1
|
Fujihara H, Hirose J, Suenaga H. Evolution of genetic architecture and gene regulation in biphenyl/PCB-degrading bacteria. Front Microbiol 2023; 14:1168246. [PMID: 37350784 PMCID: PMC10282184 DOI: 10.3389/fmicb.2023.1168246] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 05/16/2023] [Indexed: 06/24/2023] Open
Abstract
A variety of bacteria in the environment can utilize xenobiotic compounds as a source of carbon and energy. The bacterial strains degrading xenobiotics are suitable models to investigate the adaptation and evolutionary processes of bacteria because they appear to have emerged relatively soon after the release of these compounds into the natural environment. Analyses of bacterial genome sequences indicate that horizontal gene transfer (HGT) is the most important contributor to the bacterial evolution of genetic architecture. Further, host bacteria that can use energy effectively by controlling the expression of organized gene clusters involved in xenobiotic degradation will have a survival advantage in harsh xenobiotic-rich environments. In this review, we summarize the current understanding of evolutionary mechanisms operative in bacteria, with a focus on biphenyl/PCB-degrading bacteria. We then discuss metagenomic approaches that are useful for such investigation.
Collapse
Affiliation(s)
- Hidehiko Fujihara
- Department of Food and Fermentation Sciences, Faculty of Food and Nutrition Sciences, Beppu University, Beppu, Japan
| | - Jun Hirose
- Department of Applied Chemistry, Faculty of Engineering, University of Miyazaki, Miyazaki, Japan
| | - Hikaru Suenaga
- Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
| |
Collapse
|
2
|
Bhatt P, Bhandari G, Bhatt K, Maithani D, Mishra S, Gangola S, Bhatt R, Huang Y, Chen S. Plasmid-mediated catabolism for the removal of xenobiotics from the environment. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126618. [PMID: 34329102 DOI: 10.1016/j.jhazmat.2021.126618] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 05/27/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of xenobiotics adversely affects the environment. The genes that are present in the chromosome of the bacteria are considered nonmobile, whereas the genes present on the plasmids are considered mobile genetic elements. Plasmids are considered indispensable for xenobiotic degradation into the contaminated environment. In the contaminated sites, bacteria with plasmids can transfer the mobile genetic element into another strain. This mechanism helps in spreading the catabolic genes into the bacterial population at the contaminated sites. The indigenous microbial strains with such degradative plasmids are important for the bioremediation of xenobiotics. Environmental factors play a critical role in the conjugation efficiency, which is involved in the bioremediation of the xenobiotics at the contaminated sites. However, there is still a need for more research to fill in the gaps regarding plasmids and their impact on bioremediation. This review explores the role of bacterial plasmids in the bioremediation of xenobiotics from contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Geeta Bhandari
- Department of Biochemistry and Biotechnology, Sardar Bhagwan Singh University, Dehradun 248161, Uttarakhand, India
| | - Kalpana Bhatt
- Department of Botany and Microbiology, Gurukul Kangri University, Haridwar 249404, Uttarakhand, India
| | - Damini Maithani
- Department of Microbiology, G.B Pant University of Agriculture and Technology Pantnagar, U.S Nagar, Uttarakhand, India
| | - Sandhya Mishra
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, 263136, Uttarakhand, India
| | - Rakesh Bhatt
- Department of Civil Engineering, Indian Institute of Technology, Kanpur 208016, Uttar Pradesh, India
| | - Yaohua Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| |
Collapse
|
3
|
French KE, Zhou Z, Terry N. Horizontal 'gene drives' harness indigenous bacteria for bioremediation. Sci Rep 2020; 10:15091. [PMID: 32934307 PMCID: PMC7492276 DOI: 10.1038/s41598-020-72138-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 08/24/2020] [Indexed: 01/21/2023] Open
Abstract
Engineering bacteria to clean-up oil spills is rapidly advancing but faces regulatory hurdles and environmental concerns. Here, we develop a new technology to harness indigenous soil microbial communities for bioremediation by flooding local populations with catabolic genes for petroleum hydrocarbon degradation. Overexpressing three enzymes (almA, xylE, p450cam) in Escherichia coli led to degradation of 60-99% of target hydrocarbon substrates. Mating experiments, fluorescence microscopy and TEM revealed indigenous bacteria could obtain these vectors from E. coli through several mechanisms of horizontal gene transfer (HGT), including conjugation and cytoplasmic exchange through nanotubes. Inoculating petroleum-polluted sediments with E. coli carrying the vector pSF-OXB15-p450camfusion showed that the E. coli cells died after five days but a variety of bacteria received and carried the vector for over 60 days after inoculation. Within 60 days, the total petroleum hydrocarbon content of the polluted soil was reduced by 46%. Pilot experiments show that vectors only persist in indigenous populations when under selection pressure, disappearing when this carbon source is removed. This approach to remediation could prime indigenous bacteria for degrading pollutants while providing minimal ecosystem disturbance.
Collapse
Affiliation(s)
- Katherine E French
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA.
| | - Zhongrui Zhou
- QB3, University of California Berkeley, Stanley Hall, Berkeley, CA, 94720, USA
| | - Norman Terry
- Department of Plant and Microbial Biology, University of California Berkeley, Koshland Hall, Berkeley, CA, 94720, USA
| |
Collapse
|
4
|
Ramakrishnan B, Venkateswarlu K, Sethunathan N, Megharaj M. Local applications but global implications: Can pesticides drive microorganisms to develop antimicrobial resistance? THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 654:177-189. [PMID: 30445319 DOI: 10.1016/j.scitotenv.2018.11.041] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/02/2018] [Accepted: 11/03/2018] [Indexed: 05/07/2023]
Abstract
Pesticides are an important agricultural input, and the introduction of new active ingredients with increased efficiencies drives their higher production and consumption worldwide. Inappropriate application and storage of these chemicals often contaminate plant tissues, air, water, or soil environments. The presence of pesticides can lead to developing tolerance, resistance or persistence and even the capabilities to degrade them by the microbiomes of theses environments. The pesticide-degrading microorganisms gain and employ several mechanisms for attraction (chemotaxis), membrane transport systems, efflux pumps, enzymes and genetical make-up with plasmid and chromosome encoded catabolic genes for degradation. Even the evolution and the mechanisms of inheritance for pesticide-degradation as a functional trait in several microorganisms are beginning to be understood. Because of the commonalities in the microbial responses of sensing and uptake, and adaptation due to the selection pressures of pesticides and antimicrobial substances including antibiotics, the pesticide-degraders have higher chances of possessing antimicrobial resistance as a surplus functional trait. This review critically examines the probabilities of pesticide contamination of soil and foliage, the knowledge gaps in the regulation and storage of pesticide chemicals, and the human implications of pesticide-degrading microorganisms with antimicrobial resistance in the global strategy of 'One Health'.
Collapse
Affiliation(s)
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapur 515055, India
| | - Nambrattil Sethunathan
- Flat No. 103, Ushodaya Apartments, Sri Venkateswara Officers Colony, Ramakrishnapuram, Secunderabad 500056, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER) and Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (CRC CARE), University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.
| |
Collapse
|
5
|
Pepper IL, Brooks JP, Gerba CP. Antibiotic Resistant Bacteria in Municipal Wastes: Is There Reason for Concern? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:3949-3959. [PMID: 29505255 DOI: 10.1021/acs.est.7b04360] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Recently, there has been increased concern about the presence of antibiotic resistant bacteria (ARB) and antibiotic resistant genes (ARG), in treated domestic wastewaters, animal manures and municipal biosolids. The concern is whether these additional sources of ARB contribute to antibiotic resistance levels in the environment, that is, "environmental antibiotic resistance." ARB and ARG occur naturally in soil and water, and it remains unclear whether the introduction of ARB in liquid and solid municipal and animal wastes via land application have any significant impact on the background levels of antibiotic resistance in the environment, and whether they affect human exposure to ARB. In this current review, we examine and re-evaluate the incidence of ARB and ARG resulting from land application activities, and offer a new perspective on the threat of antibiotic resistance to public health via exposure from nonclinical environmental sources. Based on inputs of ARBs and ARGs from land application, their fate in soil due to soil microbial ecology principles, and background indigenous levels of ARBs and ARGs already present in soil, we conclude that while antibiotic resistance levels in soil are increased temporally by land application of wastes, their persistence is not guaranteed and is in fact variable, and often contradictory based on application site. Furthermore, the application of wastes may not produce the most direct impact of ARGs and ARB on public health. Further investigation is still warranted in agriculture and public health, including continued scrutiny of antibiotic use in both sectors.
Collapse
Affiliation(s)
- Ian L Pepper
- Water and Energy Sustainable Technology Center (WEST) , The University of Arizona , 2959 W. Calle Agua Nueva , Tucson , Arizona 85745 , United States
| | - John P Brooks
- Genetics and Sustainable Agriculture Research Unit, USDA ARS , Mississippi State , Mississippi , 39762 , United States
| | - Charles P Gerba
- Water and Energy Sustainable Technology Center (WEST) , The University of Arizona , 2959 W. Calle Agua Nueva , Tucson , Arizona 85745 , United States
| |
Collapse
|
6
|
George KW, Hay AG. Bacterial strategies for growth on aromatic compounds. ADVANCES IN APPLIED MICROBIOLOGY 2016; 74:1-33. [PMID: 21459192 DOI: 10.1016/b978-0-12-387022-3.00005-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Although the biodegradation of aromatic compounds has been studied for over 40 years, there is still much to learn about the strategies bacteria employ for growth on novel substrates. Elucidation of these strategies is crucial for predicting the environmental fate of aromatic pollutants and will provide a framework for the development of engineered bacteria and degradation pathways. In this chapter, we provide an overview of studies that have advanced our knowledge of bacterial adaptation to aromatic compounds. We have divided these strategies into three broad categories: (1) recruitment of catabolic genes, (2) expression of "repair" or detoxification proteins, and (3) direct alteration of enzymatic properties. Specific examples from the literature are discussed, with an eye toward the molecular mechanisms that underlie each strategy.
Collapse
Affiliation(s)
- Kevin W George
- Field of Environmental Toxicology, Cornell University Ithaca, New York, USA; Department of Microbiology, Wing Hall, Cornell University Ithaca, New York, USA
| | | |
Collapse
|
7
|
Javed S, Sarwar A, Tassawar M, Faisal M. Conversion of selenite to elemental selenium by indigenous bacteria isolated from polluted areas. CHEMICAL SPECIATION & BIOAVAILABILITY 2015. [DOI: 10.1080/09542299.2015.1112751] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
8
|
|
9
|
Kumar A, Trefault N, Olaniran AO. Microbial degradation of 2,4-dichlorophenoxyacetic acid: Insight into the enzymes and catabolic genes involved, their regulation and biotechnological implications. Crit Rev Microbiol 2014; 42:194-208. [DOI: 10.3109/1040841x.2014.917068] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
10
|
Zhang Q, Wang B, Cao Z, Yu Y. Plasmid-mediated bioaugmentation for the degradation of chlorpyrifos in soil. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:178-84. [PMID: 22560241 DOI: 10.1016/j.jhazmat.2012.04.024] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 03/29/2012] [Accepted: 04/11/2012] [Indexed: 05/07/2023]
Abstract
To overcome the poor survival and low activity of the bacteria used for bioremediation, a plasmid-mediated bioaugmentation method was investigated, which could result in a persistent capacity for the degradation of chlorpyrifos in soil. The results indicate that the pDOC plasmid could transfer into soil bacteria, including members of the Pseudomonas and Staphylococcus genera. The soil bacteria acquired the ability to degrade chlorpyrifos within 5 days of the transfer of pDOC. The efficiency of the pDOC transfer in the soil, as measured by the chlorpyrifos degradation efficiency and the most probable number (MPN) of chlorpyrifos degraders, was influenced by the soil temperature, moisture level and type. The best performance for the transfer of pDOC was observed under conditions of 30°C and 60% water-holding capacity (WHC). The results presented in this paper show that the transfer of pDOC can enhance the degradation of chlorpyrifos in various soils, although the degradation efficiency did vary with the soil type. It may be concluded that the introduction of plasmids encoding enzymes that can degrade xenobiotics or donor strains harboring these plasmids is an alternative approach in bioaugmentation.
Collapse
Affiliation(s)
- Qun Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | | | | | | |
Collapse
|
11
|
Shintani M, Takahashi Y, Yamane H, Nojiri H. The behavior and significance of degradative plasmids belonging to Inc groups in Pseudomonas within natural environments and microcosms. Microbes Environ 2011; 25:253-65. [PMID: 21576880 DOI: 10.1264/jsme2.me10155] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Over the past few decades, degradative plasmids have been isolated from bacteria capable of degrading a variety of both natural and man-made compounds. Degradative plasmids belonging to three incompatibility (Inc) groups in Pseudomonas (IncP-1, P-7, and P-9) have been well studied in terms of their replication, maintenance, and capacity for conjugative transfer. The host ranges of these plasmids are determined by replication or conjugative transfer systems. The host range of IncP-1 is broad, that of IncP-9 is intermediate, and that of IncP-7 is narrow. To understand the behavior of these plasmids and their hosts in various environments, the survivability of inocula, stability or transferability, and efficiency of biodegradation in environments and microcosms have been monitored. The biodegradation and plasmid transfer in various environments have been observed for all three groups, although the kinds of transconjugants differed with the Inc groups. In some cases, the deletion and amplification of catabolic genes acted to reduce the production of toxic catabolic intermediates, or to increase the activity on a particular catabolic pathway. The combination of degradative genes, the plasmid backbone of each Inc group, and the host of the plasmids is key to the degraders adapting to various hosts or to heterogeneous environments.
Collapse
Affiliation(s)
- Masaki Shintani
- Bioresource Center, Japan Collection of Microorganisms (BRC-JCM), Riken, 2–1 Hirosawa, Wako, Saitama 351–0198, Japan
| | | | | | | |
Collapse
|
12
|
Reddy DM, Paul D, Jogeswar M, Reddy G. Biodegradation of alpha picoline – a plasmid borne activity. ACTA ACUST UNITED AC 2009. [DOI: 10.1080/00207230903178030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Ng SP, Davis B, Palombo EA, Bhave M. A Tn5051-like mer-containing transposon identified in a heavy metal tolerant strain Achromobacter sp. AO22. BMC Res Notes 2009; 2:38. [PMID: 19284535 PMCID: PMC2663772 DOI: 10.1186/1756-0500-2-38] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2008] [Accepted: 03/07/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Achromobacter sp. AO22 (formerly Alcaligenes sp. AO22), a bacterial strain isolated from a lead-contaminated industrial site in Australia, was previously found to be resistant to moderate to high levels of mercury, copper and other heavy metals. However, the nature and location of the genetic basis for mercuric ion resistance in this strain, had not been previously identified. FINDINGS Achromobacter sp. AO22 contains a functional mer operon with all four essential genes (merRTPA) and shows >99% DNA sequence identity to that of Tn501. The mer operon was present on a transposon, designated TnAO22, captured by introducing a broad-host-range IncP plasmid into Achromobacter sp. AO22 and subsequently transferring it to E. coli recipients. The transposition frequency of TnAO22 was 10-2 to 10-3 per target plasmid transferred. Analysis of TnAO22 sequence revealed it belonged to the Tn21 subgroup of the Tn3 superfamily of transposons, with the transposition module having >99% identity with Tn5051 of a Pseudomonas putida strain isolated from a water sample in New York. CONCLUSION TnAO22 is thus a new variant of Tn5051 of the Tn3 superfamily and the transposon and its associated mercury resistance system are among the few such systems reported in a soil bacterium. Achromobacter sp. AO22 can thus be exploited for applications such as in situ mercury bioremediation of contaminated sites, or the mobile unit and mer operon could be mobilized to other bacteria for similar purposes.
Collapse
Affiliation(s)
- Shee Ping Ng
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Melbourne, Victoria 3122, Australia
| | - Belinda Davis
- School of Molecular Sciences, Victoria University, PO Box 14428, Melbourne, Victoria 8001, Australia
| | - Enzo A Palombo
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Melbourne, Victoria 3122, Australia
| | - Mrinal Bhave
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Melbourne, Victoria 3122, Australia
| |
Collapse
|
14
|
Chong NM, Chang HW. Plasmid as a measure of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid. BIORESOURCE TECHNOLOGY 2009; 100:1174-1179. [PMID: 18930390 DOI: 10.1016/j.biortech.2008.09.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 08/31/2008] [Accepted: 09/02/2008] [Indexed: 05/26/2023]
Abstract
The purpose of this research was to pursuit the quantification of microbial degradation capacity for 2,4-dichlorophenoxyacetic acid (2,4-D) by detecting and quantifying a prominent 2,4-D degradation encoding plasmid. Batch reactor acclimation, de-acclimation, and re-acclimation tests were conducted during which periods the courses of 2,4-D dissipation and plasmid evolution were quantitatively measured. Pure cultures of bacterial strains were detected to give rise to a plasmid approximately the size of 90 kb after acclimation. The 90 kb plasmid content of Arthrobacter sp. increased when degradation occurred after acclimation, with a rate that corresponded closely to the degradation rate. During de-acclimation, plasmid content declined exponentially at a half-life of approximately 3.5 days. Re-acclimation saw a renewed induction of plasmid, but substrate consumption limited the rise of plasmid to a level much lower than after the first acclimation. This research recommends a method for measuring the microbial degradation capability for a xenobiotic.
Collapse
Affiliation(s)
- Nyuk-Min Chong
- Department of Environmental Engineering, Da-Yeh University, Dacun, Changhua, Taiwan, ROC.
| | | |
Collapse
|
15
|
Roane TM, Reynolds KA, Maier RM, Pepper IL. Microorganisms. Environ Microbiol 2009. [DOI: 10.1016/b978-0-12-370519-8.00002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
|
16
|
Transfer of Plasmid pJP4 from Escherichia coli to Activated Sludge Bacteria by Filter Mating. ACTA ACUST UNITED AC 2009. [DOI: 10.2521/jswtb.45.185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
17
|
Urgun-Demirtas M, Stark B, Pagilla K. Use of Genetically Engineered Microorganisms (GEMs) for the Bioremediation of Contaminants. Crit Rev Biotechnol 2008; 26:145-64. [PMID: 16923532 DOI: 10.1080/07388550600842794] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
This paper presents a critical review of the literature on the application of genetically engineered microorganisms (GEMs) in bioremediation. The important aspects of using GEMs in bioremediation, such as development of novel strains with desirable properties through pathway construction and the modification of enzyme specificity and affinity, are discussed in detail. Particular attention is given to the genetic engineering of bacteria using bacterial hemoglobin (VHb) for the treatment of aromatic organic compounds under hypoxic conditions. The application of VHb technology may advance treatment of contaminated sites, where oxygen availability limits the growth of aerobic bioremediating bacteria, as well as the functioning of oxygenases required for mineralization of many organic pollutants. Despite the many advantages of GEMs, there are still concerns that their introduction into polluted sites to enhance bioremediation may have adverse environmental effects, such as gene transfer. The extent of horizontal gene transfer from GEMs in the environment, compared to that of native organisms including benefits regarding bacterial bioremediation that may occur as a result of such transfer, is discussed. Recent advances in tracking methods and containment strategies for GEMs, including several biological systems that have been developed to detect the fate of GEMs in the environment, are also summarized in this review. Critical research questions pertaining to the development and implementation of GEMs for enhanced bioremediation have been identified and posed for possible future research.
Collapse
Affiliation(s)
- Meltem Urgun-Demirtas
- Department of Chemical and Environmental Engineering, Illinois Institute of Technology, Chicago, 60616, USA
| | | | | |
Collapse
|
18
|
Rajendhran J, Gunasekaran P. Strategies for accessing soil metagenome for desired applications. Biotechnol Adv 2008; 26:576-90. [PMID: 18786627 DOI: 10.1016/j.biotechadv.2008.08.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2008] [Revised: 08/03/2008] [Accepted: 08/05/2008] [Indexed: 11/27/2022]
Abstract
Most of the microorganisms in nature are inaccessible as they are uncultivable in the laboratory. Metagenomic approaches promise the accessibility of the genetic resources and their potential applications. Genetic resources from terrestrial environments can be accessed by exploring the soil metagenome. Soil metagenomic analyses are usually initiated by the isolation of environmental DNAs. Several methods have been described for the direct isolation of environmental DNAs from soil and sediments. Application of metagenomics largely depends on the construction of genomic DNA libraries and subsequent high-throughput sequencing or library screening. Thus, obtaining large quantities of pure cloneable DNA from the environment is a prerequisite. This review discusses the recent developments related to efficient extraction and purification of soil metagenome highlighting the considerations for various metagenomic applications.
Collapse
Affiliation(s)
- J Rajendhran
- Department of Genetics, Centre for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University, Madurai-625 021, India
| | | |
Collapse
|
19
|
Müller R. Activity and Reaction Mechanism of the Initial Enzymatic Step Specifying the Microbial Degradation of 2,4-Dichlorophenoxyacetate. Eng Life Sci 2007. [DOI: 10.1002/elsc.200720198] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
20
|
Johnsen AR, Kroer N. Effects of stress and other environmental factors on horizontal plasmid transfer assessed by direct quantification of discrete transfer events. FEMS Microbiol Ecol 2006; 59:718-28. [PMID: 17100984 DOI: 10.1111/j.1574-6941.2006.00230.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Selection pressure may affect the horizontal transfer of plasmids. The inability to distinguish between gene transfer and the growth of transconjugants complicates testing. We have developed a method that enables the quantification of discrete transfer events. It uses large numbers of replicate matings (192 or 384) in microtiter wells and the counting of transfer-positive and transfer-negative wells. We applied the method to study the transfer of the IncP1 plasmid pRO103 between Escherichia coli and Pseudomonas putida strains. pRO103 encodes resistance to mercury and tetracycline and partial degradation of 2,4-dichlorophenoxyacetic acid (2,4-D). The results showed positive correlation between transfer and donor metabolic activity, and an optimal temperature for transfer of 29 degrees C. On stimulation of donor activity, the optimal temperature was decreased to 24.5 degrees C. HgCl(2) above 1.0 microg L(-1) negatively affected transfer, whereas 2,4-D up to 0.3 mM had no effect. The negative effect of mercury was shown to be a result of stressing of the recipient. No effects of mercury on transfer could be detected by traditional filter mating. Thus, the method is superior to filter mating and, as the experimental design allows the manipulation of individual parameters, it is ideal for the assessment and comparison of effects of environmental factors on plasmid transfer.
Collapse
Affiliation(s)
- Anders R Johnsen
- National Environmental Research Institute, Department of Environmental Chemistry and Microbiology, Roskilde, Denmark
| | | |
Collapse
|
21
|
Manzano M, Morán AC, Tesser B, González B. Role of eukaryotic microbiota in soil survival and catabolic performance of the 2,4-D herbicide degrading bacteria Cupriavidus necator JMP134. Antonie van Leeuwenhoek 2006; 91:115-26. [PMID: 17043913 DOI: 10.1007/s10482-006-9101-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Accepted: 06/26/2006] [Indexed: 10/24/2022]
Abstract
Cupriavidus necator (formerly Ralstonia eutropha) JMP134, harbouring the catabolic plasmid pJP4, is the best-studied 2,4-dichlorophenoxyacetic acid (2,4-D) herbicide degrading bacterium. A study of the survival and catabolic performance of strain JMP134 in agricultural soil microcosms exposed to high levels of 2,4-D was carried out. When C. necator JMP134 was introduced into soil microcosms, the rate of 2,4-D removal increased only slightly. This correlated with the poor survival of the strain, as judged by 16S rRNA gene terminal restriction fragment length polymorphism (T-RFLP) profiles, and the semi-quantitative detection of the pJP4-borne tfdA gene sequence, encoding the first step in 2,4-D degradation. After 3 days of incubation in irradiated soil microcosms, the survival of strain JMP134 dramatically improved and the herbicide was completely removed. The introduction of strain JMP134 into native soil microcosms did not produce detectable changes in the structure of the bacterial community, as judged by 16S rRNA gene T-RFLP profiles, but provoked a transient increase of signals putatively corresponding to protozoa, as indicated by 18S rRNA gene T-RFLP profiling. Accordingly, a ciliate able to feed on C. necator JMP134 could be isolated after soil enrichment. In native soil microcosms, C. necator JMP134 survived better than Escherichia coli DH5alpha (pJP4) and similarly to Pseudomonas putida KT2442 (pJP4), indicating that species specific factors control the survival of strains harbouring pJP4. The addition of cycloheximide to soil microcosms strongly improved survival of these three strains, indicating that the eukaryotic microbiota has a strong negative effect in bioaugmentation with catabolic bacteria.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/metabolism
- Animals
- Biodegradation, Environmental
- Biodiversity
- Ciliophora/isolation & purification
- Cupriavidus necator/genetics
- Cupriavidus necator/growth & development
- Cupriavidus necator/metabolism
- DNA Fingerprinting
- DNA, Bacterial/analysis
- DNA, Bacterial/genetics
- DNA, Protozoan/analysis
- DNA, Protozoan/genetics
- DNA, Ribosomal/analysis
- DNA, Ribosomal/genetics
- Escherichia coli/growth & development
- Eukaryota/genetics
- Eukaryota/isolation & purification
- Eukaryota/metabolism
- Microbial Viability
- Plasmids/genetics
- Polymorphism, Restriction Fragment Length
- Pseudomonas putida/growth & development
- RNA, Ribosomal, 16S/genetics
- RNA, Ribosomal, 18S/genetics
- Soil Microbiology
Collapse
Affiliation(s)
- Marlene Manzano
- Laboratorio de Microbiologia, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Casilla 114-D, Santiago, Chile
| | | | | | | |
Collapse
|
22
|
Macur RE, Wheeler JT, Burr MD, Inskeep WP. Impacts of 2,4-D application on soil microbial community structure and on populations associated with 2,4-D degradation. Microbiol Res 2006; 162:37-45. [PMID: 16814534 DOI: 10.1016/j.micres.2006.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 04/06/2006] [Accepted: 05/14/2006] [Indexed: 11/16/2022]
Abstract
The effect of 2,4-dichlorophenoxyacetic acid (2,4-D) application rate on microbial community structure and on the diversity of dominant 2,4-D degrading bacteria in an agricultural soil was examined using cultivation-independent molecular techniques coupled with traditional isolation and enumeration methods. Fingerprints of microbial communities established under increasing concentrations of 2,4-D (0-500 mg kg-1) in batch soil microcosms were obtained using denaturing gradient gel electrophoresis (DGGE) of PCR-amplified 16S rRNA gene segments. While a 2,4-D concentration of at least 100 mg kg-1 was required to obtain an apparent change in the community structure as visualized by DGGE, the greatest impact of 2,4-D concentration occurred in the 500 mg kg-1 treatment, resulting in significantly reduced diversity of the dominant populations and enrichment by Burkholderia-like populations. The greatest diversity of 2,4-D degrading isolates was cultivated from the 10 mg kg-1 treatment, indicating that under these conditions, cultivation was more sensitive than DGGE for detecting changes in community structure. Most of these isolates harbored homologs of Ralstonia eutrophus JMP134 and Burkholderia cepacia tfdA catabolic genes. Results from this study revealed that agriculturally relevant application rates of 2,4-D may provide a temporary selective advantage for organisms capable of utilizing 2,4-D as a carbon and energy source.
Collapse
MESH Headings
- 2,4-Dichlorophenoxyacetic Acid/metabolism
- 2,4-Dichlorophenoxyacetic Acid/pharmacology
- Anti-Bacterial Agents/pharmacology
- Bacteria/classification
- Bacteria/drug effects
- Bacteria/genetics
- Bacteria/growth & development
- Bacteria/isolation & purification
- Biodiversity
- Colony Count, Microbial
- DNA Fingerprinting
- DNA, Bacterial/chemistry
- DNA, Bacterial/genetics
- DNA, Ribosomal/chemistry
- DNA, Ribosomal/genetics
- Electrophoresis, Polyacrylamide Gel
- Genes, rRNA
- Molecular Sequence Data
- Phylogeny
- Polymerase Chain Reaction
- RNA, Bacterial/genetics
- RNA, Ribosomal, 16S/genetics
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
- Soil Microbiology
Collapse
Affiliation(s)
- Richard E Macur
- Department of Land Resources and Environmental Sciences, Montana State University-Bozeman, Bozeman, MT 59717, USA.
| | | | | | | |
Collapse
|
23
|
Dechesne A, Pallud C, Bertolla F, Grundmann GL. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria. Appl Environ Microbiol 2006; 71:8123-31. [PMID: 16332794 PMCID: PMC1317359 DOI: 10.1128/aem.71.12.8123-8131.2005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 10(6) CFU g(-1) soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for 1 month, the microscale distribution of introduced bacteria was modified towards a more widely dispersed distribution. The quantitative data indicate that the microscale spatial distribution of an introduced strain may strongly limit its contacts with the members of an indigenous bacterial community. This could constitute an explanation to the low number of indigenous transconjugants found most of time when a plasmid-donor strain is introduced into soil.
Collapse
Affiliation(s)
- Arnaud Dechesne
- Ecologie Microbienne, UMR 5557, CNRS-Université Claude Bernard Lyon 1, Bâtiment G. Mendel, 69622 Villeurbanne Cedex, France.
| | | | | | | |
Collapse
|
24
|
Dechesne A, Pallud C, Bertolla F, Grundmann GL. Impact of the microscale distribution of a Pseudomonas strain introduced into soil on potential contacts with indigenous bacteria. Appl Environ Microbiol 2005. [PMID: 16332794 DOI: 10.1128/aem.71.12.8123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023] Open
Abstract
Soil bioaugmentation is a promising approach in soil bioremediation and agriculture. Nevertheless, our knowledge of the fate and activity of introduced bacteria in soil and thus of their impact on the soil environment is still limited. The microscale spatial distribution of introduced bacteria has rarely been studied, although it determines the encounter probability between introduced cells and any components of the soil ecosystem and thus plays a role in the ecology of introduced bacteria. For example, conjugal gene transfer from introduced bacteria to indigenous bacteria requires cell-to-cell contact, the probability of which depends on their spatial distribution. To quantitatively characterize the microscale distribution of an introduced bacterial population and its dynamics, a gfp-tagged derivative of Pseudomonas putida KT2440 was introduced by percolation in repacked soil columns. Initially, the introduced population was less widely spread at the microscale level than two model indigenous functional communities: the 2,4-dichlorophenoxyacetic acid degraders and the nitrifiers (each at 10(6) CFU g(-1) soil). When the soil was percolated with a substrate metabolizable by P. putida or incubated for 1 month, the microscale distribution of introduced bacteria was modified towards a more widely dispersed distribution. The quantitative data indicate that the microscale spatial distribution of an introduced strain may strongly limit its contacts with the members of an indigenous bacterial community. This could constitute an explanation to the low number of indigenous transconjugants found most of time when a plasmid-donor strain is introduced into soil.
Collapse
Affiliation(s)
- Arnaud Dechesne
- Ecologie Microbienne, UMR 5557, CNRS-Université Claude Bernard Lyon 1, Bâtiment G. Mendel, 69622 Villeurbanne Cedex, France.
| | | | | | | |
Collapse
|
25
|
Aspray TJ, Hansen SK, Burns RG. A soil-based microbial biofilm exposed to 2,4-D: bacterial community development and establishment of conjugative plasmid pJP4. FEMS Microbiol Ecol 2005; 54:317-27. [PMID: 16332330 DOI: 10.1016/j.femsec.2005.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2005] [Revised: 04/04/2005] [Accepted: 04/19/2005] [Indexed: 11/20/2022] Open
Abstract
A soil suspension was used as a source to initiate the development of microbial communities in flow cells irrigated with 2,4-dichlorophenoxyacetic acid (2,4-D) (25 microg ml(-1)). Culturable bacterial members of the community were identified by 16S rRNA gene sequencing and found to be members of the genera Pseudomonas, Burkholderia, Collimonas and Rhodococcus. A 2,4-D degrading donor strain, Pseudomonas putida SM1443 (pJP4::gfp), was inoculated into flow cell chambers containing 2-day old biofilm communities. Transfer of pJP4::gfp from the donor to the bacterial community was detectable as GFP fluorescing cells and images were captured using confocal scanning laser microscopy (GFP fluorescence was repressed in the donor due to the presence of a chromosomally located lacI(q) repressor gene). Approximately 5-10 transconjugant microcolonies, 20-40 microm in diameter, could be seen to develop in each chamber. A 2,4-D degrading transconjugant strain was isolated from the flow cell system belonging to the genus Burkholderia.
Collapse
Affiliation(s)
- Thomas J Aspray
- Research School of Biosciences, University of Kent, Canterbury, Kent CT2 7NJ, UK
| | | | | |
Collapse
|
26
|
Sørensen SJ, Bailey M, Hansen LH, Kroer N, Wuertz S. Studying plasmid horizontal transfer in situ: a critical review. Nat Rev Microbiol 2005; 3:700-10. [PMID: 16138098 DOI: 10.1038/nrmicro1232] [Citation(s) in RCA: 475] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review deals with the prospective, experimental documentation of horizontal gene transfer (HGT) and its role in real-time, local adaptation. We have focused on plasmids and their function as an accessory and/or adaptive gene pool. Studies of the extent of HGT in natural environments have identified certain hot spots, and many of these involve biofilms. Biofilms are uniquely suited for HGT, as they sustain high bacterial density and metabolic activity, even in the harshest environments. Single-cell detection of donor, recipient and transconjugant bacteria in various natural environments, combined with individual-based mathematical models, has provided a new platform for HGT studies.
Collapse
Affiliation(s)
- Søren J Sørensen
- Department of Microbiology, Institute of Biology, University of Copenhagen, Sølvgade 83H, 1307 Copenhagen K, Denmark.
| | | | | | | | | |
Collapse
|
27
|
Peters M, Tomikas A, Nurk A. Organization of the horizontally transferred pheBA operon and its adjacent genes in the genomes of eight indigenous Pseudomonas strains. Plasmid 2005; 52:230-6. [PMID: 15518880 DOI: 10.1016/j.plasmid.2004.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 07/12/2004] [Indexed: 11/27/2022]
Abstract
Horizontal transfer of genes encoding phenol degradation (pheBA) in the environment has been previously described. Complete or partial phe-operon was redetected in plasmids of several indigenous Pseudomonas strains isolated from the river water. The sequences of up- and downstream regions of the acquired phe-DNA in eight different plasmids were analyzed. In all cases, miniature insertional elements or putative transposase genes were found suggesting transposase dependent pheBA integration into plasmids. In three cases, an open reading frame encoding homologue to the transcription regulator protein (CatR) of the pheBA operon was determined.
Collapse
Affiliation(s)
- Maire Peters
- Institute of Molecular and Cell Biology, University of Tartu and Estonian Biocentre, 23 Riia Street, 51010 Tartu, Estonia.
| | | | | |
Collapse
|
28
|
Hirkala DLM, Germida JJ. Field and soil microcosm studies on the survival and conjugation of aPseudomonas putidastrain bearing a recombinant plasmid, pADPTel. Can J Microbiol 2004; 50:595-604. [PMID: 15467785 DOI: 10.1139/w04-045] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas putida CR30RNS (pADPTel) is an antibiotic-resistant strain with a recombinant plasmid that confers resistance to tellurite and the ability to catabolize atrazine. The survival of this strain as well as its ability to transfer genes for atrazine degradation and tellurite resistance to indigenous soil bacteria were tested in both fallow soil and canola (Brassica napus) rhizosphere by the use of parallel field and laboratory releases. Culturable CR30RNS (pADPTel) were enumerated in field and microcosm soils at 7- to 14-day intervals over 49 d. Strain CR30RNS (pADPTel) survived for up to 7 weeks in microcosm soils at a density of 104CFU/g soil, whereas in field soils the population declined to 103CFU/g soil by the fourth week. In contrast, when CR30RNS (pADPTel) was introduced into the soil as a seed coating of canola (B. napus 'Karoo'), the bacterium established at higher cell densities in the rhizosphere (106–105CFU/g fresh root mass), with no subsequent decrease in numbers. The presence of selective pressure (i.e., atrazine) had no significant effect on the survival of CR30RNS (pADPTel) in either field or microcosm soils. One year postinoculation field sites were examined for the presence of CR30RNS (pADPTel) and no evidence of culturable parental cells was observed when samples were plated onto selective media. However, the atzC and telAB gene segments were amplified from the field soils at that time. Under laboratory conditions, indigenous soil bacteria were capable of receiving and expressing the engineered plasmid construct at frequencies ranging from 1 to 10-3transconjugants per donor. However, no plasmid transfer to indigenous soil bacteria was detected in the field or microcosm soils regardless of the presence of canola rhizosphere and (or) the application of atrazine. Our results show that the survival and population size of P. putida CR30RNS (pADPTel) might be sufficient for degradation of environmental pollutants but that the transfer frequency was too low to be detected under the conditions of this study.Key words: Pseudomonas putida CR30RNS (pADPTel), survival, gene transfer, field, microcosm.
Collapse
Affiliation(s)
- Danielle L M Hirkala
- Department of Applied Microbiology and Food Science, University of Saskatchewan, 51 Campus Drive, Saskatoon, SK S7N 5A8, Canada
| | | |
Collapse
|
29
|
Pallud C, Dechesne A, Gaudet JP, Debouzie D, Grundmann GL. Modification of spatial distribution of 2,4-dichlorophenoxyacetic acid degrader microhabitats during growth in soil columns. Appl Environ Microbiol 2004; 70:2709-16. [PMID: 15128522 PMCID: PMC404448 DOI: 10.1128/aem.70.5.2709-2716.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Bacterial processes in soil, including biodegradation, require contact between bacteria and substrates. Knowledge of the three-dimensional spatial distribution of bacteria at the microscale is necessary to understand and predict such processes. Using a soil microsampling strategy combined with a mathematical spatial analysis, we studied the spatial distribution of 2,4-dichlorophenoxyacetic acid (2,4-D) degrader microhabitats as a function of 2,4-D degrader abundance. Soil columns that allowed natural flow were percolated with 2,4-D to increase the 2,4-D degrader abundance. Hundreds of soil microsamples (minimum diameter, 125 microm) were collected and transferred to culture medium to check for the presence of 2,4-D degraders. Spatial distributions of bacterial microhabitats were characterized by determining the average size of colonized soil patches and the average number of patches per gram of soil. The spatial distribution of 2,4-D degrader microhabitats was not affected by water flow, but there was an overall increase in colonized patch sizes after 2,4-D amendment; colonized microsamples were dispersed in the soil at low 2,4-D degrader densities and clustered in patches that were more than 0.5 mm in diameter at higher densities. During growth, spreading of 2,4-D degraders within the soil and an increase in 2,4-D degradation were observed. We hypothesized that spreading of the bacteria increased the probability of encounters with 2,4-D and resulted in better interception of the degradable substrate. This work showed that characterization of bacterial microscale spatial distribution is relevant to microbial ecology studies. It improved quantitative bacterial microhabitat description and suggested that sporadic movement of cells occurs. Furthermore, it offered perspectives for linking microbial function to the soil physicochemical environment.
Collapse
Affiliation(s)
- C Pallud
- Laboratoire d'étude des Transferts en Hydrologie et Environnement, UMR 5564, CNRS-INPG-IRD-Université Joseph Fourier Grenoble I, 38041 Grenoble Cedex 9, France.
| | | | | | | | | |
Collapse
|
30
|
Coombs JM, Barkay T. Molecular evidence for the evolution of metal homeostasis genes by lateral gene transfer in bacteria from the deep terrestrial subsurface. Appl Environ Microbiol 2004; 70:1698-707. [PMID: 15006795 PMCID: PMC368364 DOI: 10.1128/aem.70.3.1698-1707.2004] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lateral gene transfer (LGT) plays a vital role in increasing the genetic diversity of microorganisms and promoting the spread of fitness-enhancing phenotypes throughout microbial communities. To date, LGT has been investigated in surface soils, natural waters, and biofilm communities but not in the deep terrestrial subsurface. Here we used a combination of molecular analyses to investigate the role of LGT in the evolution of metal homeostasis in lead-resistant subsurface bacteria. A nested PCR approach was employed to obtain DNA sequences encoding P(IB)-type ATPases, which are proteins that transport toxic or essential soft metals such as Zn(II), Cd(II), and Pb(II) through the cell wall. Phylogenetic incongruencies between a 16S rRNA gene tree and a tree based on 48 P(IB)-type ATPase amplicons and sequences available for complete bacterial genomes revealed an ancient transfer from a member of the beta subclass of the Proteobacteria (beta-proteobacterium) that may have predated the diversification of the genus Pseudomonas. Four additional phylogenetic incongruencies indicate that LGT has occurred among groups of beta- and gamma-proteobacteria. Two of these transfers appeared to be recent, as indicated by an unusual G+C content of the P(IB)-type ATPase amplicons. This finding provides evidence that LGT plays a distinct role in the evolution of metal homeostasis in deep subsurface bacteria, and it shows that molecular evolutionary approaches may be used for investigation of this process in microbial communities in specific environments.
Collapse
Affiliation(s)
- J M Coombs
- Department of Biochemistry and Microbiology, Cook College, Rutgers University, New Brunswick, New Jersey 08901, USA
| | | |
Collapse
|
31
|
Lilley AK, Bailey MJ, Barr M, Kilshaw K, Timms-Wilson TM, Day MJ, Norris SJ, Jones TH, Godfray HCJ. Population dynamics and gene transfer in genetically modified bacteria in a model microcosm. Mol Ecol 2004; 12:3097-107. [PMID: 14629389 DOI: 10.1046/j.1365-294x.2003.01960.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The horizontal transfer and effects on host fitness of a neutral gene cassette inserted into three different genomic loci of a plant-colonizing pseudomonad was assessed in a model ecosystem. The KX reporter cassette (kanamycin resistance, aph, and catechol 2, 3, dioxygenase, xylE) was introduced on the disarmed transposon mini-Tn5 into: (I) the chromosome of a spontaneous rifampicin resistant mutant Pseudomonas fluorescens SBW25R; (II) the chromosome of SBW25R in the presence of a naturally occurring lysogenic-phage (phage Phi101); and (III) a naturally occurring plasmid pQBR11 (330 kbp, tra+, Hgr) introduced into SBW25R. These bacteria were applied to Stellaria media (chickweed) plants as seed dressings [c. 5 x 104 colony-forming units (cfu)/seed] and the seedlings planted in 16 microcosm chambers containing model plant and animal communities. Gene transfer to pseudomonads in the phyllosphere and rhizosphere was found only in the plasmid treatment (III). Bacteria in the phage treatment (II) initially declined in density and free phage was detected, but populations partly recovered as the plants matured. Surprisingly, bacteria in the chromosome insertion treatment (I) consistently achieved higher population densities than the unmanipulated control and other treatments. Plasmids were acquired from indigenous bacterial populations in the control and chromosome insertion treatments. Plasmid acquisition, plasmid transfer from inocula and selection for plasmid carrying inocula coincided with plant maturation.
Collapse
Affiliation(s)
- A K Lilley
- Molecular Microbial Ecology Group, Centre for Ecology and Hydrology, Mansfield Road, Oxford OX1 3SR, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Goris J, Boon N, Lebbe L, Verstraete W, Vos P. Diversity of activated sludge bacteria receiving the 3-chloroaniline-degradative plasmid pC1gfp. FEMS Microbiol Ecol 2003; 46:221-30. [DOI: 10.1016/s0168-6496(03)00231-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
33
|
Smets BF, Morrow JB, Arango Pinedo C. Plasmid introduction in metal-stressed, subsurface-derived microcosms: plasmid fate and community response. Appl Environ Microbiol 2003; 69:4087-97. [PMID: 12839785 PMCID: PMC165196 DOI: 10.1128/aem.69.7.4087-4097.2003] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The nonconjugal IncQ plasmids pMOL187 and pMOL222, which contain the metal resistance-encoding genes czc and ncc, were introduced by using Escherichia coli as a transitory delivery strain into microcosms containing subsurface-derived parent materials. The microcosms were semicontinuously dosed with an artificial groundwater to set a low-carbon flux and a target metal stress (0, 10, 100, and 1,000 micro M CdCl(2)), permitting long-term community monitoring. The broad-host-range IncPalpha plasmid RP4 was also transitorily introduced into a subset of microcosms. No novel community phenotype was detected after plasmid delivery, due to the high background resistances to Cd and Ni. At fixed Cd doses, however, small but consistent increases in Cd(r) or Ni(r) density were measured due to the introduction of a single pMOL plasmid, and this effect was enhanced by the joint introduction of RP4; the effects were most significant at the highest Cd doses. The pMOL plasmids introduced could, however, be monitored via czc- and ncc-targeted infinite-dilution PCR (ID-PCR) methods, because these genes were absent from the indigenous community: long-term presence of czc (after 14 or 27 weeks) was contingent on the joint introduction of RP4, although RP4 cointroduction was not yet required to ensure retention of ncc after 8 weeks. Plasmids isolated from Ni(r) transconjugants further confirmed the presence and retention of a pMOL222-sized plasmid. ID-PCR targeting the RP4-specific trafA gene revealed retention of RP4 for at least 8 weeks. Our findings confirm plasmid transfer and long-term retention in low-carbon-flux, metal-stressed subsurface communities but indicate that the subsurface community examined has limited mobilization potential for the IncQ plasmids employed.
Collapse
Affiliation(s)
- Barth F Smets
- Environmental Engineering Program, Department of Civil and Environmental Engineering, University of Connecticut, 261 Glenbrook Road, Storrs, CT 06269-2037, USA.
| | | | | |
Collapse
|
34
|
Top EM, Springael D. The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 2003; 14:262-9. [PMID: 12849778 DOI: 10.1016/s0958-1669(03)00066-1] [Citation(s) in RCA: 201] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Retrospective studies clearly indicate that mobile genetic elements (MGEs) play a major role in the in situ spread and even de novo construction of catabolic pathways in bacteria, allowing bacterial communities to rapidly adapt to new xenobiotics. The construction of novel pathways seems to occur by an assembly process that involves horizontal gene transfer: different appropriate genes or gene modules that encode different parts of the novel pathway are recruited from phylogenetically related or distant hosts into one single host. Direct evidence for the importance of catabolic MGEs in bacterial adaptation to xenobiotics stems from observed correlations between catabolic gene transfer and accelerated biodegradation in several habitats and from studies that monitor catabolic MGEs in polluted sites.
Collapse
Affiliation(s)
- Eva M Top
- Department of Biological Sciences, 347 Life Sciences Building South, University of Idaho, Moscow, ID 83844-3051, USA.
| | | |
Collapse
|
35
|
Schmidt-Eisenlohr H, Baron C. The competitiveness of Pseudomonas chlororaphis carrying pJP4 is reduced in the Arabidopsis thaliana rhizosphere. Appl Environ Microbiol 2003; 69:1827-31. [PMID: 12620876 PMCID: PMC150058 DOI: 10.1128/aem.69.3.1827-1831.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The effect of the large catabolic IncP plasmid pJP4 on the competitiveness of Pseudomonas chlororaphis SPR044 and on its derivatives SPR244 (GacS deficient), SPR344 (phenazine-1-carboxamide overproducer), and SPR644 (phenazine-1-carboxamide deficient) in the Arabidopsis thaliana rhizosphere was assessed. Solitary rhizosphere colonization by the wild type, SPR244, and SPR644 was not affected by the plasmid. The size of the population of SPR344 carrying pJP4, however, was significantly reduced compared to the size of the population of the plasmid-free derivative. The abiotic stress caused by phenazine-1-carboxamide overproduction probably resulted in a selective disadvantage for cells carrying pJP4. Next, the effect of biotic stress caused by coinoculation of other bacteria was analyzed. Cells carrying pJP4 had a selective disadvantage compared to plasmid-free cells in the presence of the efficient colonizer Pseudomonas fluorescens WCS417r. This effect was not observed after coinoculation with a variety of other bacteria, and it was independent of quorum sensing and phenazine-1-carboxamide production. Thus, the presence of large catabolic plasmids imposes a detectable metabolic burden in the presence of biotic stress. Plasmid transfer in the A. thaliana rhizosphere from P. chlororaphis and its derivatives to Ralstonia eutropha was determined by using culture-dependent and culture-independent techniques. With the cultivation-independent technique we detected a significantly higher portion of exconjugants, but pJP4 transfer was independent of the quorum-sensing system and of phenazine-1-carboxamide production.
Collapse
Affiliation(s)
- Heike Schmidt-Eisenlohr
- Bereich Mikrobiologie, Department Biologie I, Ludwig-Maximilians-Universität München, D-80638 Munich, Germany
| | | |
Collapse
|
36
|
Pepper IL, Gentry TJ, Newby DT, Roane TM, Josephson KL. The role of cell bioaugmentation and gene bioaugmentation in the remediation of co-contaminated soils. ENVIRONMENTAL HEALTH PERSPECTIVES 2002; 110 Suppl 6:943-6. [PMID: 12634123 PMCID: PMC1241276 DOI: 10.1289/ehp.02110s6943] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Soils co-contaminated with metals and organics present special problems for remediation. Metal contamination can delay or inhibit microbial degradation of organic pollutants such that for effective in situ biodegradation, bioaugmentation is necessary. We monitored the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) or 3-chlorobenzoate (3-CB) in two different soils with and without cadmium (Cd) contamination. Additionally, we evaluated the ability of bioaugmentation to enhance organic degradation in these co-contaminated soils. Finally, we determined whether enhanced degradation was due to survival of the introduced organism (cell bioaugmentation) or plasmid transfer to indigenous microbial populations (gene bioaugmentation). In Brazito soil, dual inoculation with a Cd-resistant bacterium plus a known 2,4-D-degrading bacterium, Ralstonia eutropha JMP134, enhanced 2,4-D degradation. Escherichia coli D11, which lacks chromosomal genes necessary for complete 2,4-D mineralization, was used for gene bioaugmentation in Madera soil. Significant gene transfer of the plasmid to the indigenous populations was observed, and the rate of 2,4-D degradation was enhanced relative to that of controls. Cell bioaugmentation was further demonstrated when (Comamonas testosteroni was used to enhance biodegradation of 3-CB in Madera soil. In this case no transfer of plasmid pBRC60 to indigenous soil recipients was observed. For the Madera soil, nonbioaugmented samples ultimately showed complete 2,4-D degradation. In contrast, nonbioaugmented Brazito soils showed incomplete 2,4-D degradation. These studies are unique in showing that both cell bioaugmentation and gene bioaugmentation can be effective in enhancing organic degradation in co-contaminated soils. Ultimately, the bioaugmentation strategy may depend on the degree of contamination and the time frame available for remediation.
Collapse
|
37
|
Top EM, Springael D, Boon N. Catabolic mobile genetic elements and their potential use in bioaugmentation of polluted soils and waters. FEMS Microbiol Ecol 2002; 42:199-208. [DOI: 10.1111/j.1574-6941.2002.tb01009.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
Goris J, Dejonghe W, Falsen E, De Clerck E, Geeraerts B, Willems A, Top EM, Vandamme P, De Vos P. Diversity of transconjugants that acquired plasmid pJP4 or pEMT1 after inoculation of a donor strain in the A- and B-horizon of an agricultural soil and description of Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. Syst Appl Microbiol 2002; 25:340-52. [PMID: 12421072 DOI: 10.1078/0723-2020-00134] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We examined the diversity of transconjugants that acquired the catabolic plasmids pJP4 or pEMT1, which encode degradation of 2,4-dichlorophenoxyacetic acid (2,4-D), in microcosms with agricultural soil inoculated with a donor strain (Dejonghe, W., Goris, J., El Fantroussi, S., Höfte, M., De Vos, P., Verstraete, W., and Top, E. M. Appl. Environ. Microbiol. 2000, p. 3297-3304). Using repetitive element PCR fingerprinting, eight different rep-clusters and six separate isolates could be discriminated among 95 transconjugants tested. Representative isolates were identified using 16S rDNA sequencing, cellular fatty acid analysis, whole-cell protein analysis and/or DNA-DNA hybridisations. Plasmids pJP4 and pEMT1 appeared to have a similar transfer and expression range, and were preferably acquired and expressed in soil by indigenous representatives of Ralstonia and Burkholderia. Two rep-clusters were shown to represent novel Burkholderia species, for which the names Burkholderia hospita sp. nov. and Burkholderia terricola sp. nov. are proposed. When easily degradable carbon sources were added together with the plasmid-bearing donor strain, also a significant proportion of Stenotrophomonas maltophilia isolates were found. The transconjugant collections isolated from A- (0-30 cm depth) and B-horizon (30-60 cm depth) soil were similar, except for B. terricola transconjugants, which were only isolated from the B-horizon.
Collapse
Affiliation(s)
- Johan Goris
- Laboratorium voor Microbiologie, Universiteit Gent, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Newby D, Pepper I. Dispersal of plasmid pJP4 in unsaturated and saturated 2,4-dichlorophenoxyacetic acid contaminated soil. FEMS Microbiol Ecol 2002; 39:157-64. [DOI: 10.1111/j.1574-6941.2002.tb00917.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
40
|
Thakur IS, Verma P, Upadhayaya K. Molecular cloning and characterization of pentachlorophenol-degrading monooxygenase genes of Pseudomonas sp. from the chemostat. Biochem Biophys Res Commun 2002; 290:770-4. [PMID: 11785966 DOI: 10.1006/bbrc.2001.6239] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas sp. strain IST 103 (PCP103) capable of utilizing pentachlorophenol (PCP) was determined by utilization of a carbon source and release of the hydroxylating enzyme PCP-4 monooxygenase. The metabolites were extracted from the culture medium and analyzed by high-performance liquid chromatography. The enzyme purified to apparent homogeneity from an extract of PCP-grown cells indicated that a fraction of DEAE-cellulose ion exchange chromatography of molecular size of 30,000 kDa determined by gel filtration chromatography and SDS-polyacrylamide gel electrophoresis was responsible for dechlorination of PCP. The plasmid isolated from the bacterium was subjected to Shotgun cloning by restriction digestion by BamHI, HindIII, and SalI, ligated to pUC19 vector, and transformed into Escherichia coli XLBlue1alpha. The recombinant clones having higher potentiality to degrade PCP were selected by utilization of a carbon source and release of intermediary metabolites during degradation of PCP as the sole source of carbon and energy. The recombinant clones, which contained an insert of 3.0 kb of SalI and HindIII sites, were sequenced and compared with gene sequences deposited in GenBank by BLAST search; this indicated homology with the thdf gene of monooxygenase of thiophene and furan. Southern blot analysis performed by developing gene probes indicated the presence of the PCP monooxygenase gene in plasmids of the bacterium.
Collapse
Affiliation(s)
- Indu Shekhar Thakur
- Department of Environmental Sciences, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttaranchal, 263145, India.
| | | | | |
Collapse
|
41
|
|
42
|
Thakur IS, Verma PK, Upadhaya KC. Involvement of plasmid in degradation of pentachlorophenol by Pseudomonas sp. from a chemostat. Biochem Biophys Res Commun 2001; 286:109-13. [PMID: 11485315 DOI: 10.1006/bbrc.2001.5340] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pseudomonas sp. strain IST103 obtained from a stable bacterial consortium was capable of utilizing pentachlorophenol (PCP) as sole carbon and energy source. The consortium was developed by continuous enrichment in a chemostat. The degradation of PCP by bacterial strain proceeded through an oxidative route as indicated by accumulation of tetrachloro-p-hydroquinone and chlorohydroquinone determined by high performance liquid chromatography (HPLC), and chloride molecules released in culture medium. Two different molecular size plasmids, of approximately 80 and 4 kilobase, were found to be responsible for carrying genes for degradation of PCP. This was evidenced by mutants produced by curing of plasmid by treatment of ethidium bromide. The derivatives were not able to utilize PCP, however, transformation of low molecular size plasmid of Pseudomonas sp. strain 103 into E. coli JM109 utilized PCP, indicated a possible involvement of plasmid in degradation of pentachlorophenol.
Collapse
Affiliation(s)
- I S Thakur
- Department of Environmental Sciences, College of Basic Sciences and Humanities, Pantnagar, 263145, Uttaranchal, India.
| | | | | |
Collapse
|
43
|
de Lipthay JR, Barkay T, Sørensen SJ. Enhanced degradation of phenoxyacetic acid in soil by horizontal transfer of the tfdA gene encoding a 2,4-dichlorophenoxyacetic acid dioxygenase. FEMS Microbiol Ecol 2001; 35:75-84. [PMID: 11248392 DOI: 10.1111/j.1574-6941.2001.tb00790.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Few studies have investigated the possible impact of in situ gene transfer on the degradation of xenobiotic compounds in natural environments. In this work we showed that horizontal transfer of the tfdA gene, carried on plasmid pRO103, to phenol degrading recipient strains significantly increased the degradation rate of phenoxyacetic acid in sterile and non-sterile soil microcosms. The tfdA gene encodes a 2,4-dichlorophenoxyacetic acid/2-oxoglutarate dioxygenase and by complementation with the phenol degradation pathway an expanded catabolic substrate range, now including phenoxyacetic acid, is evolved. Presence of selective pressure had a positive effect on the emergence of transconjugants. However, even in the absence of phenoxyacetic acid transconjugant populations were detected and were kept at a constant level throughout the experimental period. The residuesphere (interface between decaying plant material and soil matrix) of dry leaves of barley was shown to be a hot-spot for gene transfer and presence of barley straw increased the conjugation frequencies in soil microcosms to the same extent as presence of organic nutrients. The results of this study indicate that dissemination of catabolic plasmids is a possible mechanism of genetic adaptation to degradation of xenobiotic compounds in natural environments, and that complementation of catabolic pathways possibly plays an important role in the evolution of new degradative capabilities. The application of horizontal gene transfer as a possible tool in bioremediation of contaminated sites is discussed.
Collapse
|
44
|
Newby DT, Gentry TJ, Pepper IL. Comparison of 2,4-dichlorophenoxyacetic acid degradation and plasmid transfer in soil resulting from bioaugmentation with two different pJP4 donors. Appl Environ Microbiol 2000; 66:3399-407. [PMID: 10919798 PMCID: PMC92162 DOI: 10.1128/aem.66.8.3399-3407.2000] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A pilot field study was conducted to assess the impact of bioaugmentation with two plasmid pJP4-bearing microorganisms: the natural host, Ralstonia eutropha JMP134, and a laboratory-generated strain amenable to donor counterselection, Escherichia coli D11. The R. eutropha strain contained chromosomal genes necessary for mineralization of 2,4-dichlorophenoxyacetic acid (2,4-D), while the E. coli strain did not. The soil system was contaminated with 2,4-D alone or was cocontaminated with 2,4-D and Cd. Plasmid transfer to indigenous populations, plasmid persistence in soil, and degradation of 2,4-D were monitored over a 63-day period in the bioreactors. To assess the impact of contaminant reexposure, aliquots of bioreactor soil were reamended with additional 2,4-D. Both introduced donors remained culturable and transferred plasmid pJP4 to indigenous recipients, although to different extents. Isolated transconjugants were members of the Burkholderia and Ralstonia genera, suggesting multiple, if not successive, plasmid transfers. Upon a second exposure to 2,4-D, enhanced degradation was observed for all treatments, suggesting microbial adaptation to 2,4-D. Upon reexposure, degradation was most rapid for the E. coli D11-inoculated treatments. Cd did not significantly impact 2,4-D degradation or transconjugant formation. This study demonstrated that the choice of donor microorganism might be a key factor to consider for bioaugmentation efforts. In addition, the establishment of an array of stable indigenous plasmid hosts at sites with potential for reexposure or long-term contamination may be particularly useful.
Collapse
Affiliation(s)
- D T Newby
- Department of Microbiology and Immunology, Water, and Environmental Science, University of Arizona, Tucson 85721, USA.
| | | | | |
Collapse
|
45
|
Dejonghe W, Goris J, El Fantroussi S, Höfte M, De Vos P, Verstraete W, Top EM. Effect of dissemination of 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids on 2,4-D degradation and on bacterial community structure in two different soil horizons. Appl Environ Microbiol 2000; 66:3297-304. [PMID: 10919784 PMCID: PMC92148 DOI: 10.1128/aem.66.8.3297-3304.2000] [Citation(s) in RCA: 130] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transfer of the 2,4-dichlorophenoxyacetic acid (2,4-D) degradation plasmids pEMT1 and pJP4 from an introduced donor strain, Pseudomonas putida UWC3, to the indigenous bacteria of two different horizons (A horizon, depth of 0 to 30 cm; B horizon, depth of 30 to 60 cm) of a 2,4-D-contaminated soil was investigated as a means of bioaugmentation. When the soil was amended with nutrients, plasmid transfer and enhanced degradation of 2,4-D were observed. These findings were most striking in the B horizon, where the indigenous bacteria were unable to degrade any of the 2,4-D (100 mg/kg of soil) during at least 22 days but where inoculation with either of the two plasmid donors resulted in complete 2,4-D degradation within 14 days. In contrast, in soils not amended with nutrients, inoculation of donors in the A horizon and subsequent formation of transconjugants (10(5) CFU/g of soil) could not increase the 2,4-D degradation rate compared to that of the noninoculated soil. However, donor inoculation in the nonamended B-horizon soil resulted in complete degradation of 2,4-D within 19 days, while no degradation at all was observed in noninoculated soil during 89 days. With plasmid pEMT1, this enhanced degradation seemed to be due only to transconjugants (10(5) CFU/g of soil), since the donor was already undetectable when degradation started. Denaturing gradient gel electrophoresis (DGGE) of 16S rRNA genes showed that inoculation of the donors was followed by a shift in the microbial community structure of the nonamended B-horizon soils. The new 16S rRNA gene fragments in the DGGE profile corresponded with the 16S rRNA genes of 2,4-D-degrading transconjugant colonies isolated on agar plates. This result indicates that the observed change in the community was due to proliferation of transconjugants formed in soil. Overall, this work clearly demonstrates that bioaugmentation can constitute an effective strategy for cleanup of soils which are poor in nutrients and microbial activity, such as those of the B horizon.
Collapse
Affiliation(s)
- W Dejonghe
- Laboratory of Microbial Ecology and Technology, Ghent University, Belgium
| | | | | | | | | | | | | |
Collapse
|