1
|
Albicoro FJ, Vacca C, Cafiero JH, Draghi WO, Martini MC, Goulian M, Lagares A, Del Papa MF. Comparative Proteomic Analysis Revealing ActJ-Regulated Proteins in Sinorhizobium meliloti. J Proteome Res 2023; 22:1682-1694. [PMID: 37017314 PMCID: PMC10834056 DOI: 10.1021/acs.jproteome.2c00731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
To adapt to different environmental conditions, Sinorhizobium meliloti relies on finely tuned regulatory networks, most of which are unexplored to date. We recently demonstrated that deletion of the two-component system ActJK renders an acid-vulnerable phenotype in S. meliloti and negatively impacts bacteroid development and nodule occupancy as well. To fully understand the role of ActJ in acid tolerance, S. meliloti wild-type and S. meliloti ΔactJ proteomes were compared in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. The analysis demonstrated that proteins involved in the synthesis of exopolysaccharides (EPSs) were notably enriched in ΔactJ cells in acid pH. Total EPS quantification further revealed that although EPS production was augmented at pH 5.6 in both the ΔactJ and the parental strain, the lack of ActJ significantly enhanced this difference. Moreover, several efflux pumps were found to be downregulated in the ΔactJ strain. Promoter fusion assays suggested that ActJ positively modulated its own expression in an acid medium but not at under neutral conditions. The results presented here identify several ActJ-regulated genes in S. meliloti, highlighting key components associated with ActJK regulation that will contribute to a better understanding of rhizobia adaptation to acid stress.
Collapse
Affiliation(s)
- Francisco Javier Albicoro
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Carolina Vacca
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Juan Hilario Cafiero
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Walter Omar Draghi
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Carla Martini
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Mark Goulian
- Department of Biology, University of Pennsylvania, Philadelphia, PA. USA
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA. USA
| | - Antonio Lagares
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - María Florencia Del Papa
- Instituto de Biotecnología y Biologia Molecular -CONICET CCT La Plata - Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
2
|
Hagberg KL, Price JP, Yurgel SN, Kahn ML. The Sinorhizobium meliloti Nitrogen Stress Response Changes Radically in the Face of Concurrent Phosphate Stress. Front Microbiol 2022; 13:800146. [PMID: 35154051 PMCID: PMC8829014 DOI: 10.3389/fmicb.2022.800146] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 01/06/2022] [Indexed: 11/13/2022] Open
Abstract
Expression of hundreds of S. meliloti genes changed more than two-fold in response to either nitrogen or phosphate limitation. When these two stresses were applied together, stress responsive gene expression shifted dramatically. In particular, the nitrogen stress response in the presence of phosphate stress had only 30 of about 350 genes in common with the 280 genes that responded to nitrogen stress with adequate phosphate. Expression of sRNAs was also altered in response to these stresses. 82% of genes that responded to nitrogen stress also responded to phosphate stress, including 20 sRNAs. A subset of these sRNAs is known to be chaperoned by the RNA binding protein, Hfq. Hfq had previously been shown to influence about a third of the genes that responded to both nitrogen and phosphate stresses. Phosphate limitation influenced changes in gene expression more than nitrogen limitation and, when both stresses were present, phosphate stress sometimes reversed the direction of some of the changes induced by nitrogen stress. These nutrient stress responses are therefore context dependent.
Collapse
Affiliation(s)
- Kelly L. Hagberg
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Jason P. Price
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
| | - Svetlana N. Yurgel
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- Department of Plant, Food and Environmental Sciences, Dalhousie University, Truro, NS, Canada
| | - Michael L. Kahn
- School of Molecular Biosciences, Institute of Biological Chemistry, Washington State University, Pullman, WA, United States
- *Correspondence: Michael L. Kahn,
| |
Collapse
|
3
|
Lara P, Vega-Alvarado L, Sahonero-Canavesi DX, Koenen M, Villanueva L, Riveros-Mckay F, Morett E, Juárez K. Transcriptome Analysis Reveals Cr(VI) Adaptation Mechanisms in Klebsiella sp. Strain AqSCr. Front Microbiol 2021; 12:656589. [PMID: 34122372 PMCID: PMC8195247 DOI: 10.3389/fmicb.2021.656589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Klebsiella sp. strain AqSCr, isolated from Cr(VI)-polluted groundwater, reduces Cr(VI) both aerobically and anaerobically and resists up 34 mM Cr(VI); this resistance is independent of the ChrA efflux transporter. In this study, we report the whole genome sequence and the transcriptional profile by RNA-Seq of strain AqSCr under Cr(VI)-adapted conditions and found 255 upregulated and 240 downregulated genes compared to controls without Cr(VI) supplementation. Genes differentially transcribed were mostly associated with oxidative stress response, DNA repair and replication, sulfur starvation response, envelope-osmotic stress response, fatty acid (FA) metabolism, ribosomal subunits, and energy metabolism. Among them, genes not previously associated with chromium resistance, for example, cybB, encoding a putative superoxide oxidase (SOO), gltA2, encoding an alternative citrate synthase, and des, encoding a FA desaturase, were upregulated. The sodA gene encoding a manganese superoxide dismutase was upregulated in the presence of Cr(VI), whereas sodB encoding an iron superoxide dismutase was downregulated. Cr(VI) resistance mechanisms in strain AqSCr seem to be orchestrated by the alternative sigma factors fecl, rpoE, and rpoS (all of them upregulated). Membrane lipid analysis of the Cr(IV)-adapted strain showed a lower proportion of unsaturated lipids with respect to the control, which we hypothesized could result from unsaturated lipid peroxidation followed by degradation, together with de novo synthesis mediated by the upregulated FA desaturase-encoding gene, des. This report helps to elucidate both Cr(VI) toxicity targets and global bacterial response to Cr(VI).
Collapse
Affiliation(s)
- Paloma Lara
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Leticia Vega-Alvarado
- Instituto de Ciencias Aplicadas y Tecnología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Diana X Sahonero-Canavesi
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Michel Koenen
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands
| | - Laura Villanueva
- Department of Marine Microbiology and Biogeochemistry (MMB), NIOZ Royal Netherlands Institute for Sea Research, Texel, Netherlands.,Faculty of Geosciences, Department of Earth Sciences, Utrecht University, Utrecht, Netherlands
| | - Fernando Riveros-Mckay
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Enrique Morett
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Katy Juárez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
4
|
Atieno M, Lesueur D. Opportunities for improved legume inoculants: enhanced stress tolerance of rhizobia and benefits to agroecosystems. Symbiosis 2018. [DOI: 10.1007/s13199-018-0585-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
5
|
Abee T, Koomen J, Metselaar K, Zwietering M, den Besten H. Impact of Pathogen Population Heterogeneity and Stress-Resistant Variants on Food Safety. Annu Rev Food Sci Technol 2016; 7:439-56. [DOI: 10.1146/annurev-food-041715-033128] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- T. Abee
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - J. Koomen
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - K.I. Metselaar
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - M.H. Zwietering
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| | - H.M.W. den Besten
- Laboratory of Food Microbiology, Wageningen University, 6700 AA Wageningen, The Netherlands;
| |
Collapse
|
6
|
Wdowiak-Wróbel S, Małek W, Palusińska-Szysz M. Low temperature adaptation and the effects of cryoprotectants on mesorhizobia strains. J Basic Microbiol 2016; 56:379-91. [PMID: 26879468 DOI: 10.1002/jobm.201500615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Accepted: 01/05/2016] [Indexed: 11/07/2022]
Abstract
In this study, the tolerance of Mesorhizobium sp. ACMP18, Mesorhizobium sp. USDA3350, and Mesorhizobium temperatum LMG23931 strains, to cold and freezing were investigated. The ability to withstand freezing at -20 °C and -70 °C for 24 months was different among the studied strains and depended on the cryoprotectant used. The survivability of mesorhizobial strains at -20 °C and -70 °C was significantly improved by some cryoprotectans (glycerol and sucrose/peptone). It is worth noting that the greatest resistance to freezing was detected when stress treatments were performed in glycerol as a cryoprotectant. Using PCR analysis, cspA genes were identified in the studied strains. Their nucleotide sequences were most similar to the sequences of the corresponding genes of the Mesorhizobium species. The expression of the cspA gene in the studied bacteria was analyzed using the RT-PCR technique. The fatty acid composition of the mesorhizobia was determined at 5, 10, 15, and 28 °C. It was noticed that growth temperature significantly affected the fatty acid composition and the amounts of unsaturated fatty acids, especially that of cis-vaccenic acid (18:1ɷ(11)), increased markedly in bacterial cells cultivated at 5, 10, and 15 °C.
Collapse
Affiliation(s)
- Sylwia Wdowiak-Wróbel
- Department of Genetics and Microbiology, Maria Curie Sklodowska University, Lublin, Poland
| | - Wanda Małek
- Department of Genetics and Microbiology, Maria Curie Sklodowska University, Lublin, Poland
| | - Marta Palusińska-Szysz
- Department of Genetics and Microbiology, Maria Curie Sklodowska University, Lublin, Poland
| |
Collapse
|
7
|
Metselaar KI, den Besten HMW, Boekhorst J, van Hijum SAFT, Zwietering MH, Abee T. Diversity of acid stress resistant variants of Listeria monocytogenes and the potential role of ribosomal protein S21 encoded by rpsU. Front Microbiol 2015; 6:422. [PMID: 26005439 PMCID: PMC4424878 DOI: 10.3389/fmicb.2015.00422] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 04/21/2015] [Indexed: 12/02/2022] Open
Abstract
The dynamic response of microorganisms to environmental conditions depends on the behavior of individual cells within the population. Adverse environments can select for stable stress resistant subpopulations. In this study, we aimed to get more insight in the diversity within Listeria monocytogenes LO28 populations, and the genetic basis for the increased resistance of stable resistant fractions isolated after acid exposure. Phenotypic cluster analysis of 23 variants resulted in three clusters and four individual variants and revealed multiple-stress resistance, with both unique and overlapping features related to stress resistance, growth, motility, biofilm formation, and virulence indicators. A higher glutamate decarboxylase activity correlated with increased acid resistance. Whole genome sequencing revealed mutations in rpsU, encoding ribosomal protein S21 in the largest phenotypic cluster, while mutations in ctsR, which were previously shown to be responsible for increased resistance of heat and high hydrostatic pressure resistant variants, were not found in the acid resistant variants. This underlined that large population diversity exists within one L. monocytogenes strain and that different adverse conditions drive selection for different variants. The finding that acid stress selects for rpsU variants provides potential insights in the mechanisms underlying population diversity of L. monocytogenes.
Collapse
Affiliation(s)
- Karin I Metselaar
- Top Institute Food and Nutrition Wageningen, Netherlands ; Laboratory of Food Microbiology, Wageningen University Wageningen, Netherlands
| | | | - Jos Boekhorst
- Top Institute Food and Nutrition Wageningen, Netherlands ; NIZO Food Research Ede, Netherlands
| | - Sacha A F T van Hijum
- Top Institute Food and Nutrition Wageningen, Netherlands ; NIZO Food Research Ede, Netherlands ; Bacterial Genomics Group, CMBI Centre for Molecular and Biomolecular Informatics, Radboud University Medical Center Nijmegen, Netherlands
| | - Marcel H Zwietering
- Top Institute Food and Nutrition Wageningen, Netherlands ; Laboratory of Food Microbiology, Wageningen University Wageningen, Netherlands
| | - Tjakko Abee
- Top Institute Food and Nutrition Wageningen, Netherlands ; Laboratory of Food Microbiology, Wageningen University Wageningen, Netherlands
| |
Collapse
|
8
|
Ormeño-Orrillo E, Menna P, Almeida LGP, Ollero FJ, Nicolás MF, Pains Rodrigues E, Shigueyoshi Nakatani A, Silva Batista JS, Oliveira Chueire LM, Souza RC, Ribeiro Vasconcelos AT, Megías M, Hungria M, Martínez-Romero E. Genomic basis of broad host range and environmental adaptability of Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 which are used in inoculants for common bean (Phaseolus vulgaris L.). BMC Genomics 2012; 13:735. [PMID: 23270491 PMCID: PMC3557214 DOI: 10.1186/1471-2164-13-735] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Accepted: 12/15/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Rhizobium tropici CIAT 899 and Rhizobium sp. PRF 81 are α-Proteobacteria that establish nitrogen-fixing symbioses with a range of legume hosts. These strains are broadly used in commercial inoculants for application to common bean (Phaseolus vulgaris) in South America and Africa. Both strains display intrinsic resistance to several abiotic stressful conditions such as low soil pH and high temperatures, which are common in tropical environments, and to several antimicrobials, including pesticides. The genetic determinants of these interesting characteristics remain largely unknown. RESULTS Genome sequencing revealed that CIAT 899 and PRF 81 share a highly-conserved symbiotic plasmid (pSym) that is present also in Rhizobium leucaenae CFN 299, a rhizobium displaying a similar host range. This pSym seems to have arisen by a co-integration event between two replicons. Remarkably, three distinct nodA genes were found in the pSym, a characteristic that may contribute to the broad host range of these rhizobia. Genes for biosynthesis and modulation of plant-hormone levels were also identified in the pSym. Analysis of genes involved in stress response showed that CIAT 899 and PRF 81 are well equipped to cope with low pH, high temperatures and also with oxidative and osmotic stresses. Interestingly, the genomes of CIAT 899 and PRF 81 had large numbers of genes encoding drug-efflux systems, which may explain their high resistance to antimicrobials. Genome analysis also revealed a wide array of traits that may allow these strains to be successful rhizosphere colonizers, including surface polysaccharides, uptake transporters and catabolic enzymes for nutrients, diverse iron-acquisition systems, cell wall-degrading enzymes, type I and IV pili, and novel T1SS and T5SS secreted adhesins. CONCLUSIONS Availability of the complete genome sequences of CIAT 899 and PRF 81 may be exploited in further efforts to understand the interaction of tropical rhizobia with common bean and other legume hosts.
Collapse
Affiliation(s)
- Ernesto Ormeño-Orrillo
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Pâmela Menna
- Embrapa Soja, C. P. 231, Londrina, Paraná, 86001-970, Brazil
| | - Luiz Gonzaga P Almeida
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Marisa Fabiana Nicolás
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | | | | | | | - Rangel Celso Souza
- Laboratório Nacional de Computação Científica (LNCC), Avenida Getúlio Vargas 333, Petrópolis, Rio de Janeiro, Brazil
| | | | - Manuel Megías
- Universidad de Sevilla, Apdo Postal 874, Sevilla, 41080, Spain
| | | | | |
Collapse
|
9
|
|
10
|
Sundareswaran VR, Singh AK, Dube S, Shivaji S. Aspartate aminotransferase is involved in cold adaptation in psychrophilic Pseudomonas syringae. Arch Microbiol 2010; 192:663-72. [DOI: 10.1007/s00203-010-0591-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2010] [Revised: 05/19/2010] [Accepted: 05/21/2010] [Indexed: 11/28/2022]
|
11
|
The BatR/BatS two-component regulatory system controls the adaptive response of Bartonella henselae during human endothelial cell infection. J Bacteriol 2010; 192:3352-67. [PMID: 20418395 DOI: 10.1128/jb.01676-09] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the first comprehensive study of Bartonella henselae gene expression during infection of human endothelial cells. Expression of the main cluster of upregulated genes, comprising the VirB type IV secretion system and its secreted protein substrates, is shown to be under the positive control of the transcriptional regulator BatR. We demonstrate binding of BatR to the promoters of the virB operon and a substrate-encoding gene and provide biochemical evidence that BatR and BatS constitute a functional two-component regulatory system. Moreover, in contrast to the acid-inducible (pH 5.5) homologs ChvG/ChvI of Agrobacterium tumefaciens, BatR/BatS are optimally activated at the physiological pH of blood (pH 7.4). By conservation analysis of the BatR regulon, we show that BatR/BatS are uniquely adapted to upregulate a genus-specific virulence regulon during hemotropic infection in mammals. Thus, we propose that BatR/BatS two-component system homologs represent vertically inherited pH sensors that control the expression of horizontally transmitted gene sets critical for the diverse host-associated life styles of the alphaproteobacteria.
Collapse
|
12
|
Importance of trmE for growth of the psychrophile Pseudomonas syringae at low temperatures. Appl Environ Microbiol 2009; 75:4419-26. [PMID: 19429554 DOI: 10.1128/aem.01523-08] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transposon mutagenesis of Pseudomonas syringae Lz4W, a psychrophilic bacterium capable of growing at temperatures between 2 and 30 degrees C, yielded 30 cold-sensitive mutants, and CSM1, one of these cold-sensitive mutants, was characterized. Growth of CSM1 was retarded when it was cultured at 4 degrees C but not when it was cultured at 22 degrees C and 28 degrees C compared to the growth of wild-type cells, indicating that CSM1 is a cold-sensitive mutant of P. syringae Lz4W. The mutated gene in CSM1 was identified as trmE (coding for tRNA modification GTPase), and evidence is provided that this gene is induced at low temperatures. Further, the cold-inducible nature of the trmE promoter was demonstrated. In addition, the transcription start site and the various regulatory elements of the trmE promoter, such as the -10 region, -35 region, UP element, cold box, and DEAD box, were identified, and the importance of these regulatory elements in promoter activity were confirmed. The importance of trmE in rapid adaptation to growth at low temperatures was further highlighted by plasmid-mediated complementation that alleviated the cold-sensitive phenotype of CSM1.
Collapse
|
13
|
Larrainzar E, Wienkoop S, Weckwerth W, Ladrera R, Arrese-Igor C, González EM. Medicago truncatula root nodule proteome analysis reveals differential plant and bacteroid responses to drought stress. PLANT PHYSIOLOGY 2007; 144:1495-507. [PMID: 17545507 PMCID: PMC1914115 DOI: 10.1104/pp.107.101618] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drought is one of the environmental factors most affecting crop production. Under drought, symbiotic nitrogen fixation is one of the physiological processes to first show stress responses in nodulated legumes. This inhibition process involves a number of factors whose interactions are not yet understood. This work aims to further understand changes occurring in nodules under drought stress from a proteomic perspective. Drought was imposed on Medicago truncatula 'Jemalong A17' plants grown in symbiosis with Sinorhizobium meliloti strain 2011. Changes at the protein level were analyzed using a nongel approach based on liquid chromatography coupled to tandem mass spectrometry. Due to the complexity of nodule tissue, the separation of plant and bacteroid fractions in M. truncatula root nodules was first checked with the aim of minimizing cross contamination between the fractions. Second, the protein plant fraction of M. truncatula nodules was profiled, leading to the identification of 377 plant proteins, the largest description of the plant nodule proteome so far. Third, both symbiotic partners were independently analyzed for quantitative differences at the protein level during drought stress. Multivariate data mining allowed for the classification of proteins sets that were involved in drought stress responses. The isolation of the nodule plant and bacteroid protein fractions enabled the independent analysis of the response of both counterparts, gaining further understanding of how each symbiotic member is distinctly affected at the protein level under a water-deficit situation.
Collapse
Affiliation(s)
- Estíbaliz Larrainzar
- Departamento de Ciencias del Medio Natural, Universidad Pública de Navarra, Pamplona, Navarra, Spain
| | | | | | | | | | | |
Collapse
|
14
|
Tokarz R, Anderton JM, Katona LI, Benach JL. Combined effects of blood and temperature shift on Borrelia burgdorferi gene expression as determined by whole genome DNA array. Infect Immun 2004; 72:5419-32. [PMID: 15322040 PMCID: PMC517457 DOI: 10.1128/iai.72.9.5419-5432.2004] [Citation(s) in RCA: 186] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Borrelia burgdorferi undergoes differential gene expression during transmission from its tick vector to a vertebrate host. The addition of blood to a spirochete culture at 35 degrees C for 48 h had a dramatic effect on gene expression of this organism. Utilizing B. burgdorferi whole genome DNA arrays, we compared the transcriptomes of the spirochetes following a 2-day temperature shift with blood and without blood. Using combined data from three independent RNA isolations we demonstrated that the addition of blood led to a differential expression of 154 genes. Of these, 75 genes were upregulated, with 49 (65%) of them encoded on plasmids. Blood supplementation of cultures also resulted in the downregulation of 79 genes, where 56 (70%) were plasmid encoded. We verified our results by reverse transcriptase PCR of several genes in both flat and feeding ticks. In the 2-day experiment we observed the effect that exposure to increased temperature and blood combined had on B. burgdorferi gene expression at this crucial time when the spirochetes begin to move from the vector to a new vertebrate host. These changes, among others, coincide with the upregulation of the chemotaxis and sensing regulons, of the lp38-encoded ABC transporter, of proteases capable of remodeling the outer surface of the spirochetes, and of the recombination genes of cp32 as a transient or initial part of the stress response of the phage. These are all functions that could cause or facilitate the changes that spirochetes undergo following a blood meal in the tick.
Collapse
Affiliation(s)
- Rafal Tokarz
- Department of Molecular Genetics and Microbiology, Center for Infectious Diseases, Stony Brook University, 248 Centers for Molecular Medicine, Stony Brook, NY 11794-5120, USA
| | | | | | | |
Collapse
|
15
|
Neuhaus K, Anastasov N, Kaberdin V, Francis KP, Miller VL, Scherer S. The AGUAAA motif in cspA1/A2 mRNA is important for adaptation of Yersinia enterocolitica to grow at low temperature. Mol Microbiol 2004; 50:1629-45. [PMID: 14651644 DOI: 10.1046/j.1365-2958.2003.03795.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Acclimatization of the psychrotolerant Yersinia enterocolitica after a cold shock from 30 degrees C to 10 degrees C causes transcription of the major cold shock protein (CSP) bicistronic gene cspA1/A2 to increase by up to 300-fold. Northern blot analysis of cspA1/A2 using four probes that hybridize specifically to different regions of CSP mRNA revealed the appearance of a number of cspA1/A2 transcripts that are smaller than the original transcript and transiently visible at the end of the acclimation period. Primer extension and RNA protection experiments demonstrated that these smaller mRNAs have 5' ends located in the same core sequence (5'-AGUAAA-3') at five different places within the mRNA, indicating preferential cleavage of the CSP mRNA transcripts. A similar result was obtained for cspB of Escherichia coli, containing two such core sequences. Furthermore, this motif is present in the major CSP genes of a variety of Gram-negative and Gram-positive bacteria. We have therefore termed this sequence cold shock cut box (CSC-box). After inserting a CSC-box into a plasmid-bound lacZ gene in Y. enterocolitica, the mRNA of this construct was cleaved within the CSC-box, and a change in this CSC-box from AGUAAA to AGUCCC dramatically reduced cleavage of the mutated lacZ gene. Mutating all CSC-boxes in Y. enterocolitica of a plasmid bound cspA1/A2 dramatically increases the lag time after a cold shock before re-growth occurs. Based on these results, we suggest that the role of the CSC-box is related to downregulation of cspA mRNA after acclimation to low temperature.
Collapse
Affiliation(s)
- Klaus Neuhaus
- Department of Molecular Microbiology, Washington University in St Louis, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
16
|
Streit WR, Schmitz RA, Perret X, Staehelin C, Deakin WJ, Raasch C, Liesegang H, Broughton WJ. An evolutionary hot spot: the pNGR234b replicon of Rhizobium sp. strain NGR234. J Bacteriol 2004; 186:535-42. [PMID: 14702322 PMCID: PMC305759 DOI: 10.1128/jb.186.2.535-542.2004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Rhizobium sp. strain NGR234 has an exceptionally broad host range and is able to nodulate more than 112 genera of legumes. Since the overall organization of the NGR234 genome is strikingly similar to that of the narrow-host-range symbiont Rhizobium meliloti strain 1021 (also known as Sinorhizobium meliloti), the obvious question is why are the spectra of hosts so different? Study of the early symbiotic genes of both bacteria (carried by the SymA plasmids) did not provide obvious answers. Yet, both rhizobia also possess second megaplasmids that bear, among many other genes, those that are involved in the synthesis of extracellular polysaccharides (EPSs). EPSs are involved in fine-tuning symbiotic interactions and thus may help answer the broad- versus narrow-host-range question. Accordingly, we sequenced two fragments (total, 594 kb) that encode 575 open reading frames (ORFs). Comparisons revealed 19 conserved gene clusters with high similarity to R. meliloti, suggesting that a minimum of 28% (158 ORFs) of the genetic information may have been acquired from a common ancestor. The largest conserved cluster carried the exo and exs genes and contained 31 ORFs. In addition, nine highly conserved regions with high similarity to Agrobacterium tumefaciens C58, Bradyrhizobium japonicum USDA110, and Mesorhizobium loti strain MAFF303099, as well as two conserved clusters that are highly homologous to similar regions in the plant pathogen Erwinia carotovora, were identified. Altogether, these findings suggest that >/==" BORDER="0">40% of the pNGR234b genes are not strain specific and were probably acquired from a wide variety of other microbes. The presence of 26 ORFs coding for transposases and site-specific integrases supports this contention. Surprisingly, several genes involved in the degradation of aromatic carbon sources and genes coding for a type IV pilus were also found.
Collapse
Affiliation(s)
- W R Streit
- Institut für Mikrobiologie und Genetik, Universität Göttingen, Göttingen, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
As a measure for molecular motion, temperature is one of the most important environmental factors for life as it directly influences structural and hence functional properties of cellular components. After a sudden increase in ambient temperature, which is termed heat shock, bacteria respond by expressing a specific set of genes whose protein products are designed to mainly cope with heat-induced alterations of protein conformation. This heat shock response comprises the expression of protein chaperones and proteases, and is under central control of an alternative sigma factor (sigma 32) which acts as a master regulator that specifically directs RNA polymerase to transcribe from the heat shock promotors. In a similar manner, bacteria express a well-defined set of proteins after a rapid decrease in temperature, which is termed cold shock. This protein set, however, is different from that expressed under heat shock conditions and predominantly comprises proteins such as helicases, nucleases, and ribosome-associated components that directly or indirectly interact with the biological information molecules DNA and RNA. Interestingly, in contrast to the heat shock response, to date no cold-specific sigma factor has been identified. Rather, it appears that the cold shock response is organized as a complex stimulon in which post-transcriptional events play an important role. In this review, we present a summary of research results that have been acquired in recent years by examinations of bacterial cold shock responses. Important processes such as cold signal perception, membrane adaptation, and the modification of the translation apparatus are discussed together with many other cold-relevant aspects of bacterial physiology and first attempts are made to dissect the cold shock stimulon into less complex regulatory subunits. Special emphasis is placed on findings concerning the nucleic acid-binding cold shock proteins which play a fundamental role not only during cold shock adaptation but also under optimal growth conditions.
Collapse
|
18
|
Gustafson AM, O'Connell KP, Thomashow MF. Regulation of Sinorhizobium meliloti 1021 rrnA-reporter gene fusions in response to cold shock. Can J Microbiol 2002; 48:821-30. [PMID: 12455614 DOI: 10.1139/w02-078] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously reported that mutants of Sinorhizobium meliloti 1021 carrying luxAB insertions in each of the three 16S rRNA genes exhibited a dramatic (> or = 28-fold) increase in luminescence following a temperature downshift from 30 to 15 degrees C. These results raised the possibility that the rRNA operons (rrn) of S. meliloti were cold shock loci. In testing this possibility, we found that fusion of the S. meliloti 1021 rrnA promoter to two different reporter genes, luxAB and uidA, resulted in hybrid genes that were transiently upregulated (as measured by transcript accumulation) about four- to sixfold in response to a temperature downshift. These results are consistent with the hypothesis that the rrn promoters are transiently upregulated in response to cold shock. However, much of the apparent cold shock regulation of the initial luxAB insertions was due to an unexpected mechanism: an apparent temperature-dependent inhibition of translation. Specifically, the rrnA sequences from +1 to +172 (relative to the start of transcription) were found to greatly decrease the ability of S. meliloti to translate hybrid rrn-luxAB transcripts into active protein at 30 degrees C. This effect, however, was largely eliminated at 15 degrees C. Possible mechanisms for the apparent transient increase in rrnA promoter activity and temperature-dependent inhibition of translation are discussed.
Collapse
Affiliation(s)
- Ann M Gustafson
- NSF Center for Microbial Ecology, Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA
| | | | | |
Collapse
|
19
|
Ramos JL, Gallegos MT, Marqués S, Ramos-González MI, Espinosa-Urgel M, Segura A. Responses of Gram-negative bacteria to certain environmental stressors. Curr Opin Microbiol 2001; 4:166-71. [PMID: 11282472 DOI: 10.1016/s1369-5274(00)00183-1] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Bacteria in nature are exposed to variations in temperature, and are affected by the availability of nutrients and water and the presence of toxic molecules. Their reactions to these changes require a series of rapid adaptive responses. Although transcriptional regulation is of primary importance in these responses, translational regulation and even activation of 'silenced' enzymes are critical for survival in changing environments. Bacteria have developed a series of mechanisms at the membrane structure level to cope with high concentrations of solvents. In addition, solvent-tolerant strains express highly effective efflux pumps to remove solvents from the cytoplasm. Desiccation tolerance is based on the synthesis and accumulation of osmoprotectants together with changes in fatty acid composition to preserve membrane structure. Both cold shock and heat shock responses are mainly regulated at a post-transcriptional level, translation efficiency in the case of cold shock and mRNA half-life and sigma32 stability in the case of heat shock.
Collapse
Affiliation(s)
- J L Ramos
- Consejo Superior de Investigaciones cientificas, Estación, Experimental del Zaidin, Department of Plant Biochemistry, Profesor albareda 1, 18008, Granda, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Drouin P, Prévost D, Antoun H. Physiological adaptation to low temperatures of strains of Rhizobium leguminosarum bv. viciae associated with Lathyrus spp.(1). FEMS Microbiol Ecol 2000; 32:111-120. [PMID: 10817864 DOI: 10.1111/j.1574-6941.2000.tb00705.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Strains of Rhizobium leguminosarum bv. viciae, isolated from the legume species Lathyrus japonicus and Lathyrus pratensis in northern Quebec (Canada), showed different capacities for growing at low temperature. In the present study, we investigated some mechanisms related to cold adaptation. Two cold-adapted strains (psychrotrophs) were compared to a poorly adapted strain and to a cold-sensitive strain (reference strain) for freezing survival, protein induction and fatty acid composition under low temperature. Following cold shocks (25 degrees C to 10, 5 and 0 degrees C), a common 6.1-kDa CSP (cold shock protein) was induced in all strains, but the total number of CSPs synthesized at 0 degrees C was higher in cold-adapted strains than in the cold-sensitive strain. The synthesis of CAPs (cold acclimation proteins) was observed under continuous growth at 5 degrees C in all three strains capable of growth at this temperature. Levels of survival after 24 h at -80 degrees C where higher in cold- (79%) and poorly adapted (64%) strains than in the cold-sensitive strain (33%), but a 2-h acclimation period at 5 degrees C before freezing doubled the survival of the cold-sensitive strain. Low temperature conditions affected similarly the fatty acid composition of all strains, regardless of their cold adaptation level. The proportion of unsaturated fatty acids increased significantly with the lowering of growth temperature from 25 to 5 degrees C, but showed a tendency to decrease after a cold shock from 25 to 5 degrees C. A specific unsaturated fatty acid, cis-12 octadecanoic acid, was produced during growth at 5 degrees C. The unsaturated cis-vaccenic acid was the principal component under all conditions. The cold adaptation trait was weakly reflected in symbiosis with the agronomic legume, Lathyrus sativus, with which one cold-adapted strain showed a slightly higher nitrogenase activity and shoot dry matter yield than a commercial strain under a sub-optimal temperature regime.
Collapse
Affiliation(s)
- P Drouin
- Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Sainte-Foy, Canada
| | | | | |
Collapse
|
21
|
O'Connell KP, Gustafson AM, Lehmann MD, Thomashow MF. Identification of cold shock gene loci in Sinorhizobium meliloti by using a luxAB reporter transposon. Appl Environ Microbiol 2000; 66:401-5. [PMID: 10618254 PMCID: PMC91836 DOI: 10.1128/aem.66.1.401-405.2000] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Using a luxAB reporter transposon, seven mutants of Sinorhizobium meliloti were identified as containing insertions in four cold shock loci. LuxAB activity was strongly induced (25- to 160-fold) after a temperature shift from 30 to 15 degrees C. The transposon and flanking host DNA from each mutant was cloned, and the nucleic acid sequence of the insertion site was determined. Unexpectedly, five of the seven luxAB mutants contained transposon insertions in the 16S and 23S rRNA genes of two of the three rrn operons of S. meliloti. Directed insertion of luxAB genes into each of the three rrn operons revealed that all three operons were similarly affected by cold shock. Two other insertions were found to be located downstream of a homolog of the major Escherichia coli cold shock gene, cspA. Although the cold shock loci were highly induced in response to a shift to low temperature, none of the insertions resulted in a statistically significant decrease in growth rate at 15 degrees C.
Collapse
Affiliation(s)
- K P O'Connell
- NSF Center for Microbial Ecology, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | | | |
Collapse
|