adhered populations. Genetic approaches provide a new means of improving the efficiency of metal bioleaching by enhancing the mechanistic understanding of thermophilic lithoautotrophy.
Collapse
|
4
|
Yamaguchi N, Sasada M, Nasu M. Rapid Detection of Starved Escherichia coli with Respiratory Activity in Potable Water by Signal-Amplified in situ Hybridization Following Formazan Reduction. Microbes Environ 2012; 24:286-90. [PMID: 21566387 DOI: 10.1264/jsme2.me09144] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The aim of this study was to develop a rapid method for the specific detection of respiring Escherichia coli (an indicator of fecal contamination) in potable water. Fluorescence in situ hybridization (FISH) with a rRNA-targeted oligonucleotide probe was used to detect E. coli cells and bacterial respiratory activity was estimated using 5-cyano-2,3-ditolyl tetrazolium chloride (CTC). Fluorescent signals from hybridized cells were increased by optimized tyramide signal amplification (TSA). Respiring E. coli in potable ground water with low rRNA content were enumerated within 8 hours using signal-amplified in situ hybridization following formazan reduction (TSA-CTC-FISH), whereas these starved E. coli cells could not be detected by conventional FISH (FISH without signal amplification) which generated weak fluorescence. TSA-CTC-FISH can be used for simultaneous identification in situ based on phylogenetic information and the activity of individual bacterial cells in potable water. This method would be useful in the rapid monitoring of harmful or fecal indicator bacteria in potable water.
Collapse
|
5
|
Higgins MJ, Chen YC, Murthy SN, Hendrickson D, Farrel J, Schafer P. Reactivation and growth of non-culturable indicator bacteria in anaerobically digested biosolids after centrifuge dewatering. WATER RESEARCH 2007; 41:665-73. [PMID: 17107701 DOI: 10.1016/j.watres.2006.09.017] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2006] [Revised: 07/28/2006] [Accepted: 09/14/2006] [Indexed: 05/12/2023]
Abstract
Recent literature has reported that high concentrations of indicator bacteria such as fecal coliforms (FCs) were measured in anaerobically digested sludges immediately after dewatering even though low concentrations were measured prior to dewatering. This research hypothesized that the indicator bacteria can enter a non-culturable state during digestion, and are reactivated during centrifuge dewatering. Reactivation is defined as restoration of culturability. To examine this hypothesis, a quantitative polymerase chain reaction (qPCR) method was developed to enumerate Escherichia coli, a member of the FC group, during different phases of digestion and dewatering. For thermophilic digestion, the density of E. coli measured by qPCR could be five orders of magnitude greater than the density measured by standard culturing methods (SCMs), which is indicative of non-culturable bacteria. For mesophilic digestion, qPCR enumerated up to about one order of magnitude more E. coli than the SCMs. After centrifuge dewatering, the non-culturable organisms could be reactivated such that they are enumerated by SCMs, and the conditions in the cake allowed rapid growth of FCs and E. coli during cake storage.
Collapse
Affiliation(s)
- Matthew J Higgins
- Department of Civil and Environmental Engineering, Bucknell University, PA 17837, USA.
| | | | | | | | | | | |
Collapse
|
6
|
Kitaguchi A, Yamaguchi N, Nasu M. Simultaneous enumeration of viable Enterobacteriaceae and Pseudomonas spp. within three hours by multicolor fluorescence in situ hybridization with vital staining. J Microbiol Methods 2006; 65:623-7. [PMID: 16229915 DOI: 10.1016/j.mimet.2005.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2005] [Revised: 08/24/2005] [Accepted: 09/13/2005] [Indexed: 10/25/2022]
Abstract
A new means of rapidly and simultaneously counting viable phylogenetically different bacteria was developed. The cyanine dimer dye, BOBO-3 that selectively stains bacteria with damaged membranes were used to evaluate bacterial viability based on membrane integrity. Viable Enterobacteriaceae and Pseudomonas spp. could be selectively detected within three hours using multicolor fluorescence in situ hybridization (FISH) following BOBO-3 staining (BOBO3-FISH).
Collapse
Affiliation(s)
- Akiko Kitaguchi
- Environmental Science and Microbiology, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Japan
| | | | | |
Collapse
|
7
|
Bolster CH, Bromley JM, Jones SH. Recovery of chlorine-exposed Escherichia coli in estuarine microcosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:3083-9. [PMID: 15926556 DOI: 10.1021/es048643s] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Laboratory microcosm experiments were performed to determine whether chlorine-exposed Escherichia coli are capable of recovery (i.e., increase in numbers of culturable cells) in estuarine waters and if so what water-quality parameters are responsible for this recovery. Suspensions of E. coli were exposed to 0.5 mg L(-1) of chlorine for 5 min followed by dechlorination with sodium thiosulfate. The chlorine-exposed bacteria were introduced into 2-L microcosms containing estuarine water collected from the Seacoast region of New Hampshire. Culturable cells in the microcosms were enumerated at 0, 10, 24, 48, and 74 h. In all estuarine microcosms the number of culturable cells increased by factors ranging from 2.8 to 50 over the 74-h incubation period. Multiple linear regression analyses indicated that ammonium and salinity were most significantly correlated with the recovery of E. coli over the 74-h incubation period; however, ammonium concentrations were strongly correlated with dissolved organic carbon and total dissolved nitrogen, making it impossible to determine with any degree of certainty the unique effect nitrogen or carbon had on recovery. The extensive recovery observed in our study indicates that following exposure to concentrations of chlorine that cause cell injury rather than death, numbers of culturable E. coli may increase significantly when discharged into estuarine waters. Thus, depending on the effectiveness of the chlorination process, the regular monitoring of chlorinated wastewater treatment effluent may underestimate the true impact on water-quality and public health risks.
Collapse
Affiliation(s)
- Carl H Bolster
- US Department of Agriculture-Agricultural Research Service, Bowling Green, Kentucky 42104, USA.
| | | | | |
Collapse
|
8
|
Lemarchand K, Masson L, Brousseau R. Molecular biology and DNA microarray technology for microbial quality monitoring of water. Crit Rev Microbiol 2004; 30:145-72. [PMID: 15490968 DOI: 10.1080/10408410490435142] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Public concern over polluted water is a major environmental issue worldwide. Microbial contamination of water arguably represents the most significant risk to human health on a global scale. An important challenge in modern water microbial quality monitoring is the rapid, specific, and sensitive detection of microbial indicators and waterborne pathogens. Presently, microbial tests are based essentially on time-consuming culture methods. Rapid microbiological analyses and detection of rare events in water systems are important challenges in water safety assessment since culture methods present serious limitations from both quantitative and qualitative points of view. To circumvent lengthy culture methods, newer enzymatic, immunological, and genetic methods are being developed as an alternative. DNA microarray technology is a new and promising tool that allows the detection of several hundred or even thousands DNA sequences simultaneously. Recent advances in sample processing and DNA microarray technologies provide new perspectives to assess microbial water quality. The aims of this review are to (1) summarize what is currently known about microbial indicators, (2) describe the most important waterborne pathogens, (3) present molecular methods used to monitor the presence of pathogens in water, and (4) show the potential of DNA microarrays in water quality monitoring.
Collapse
Affiliation(s)
- Karine Lemarchand
- National Research Council of Canada, Biotechnology Research Institute, Montreal, Quebec, Canada
| | | | | |
Collapse
|
9
|
Chen H, Ponniah G, Salonen N, Blum P. Culture-independent analysis of fecal enterobacteria in environmental samples by single-cell mRNA profiling. Appl Environ Microbiol 2004; 70:4432-9. [PMID: 15294770 PMCID: PMC492453 DOI: 10.1128/aem.70.8.4432-4439.2004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A culture-independent method called mRNA profiling has been developed for the analysis of fecal enterobacteria and their physiological status in environmental samples. This taxon-specific approach determines the single-cell content of selected gene transcripts whose abundance is either directly or inversely proportional to growth state. Fluorescence in situ hybridization using fluorochrome-labeled oligonucleotide probes was used to measure the cellular concentration of fis and dps mRNA. Relative levels of these transcripts provided a measure of cell growth state and the ability to enumerate fecal enterobacterial cell number. Orthologs were cloned by inverse PCR from several major enterobacterial genera, and probes specific for fecal enterobacteria were designed using multiple DNA sequence alignments. Probe specificity was determined experimentally using pure and mixed cultures of the major enterobacterial genera as well as secondary treated wastewater samples seeded with pure culture inocula. Analysis of the fecal enterobacterial community resident in unseeded secondary treated wastewater detected fluctuations in transcript abundance that were commensurate with incubation time and nutrient availability and demonstrated the utility of the method using environmental samples. mRNA profiling provides a new strategy to improve wastewater disinfection efficiency by accelerating water quality analysis.
Collapse
Affiliation(s)
- Han Chen
- E234 Beadle Center for Genetics, University of Nebraska, Lincoln, NE 68588-0666, USA
| | | | | | | |
Collapse
|
10
|
Brehm-Stecher BF, Johnson EA. Single-cell microbiology: tools, technologies, and applications. Microbiol Mol Biol Rev 2004; 68:538-59, table of contents. [PMID: 15353569 PMCID: PMC515252 DOI: 10.1128/mmbr.68.3.538-559.2004] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The field of microbiology has traditionally been concerned with and focused on studies at the population level. Information on how cells respond to their environment, interact with each other, or undergo complex processes such as cellular differentiation or gene expression has been obtained mostly by inference from population-level data. Individual microorganisms, even those in supposedly "clonal" populations, may differ widely from each other in terms of their genetic composition, physiology, biochemistry, or behavior. This genetic and phenotypic heterogeneity has important practical consequences for a number of human interests, including antibiotic or biocide resistance, the productivity and stability of industrial fermentations, the efficacy of food preservatives, and the potential of pathogens to cause disease. New appreciation of the importance of cellular heterogeneity, coupled with recent advances in technology, has driven the development of new tools and techniques for the study of individual microbial cells. Because observations made at the single-cell level are not subject to the "averaging" effects characteristic of bulk-phase, population-level methods, they offer the unique capacity to observe discrete microbiological phenomena unavailable using traditional approaches. As a result, scientists have been able to characterize microorganisms, their activities, and their interactions at unprecedented levels of detail.
Collapse
Affiliation(s)
- Byron F Brehm-Stecher
- Department of Food Microbiology and Toxicology, University of Wisconsin-Madison Food Research Institute, 1925 Willow Drive, Madison, WI 53706, USA
| | | |
Collapse
|
11
|
Studying the deep subsurface biosphere: Emerging technologies and applications. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/144gm24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
12
|
Ponniah G, Chen H, Michielutti R, Salonen N, Blum P. Single-cell protein profiling of wastewater enterobacterial communities predicts disinfection efficiency. Appl Environ Microbiol 2003; 69:4227-35. [PMID: 12839804 PMCID: PMC165178 DOI: 10.1128/aem.69.7.4227-4235.2003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2002] [Accepted: 04/01/2003] [Indexed: 11/20/2022] Open
Abstract
The efficiency of enterobacterial disinfection is dependent largely on enterobacterial community physiology. However, the relationship between enterobacterial community physiology and wastewater processing is unclear. The purpose of this study was to investigate this relationship. The influence of wastewater treatment processes on enterobacterial community physiology was examined at the single-cell level by using culture-independent methods. Intracellular concentrations of two conserved proteins, the growth-related protein Fis and the stationary-phase protein Dps, were analyzed by epifluoresence microscopy of uncultivated cells by using enterobacterial group-specific polyclonal fluorochrome-coupled antibodies. Enterobacterial single-cell community protein profiles were distinct for different types of biological treatment. The differences were not apparent when bulk methods of protein analysis were used. Trickling filter wastewater yielded Fis-enriched communities compared to the communities in submerged aeration basin wastewater. Community differences in Fis and Dps contents were used to predict disinfection efficiency. Disinfection of community samples by heat exposure combined with cultivation in selective media confirmed that enterobacterial communities exhibited significant differences in sensitivity to disinfection. These findings provide strategies that can be used to increase treatment plant performance, reduce the enterobacterial content in municipal wastewater, and minimize the release of disinfection by-products into receiving water.
Collapse
Affiliation(s)
- Gomathinayagam Ponniah
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, NE 68588-0666, USA
| | | | | | | | | |
Collapse
|
13
|
Stampi S, De Luca G, Onorato M, Ambrogiani E, Zanetti F. Peracetic acid as an alternative wastewater disinfectant to chlorine dioxide. J Appl Microbiol 2003; 93:725-31. [PMID: 12392516 DOI: 10.1046/j.1365-2672.2002.01732.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
AIMS The aim of this study was to compare the efficiency of peracetic acid with that of chlorine dioxide in the disinfection of wastewater from a sewage treatment plant (serving about 650 000 inhabitants) that has been using peracetic acid as a disinfectant since 1998. METHODS AND RESULTS A total of 23 samplings were made, each consisting of three samples: from secondary effluent, effluent disinfected with 2 mg l(-1) of peracetic acid and effluent disinfected with 2.2 mg l(-1) of chlorine dioxide (contact time 20 min). For each sample, measurements were made of the heterotrophic plate count at 36 degrees C, total and faecal coliforms, Escherichia coli, enterococci, pH, suspended solids and chemical oxygen demand (COD). During the first phase of the experiment the peracetic acid was seen to be less efficient than chlorine dioxide. To improve the disinfectant action a system of mechanical agitation was added which led to a greater efficiency in the inactivation of bacteria of faecal origin. CONCLUSIONS Both products were found to be influenced by the level of microbial contamination, the amount of suspended solids and COD but not by the pH of the effluent before disinfection. The immediate mixing of the wastewater and disinfectant caused a greater reduction in enterococci. SIGNIFICANCE AND IMPACT OF THE STUDY Since peracetic acid was seen to produce a high abatement of micro-organisms, it can be considered as a valid alternative to chlorine dioxide in the disinfection of wastewaters.
Collapse
Affiliation(s)
- S Stampi
- Department of Medicine and Public Health, Division of Hygiene, University of Bologna, Italy.
| | | | | | | | | |
Collapse
|
14
|
Rompré A, Servais P, Baudart J, de-Roubin MR, Laurent P. Detection and enumeration of coliforms in drinking water: current methods and emerging approaches. J Microbiol Methods 2002; 49:31-54. [PMID: 11777581 DOI: 10.1016/s0167-7012(01)00351-7] [Citation(s) in RCA: 306] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The coliform group has been used extensively as an indicator of water quality and has historically led to the public health protection concept. The aim of this review is to examine methods currently in use or which can be proposed for the monitoring of coliforms in drinking water. Actually, the need for more rapid, sensitive and specific tests is essential in the water industry. Routine and widely accepted techniques are discussed, as are methods which have emerged from recent research developments.Approved traditional methods for coliform detection include the multiple-tube fermentation (MTF) technique and the membrane filter (MF) technique using different specific media and incubation conditions. These methods have limitations, however, such as duration of incubation, antagonistic organism interference, lack of specificity and poor detection of slow-growing or viable but non-culturable (VBNC) microorganisms. Nowadays, the simple and inexpensive membrane filter technique is the most widely used method for routine enumeration of coliforms in drinking water.The detection of coliforms based on specific enzymatic activity has improved the sensitivity of these methods. The enzymes beta-D galactosidase and beta-D glucuronidase are widely used for the detection and enumeration of total coliforms and Escherichia coli, respectively. Many chromogenic and fluorogenic substrates exist for the specific detection of these enzymatic activities, and various commercial tests based on these substrates are available. Numerous comparisons have shown these tests may be a suitable alternative to the classical techniques. They are, however, more expensive, and the incubation time, even though reduced, remains too long for same-day results. More sophisticated analytical tools such as solid phase cytometry can be employed to decrease the time needed for the detection of bacterial enzymatic activities, with a low detection threshold. Detection of coliforms by molecular methods is also proposed, as these methods allow for very specific and rapid detection without the need for a cultivation step. Three molecular-based methods are evaluated here: the immunological, polymerase chain reaction (PCR) and in-situ hybridization (ISH) techniques. In the immunological approach, various antibodies against coliform bacteria have been produced, but the application of this technique often showed low antibody specificity. PCR can be used to detect coliform bacteria by means of signal amplification: DNA sequence coding for the lacZ gene (beta-galactosidase gene) and the uidA gene (beta-D glucuronidase gene) has been used to detect total coliforms and E. coli, respectively. However, quantification with PCR is still lacking in precision and necessitates extensive laboratory work. The FISH technique involves the use of oligonucleotide probes to detect complementary sequences inside specific cells. Oligonucleotide probes designed specifically for regions of the 16S RNA molecules of Enterobacteriaceae can be used for microbiological quality control of drinking water samples. FISH should be an interesting viable alternative to the conventional culture methods for the detection of coliforms in drinking water, as it provides quantitative data in a fairly short period of time (6 to 8 h), but still requires research effort. This review shows that even though many innovative bacterial detection methods have been developed, few have the potential for becoming a standardized method for the detection of coliforms in drinking water samples.
Collapse
Affiliation(s)
- Annie Rompré
- NSERC Industrial Chair on Drinking Water, Civil, Geological and Mining Engineering, Ecole Polytechnique of Montreal, PO Box 6079, succ. Centre Ville, H3C 3A7, Montreal, Quebec, Canada
| | | | | | | | | |
Collapse
|