1
|
De Paepe B, De Mey M. Biological Switches: Past and Future Milestones of Transcription Factor-Based Biosensors. ACS Synth Biol 2025; 14:72-86. [PMID: 39709556 PMCID: PMC11745168 DOI: 10.1021/acssynbio.4c00689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/18/2024] [Accepted: 11/26/2024] [Indexed: 12/23/2024]
Abstract
Since the description of the lac operon in 1961 by Jacob and Monod, transcriptional regulation in prokaryotes has been studied extensively and has led to the development of transcription factor-based biosensors. Due to the broad variety of detectable small molecules and their various applications across biotechnology, biosensor research and development have increased exponentially over the past decades. Throughout this period, key milestones in fundamental knowledge, synthetic biology, analytical tools, and computational learning have led to an immense expansion of the biosensor repertoire and its application portfolio. Over the years, biosensor engineering became a more multidisciplinary discipline, combining high-throughput analytical tools, DNA randomization strategies, forward engineering, and advanced protein engineering workflows. Despite these advances, many obstacles remain to fully unlock the potential of biosensor technology. This review analyzes the timeline of key milestones on fundamental research (1960s to 2000s) and engineering strategies (2000s onward), on both the DNA and protein level of biosensors. Moreover, insights into the future perspectives, remaining hurdles, and unexplored opportunities of this promising field are discussed.
Collapse
Affiliation(s)
- Brecht De Paepe
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| | - Marjan De Mey
- Centre
for Synthetic Biology, Ghent University, Ghent 9000, Belgium
| |
Collapse
|
2
|
Nishikawa KK, Chen J, Acheson JF, Harbaugh SV, Huss P, Frenkel M, Novy N, Sieren HR, Lodewyk EC, Lee DH, Chávez JL, Fox BG, Raman S. Highly multiplexed design of an allosteric transcription factor to sense new ligands. Nat Commun 2024; 15:10001. [PMID: 39562775 PMCID: PMC11577015 DOI: 10.1038/s41467-024-54260-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 11/05/2024] [Indexed: 11/21/2024] Open
Abstract
Allosteric transcription factors (aTF) regulate gene expression through conformational changes induced by small molecule binding. Although widely used as biosensors, aTFs have proven challenging to design for detecting new molecules because mutation of ligand-binding residues often disrupts allostery. Here, we develop Sensor-seq, a high-throughput platform to design and identify aTF biosensors that bind to non-native ligands. We screen a library of 17,737 variants of the aTF TtgR, a regulator of a multidrug exporter, against six non-native ligands of diverse chemical structures - four derivatives of the cancer therapeutic tamoxifen, the antimalarial drug quinine, and the opiate analog naltrexone - as well as two native flavonoid ligands, naringenin and phloretin. Sensor-seq identifies biosensors for each of these ligands with high dynamic range and diverse specificity profiles. The structure of a naltrexone-bound design shows shape-complementary methionine-aromatic interactions driving ligand specificity. To demonstrate practical utility, we develop cell-free detection systems for naltrexone and quinine. Sensor-seq enables rapid and scalable design of new biosensors, overcoming constraints of natural biosensors.
Collapse
Affiliation(s)
- Kyle K Nishikawa
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Max Frenkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Nathan Novy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
| | - Hailey R Sieren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Dane County Youth Apprenticeship Program, State of Wisconsin Department of Workforce Development, Madison, WI, USA
| | - Ella C Lodewyk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Dane County Youth Apprenticeship Program, State of Wisconsin Department of Workforce Development, Madison, WI, USA
| | - Daniel H Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Dane County Youth Apprenticeship Program, State of Wisconsin Department of Workforce Development, Madison, WI, USA
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory, Wright Patterson Air Force Base, OH, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI, USA.
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
3
|
Nishikawa KK, Chen J, Acheson JF, Harbaugh SV, Huss P, Frenkel M, Novy N, Sieren HR, Lodewyk EC, Lee DH, Chávez JL, Fox BG, Raman S. Highly multiplexed design of an allosteric transcription factor to sense novel ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.07.583947. [PMID: 38496486 PMCID: PMC10942455 DOI: 10.1101/2024.03.07.583947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Allosteric transcription factors (aTF), widely used as biosensors, have proven challenging to design for detecting novel molecules because mutation of ligand-binding residues often disrupts allostery. We developed Sensor-seq, a high-throughput platform to design and identify aTF biosensors that bind to non-native ligands. We screened a library of 17,737 variants of the aTF TtgR, a regulator of a multidrug exporter, against six non-native ligands of diverse chemical structures - four derivatives of the cancer therapeutic tamoxifen, the antimalarial drug quinine, and the opiate analog naltrexone - as well as two native flavonoid ligands, naringenin and phloretin. Sensor-seq identified novel biosensors for each of these ligands with high dynamic range and diverse specificity profiles. The structure of a naltrexone-bound design showed shape-complementary methionine-aromatic interactions driving ligand specificity. To demonstrate practical utility, we developed cell-free detection systems for naltrexone and quinine. Sensor-seq enables rapid, scalable design of new biosensors, overcoming constraints of natural biosensors.
Collapse
Affiliation(s)
- Kyle K Nishikawa
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Justin F Acheson
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Svetlana V Harbaugh
- 711th Human Performance Wing, Air Force Research Laboratory Wright Patterson Air Force Base, OH, USA
| | - Phil Huss
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Max Frenkel
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Nathan Novy
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Hailey R Sieren
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ella C Lodewyk
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Daniel H Lee
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jorge L Chávez
- 711th Human Performance Wing, Air Force Research Laboratory Wright Patterson Air Force Base, OH, USA
| | - Brian G Fox
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
4
|
Haq IU, Christensen A, Fixen KR. Evolution of Rhodopseudomonas palustris to degrade halogenated aromatic compounds involves changes in pathway regulation and enzyme specificity. Appl Environ Microbiol 2024; 90:e0210423. [PMID: 38206012 PMCID: PMC10880631 DOI: 10.1128/aem.02104-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Halogenated aromatic compounds are used in a variety of industrial applications but can be harmful to humans and animals when released into the environment. Microorganisms that degrade halogenated aromatic compounds anaerobically have been isolated but the evolutionary path that they may have taken to acquire this ability is not well understood. A strain of the purple nonsulfur bacterium, Rhodopseudomonas palustris, RCB100, can use 3-chlorobenzoate (3-CBA) as a carbon source whereas a closely related strain, CGA009, cannot. To reconstruct the evolutionary events that enabled RCB100 to degrade 3-CBA, we isolated an evolved strain derived from CGA009 capable of growing on 3-CBA. Comparative whole-genome sequencing of the evolved strain and RCB100 revealed both strains contained large deletions encompassing badM, a transcriptional repressor of genes for anaerobic benzoate degradation. It was previously shown that in strain RCB100, a single nucleotide change in an alicyclic acid coenzyme A ligase gene, named aliA, gives rise to a variant AliA enzyme that has high activity with 3-CBA. When the RCB100 aliA allele and a deletion in badM were introduced into R. palustris CGA009, the resulting strain grew on 3-CBA at a similar rate as RCB100. This work provides an example of pathway evolution in which regulatory constraints were overcome to enable the selection of a variant of a promiscuous enzyme with enhanced substrate specificity.IMPORTANCEBiodegradation of man-made compounds often involves the activity of promiscuous enzymes whose native substrate is structurally similar to the man-made compound. Based on the enzymes involved, it is possible to predict what microorganisms are likely involved in biodegradation of anthropogenic compounds. However, there are examples of organisms that contain the required enzyme(s) and yet cannot metabolize these compounds. We found that even when the purple nonsulfur bacterium, Rhodopseudomonas palustris, encodes all the enzymes required for degradation of a halogenated aromatic compound, it is unable to metabolize that compound. Using adaptive evolution, we found that a regulatory mutation and a variant of promiscuous enzyme with increased substrate specificity were required. This work provides insight into how an environmental isolate evolved to use a halogenated aromatic compound.
Collapse
Affiliation(s)
- Irshad Ul Haq
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Annika Christensen
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| | - Kathryn R. Fixen
- Department of Plant and Microbial Biology, College of Biological Sciences, University of Minnesota, Saint Paul, Minnesota, USA
- Department of Plant and Microbial Biology, BioTechnology Institute, University of Minnesota, Saint Paul, Minnesota, USA
| |
Collapse
|
5
|
Watthaisong P, Kamutira P, Kesornpun C, Pongsupasa V, Phonbuppha J, Tinikul R, Maenpuen S, Wongnate T, Nishihara R, Ohmiya Y, Chaiyen P. Luciferin Synthesis and Pesticide Detection by Luminescence Enzymatic Cascades. Angew Chem Int Ed Engl 2022; 61:e202116908. [PMID: 35138676 DOI: 10.1002/anie.202116908] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Indexed: 12/24/2022]
Abstract
D-Luciferin (D-LH2 ), a substrate of firefly luciferase (Fluc), is important for a wide range of bioluminescence applications. This work reports a new and green method using enzymatic reactions (HELP, HadA Enzyme for Luciferin Preparation) to convert 19 phenolic derivatives to 8 D-LH2 analogues with ≈51 % yield. The method can synthesize the novel 5'-methyl-D-LH2 and 4',5'-dimethyl-D-LH2 , which have never been synthesized or found in nature. 5'-Methyl-D-LH2 emits brighter and longer wavelength light than the D-LH2 . Using HELP, we further developed LUMOS (Luminescence Measurement of Organophosphate and Derivatives) technology for in situ detection of organophosphate pesticides (OPs) including parathion, methyl parathion, EPN, profenofos, and fenitrothion by coupling the reactions of OPs hydrolase and Fluc. The LUMOS technology can detect these OPs at parts per trillion (ppt) levels. The method can directly detect OPs in food and biological samples without requiring sample pretreatment.
Collapse
Affiliation(s)
- Pratchaya Watthaisong
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Philaiwarong Kamutira
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology, Faculty of Science, Mahidol University, Bangkok, 10400, Thailand
| | - Somchart Maenpuen
- Department of Biochemistry, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| | - Ryo Nishihara
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, 305-8566, Japan
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Wangchan Valley, Rayong, 21210, Thailand
| |
Collapse
|
6
|
Sahu S, Roy R, Anand R. Harnessing the Potential of Biological Recognition Elements for Water Pollution Monitoring. ACS Sens 2022; 7:704-715. [PMID: 35275620 DOI: 10.1021/acssensors.1c02579] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Environmental monitoring of pollutants is an imperative first step to remove the genotoxic, embryotoxic, and carcinogenic toxins. Various biological sensing elements such as proteins, aptamers, whole cells, etc., have been used to track down major pollutants, including heavy metals, aromatic pollutants, pathogenic microorganisms, and pesticides in both environmental samples and drinking water, demonstrating their potential in a true sense. The intermixed use of nanomaterials, electronics, and microfluidic systems has further improved the design and enabled robust on-site detection with enhanced sensitivity. Through this perspective, we shed light on the advances in the field and entail recent efforts to optimize these systems for real-time, online sensing and on-site field monitoring.
Collapse
Affiliation(s)
- Subhankar Sahu
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rohita Roy
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Ruchi Anand
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
7
|
Watthaisong P, Kamutira P, Kesornpun C, Pongsupasa V, Phonbuppha J, Tinikul R, Maenpuen S, Wongnate T, Nishihara R, Ohmiya Y, Chaiyen P. Luciferin Synthesis and Pesticide Detection by Luminescence Enzymatic Cascades. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Pratchaya Watthaisong
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Philaiwarong Kamutira
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University Bangkok 10400 Thailand
| | - Chatchai Kesornpun
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Vinutsada Pongsupasa
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Jittima Phonbuppha
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Ruchanok Tinikul
- Department of Biochemistry and Center for Excellence in Protein and Enzyme Technology Faculty of Science Mahidol University Bangkok 10400 Thailand
| | - Somchart Maenpuen
- Department of Biochemistry Faculty of Science Burapha University Chonburi 20131 Thailand
| | - Thanyaporn Wongnate
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| | - Ryo Nishihara
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8566 Japan
| | - Yoshihiro Ohmiya
- National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba Ibaraki 305-8566 Japan
| | - Pimchai Chaiyen
- School of Biomolecular Science and Engineering Vidyasirimedhi Institute of Science and Technology (VISTEC) Wangchan Valley Rayong 21210 Thailand
| |
Collapse
|
8
|
Karbelkar A, Reynolds EE, Ahlmark R, Furst AL. A Microbial Electrochemical Technology to Detect and Degrade Organophosphate Pesticides. ACS CENTRAL SCIENCE 2021; 7:1718-1727. [PMID: 34729415 PMCID: PMC8554842 DOI: 10.1021/acscentsci.1c00931] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 06/13/2023]
Abstract
Organophosphate (OP) pesticides cause hundreds of illnesses and deaths annually. Unfortunately, exposures are often detected by monitoring degradation products in blood and urine, with few effective methods for detection and remediation at the point of dispersal. We have developed an innovative strategy to remediate these compounds: an engineered microbial technology for the targeted detection and destruction of OP pesticides. This system is based upon microbial electrochemistry using two engineered strains. The strains are combined such that the first microbe (E. coli) degrades the pesticide, while the second (S. oneidensis) generates current in response to the degradation product without requiring external electrochemical stimulus or labels. This cellular technology is unique in that the E. coli serves only as an inert scaffold for enzymes to degrade OPs, circumventing a fundamental requirement of coculture design: maintaining the viability of two microbial strains simultaneously. With this platform, we can detect OP degradation products at submicromolar levels, outperforming reported colorimetric and fluorescence sensors. Importantly, this approach affords a modular, adaptable strategy that can be expanded to additional environmental contaminants.
Collapse
Affiliation(s)
- Amruta
A. Karbelkar
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Erin E. Reynolds
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Rachel Ahlmark
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
| | - Ariel L. Furst
- Department
of Chemical Engineering, Massachusetts Institute
of Technology, Cambridge, Massachusetts 02139, United States
- Center
for Environmental Health Sciences, Massachusetts
Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
9
|
Maucourt B, Vuilleumier S, Bringel F. Transcriptional regulation of organohalide pollutant utilisation in bacteria. FEMS Microbiol Rev 2020; 44:189-207. [PMID: 32011697 DOI: 10.1093/femsre/fuaa002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 01/31/2020] [Indexed: 12/13/2022] Open
Abstract
Organohalides are organic molecules formed biotically and abiotically, both naturally and through industrial production. They are usually toxic and represent a health risk for living organisms, including humans. Bacteria capable of degrading organohalides for growth express dehalogenase genes encoding enzymes that cleave carbon-halogen bonds. Such bacteria are of potential high interest for bioremediation of contaminated sites. Dehalogenase genes are often part of gene clusters that may include regulators, accessory genes and genes for transporters and other enzymes of organohalide degradation pathways. Organohalides and their degradation products affect the activity of regulatory factors, and extensive genome-wide modulation of gene expression helps dehalogenating bacteria to cope with stresses associated with dehalogenation, such as intracellular increase of halides, dehalogenase-dependent acid production, organohalide toxicity and misrouting and bottlenecks in metabolic fluxes. This review focuses on transcriptional regulation of gene clusters for dehalogenation in bacteria, as studied in laboratory experiments and in situ. The diversity in gene content, organization and regulation of such gene clusters is highlighted for representative organohalide-degrading bacteria. Selected examples illustrate a key, overlooked role of regulatory processes, often strain-specific, for efficient dehalogenation and productive growth in presence of organohalides.
Collapse
Affiliation(s)
- Bruno Maucourt
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Stéphane Vuilleumier
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | - Françoise Bringel
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| |
Collapse
|
10
|
Kim H, Seong W, Rha E, Lee H, Kim SK, Kwon KK, Park KH, Lee DH, Lee SG. Machine learning linked evolutionary biosensor array for highly sensitive and specific molecular identification. Biosens Bioelectron 2020; 170:112670. [DOI: 10.1016/j.bios.2020.112670] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 10/23/2022]
|
11
|
Park KH, Kim S, Lee SJ, Cho JE, Patil VV, Dumbrepatil AB, Song HN, Ahn WC, Joo C, Lee SG, Shingler V, Woo EJ. Tetrameric architecture of an active phenol-bound form of the AAA + transcriptional regulator DmpR. Nat Commun 2020; 11:2728. [PMID: 32483114 PMCID: PMC7264223 DOI: 10.1038/s41467-020-16562-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 05/11/2020] [Indexed: 01/07/2023] Open
Abstract
The Pseudomonas putida phenol-responsive regulator DmpR is a bacterial enhancer binding protein (bEBP) from the AAA+ ATPase family. Even though it was discovered more than two decades ago and has been widely used for aromatic hydrocarbon sensing, the activation mechanism of DmpR has remained elusive. Here, we show that phenol-bound DmpR forms a tetramer composed of two head-to-head dimers in a head-to-tail arrangement. The DmpR-phenol complex exhibits altered conformations within the C-termini of the sensory domains and shows an asymmetric orientation and angle in its coiled-coil linkers. The structural changes within the phenol binding sites and the downstream ATPase domains suggest that the effector binding signal is propagated through the coiled-coil helixes. The tetrameric DmpR-phenol complex interacts with the σ54 subunit of RNA polymerase in presence of an ATP analogue, indicating that DmpR-like bEBPs tetramers utilize a mechanistic mode distinct from that of hexameric AAA+ ATPases to activate σ54-dependent transcription.
Collapse
Affiliation(s)
- Kwang-Hyun Park
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Sungchul Kim
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands
| | - Su-Jin Lee
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea
| | - Jee-Eun Cho
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Vinod Vikas Patil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea.,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea
| | - Arti Baban Dumbrepatil
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Hyung-Nam Song
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Woo-Chan Ahn
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Chirlmin Joo
- Kavli Institute of Nanoscience and Department of Bionanoscience, Delft University of Technology, 2629 HZ, Delft, The Netherlands.
| | - Seung-Goo Lee
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea
| | - Victoria Shingler
- Department of Molecular Biology, Umeå University, 90187, Umeå, SE, Sweden
| | - Eui-Jeon Woo
- Disease Target Structure Research Center, Korea Research Institute of Bioscience & Biotechnology (KRIBB), Daejeon, 305-806, Republic of Korea. .,Department of Proteome Structural Biology, KRIBB School of Bioscience, University of Science and Technology (UST), Daejeon, 305-333, Republic of Korea.
| |
Collapse
|
12
|
Patel R, Zaveri P, Mukherjee A, Agarwal PK, More P, Munshi NS. Development of fluorescent protein-based biosensing strains: A new tool for the detection of aromatic hydrocarbon pollutants in the environment. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 182:109450. [PMID: 31349104 DOI: 10.1016/j.ecoenv.2019.109450] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/29/2019] [Accepted: 07/15/2019] [Indexed: 05/21/2023]
Abstract
The major sources for release of hydrocarbons into the environment include the effluents generated from chemical processing industries and ports. The introduction of such hazardous compounds into natural water bodies creates considerable disturbances in aquatic life and causes a threat to humans. Thus, it is essential to detect and quantify pollutants at various stages of the wastewater generation and treatment before they reach natural aquatic environments and contaminate them. This study reports the development of "biosensing strains" by cloning hydrocarbon recognizing promoter-operator and a reporter gene in bacterial strains for sensing the presence of pollutants at their lowest possible concentration. So far, various biosensing strains have been constructed with a fused promoter-operator region of the hydrocarbon degrading operons, but most of them use luxAB as a reporter gene. A novel approach in the present study aimed at constructing strains harboring two different fluorescent protein (FP)-based reporter genes for the quantification of multiple pollutants at a time. Two vectors were designed with a fusion of tbuT-gfp and phnR-cfp for the quantification of mono- and poly-aromatic hydrocarbons, respectively. The designed vectors were transformed into E. coli DH5α, and these strains were designated as E. coli DH5α 2296-gfp (containing pPROBE-Tbut-RBS-gfp-npt) and E. coli DH5α 2301-cfp (containing pPROBE-phn-RBS-cfp-npt). Both the developed recombinant strains were capable of successfully detecting mono- and poly-aromatic hydrocarbons in the range of 1-100 μM. The sensing capacity of recombinant strains was successfully validated with actual wastewater samples against available physico-chemical analytical techniques. The development of such recombinant microbial strains indicates the future for online contaminant detection, treatment quality monitoring and protection of aquatic flora and fauna.
Collapse
Affiliation(s)
- Rushika Patel
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Purvi Zaveri
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Anwesha Mukherjee
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India
| | - Pradeep K Agarwal
- Division of Biotechnology and Phycology, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Prashant More
- Division of Biotechnology and Phycology, CSIR Central Salt and Marine Chemicals Research Institute, Bhavnagar, Gujarat, India
| | - Nasreen S Munshi
- Institute of Science, Nirma University, Sarkhej-Gandhinagar Highway, Ahmedabad, 382481, Gujarat, India.
| |
Collapse
|
13
|
Abstract
Organohalide respiration (OHR) is an anaerobic metabolism by which bacteria conserve energy with the use of halogenated compounds as terminal electron acceptors. Genes involved in OHR are organized in reductive dehalogenase (rdh) gene clusters and can be found in relatively high copy numbers in the genomes of organohalide-respiring bacteria (OHRB). The minimal rdh gene set is composed by rdhA and rdhB, encoding the catalytic enzyme involved in reductive dehalogenation and its putative membrane anchor, respectively. In this chapter, we present the major findings concerning the regulatory strategies developed by OHRB to control the expression of the rdh gene clusters. The first section focuses on the description of regulation patterns obtained from targeted transcriptional analyses, and from transcriptomic and proteomic studies, while the second section offers a detailed overview of the biochemically characterized OHR regulatory proteins identified so far. Depending on OHRB, transcriptional regulators belonging to three different protein families are found in the direct vicinity of rdh gene clusters, suggesting that they activate the transcription of their cognate gene cluster. In this chapter, strong emphasis was laid on the family of CRP/FNR-type RdhK regulators which belong to members of the genera Dehalobacter and Desulfitobacterium. Whereas only chlorophenols have been identified as effectors for RdhK regulators, the protein sequence diversity suggests a broader organohalide spectrum. Thus, effector identification of new regulators offers a promising alternative to elucidate the substrates of yet uncharacterized reductive dehalogenases. Future work investigating the possible cross-talk between OHR regulators and their possible use as biosensors is discussed.
Collapse
|
14
|
Cheng F, Tang XL, Kardashliev T. Transcription Factor-Based Biosensors in High-Throughput Screening: Advances and Applications. Biotechnol J 2018; 13:e1700648. [DOI: 10.1002/biot.201700648] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/17/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Cheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Xiao-Ling Tang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology; Hangzhou 310014 P. R. China
| | - Tsvetan Kardashliev
- Bioprocess Laboratory, Department of Biosystems Science and Engineering, ETH Zürich; Mattenstrasse 26 4058 Basel Switzerland
| |
Collapse
|
15
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
16
|
Biodegradation of phenol and its derivatives by engineered bacteria: current knowledge and perspectives. World J Microbiol Biotechnol 2017; 33:174. [DOI: 10.1007/s11274-017-2339-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/01/2017] [Indexed: 11/26/2022]
|
17
|
Enabling tools for high-throughput detection of metabolites: Metabolic engineering and directed evolution applications. Biotechnol Adv 2017; 35:950-970. [PMID: 28723577 DOI: 10.1016/j.biotechadv.2017.07.005] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/07/2017] [Accepted: 07/11/2017] [Indexed: 12/21/2022]
Abstract
Within the Design-Build-Test Cycle for strain engineering, rapid product detection and selection strategies remain challenging and limit overall throughput. Here we summarize a wide variety of modalities that transduce chemical concentrations into easily measured absorbance, luminescence, and fluorescence signals. Specifically, we cover protein-based biosensors (including transcription factors), nucleic acid-based biosensors, coupled enzyme reactions, bioorthogonal chemistry, and fluorescent and chromogenic dyes and substrates as modalities for detection. We focus on the use of these methods for strain engineering and enzyme discovery and conclude with remarks on the current and future state of biosensor development for application in the metabolic engineering field.
Collapse
|
18
|
Patil VV, Park KH, Lee SG, Woo E. Structural Analysis of the Phenol-Responsive Sensory Domain of the Transcription Activator PoxR. Structure 2016; 24:624-630. [PMID: 27050690 DOI: 10.1016/j.str.2016.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/16/2016] [Accepted: 03/04/2016] [Indexed: 11/18/2022]
Abstract
Positive phenol-degradative gene regulator (PoxR) is a σ(54)-dependent AAA+ ATPase transcription activator that regulates the catabolism of phenols. The PoxR sensory domain detects phenols and relays signals for the activation of transcription. Here we report the first structure of the phenol sensory domain bound to phenol and five derivatives. It exists as a tightly intertwined homodimer with a phenol-binding pocket buried inside, placing two C termini on the same side of the dimer. His102 and Trp130 interact with the hydroxyl group of the phenol in a cavity surrounded by rigid hydrophobic residues on one side and a flexible region on the other. Each monomer has a V4R fold with a unique zinc-binding site. A shift at the C-terminal helix suggests that there is a possible conformational change upon ligand binding. The results provide a structural basis of chemical effector binding for transcriptional regulation with broad implications for protein engineering.
Collapse
Affiliation(s)
- Vinod Vikas Patil
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Kwang-Hyun Park
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea
| | - Seung-Goo Lee
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Biosystems and Bioengineering Program, University of Science and Technology, Daejeon 305-333, Korea
| | - Euijeon Woo
- Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Korea; Department of Bio-Analytical science, University of Science and Technology, Daejeon 305-333, Korea.
| |
Collapse
|
19
|
Chong H, Ching CB. Development of Colorimetric-Based Whole-Cell Biosensor for Organophosphorus Compounds by Engineering Transcription Regulator DmpR. ACS Synth Biol 2016; 5:1290-1298. [PMID: 27346389 DOI: 10.1021/acssynbio.6b00061] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
It is useful for whole-cell biosensors to be based on colorimetric detection because the output signal can be easily visualized. However, colorimetric-based whole-cell biosensors suffer higher detection limits as compared to bioluminescence- or fluorescence-based biosensors. In this work, we attempt to reduce the detection limit for a colorimetric-based whole-cell biosensor by applying directed evolution techniques on a transcription regulator, DmpR, to alter the expression level of its cognate promoter, which was fused to mRFP1 to output red coloration in the presence of organophosphate pesticides containing a phenolic group. We selected the two best-performing mutants, DM01 and DM12, which were able to develop red coloration in the presence of parathion as low as 10 μM after just 6 h of induction at 30 °C. This suggests that engineering of the transcription regulator in the sensing domain is useful for improving various properties of whole-cell biosensors, such as reducing the detection limit for simple colorimetric detection of organophosphate pesticides.
Collapse
Affiliation(s)
- Huiqing Chong
- Temasek Laboratories, National University of Singapore 117411, Singapore
| | - Chi Bun Ching
- Temasek Laboratories, National University of Singapore 117411, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore 117585, Singapore
| |
Collapse
|
20
|
De Paepe B, Peters G, Coussement P, Maertens J, De Mey M. Tailor-made transcriptional biosensors for optimizing microbial cell factories. J Ind Microbiol Biotechnol 2016; 44:623-645. [PMID: 27837353 DOI: 10.1007/s10295-016-1862-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 10/30/2016] [Indexed: 12/24/2022]
Abstract
Monitoring cellular behavior and eventually properly adapting cellular processes is key to handle the enormous complexity of today's metabolic engineering questions. Hence, transcriptional biosensors bear the potential to augment and accelerate current metabolic engineering strategies, catalyzing vital advances in industrial biotechnology. The development of such transcriptional biosensors typically starts with exploring nature's richness. Hence, in a first part, the transcriptional biosensor architecture and the various modi operandi are briefly discussed, as well as experimental and computational methods and relevant ontologies to search for natural transcription factors and their corresponding binding sites. In the second part of this review, various engineering approaches are reviewed to tune the main characteristics of these (natural) transcriptional biosensors, i.e., the response curve and ligand specificity, in view of specific industrial biotechnology applications, which is illustrated using success stories of transcriptional biosensor engineering.
Collapse
Affiliation(s)
- Brecht De Paepe
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Gert Peters
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Pieter Coussement
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Jo Maertens
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium
| | - Marjan De Mey
- Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, 9000, Ghent, Belgium.
| |
Collapse
|
21
|
Plotnikova EG, Shumkova ES, Shumkov MS. Whole-cell bacterial biosensors for the detection of aromatic hydrocarbons and their chlorinated derivatives (Review). APPL BIOCHEM MICRO+ 2016. [DOI: 10.1134/s0003683816040128] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Engineering an allosteric transcription factor to respond to new ligands. Nat Methods 2015; 13:177-83. [PMID: 26689263 DOI: 10.1038/nmeth.3696] [Citation(s) in RCA: 236] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 11/10/2015] [Indexed: 12/13/2022]
Abstract
Genetic regulatory proteins inducible by small molecules are useful synthetic biology tools as sensors and switches. Bacterial allosteric transcription factors (aTFs) are a major class of regulatory proteins, but few aTFs have been redesigned to respond to new effectors beyond natural aTF-inducer pairs. Altering inducer specificity in these proteins is difficult because substitutions that affect inducer binding may also disrupt allostery. We engineered an aTF, the Escherichia coli lac repressor, LacI, to respond to one of four new inducer molecules: fucose, gentiobiose, lactitol and sucralose. Using computational protein design, single-residue saturation mutagenesis or random mutagenesis, along with multiplex assembly, we identified new variants comparable in specificity and induction to wild-type LacI with its inducer, isopropyl β-D-1-thiogalactopyranoside (IPTG). The ability to create designer aTFs will enable applications including dynamic control of cell metabolism, cell biology and synthetic gene circuits.
Collapse
|
23
|
Büsing I, Kant M, Dörries M, Wöhlbrand L, Rabus R. The predicted σ(54)-dependent regulator EtpR is essential for expression of genes for anaerobic p-ethylphenol and p-hydroxyacetophenone degradation in "Aromatoleum aromaticum" EbN1. BMC Microbiol 2015; 15:251. [PMID: 26526497 PMCID: PMC4630880 DOI: 10.1186/s12866-015-0571-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/15/2015] [Indexed: 02/05/2023] Open
Abstract
Background The denitrifying betaproteobacterium "Aromatoleum aromaticum" EbN1 anaerobically utilizes a multitude of aromatic compounds via specific peripheral degradation routes. Compound-specific formation of these catabolic modules is assumed to be mediated by specific transcriptional activators. In case of the recently elucidated p-ethylphenol/p-hydroxyacetophenone pathway, the highly substrate-specific regulation was implicated to involve the predicted σ54-dependent, NtrC-type regulator EbA324. The latter was suggested to control the expression of the two neighboring gene clusters encoding the catabolic enzymes as well as a corresponding putative solvent efflux system. In the present study, a molecular genetic approach was used to study the predicted function of EbA324. Results An unmarked in frame ΔebA324 (here renamed as ΔetpR; p-ethylphenol regulator) deletion mutation was generated. The ΔetpR mutant was unable to grow anaerobically with either p-ethylphenol or p-hydroxyacetophenone. Growth similar to the wild type was restored in the ΔetpR mutant background by in trans expression of plasmid-born etpR. Furthermore, expression of the "p-ethylphenol" gene clusters as well as corresponding protein formation was shown to depend on the presence of both, EtpR and either p-ethylphenol or p-hydroxyacetophenone. In the wild type, the etpR gene appears to be constitutively expressed and its expression level not to be modulated upon effector presence. Comparison with the regulatory domains of known phenol- and alkylbenzene-responsive NtrC-type regulators of Pseudomonas spp. and Thauera aromatica allowed identifying >60 amino acid residues in the regulatory domain (in particular positions 149 to 192 of EtpR) that may contribute to the effector specificity viz. presumptively restricted effector spectrum of EtpR. Conclusions This study provides experimental evidence for the genome predicted σ54-dependent regulator EtpR (formerly EbA324) of "A. aromaticum" EbN1 to be responsive to p-ethylphenol, as well as its degradation intermediate p-hydroxyacetophenone, and to control the expression of genes involved in the anaerobic degradation of these two aromatic growth substrates. Overall, the presented results advance our understanding on the regulation of anaerobic aromatic compound catabolism, foremost based on the sensory discrimination of structurally similar substrates. Electronic supplementary material The online version of this article (doi:10.1186/s12866-015-0571-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Imke Büsing
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Mirjam Kant
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Marvin Dörries
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Lars Wöhlbrand
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany.
| | - Ralf Rabus
- Institute for Chemistry and Biology of the Marine Environment (ICBM), Carl von Ossietzky University Oldenburg, Oldenburg, Germany. .,Max Planck Institute for Marine Microbiology, Bremen, Germany.
| |
Collapse
|
24
|
Mahr R, Frunzke J. Transcription factor-based biosensors in biotechnology: current state and future prospects. Appl Microbiol Biotechnol 2015; 100:79-90. [PMID: 26521244 PMCID: PMC4700088 DOI: 10.1007/s00253-015-7090-3] [Citation(s) in RCA: 153] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 01/01/2023]
Abstract
Living organisms have evolved a plethora of sensing systems for the intra- and extracellular detection of small molecules, ions or physical parameters. Several recent studies have demonstrated that these principles can be exploited to devise synthetic regulatory circuits for metabolic engineering strategies. In this context, transcription factors (TFs) controlling microbial physiology at the level of transcription play a major role in biosensor design, since they can be implemented in synthetic circuits controlling gene expression in dependency of, for example, small molecule production. Here, we review recent progress on the utilization of TF-based biosensors in microbial biotechnology highlighting different areas of application. Recent advances in metabolic engineering reveal TF-based sensors to be versatile tools for strain and enzyme development using high-throughput (HT) screening strategies and adaptive laboratory evolution, the optimization of heterologous pathways via the implementation of dynamic control circuits and for the monitoring of single-cell productivity in live cell imaging studies. These examples underline the immense potential of TF-based biosensor circuits but also identify limitations and room for further optimization.
Collapse
Affiliation(s)
- Regina Mahr
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Julia Frunzke
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany.
| |
Collapse
|
25
|
Nešvera J, Rucká L, Pátek M. Catabolism of Phenol and Its Derivatives in Bacteria: Genes, Their Regulation, and Use in the Biodegradation of Toxic Pollutants. ADVANCES IN APPLIED MICROBIOLOGY 2015; 93:107-60. [PMID: 26505690 DOI: 10.1016/bs.aambs.2015.06.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Phenol and its derivatives (alkylphenols, halogenated phenols, nitrophenols) are natural or man-made aromatic compounds that are ubiquitous in nature and in human-polluted environments. Many of these substances are toxic and/or suspected of mutagenic, carcinogenic, and teratogenic effects. Bioremediation of the polluted soil and water using various bacteria has proved to be a promising option for the removal of these compounds. In this review, we describe a number of peripheral pathways of aerobic and anaerobic catabolism of various natural and xenobiotic phenolic compounds, which funnel these substances into a smaller number of central catabolic pathways. Finally, the metabolites are used as carbon and energy sources in the citric acid cycle. We provide here the characteristics of the enzymes that convert the phenolic compounds and their catabolites, show their genes, and describe regulatory features. The genes, which encode these enzymes, are organized on chromosomes and plasmids of the natural bacterial degraders in various patterns. The accumulated data on similarities and the differences of the genes, their varied organization, and particularly, an astonishingly broad range of intricate regulatory mechanism may be read as an exciting adventurous book on divergent evolutionary processes and horizontal gene transfer events inscribed in the bacterial genomes. In the end, the use of this wealth of bacterial biodegradation potential and the manipulation of its genetic basis for purposes of bioremediation is exemplified. It is envisioned that the integrated high-throughput techniques and genome-level approaches will enable us to manipulate systems rather than separated genes, which will give birth to systems biotechnology.
Collapse
Affiliation(s)
- Jan Nešvera
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Lenka Rucká
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology CAS, v. v. i., Prague, Czech Republic
| |
Collapse
|
26
|
Jha RK, Chakraborti S, Kern TL, Fox DT, Strauss CEM. Rosetta comparative modeling for library design: Engineering alternative inducer specificity in a transcription factor. Proteins 2015; 83:1327-40. [DOI: 10.1002/prot.24828] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/09/2015] [Accepted: 05/02/2015] [Indexed: 11/11/2022]
Affiliation(s)
- Ramesh K. Jha
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | - Subhendu Chakraborti
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | - Theresa L. Kern
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | - David T. Fox
- Bioscience Division, Los Alamos National Laboratory; Los Alamos New Mexico 87545
| | | |
Collapse
|
27
|
Harnessing a radiation inducible promoter of Deinococcus radiodurans for enhanced precipitation of uranium. J Biotechnol 2014; 189:88-93. [DOI: 10.1016/j.jbiotec.2014.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 09/11/2014] [Accepted: 09/15/2014] [Indexed: 11/20/2022]
|
28
|
Environmental applications of photoluminescence-based biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014. [PMID: 19475374 DOI: 10.1007/10_2008_51] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
For monitoring and treatment of soil and water, environmental scientists and engineers require measurements of the concentration of chemical contaminants. Although laboratory-based methods relying on gas or liquid chromatography can yield very accurate measurements, they are also complex, time consuming, expensive, and require sample pretreatment. Furthermore, they are not readily adapted for in situ measurements.Sensors are devices that can provide continuous, in situ measurements, ideally without the addition of reagents. A biosensor incorporates a biological component coupled to a transducer, which translates the interaction between the analyte and the biocomponent into a signal that can be processed and reported. A wide range of transducers have been employed in biosensors, the most common of which are electrochemical and optical. In this contribution, we focus on photoluminescence-based biosensors of potential use in the applications described above.Following a review of photoluminescence and a discussion of the optoelectronic hardware part of these biosensor systems, we provide explanations and examples of optical biosensors for specific chemical groups: hydrocarbons and alcohols, halogenated organics, nitro-, phospho-, sulfo-, and other substituted organics, and metals and other inorganics. We also describe approaches that have been taken to describe chemical mixtures as a whole (biological oxygen demand and toxicity) since most environmental samples contain mixtures of unknown (and changing) composition. Finally, we end with some thoughts on future research directions that are necessary to achieve the full potential of environmental biosensors.
Collapse
|
29
|
Xu T, Close D, Smartt A, Ripp S, Sayler G. Detection of organic compounds with whole-cell bioluminescent bioassays. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2014; 144:111-51. [PMID: 25084996 PMCID: PMC4597909 DOI: 10.1007/978-3-662-43385-0_4] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Natural and manmade organic chemicals are widely deposited across a diverse range of ecosystems including air, surface water, groundwater, wastewater, soil, sediment, and marine environments. Some organic compounds, despite their industrial values, are toxic to living organisms and pose significant health risks to humans and wildlife. Detection and monitoring of these organic pollutants in environmental matrices therefore is of great interest and need for remediation and health risk assessment. Although these detections have traditionally been performed using analytical chemical approaches that offer highly sensitive and specific identification of target compounds, these methods require specialized equipment and trained operators, and fail to describe potential bioavailable effects on living organisms. Alternatively, the integration of bioluminescent systems into whole-cell bioreporters presents a new capacity for organic compound detection. These bioreporters are constructed by incorporating reporter genes into catabolic or signaling pathways that are present within living cells and emit a bioluminescent signal that can be detected upon exposure to target chemicals. Although relatively less specific compared to analytical methods, bioluminescent bioassays are more cost-effective, more rapid, can be scaled to higher throughput, and can be designed to report not only the presence but also the bioavailability of target substances. This chapter reviews available bacterial and eukaryotic whole-cell bioreporters for sensing organic pollutants and their applications in a variety of sample matrices.
Collapse
Affiliation(s)
- Tingting Xu
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, USA
| | - Abby Smartt
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Steven Ripp
- Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USADepartment of Microbiology, The University of Tennessee, Knoxville, TN, USA
| | - Gary Sayler
- Joint Institute for Biological Sciences, The University of Tennessee, Knoxville, TN, USA; Center for Environmental Biotechnology, The University of Tennessee, Knoxville, TN, USA; Department of Microbiology, The University of Tennessee, Knoxville, TN, USA
| |
Collapse
|
30
|
Park M, Tsai SL, Chen W. Microbial biosensors: engineered microorganisms as the sensing machinery. SENSORS 2013; 13:5777-95. [PMID: 23648649 PMCID: PMC3690029 DOI: 10.3390/s130505777] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Revised: 04/18/2013] [Accepted: 05/03/2013] [Indexed: 01/10/2023]
Abstract
Whole-cell biosensors are a good alternative to enzyme-based biosensors since they offer the benefits of low cost and improved stability. In recent years, live cells have been employed as biosensors for a wide range of targets. In this review, we will focus on the use of microorganisms that are genetically modified with the desirable outputs in order to improve the biosensor performance. Different methodologies based on genetic/protein engineering and synthetic biology to construct microorganisms with the required signal outputs, sensitivity, and selectivity will be discussed.
Collapse
Affiliation(s)
- Miso Park
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan; E-Mail:
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, USA; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-302-831-6327; Fax: +1-302-831-1048
| |
Collapse
|
31
|
Walawalkar YD, Phadke R, Noronha S, Patankar S, Pillai B. Engineering whole-cell biosensors to evaluate the effect of osmotic conditions on bacteria. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0587-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
32
|
Gupta S, Saxena M, Saini N, Mahmooduzzafar, Kumar R, Kumar A. An effective strategy for a whole-cell biosensor based on putative effector interaction site of the regulatory DmpR protein. PLoS One 2012; 7:e43527. [PMID: 22937060 PMCID: PMC3427379 DOI: 10.1371/journal.pone.0043527] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION AND RATIONALE The detection of bioavailable phenol is a very important issue in environmental and human hazard assessment. Despite modest developments recently, there is a stern need for development of novel biosensors with high sensitivity for priority phenol pollutants. DmpR (Dimethyl phenol regulatory protein), an NtrC-like regulatory protein for the phenol degradation of Pseudomonas sp. strain CF600, represents an attractive biosensor regimen. Thus, we sought to design a novel biosensor by modifying the phenol detection capacity of DmpR by using mutagenic PCR. METHODS Binding sites of 'A' domain of DmpR were predicted by LIGSITE, and molecular docking was performed by using GOLD to identify the regions where phenol may interact with DmpR. Total five point mutations, one single at position 42 (Phe-to-Leu), two double at 140 (Asp-to-Glu) and 143 (Gln-to-Leu), and two double at L113M (Leu-to- Met) and D116A (Asp-to- Ala) were created in DmpR by site-directed mutagenesis to construct the reporter plasmids pRLuc42R, pRLuc140p143R, and pRLuc113p116R, respectively. Luciferase assays were performed to measure the activity of luc gene in the presence of phenol and its derivatives, while RT-PCR was used to check the expression of luc gene in the presence of phenol. RESULTS Only pRLuc42R and pRLuc113p116R showed positive responses to phenolic effectors. The lowest detectable concentration of phenol was 0.5 µM (0.047 mg/L), 0.1 µM for 2, 4-dimethylphenol and 2-nitrophenol, 10 µM for 2, 4, 6-trichlorophenol and 2-chlorophenol, 100 µM for 2, 4-dichlorophenol, 0.01 µM for 4-nitrophenol, and 1 µM for o-cresol. These concentrations were measured by modified luciferase assay within 3 hrs compared to 6-7 hrs in previous studies. Importantly, increased expression of luciferase gene of pRLuc42R was observed by RT-PCR. CONCLUSIONS The present study offers an effective strategy to design a quick and sensitive biosensor for phenol by constructing recombinant bacteria having DmpR gene.
Collapse
Affiliation(s)
- Saurabh Gupta
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Mritunjay Saxena
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Neeru Saini
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Mahmooduzzafar
- Jamia Hamdard University, Hamdard Nagar, New Delhi, India
| | - Rita Kumar
- Institute of Genomics and Integrative Biology, Mall Road, Delhi, India
| | - Anil Kumar
- National Institute of Immunology, New Delhi, India
| |
Collapse
|
33
|
Garmendia J, de las Heras A, Galvão TC, de Lorenzo V. Tracing explosives in soil with transcriptional regulators of Pseudomonas putida evolved for responding to nitrotoluenes. Microb Biotechnol 2011; 1:236-46. [PMID: 21261843 PMCID: PMC3815885 DOI: 10.1111/j.1751-7915.2008.00027.x] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Although different biological approaches for detection of anti-personnel mines and other unexploded ordnance (UXO) have been entertained, none of them has been rigorously documented thus far in the scientific literature. The industrial 2,4,6 trinitrotoluene (TNT) habitually employed in the manufacturing of mines is at all times tainted with a small but significant proportion of the more volatile 2,4 dinitrotoluene (2,4 DNT) and other nitroaromatic compounds. By using mutation-prone PCR and DNA sequence shuffling we have evolved in vitro and selected in vivo variants of the effector recognition domain of the toluene-responsive XylR regulator of the soil bacterium Pseudomonas putida that responds to mono-, bi- and trinitro substituted toluenes. Re-introduction of such variants in P. putida settled the transcriptional activity of the cognate promoters (Po and Pu) as a function of the presence of nitrotoluenes in the medium. When strains bearing transcriptional fusions to reporters with an optical output (luxAB, GFP) were spread on soil spotted with nitrotoluenes, the signal triggered by promoter activation allowed localization of the target compounds on the soil surface. Our data provide a proof of concept that non-natural transcription factors evolved to respond to nitroaromatics can be engineered in soil bacteria and inoculated on a target site to pinpoint the presence of explosives. This approach thus opens new ways to tackle this gigantic humanitarian problem.
Collapse
Affiliation(s)
- Junkal Garmendia
- Centro Nacional de Biotecnología-CSIC, Campus de Cantoblanco, Madrid 28049, Spain
| | | | | | | |
Collapse
|
34
|
Beggah S, Vogne C, Zenaro E, Van Der Meer JR. Mutant HbpR transcription activator isolation for 2-chlorobiphenyl via green fluorescent protein-based flow cytometry and cell sorting. Microb Biotechnol 2011; 1:68-78. [PMID: 21261823 PMCID: PMC3864433 DOI: 10.1111/j.1751-7915.2007.00008.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Mutants were produced in the A-domain of HbpR, a protein belonging to the XylR family of σ(54)-dependent transcription activators, with the purpose of changing its effector recognition specificity from 2-hydroxybiphenyl (2-HBP, the cognate effector) to 2-chlorobiphenyl (2-CBP). Mutations were introduced in the hbpR gene part for the A-domain via error-prone polymerase chain reaction, and assembled on a gene circuitry plasmid in Escherichia coli, permitting HbpR-dependent induction of the enhanced green fluorescent protein (egfp). Cells with mutant HbpR proteins responsive to 2-CBP were enriched and separated in a flow cytometry-assisted cell-sorting procedure. Some 70 mutants were isolated and the A-domain mutations mapped. One of these had acquired true 2-CBP recognition but reacted hypersensitively to 2-HBP (20-fold more than the wild type), whereas others had reduced sensitivity to 2-HBP but a gain of 2-CBP recognition. Sequencing showed that most mutants carried double or triple mutations in the A-domain gene part, and were not located in previously recognized conserved residues within the XylR family members. Further selection from a new mutant pool prepared of the hypersensitive mutant did not result in increased 2-CBP or reduced 2-HBP recognition. Our data thus demonstrate that a one-step in vitro 'evolutionary' adaptation of the HbpR protein can result in both enhancement and reduction of the native effector recognition.
Collapse
Affiliation(s)
- Siham Beggah
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | | | | | | |
Collapse
|
35
|
de las Heras A, de Lorenzo V. Cooperative amino acid changes shift the response of the σ54-dependent regulator XylR from natural m-xylene towards xenobiotic 2,4-dinitrotoluene. Mol Microbiol 2011; 79:1248-59. [DOI: 10.1111/j.1365-2958.2010.07518.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
|
37
|
De Las Heras A, Carreño CA, Martínez-García E, De Lorenzo V. Engineering input/output nodes in prokaryotic regulatory circuits. FEMS Microbiol Rev 2010; 34:842-65. [DOI: 10.1111/j.1574-6976.2010.00238.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
38
|
Peng Z, Yan Y, Xu Y, Takeo M, Yu H, Zhao Z, Zhan Y, Zhang W, Lin M, Chen M. Improvement of an E. coli bioreporter for monitoring trace amounts of phenol by deletion of the inducible σ54-dependent promoter. Biotechnol Lett 2010; 32:1265-70. [DOI: 10.1007/s10529-010-0317-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2009] [Revised: 04/07/2010] [Accepted: 04/13/2010] [Indexed: 11/24/2022]
|
39
|
Where microbiology meets microengineering: design and applications of reporter bacteria. Nat Rev Microbiol 2010; 8:511-22. [DOI: 10.1038/nrmicro2392] [Citation(s) in RCA: 404] [Impact Index Per Article: 26.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
40
|
Jõesaar M, Heinaru E, Viggor S, Vedler E, Heinaru A. Diversity of the transcriptional regulation of the pch gene cluster in two indigenous p-cresol-degradative strains of Pseudomonas fluorescens. FEMS Microbiol Ecol 2010; 72:464-75. [PMID: 20370825 DOI: 10.1111/j.1574-6941.2010.00858.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
p-Cresol methylhydroxylase (PCMH), a key enzyme responsible for the catabolism of p-cresol via the protocatechuate ortho pathway, was used as a tool to characterize catabolic differences between phenol- and p-cresol-degrading Pseudomonas fluore-scens strains PC18 and PC24. Although both strains catabolize p-cresol using PCMH, different whole-cell kinetic parameters for this compound were revealed. Affinity for the substrate and the specific growth rate were higher in PC18, whereas maximum p-cresol tolerance was higher in PC24. In addition, PCMH of strain PC18 was induced during growth on phenol. In both strains, the pchACXF operon, which encodes p-hydroxybenzaldehyde dehydrogenase and PCMH, was sequenced. Transcriptional regulation of these operons by PchR, a putative sigma(54)-dependent regulator, was shown. Although the promoters of these operons resembled sigma(54)-controlled promoters, they differed from the consensus sequence by having T instead of C at position -12. Complementation assays confirmed that the amino acid sequence differences of the PchR regulators between the two strains studied led to different effector-binding capabilities of these proteins: (1) phenol was a more efficient effector for PchR of PC18 than p-cresol, (2) phenol did not activate the regulator of PC24, and (3) both regulators responded similarly to p-cresol.
Collapse
Affiliation(s)
- Merike Jõesaar
- Institute of Molecular and Cell Biology, Tartu University, Tartu, Estonia.
| | | | | | | | | |
Collapse
|
41
|
Lewis C, Beggah S, Pook C, Guitart C, Redshaw C, van der Meer JR, Readman JW, Galloway T. Novel use of a whole cell E. coli bioreporter as a urinary exposure biomarker. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:423-428. [PMID: 19238974 DOI: 10.1021/es801325u] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Bacterial bioreporters have substantial potential for contaminant assessment but their real world application is currently impaired by a lack of sensitivity. Here, we exploit the bioconcentration of chemicals in the urine of animals to facilitate pollutant detection. The shore crab Carcinus maenas was exposed to the organic contaminant 2-hydroxybiphenyl, and urine was screened using an Escherichia coli-based luciferase gene (luxAB) reporter assay specific to this compound. Bioassay measurements differentiated between the original contaminant and its metabolites, quantifying bioconcentration factors of up to one hundred-fold in crab urine. Our results reveal the substantial potential of using bacterial bioreporter assays in real-time monitoring of biological matricesto determine exposure histories, with wide ranging potential for the in situ measurement of xenobiotics in risk assessments and epidemiology.
Collapse
Affiliation(s)
- Ceri Lewis
- School of Biosciences, Hatherly Laboratories, University of Exeter, Prince of Wales Road, Exeter, UK.
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Bacterial Biosensors for Measuring Availability of Environmental Pollutants. SENSORS 2008; 8:4062-4080. [PMID: 27879922 PMCID: PMC3697161 DOI: 10.3390/s8074062] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Revised: 07/06/2008] [Accepted: 07/09/2008] [Indexed: 11/24/2022]
Abstract
Traditionally, pollution risk assessment is based on the measurement of a pollutant's total concentration in a sample. The toxicity of a given pollutant in the environment, however, is tightly linked to its bioavailability, which may differ significantly from the total amount. Physico-chemical and biological parameters strongly influence pollutant fate in terms of leaching, sequestration and biodegradation. Bacterial sensor-reporters, which consist of living micro-organisms genetically engineered to produce specific output in response to target chemicals, offer an interesting alternative to monitoring approaches. Bacterial sensor-reporters detect bioavailable and/or bioaccessible compound fractions in samples. Currently, a variety of environmental pollutants can be targeted by specific biosensor-reporters. Although most of such strains are still confined to the lab, several recent reports have demonstrated utility of bacterial sensing-reporting in the field, with method detection limits in the nanomolar range. This review illustrates the general design principles for bacterial sensor-reporters, presents an overview of the existing biosensor-reporter strains with emphasis on organic compound detection. A specific focus throughout is on the concepts of bioavailability and bioaccessibility, and how bacteria-based sensing-reporting systems can help to improve our basic understanding of the different processes at work.
Collapse
|
43
|
Tang SY, Fazelinia H, Cirino PC. AraC Regulatory Protein Mutants with Altered Effector Specificity. J Am Chem Soc 2008; 130:5267-71. [DOI: 10.1021/ja7109053] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
44
|
Abstract
Despite the vast surface area of terrestrial plant leaves and the large microbial communities they support, little is known of the ability of leaf-associated microorganisms to access and degrade airborne pollutants. Here, we examined bacterial acquisition and degradation of phenol on leaves by an introduced phenol degrader and by natural phyllosphere communities. Whole-cell gfp-based Pseudomonas fluorescens bioreporter cells detected phenol on leaves that had previously been transiently exposed to gaseous phenol, indicating that leaves accumulated phenol; moreover, they accumulated it in sites that were accessible to epiphytic bacteria and to concentrations that were at least 10-fold higher than those in the air. After inoculated leaves were exposed to gaseous 14C-phenol, leaves harbouring the phenol-degrading Pseudomonas sp. strain CF600 released eight times more 14CO2 than did leaves harbouring a non-degrading mutant, demonstrating that CF600 actively mineralized phenol on leaves. We evaluated phenol degradation by natural microbial communities on green ash leaves that were collected from a field site rich in airborne organic pollutants. We found that significantly more phenol was mineralized by these leaves when the communities were present than by these leaves following surface sterilization. Thus, phenol-degrading organisms were present in these natural communities and were metabolically capable of phenol degradation. Collectively, these results provide the first direct evidence that bacteria on leaves can degrade an organic pollutant from the air, and indicate that bacteria on leaves could potentially contribute to the natural attenuation of organic air pollutants.
Collapse
Affiliation(s)
- Amarjyoti Sandhu
- Department of Plant Pathology and Interdepartmental Microbiology Program, Iowa State University, Ames, IA 50011-3211, USA
| | | | | |
Collapse
|
45
|
Khleifat KM. Biodegradation of phenol by Ewingella americana: Effect of carbon starvation and some growth conditions. Process Biochem 2006. [DOI: 10.1016/j.procbio.2006.04.015] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Galvão TC, de Lorenzo V. Transcriptional regulators à la carte: engineering new effector specificities in bacterial regulatory proteins. Curr Opin Biotechnol 2006; 17:34-42. [PMID: 16359854 DOI: 10.1016/j.copbio.2005.12.002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2005] [Revised: 11/15/2005] [Accepted: 12/05/2005] [Indexed: 11/27/2022]
Abstract
For many regulators of bacterial biodegradation pathways, small molecule/effector binding is the signal for triggering transcriptional activation. Thus, regulation results from a cross-talk between chemicals sensed by transcriptional factors and operon expression status. These features can be utilised in the construction of biosensors for a wide range of target compounds as, in principle, any regulatory protein whose activity is modulated by binding to a small molecule can have its effector/inducer profile artificially altered. The cognate specificities of a number of regulatory proteins have been modified as an astute approach to developing, among others, bacterial biosensors for environmentally relevant compounds.
Collapse
Affiliation(s)
- Teca Calcagno Galvão
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología-CSIC, Madrid 28049, Spain.
| | | |
Collapse
|
47
|
van Sint Fiet S, van Beilen JB, Witholt B. Selection of biocatalysts for chemical synthesis. Proc Natl Acad Sci U S A 2006; 103:1693-8. [PMID: 16446453 PMCID: PMC1413619 DOI: 10.1073/pnas.0504733102] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To determine whether microbial chemosensors can be used to find new or better biocatalysts, we constructed Escherichia coli hosts that recognize the product of a biocatalytic conversion through the transcriptional activator NahR and respond by expression of a lacZ or tetA reporter gene. Equipped with a benzaldehyde dehydrogenase (XylC from Pseudomonas putida), the lacZ-based host responded to the oxidation of benzaldehyde and 2-hydroxybenzaldehyde to the corresponding benzoic acids by forming blue colonies, whereas XylC- cells did not. Similarly, the tetA-based host was able to grow under selective conditions only when equipped with XylC, enabling selection of biocatalytically active cells in inactive populations at frequencies as low as 10(-6).
Collapse
Affiliation(s)
- Stephan van Sint Fiet
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
| | - Jan B. van Beilen
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
| | - Bernard Witholt
- Institute of Biotechnology, Eidgenössische Technische Hochschule Hönggerberg, HPT Building, Wolfgang-Pauli-Strasse 16, 8093 Zürich, Switzerland
- *To whom correspondence should be addressed. E-mail:
| |
Collapse
|
48
|
Tropel D, Bähler A, Globig K, van der Meer JR. Design of new promoters and of a dual-bioreporter based on cross-activation by the two regulatory proteins XylR and HbpR. Environ Microbiol 2005; 6:1186-96. [PMID: 15479251 DOI: 10.1111/j.1462-2920.2004.00645.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HbpR protein is the sigma54-dependent transcription activator for 2-hydroxybiphenyl degradation in Pseudomonas azelaica. The ability of HbpR and XylR, which share 35% amino acid sequence identity, to cross-activate the PhbpC and Pu promoters was investigated by determining HbpR- or XylR-mediated luciferase expression and by DNA binding assays. XylR measurably activated the PhbpC promoter in the presence of the effector m-xylene, both in Escherichia coli and Pseudomonas putida. HbpR weakly stimulated the Pu promoter in E. coli but not in P. azelaica. Poor HbpR-dependent activation from Pu was caused by a weak binding to the operator region. To create promoters efficiently activated by both regulators, the HbpR binding sites on PhbpC were gradually changed into the XylR binding sites of Pu by site-directed mutagenesis. Inducible luciferase expression from mutated promoters was tested in E. coli on a two plasmid system, and from mono copy gene fusions in P. azelaica and P. putida. Some mutants were efficiently activated by both HbpR and XylR, showing that promoters can be created which are permissive for both regulators. Others achieved a higher XylR-dependent transcription than from Pu itself. Mutants were also obtained which displayed a tenfold lower uninduced expression level by HbpR than the wild-type PhbpC, while keeping the same maximal induction level. On the basis of these results, a dual-responsive bioreporter strain of P. azelaica was created, containing both XylR and HbpR, and activating luciferase expression from the same single promoter independently with m-xylene and 2-hydroxybiphenyl.
Collapse
Affiliation(s)
- David Tropel
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), CH-8600 Dübendorf, Switzerland
| | | | | | | |
Collapse
|
49
|
Chapter 10 Non-affinity sensing technology: the exploitation of biocatalytic events for environmental analysis. BIOSENSORS AND MODERN BIOSPECIFIC ANALYTICAL TECHNIQUES 2005. [DOI: 10.1016/s0166-526x(05)44010-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
50
|
Abstract
The delicate and dynamic balance of the physiological steady state and its maintenance is well characterized by studies of bacterial stress response. Through the use of genetic analysis, numerous stress regulons, their physiological regulators and their biochemical processes have been delineated. In particular, transcriptionally activated stress regulons are subjects of study and application. These regulons include those that respond to macromolecular damage and toxicity as well as to nutrient starvation. The convenience of reporter gene fusions has allowed the creation of biosensor strains, resulting from the fusion of stress-responsive promoters with a variety of reporter genes. Such cellular biosensors are being used for monitoring dynamic systems and can report the presence of environmental stressors in real time. They provide a greater range of sensitivity, e.g. to sub-lethal concentrations of toxicants, than the simple assessment of cell viability. The underlying physiological context of the reporter strains results in the detection of bioavailable concentrations of both toxicants and nutrients. Culture conditions and host strain genotypes can be customized so as to maximize the sensitivity of the strain for a particular application. Collections of specific strains that are grouped in panels are used to diagnose targets or mode of action for unknown toxicants. Further application in massive by parallel DNA and gene fusion arrays greatly extends the information available for diagnosis of modes of action and may lead to development of novel high-throughput screens. Future studies will include more panels, arrays, as well as single reporter cell detection for a better understanding of the population heterogeneity during stress response. New knowledge of physiology gained from further studies of novel systems, or using innovative methods of analysis, will undoubtedly yield still more useful and informative environmental biosensors.
Collapse
Affiliation(s)
- Amy Cheng Vollmer
- Department of Biology, Swarthmore College, 500 College Avenue, Swarthmore, PA 19081, USA.
| | | |
Collapse
|