1
|
Duport C, Armengaud J, Schmitt C, Morin D, Lacapère JJ. Elucidating the pivotal role of TSPO in porphyrin-related cellular processes, in Bacillus cereus. Biochimie 2024; 224:51-61. [PMID: 38423451 DOI: 10.1016/j.biochi.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 03/02/2024]
Abstract
A structural homolog of the mammalian TSPO has been identified in the human pathogen Bacillus cereus. BcTSPO, in its recombinant form, has previously been shown to bind and degrade porphyrins. In this study, we generated a ΔtspO mutant strain in B. cereus ATCC 14579 and assessed the impact of the absence of BcTSPO on cellular proteomics and physiological characteristics. The proteomic analysis revealed correlations between the lack of BcTSPO and the observed growth defects, increased oxygen consumption, ATP deficiency, heightened tryptophan catabolism, reduced motility, and impaired biofilm formation in the ΔtspO mutant strain. Our results also suggested that BcTSPO plays a crucial role in regulating intracellular levels of metabolites from the coproporphyrin-dependent branch of the heme biosynthetic pathway. This regulation potentially underlies alterations in the metabolic landscape, emphasizing the pivotal role of BcTSPO in B. cereus aerobic metabolism. Notably, our study unveils, for the first time, the involvement of TSPO in tryptophan metabolism. These findings underscore the multifaceted role of TSPO, not only in metabolic pathways but also potentially in the microorganism's virulence mechanisms.
Collapse
Affiliation(s)
| | - Jean Armengaud
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, 30200, Bagnols-sur-Cèze, France
| | - Caroline Schmitt
- Assistance Publique Hôpitaux de Paris (AP-HP), Centre Français des Porphyries, Hôpital Louis Mourier, 92700, Colombes, France; INSERM U1149, Center for Research on Inflammation (CRI), Université de Paris, 75018, Paris, France
| | - Didier Morin
- INSERM, U955, équipe 3, Faculté de Médecine, Université Paris Est, 94010, Creteil, France
| | - Jean-Jacques Lacapère
- Sorbonne Université, Ecole Normale Supérieure, PSL University, CNRS UMR 7203, Laboratoire des BioMolécules (LBM), 4 place Jussieu, F-75005, Paris, France
| |
Collapse
|
2
|
Zhu J, Jiang X, Guan D, Kang Y, Li L, Cao F, Zhao B, Ma M, Zhao J, Li J. Effects of rehydration on physiological and transcriptional responses of a water-stressed rhizobium. J Microbiol 2022; 60:31-46. [PMID: 34826097 DOI: 10.1007/s12275-022-1325-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 09/23/2021] [Accepted: 09/29/2021] [Indexed: 01/02/2023]
Abstract
As a microsymbiont of soybean, Bradyrhizobium japonicum plays an important role in symbiotic nitrogen fixation and sustainable agriculture. However, the survival of B. japonicum cells under water-deplete (e.g., drought) and water-replete (e.g., flood) conditions is a major concern affecting their nitrogen-fixing ability by establishing the symbiotic relationship with the host. In this study, we isolated a water stress tolerant rhizobium from soybean root nodules and tested its survival under water-deplete conditions. The rhizobium was identified as Bradyrhizobium japonicum and named strain 5038. Interestingly, both plate counting and live/dead fluorescence staining assays indicate that a number of viable but non-culturable cells exist in the culture medium upon the rehydration process which could cause dilution stress. Bradyrhizobium japonicum 5038 cells increased production of exopolysaccharide (EPS) and trehalose when dehydrated, suggesting that protective responses were stimulated. As expected, cells reduced their production upon the subsequent rehydration. To examine differential gene expression of B. japonicum 5038 when exposed to water-deplete and subsequent water-replete conditions, whole-genome transcriptional analysis was performed under 10% relative humidity (RH), and subsequent 100% RH, respectively. A total of 462 differentially expressed genes (DEGs, > 2.0-fold) were identified under the 10% RH condition, while 3,776 genes showed differential expression during the subsequent rehydration (100% RH) process. Genes involved in signal transduction, inorganic ion transport, energy production and metabolisms of carbohydrates, amino acids, and lipids were far more up-regulated than down-regulated in the 10% RH condition. Notably, trehalose biosynthetic genes (otsAB, treS, and treYZ), genes ligD, oprB, and a sigma factor rpoH were significantly induced by 10% RH. Under the subsequent 100% RH condition, genes involved in transcription, translation, cell membrane regulation, replication and repair, and protein processing were highly up-regulated. Interestingly, most of 10%-RH inducible genes displayed rehydration-repressed, except three genes encoding heat shock (Hsp20) proteins. Therefore, this study provides molecular evidence for the switch of gene expression of B. japonicum cells when encountered the opposite water availability from water-deplete to water-replete conditions.
Collapse
Affiliation(s)
- Jie Zhu
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Xin Jiang
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| | - Dawei Guan
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
| | - Yaowei Kang
- Life Sciences College of Zhaoqing University, Zhaoqing, 526061, P. R. China
| | - Li Li
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Fengming Cao
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Baisuo Zhao
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Mingchao Ma
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China
| | - Ji Zhao
- School of Ecology and Environment, Inner Mongolia University, Hohhot, 010021, P. R. China
| | - Jun Li
- Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, P. R. China.
- Laboratory of Quality & Safety Risk Assessment for Microbial Products (Beijing), Ministry of Agriculture, Beijing, 100081, P. R. China.
| |
Collapse
|
3
|
Hiser C, Montgomery BL, Ferguson-Miller S. TSPO protein binding partners in bacteria, animals, and plants. J Bioenerg Biomembr 2021; 53:463-487. [PMID: 34191248 PMCID: PMC8243069 DOI: 10.1007/s10863-021-09905-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/12/2021] [Indexed: 12/11/2022]
Abstract
The ancient membrane protein TSPO is phylogenetically widespread from archaea and bacteria to insects, vertebrates, plants, and fungi. TSPO’s primary amino acid sequence is only modestly conserved between diverse species, although its five transmembrane helical structure appears mainly conserved. Its cellular location and orientation in membranes have been reported to vary between species and tissues, with implications for potential diverse binding partners and function. Most TSPO functions relate to stress-induced changes in metabolism, but in many cases it is unclear how TSPO itself functions—whether as a receptor, a sensor, a transporter, or a translocator. Much evidence suggests that TSPO acts indirectly by association with various protein binding partners or with endogenous or exogenous ligands. In this review, we focus on proteins that have most commonly been invoked as TSPO binding partners. We suggest that TSPO was originally a bacterial receptor/stress sensor associated with porphyrin binding as its most ancestral function and that it later developed additional stress-related roles in eukaryotes as its ability to bind new partners evolved.
Collapse
Affiliation(s)
- Carrie Hiser
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA. .,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.
| | - Beronda L Montgomery
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA.,Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA.,Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, 48824, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
| |
Collapse
|
4
|
Campbell DE, Ly LK, Ridlon JM, Hsiao A, Whitaker RJ, Degnan PH. Infection with Bacteroides Phage BV01 Alters the Host Transcriptome and Bile Acid Metabolism in a Common Human Gut Microbe. Cell Rep 2021; 32:108142. [PMID: 32937127 PMCID: PMC8354205 DOI: 10.1016/j.celrep.2020.108142] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/07/2020] [Accepted: 08/21/2020] [Indexed: 12/16/2022] Open
Abstract
Gut-associated phages are hypothesized to alter the abundance and activity of their bacterial hosts, contributing to human health and disease. Although temperate phages constitute a significant fraction of the gut virome, the effects of lysogenic infection are underexplored. We report that the temperate phage, Bacteroides phage BV01, broadly alters its host's transcriptome, the prominent human gut symbiont Bacteroides vulgatus. This alteration occurs through phage-induced repression of a tryptophan-rich sensory protein (TspO) and represses bile acid deconjugation. Because microbially modified bile acids are important signals for the mammalian host, this is a mechanism by which a phage may influence mammalian phenotypes. Furthermore, BV01 and its relatives in the proposed phage family Salyersviridae are ubiquitous in human gut metagenomes, infecting a broad range of Bacteroides hosts. These results demonstrate the complexity of phage-bacteria-mammal relationships and emphasize a need to better understand the role of temperate phages in the gut microbiome.
Collapse
Affiliation(s)
| | - Lindsey K Ly
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | - Jason M Ridlon
- Division of Nutritional Sciences, University of Illinois, Urbana, IL 61801, USA; Department of Animal Sciences, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Ansel Hsiao
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA
| | - Rachel J Whitaker
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA; Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL 61801, USA
| | - Patrick H Degnan
- Department of Microbiology and Plant Pathology, University of California, Riverside, Riverside, CA 92521, USA.
| |
Collapse
|
5
|
Jurkiewicz P, Senicourt L, Ayeb H, Lequin O, Lacapere JJ, Batoko H. A Plant-Specific N-terminal Extension Reveals Evolutionary Functional Divergence within Translocator Proteins. iScience 2020; 23:100889. [PMID: 32087576 PMCID: PMC7033594 DOI: 10.1016/j.isci.2020.100889] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/30/2019] [Accepted: 02/03/2020] [Indexed: 12/13/2022] Open
Abstract
Conserved translocator proteins (TSPOs) mediate cell stress responses possibly in a cell-type-specific manner. This work reports on the molecular function of plant TSPO and their possible evolutionary divergence. Arabidopsis thaliana TSPO (AtTSPO) is stress induced and has a conserved polybasic, plant-specific N-terminal extension. AtTSPO reduces water loss by depleting aquaporin PIP2;7 in the plasma membrane. Herein, AtTSPO was found to bind phosphoinositides in vitro, but only full-length AtTSPO or chimeric mouse TSPO with an AtTSPO N-terminus bound PI(4,5)P2in vitro and modified PIP2;7 levels in vivo. Expression of AtTSPO but not its N-terminally truncated variant enhanced phospholipase C activity and depleted PI(4,5)P2 from the plasma membrane and its enrichment in Golgi membranes. Deletion or point mutations within the AtTSPO N-terminus affected PI(4,5)P2 binding and almost prevented AtTSPO-PIP2;7 interaction in vivo. The findings imply functional divergence of plant TSPOs from bacterial and animal counterparts via evolutionary acquisition of the phospholipid-interacting N-terminus.
Collapse
Affiliation(s)
- Pawel Jurkiewicz
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain (UCLouvain), Croix du Sud 4-5, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Lucile Senicourt
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 Place Jussieu, 75005 Paris, France
| | - Haitham Ayeb
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain (UCLouvain), Croix du Sud 4-5, L7.07.14, 1348 Louvain-la-Neuve, Belgium
| | - Olivier Lequin
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 Place Jussieu, 75005 Paris, France
| | - Jean-Jacques Lacapere
- Sorbonne Université, École Normale Supérieure, PSL University, CNRS, Laboratoire des Biomolécules, 4 Place Jussieu, 75005 Paris, France
| | - Henri Batoko
- Louvain Institute of Biomolecular Science and Technology (LIBST), University of Louvain (UCLouvain), Croix du Sud 4-5, L7.07.14, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
6
|
Busch AWU, Montgomery BL. The Tryptophan-Rich Sensory Protein (TSPO) is Involved in Stress-Related and Light-Dependent Processes in the Cyanobacterium Fremyella diplosiphon. Front Microbiol 2015; 6:1393. [PMID: 26696996 PMCID: PMC4677103 DOI: 10.3389/fmicb.2015.01393] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
Abstract
The tryptophan-rich sensory protein (TSPO) is a membrane protein, which is a member of the 18 kDa translocator protein/peripheral-type benzodiazepine receptor (MBR) family of proteins that is present in most organisms and is also referred to as Translocator protein 18 kDa. Although TSPO is associated with stress- and disease-related processes in organisms from bacteria to mammals, full elucidation of the functional role of the TSPO protein is lacking for most organisms in which it is found. In this study, we describe the regulation and function of a TSPO homolog in the cyanobacterium Fremyella diplosiphon, designated FdTSPO. Accumulation of the FdTSPO transcript is upregulated by green light and in response to nutrient deficiency and stress. A F. diplosiphon TSPO deletion mutant (i.e., ΔFdTSPO) showed altered responses compared to the wild type (WT) strain under stress conditions, including salt treatment, osmotic stress, and induced oxidative stress. Under salt stress, the FdTSPO transcript is upregulated and a ΔFdTSPO mutant accumulates lower levels of reactive oxygen species (ROS) and displays increased growth compared to WT. In response to osmotic stress, FdTSPO transcript levels are upregulated and ΔFdTSPO mutant cells exhibit impaired growth compared to the WT. By comparison, methyl viologen-induced oxidative stress results in higher ROS levels in the ΔFdTSPO mutant compared to the WT strain. Taken together, our results provide support for the involvement of membrane-localized FdTSPO in mediating cellular responses to stress in F. diplosiphon and represent detailed functional analysis of a cyanobacterial TSPO. This study advances our understanding of the functional roles of TSPO homologs in vivo.
Collapse
Affiliation(s)
- Andrea W. U. Busch
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
| | - Beronda L. Montgomery
- Department of Energy – Plant Research Laboratory, Michigan State University, East LansingMI, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East LansingMI, USA
| |
Collapse
|
7
|
Leneveu-Jenvrin C, Bouffartigues E, Maillot O, Cornelis P, Feuilloley MGJ, Connil N, Chevalier S. Expression of the translocator protein (TSPO) from Pseudomonas fluorescens Pf0-1 requires the stress regulatory sigma factors AlgU and RpoH. Front Microbiol 2015; 6:1023. [PMID: 26441945 PMCID: PMC4585239 DOI: 10.3389/fmicb.2015.01023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 09/08/2015] [Indexed: 11/19/2022] Open
Abstract
The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is an evolutionary conserved protein that is found in many Eukarya, Archae, and Bacteria, in which it plays several important functions including for example membrane biogenesis, signaling, and stress response. A tspo homolog gene has been identified in several members of the Pseudomonas genus, among which the soil bacterium P. fluorescens Pf0-1. In this bacterium, the tspo gene is located in the vicinity of a putative hybrid histidine kinase-encoding gene. Since tspo has been involved in water stress related response in plants, we explored the effects of hyperosmolarity and temperature on P. fluorescens Pf0-1 tspo expression using a strategy based on lux-reporter fusions. We show that the two genes Pfl01_2810 and tspo are co-transcribed forming a transcription unit. The expression of this operon is growth phase-dependent and is increased in response to high concentrations of NaCl, sucrose and to a D-cycloserine treatment, which are conditions leading to activity of the major cell wall stress responsive extracytoplasmic sigma factor AlgU. Interestingly, the promoter region activity is strongly lowered in a P. aeruginosa algU mutant, suggesting that AlgU may be involved at least partly in the molecular mechanism leading to Pfl01_2810-tspo expression. In silico analysis of this promoter region failed to detect an AlgU consensus binding site; however, a putative binding site for the heat shock response RpoH sigma factor was detected. Accordingly, the promoter activity of the region containing this sequence is increased in response to high growth temperature and slightly lowered in a P. aeruginosa rpoH mutant strain. Taken together, our data suggest that P. fluorescens tspo gene may belong at least partly to the cell wall stress response.
Collapse
Affiliation(s)
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Olivier Maillot
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Pierre Cornelis
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Nathalie Connil
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment, University of Rouen Evreux, France
| |
Collapse
|
8
|
Enigmatic Translocator protein (TSPO) and cellular stress regulation. Trends Biochem Sci 2015; 40:497-503. [PMID: 26228316 DOI: 10.1016/j.tibs.2015.07.001] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 06/25/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022]
Abstract
Translocator proteins (TSPOs) are conserved, ubiquitous membrane proteins identified initially as benzodiazepine-binding proteins in mammalian cells. Recent genetic and biochemical studies have challenged the accepted model that TSPOs are essential and required for steroidogenesis in animal cells. Instead, evidence from different kingdoms of life suggests that TSPOs are encoded by nonessential genes that are temporally upregulated in cells encountering conditions of oxidative stress, including inflammation and tissue injury. Here we discuss how TSPOs may be involved in complex homeostasis signaling mechanisms. We suggest that the main physiological role of TSPOs may be to modulate oxidative stress, irrespective of the cell type or subcellular localization, in part through the subtle regulation of tetrapyrrole metabolism.
Collapse
|
9
|
Leneveu-Jenvrin C, Connil N, Bouffartigues E, Papadopoulos V, Feuilloley MGJ, Chevalier S. Structure-to-function relationships of bacterial translocator protein (TSPO): a focus on Pseudomonas. Front Microbiol 2014; 5:631. [PMID: 25477872 PMCID: PMC4237140 DOI: 10.3389/fmicb.2014.00631] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2014] [Accepted: 11/04/2014] [Indexed: 12/21/2022] Open
Abstract
The translocator protein (TSPO), which was previously designated as the peripheral-type benzodiazepine receptor, is a 3.5 billion year-old evolutionarily conserved protein expressed by most Eukarya, Archae and Bacteria, but its organization and functions differ remarkably. By taking advantage of the genomic data available on TSPO, we focused on bacterial TSPO and attempted to define functions of TSPO in Pseudomonas via in silico approaches. A tspo ortholog has been identified in several fluorescent Pseudomonas. This protein presents putative binding motifs for cholesterol and PK 11195, which is a specific drug ligand of mitochondrial TSPO. While it is a common surface distribution, the sense of insertion and membrane localization differ between α- and γ-proteobacteria. Experimental published data and STRING analysis of common TSPO partners in fluorescent Pseudomonas indicate a potential role of TSPO in the oxidative stress response, iron homeostasis and virulence expression. In these bacteria, TSPO could also take part in signal transduction and in the preservation of membrane integrity.
Collapse
Affiliation(s)
- Charlène Leneveu-Jenvrin
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Nathalie Connil
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Emeline Bouffartigues
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Vassilios Papadopoulos
- Department of Medicine, Research Institute of the McGill University Health Centre, McGill University Montreal, QC, Canada
| | - Marc G J Feuilloley
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| | - Sylvie Chevalier
- Laboratory of Microbiology Signals and Microenvironment EA 4312, University of Rouen Evreux, France
| |
Collapse
|
10
|
Identification and characterization of a NaCl-responsive genetic locus involved in survival during desiccation in Sinorhizobium meliloti. Appl Environ Microbiol 2013; 79:5693-700. [PMID: 23851090 DOI: 10.1128/aem.01037-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Rhizobiaceae are a bacterial family of enormous agricultural importance due to the ability of its members to fix atmospheric nitrogen in an intimate relationship with plants. Their survival as naturally occurring soil bacteria in agricultural soils as well as popular seed inocula is affected directly by drought and salinity. Survival after desiccation in the presence of NaCl is enabled by underlying genetic mechanisms in the model organism Sinorhizobium meliloti 1021. Since salt stress parallels a loss in water activity, the identification of NaCl-responsive loci may identify loci involved in survival during desiccation. This approach enabled identification of the loci asnO and ngg by their reduced ability to grow on increased NaCl concentrations, likely due to their inability to produce the osmoprotectant N-acetylglutaminylglutamine (NAGGN). In addition, the mutant harboring ngg::Tn5luxAB was affected in its ability to survive desiccation and responded to osmotic stress. The desiccation sensitivity may have been due to secondary functions of Ngg (N-acetylglutaminylglutamine synthetase)-like cell wall metabolism as suggested by the presence of a d-alanine-d-alanine ligase (dAla-dAla) domain and by sensitivity of the mutant to β-lactam antibiotics. asnO::Tn5luxAB is expressed during the stationary phase under normal growth conditions. Amino acid sequence similarity to enzymes producing β-lactam inhibitors and increased resistance to β-lactam antibiotics may indicate that asnO is involved in the production of a β-lactam inhibitor.
Collapse
|
11
|
Ginter C, Kiburu I, Boudker O. Chemical catalysis by the translocator protein (18 kDa). Biochemistry 2013; 52:3609-11. [PMID: 23651039 DOI: 10.1021/bi400364z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Translocator proteins (18 kDa) (TSPOs) are conserved integral membrane proteins. In both eukaryotes and prokaryotes, TSPOs interact with porphyrins, precursors of heme, and photosynthetic pigments. Here we demonstrate that bacterial TSPOs catalyze rapid porphyrin degradation in a light- and oxygen-dependent manner. The reaction is inhibited by a synthetic TSPO ligand PK11195 and by mutations of conserved residues, which affect either porphyrin binding or catalytic activity. We hypothesize that TSPOs are ancient enzymes mediating porphyrin catabolism with the consumption of reactive oxygen species.
Collapse
Affiliation(s)
- Christopher Ginter
- Department of Physiology and Biophysics, Weill Cornell Medical College , New York, New York 10021, United States
| | | | | |
Collapse
|
12
|
The alternative translational profile that underlies the immune-evasive state of persistence in Chlamydiaceae exploits differential tryptophan contents of the protein repertoire. Microbiol Mol Biol Rev 2012; 76:405-43. [PMID: 22688818 DOI: 10.1128/mmbr.05013-11] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
One form of immune evasion is a developmental state called "persistence" whereby chlamydial pathogens respond to the host-mediated withdrawal of L-tryptophan (Trp). A sophisticated survival mode of reversible quiescence is implemented. A mechanism has evolved which suppresses gene products necessary for rapid pathogen proliferation but allows expression of gene products that underlie the morphological and developmental characteristics of persistence. This switch from one translational profile to an alternative translational profile of newly synthesized proteins is proposed to be accomplished by maximizing the Trp content of some proteins needed for rapid proliferation (e.g., ADP/ATP translocase, hexose-phosphate transporter, phosphoenolpyruvate [PEP] carboxykinase, the Trp transporter, the Pmp protein superfamily for cell adhesion and antigenic variation, and components of the cell division pathway) while minimizing the Trp content of other proteins supporting the state of persistence. The Trp starvation mechanism is best understood in the human-Chlamydia trachomatis relationship, but the similarity of up-Trp and down-Trp proteomic profiles in all of the pathogenic Chlamydiaceae suggests that Trp availability is an underlying cue relied upon by this family of pathogens to trigger developmental transitions. The biochemically expensive pathogen strategy of selectively increased Trp usage to guide the translational profile can be leveraged significantly with minimal overall Trp usage by (i) regional concentration of Trp residue placements, (ii) amplified Trp content of a single protein that is required for expression or maturation of multiple proteins with low Trp content, and (iii) Achilles'-heel vulnerabilities of complex pathways to high Trp content of one or a few enzymes.
Collapse
|
13
|
Muller EEL, Hourcade E, Louhichi-Jelail Y, Hammann P, Vuilleumier S, Bringel F. Functional genomics of dichloromethane utilization in Methylobacterium extorquens DM4. Environ Microbiol 2011; 13:2518-35. [PMID: 21854516 DOI: 10.1111/j.1462-2920.2011.02524.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Dichloromethane (CH(2)Cl(2) , DCM) is a chlorinated solvent mainly produced by industry, and a common pollutant. Some aerobic methylotrophic bacteria are able to grow with this chlorinated methane as their sole carbon and energy source, using a DCM dehalogenase/glutathione S-transferase encoded by dcmA to transform DCM into two molecules of HCl and one molecule of formaldehyde, a toxic intermediate of methylotrophic metabolism. In Methylobacterium extorquens DM4 of known genome sequence, dcmA lies on a 126 kb dcm genomic island not found so far in other DCM-dechlorinating strains. An experimental search for the molecular determinants involved in specific cellular responses of strain DM4 growing with DCM was performed. Random mutagenesis with a minitransposon containing a promoterless reporter gfp gene yielded 25 dcm mutants with a specific DCM-associated phenotype. Differential proteomic analysis of cultures grown with DCM and with methanol defined 38 differentially abundant proteins. The 5.5 kb dcm islet directly involved in DCM dehalogenation is the only one of seven gene clusters specific to the DCM response to be localized within the dcm genomic island. The DCM response was shown to involve mainly the core genome of Methylobacterium extorquens, providing new insights on DCM-dependent adjustments of C1 metabolism and gene regulation, and suggesting a specific stress response of Methylobacterium during growth with DCM. Fatty acid, hopanoid and peptidoglycan metabolisms were affected, hinting at the membrane-active effects of DCM due to its solvent properties. A chloride-induced efflux transporter termed CliABC was also newly identified. Thus, DCM dechlorination driven by the dcm islet elicits a complex adaptive response encoded by the core genome common to dechlorinating as well as non-dechlorinating Methylobacterium strains.
Collapse
Affiliation(s)
- Emilie E L Muller
- Université de Strasbourg, UMR 7156 CNRS, Génétique Moléculaire, Génomique, Microbiologie, Strasbourg, France
| | | | | | | | | | | |
Collapse
|
14
|
de Lucena DKC, Pühler A, Weidner S. The role of sigma factor RpoH1 in the pH stress response of Sinorhizobium meliloti. BMC Microbiol 2010; 10:265. [PMID: 20955556 PMCID: PMC2976971 DOI: 10.1186/1471-2180-10-265] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 10/18/2010] [Indexed: 11/14/2022] Open
Abstract
Background Environmental pH stress constitutes a limiting factor for S. meliloti survival and development. The response to acidic pH stress in S. meliloti is versatile and characterized by the differential expression of genes associated with various cellular functions. The purpose of this study was to gain detailed insight into the participation of sigma factors in the complex stress response system of S. meliloti 1021 using pH stress as an effector. Results In vitro assessment of S meliloti wild type and sigma factor mutants provided first evidence that the sigma factor RpoH1 plays a major role in the pH stress response. Differential expression of genes related to rhizobactin biosynthesis was observed in microarray analyses performed with the rpoH1 mutant at pH 7.0. The involvement of the sigma factor RpoH1 in the regulation of S. meliloti genes upon pH stress was analyzed by comparing time-course experiments of the wild type and the rpoH1 mutant. Three classes of S. meliloti genes could be identified, which were transcriptionally regulated in an RpoH1-independent, an RpoH1-dependent or in a complex manner. The first class of S. meliloti genes, regulated in an RpoH1-independent manner, comprises the group of the exopolysaccharide I biosynthesis genes and also the group of genes involved in motility and flagellar biosynthesis. The second class of S. meliloti genes, regulated in an RpoH1-dependent manner, is composed of genes known from heat shock studies, like ibpA, grpE and groEL5, as well as genes involved in translation like tufA and rplC. Finally, the third class of S. meliloti genes was regulated in a complex manner, which indicates that besides sigma factor RpoH1, further regulation takes place. This was found to be the case for the genes dctA, ndvA and smc01505. Conclusions Clustering of time-course microarray data of S. meliloti wild type and sigma factor rpoH1 mutant allowed for the identification of gene clusters, each with a unique time-dependent expression pattern, as well as for the classification of genes according to their dependence on RpoH1 expression and regulation. This study provided clear evidence that the sigma factor RpoH1 plays a major role in pH stress response.
Collapse
|
15
|
Veenman L, Alten J, Linnemannstöns K, Shandalov Y, Zeno S, Lakomek M, Gavish M, Kugler W. Potential involvement of F0F1-ATP(synth)ase and reactive oxygen species in apoptosis induction by the antineoplastic agent erucylphosphohomocholine in glioblastoma cell lines : a mechanism for induction of apoptosis via the 18 kDa mitochondrial translocator protein. Apoptosis 2010; 15:753-68. [PMID: 20107899 PMCID: PMC3128697 DOI: 10.1007/s10495-010-0460-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Erucylphosphohomocholine (ErPC3, Erufosine) was reported previously to induce apoptosis in otherwise highly apoptosis-resistant malignant glioma cell lines while sparing their non-tumorigenic counterparts. We also previously found that the mitochondrial 18 kDa Translocator Protein (TSPO) is required for apoptosis induction by ErPC3. These previous studies also suggested involvement of reactive oxygen species (ROS). In the present study we further investigated the potential involvement of ROS generation, the participation of the mitochondrial respiration chain, and the role of the mitochondrial F(O)F(1)-ATP(synth)ase in the pro-apoptotic effects of ErPC3 on U87MG and U118MG human glioblastoma cell lines. For this purpose, cells were treated with the ROS chelator butylated hydroxyanisole (BHA), the mitochondrial respiration chain inhibitors rotenone, antimycin A, myxothiazol, and the uncoupler CCCP. Also oligomycin and piceatannol were studied as inhibitors of the F(O) and F(1) subunits of the mitochondrial F(O)F(1)-ATP(synth)ase, respectively. BHA was able to attenuate apoptosis induction by ErPC3, including mitochondrial ROS generation as determined with cardiolipin oxidation, as well as collapse of the mitochondrial membrane potential (Deltapsi(m)). Similarly, we found that oligomycin attenuated apoptosis and collapse of the Deltapsi(m), normally induced by ErPC3, including the accompanying reductions in cellular ATP levels. Other inhibitors of the mitochondrial respiration chain, as well as piceatannol, did not show such effects. Consequently, our findings strongly point to a role for the F(O) subunit of the mitochondrial F(O)F(1)-ATP(synth)ase in ErPC3-induced apoptosis and dissipation of Deltapsi(m) as well as ROS generation by ErPC3 and TSPO.
Collapse
Affiliation(s)
- Leo Veenman
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Julia Alten
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Karen Linnemannstöns
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Yulia Shandalov
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Sivan Zeno
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Max Lakomek
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Moshe Gavish
- Department of Molecular Pharmacology, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, P.O. Box 9649, Bat-Galim, 31096 Haifa, Israel
| | - Wilfried Kugler
- Abteilung Pädiatrie I, Zentrum Kinderheilkunde und Jugendmedizin, Universitätsmedizin Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|
16
|
Gram-negative bacterial sensors for eukaryotic signal molecules. SENSORS 2009; 9:6967-90. [PMID: 22399982 PMCID: PMC3290508 DOI: 10.3390/s90906967] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/16/2022]
Abstract
Ample evidence exists showing that eukaryotic signal molecules synthesized and released by the host can activate the virulence of opportunistic pathogens. The sensitivity of prokaryotes to host signal molecules requires the presence of bacterial sensors. These prokaryotic sensors, or receptors, have a double function: stereospecific recognition in a complex environment and transduction of the message in order to initiate bacterial physiological modifications. As messengers are generally unable to freely cross the bacterial membrane, they require either the presence of sensors anchored in the membrane or transporters allowing direct recognition inside the bacterial cytoplasm. Since the discovery of quorum sensing, it was established that the production of virulence factors by bacteria is tightly growth-phase regulated. It is now obvious that expression of bacterial virulence is also controlled by detection of the eukaryotic messengers released in the micro-environment as endocrine or neuro-endocrine modulators. In the presence of host physiological stress many eukaryotic factors are released and detected by Gram-negative bacteria which in return rapidly adapt their physiology. For instance, Pseudomonas aeruginosa can bind elements of the host immune system such as interferon-γ and dynorphin and then through quorum sensing circuitry enhance its virulence. Escherichia coli sensitivity to the neurohormones of the catecholamines family appears relayed by a recently identified bacterial adrenergic receptor. In the present review, we will describe the mechanisms by which various eukaryotic signal molecules produced by host may activate Gram-negative bacteria virulence. Particular attention will be paid to Pseudomonas, a genus whose representative species, P. aeruginosa, is a common opportunistic pathogen. The discussion will be particularly focused on the pivotal role played by these new types of pathogen sensors from the sensing to the transduction mechanism involved in virulence factors regulation. Finally, we will discuss the consequence of the impact of host signal molecules on commensally or opportunistic pathogens associated with different human tissue.
Collapse
|
17
|
Chapalain A, Chevalier S, Orange N, Murillo L, Papadopoulos V, Feuilloley MGJ. Bacterial ortholog of mammalian translocator protein (TSPO) with virulence regulating activity. PLoS One 2009; 4:e6096. [PMID: 19564920 PMCID: PMC2699550 DOI: 10.1371/journal.pone.0006096] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2009] [Accepted: 05/21/2009] [Indexed: 11/18/2022] Open
Abstract
The translocator protein (TSPO), previously designated as peripheral-type benzodiazepine receptor, is a protein mainly located in the outer mitochondrial membrane of eukaryotic cells. TSPO is implicated in major physiological functions and functionally associated with other proteins such as the voltage-dependent anionic channel, also designated as mitochondrial porin. Surprisingly, a TSPO-related protein was identified in the photosynthetic bacterium Rhodobacter sphaeroides but it was initially considered as a relict of evolution. In the present study we cloned a tspO gene in Pseudomonas fluorescens MF37, a non-photosynthetic eubacterium and we used bioinformatics tools to identify TSPO in the genome of 97 other bacteria. P. fluorescens TSPO was recognized by antibodies against mouse protein and by PK 11195, an artificial ligand of mitochondrial TSPO. As in eukaryotes, bacterial TSPO appears functionally organized as a dimer and the apparent Kd for PK 11195 is in the same range than for its eukaryotic counterpart. When P. fluorescens MF37 was treated with PK 11195 (10(-5) M) adhesion to living or artificial surfaces and biofilm formation activity were increased. Conversely, the apoptotic potential of bacteria on eukaryotic cells was significantly reduced. This effect of PK11195 was abolished in a mutant of P. fluorescens MF37 deficient for its major outer membrane porin, OprF. The present results demonstrate the existence of a bacterial TSPO that shares common structural and functional characteristics with its mammalian counterpart. This protein, apparently involved in adhesion and virulence, reveals the existence of a possible new inter kingdom signalling system and suggests that the human microbiome should be involuntarily exposed to the evolutionary pressure of benzodiazepines and related molecules. This discovery also represents a promising opportunity for the development of alternative antibacterial strategies.
Collapse
Affiliation(s)
- Annelise Chapalain
- Laboratory of Cold Microbiology UPRES EA4312, University of Rouen, Evreux, France
- ADIPpharm, Evreux, France
| | - Sylvie Chevalier
- Laboratory of Cold Microbiology UPRES EA4312, University of Rouen, Evreux, France
| | - Nicole Orange
- Laboratory of Cold Microbiology UPRES EA4312, University of Rouen, Evreux, France
- ADIPpharm, Evreux, France
| | - Laurence Murillo
- Laboratory of Cold Microbiology UPRES EA4312, University of Rouen, Evreux, France
| | - Vassilios Papadopoulos
- The Research Institute of the McGill University Health Centre & Department of Medicine, McGill University, Montreal, Quebec, Canada
| | - Marc G. J. Feuilloley
- Laboratory of Cold Microbiology UPRES EA4312, University of Rouen, Evreux, France
- ADIPpharm, Evreux, France
- * E-mail:
| |
Collapse
|
18
|
Gong Z, Zhu J, Yu G, Zou H. Disruption of nifA gene influences multiple cellular processes in Sinorhizobium meliloti. J Genet Genomics 2009; 34:783-9. [PMID: 17884688 DOI: 10.1016/s1673-8527(07)60089-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2007] [Accepted: 05/10/2007] [Indexed: 11/21/2022]
Abstract
Sinorhizobium meliloti nifA is important in fixing nitrogen during symbiosis. A nifA null mutant induces small white invalid nodules in the roots of host plant. The additional phenotypic alterations associated with the disruption of the nifA gene are reported in this study. Under a free-living state, S. meliloti nifA mutant reduces its ability to swarm on a half-solid plate. Interestingly, the AHL (Acylhomoserine lactones) contents in the nifA mutant are lower than that of the wild type during the lag phase, whereas it is reversed in the logarithmic and stationary phases. Quantitative spectrophotometric assays reveal that the total amount of extracellular proteins of the nifA mutant are lower than that of the wild type. In addition, the mutant abolishes its nodulation competitive ability during symbiosis. These findings indicate that NifA plays a regulatory role in multiple cellular processes in S. meliloti.
Collapse
Affiliation(s)
- Ziying Gong
- National Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | |
Collapse
|
19
|
Hellweg C, Pühler A, Weidner S. The time course of the transcriptomic response of Sinorhizobium meliloti 1021 following a shift to acidic pH. BMC Microbiol 2009; 9:37. [PMID: 19216801 PMCID: PMC2651895 DOI: 10.1186/1471-2180-9-37] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2008] [Accepted: 02/15/2009] [Indexed: 11/21/2022] Open
Abstract
Background The symbiotic soil bacterium Sinorhizobium meliloti often has to face low pH in its natural habitats. To identify genes responding to pH stress a global transcriptional analysis of S. meliloti strain 1021 following a pH shift from pH 7.0 to pH 5.75 was carried out. In detail, oligo-based whole genome microarrays were used in a time course experiment. The monitoring period covered a time span of about one hour after the pH shift. The obtained microarray data was filtered and grouped by K-means clustering in order to obtain groups of genes behaving similarly concerning their expression levels throughout the time course. Results The results display a versatile response of S. meliloti 1021 represented by distinct expression profiles of subsets of genes with functional relation. The eight generated clusters could be subdivided into a group of four clusters containing genes that were up-regulated and another group of four clusters containing genes that were down-regulated in response to the acidic pH shift. The respective mean expression progression of the four up-regulated clusters could be described as (i) permanently and strong, (ii) permanently and intermediate, (iii) permanently and progressive, and (iv) transiently up-regulated. The expression profile of the four down-regulated clusters could be characterized as (i) permanently, (ii) permanently and progressive, (iii) transiently, and (iv) ultra short down-regulated. Genes coding for proteins with functional relation were mostly cumulated in the same cluster, pointing to a characteristic expression profile for distinct cellular functions. Among the strongest up-regulated genes lpiA, degP1, cah, exoV and exoH were found. The most striking functional groups responding to the shift to acidic pH were genes of the exopolysaccharide I biosynthesis as well as flagellar and chemotaxis genes. While the genes of the exopolysaccharide I biosynthesis (exoY, exoQ, exoW, exoV, exoT, exoH, exoK exoL, exoO, exoN, exoP) were up-regulated, the expression level of the flagellar and chemotaxis genes (visR, motA, flgF, flgB, flgC, fliE, flgG, flgE, flgL, flbT, mcpU) simultaneously decreased in response to acidic pH. Other responding functional groups of genes mainly belonged to nitrogen uptake and metabolism (amtB, nrtB, nirB, nirD), methionine metabolism (metA, metF, metH, metK, bmt and ahcY) as well as ion transport systems (sitABCD, phoCD). It is noteworthy, that several genes coding for hypothetical proteins of unknown function could be identified as up-regulated in response to the pH shift. Conclusion It was shown that the short term response to acidic pH stress does not result in a simple induction or repression of genes, but in a sequence of responses varying in their intensity over time. Obviously, the response to acidic pH is not based on a few specific genes, but involves whole sets of genes associated with various cellular functions.
Collapse
Affiliation(s)
- Christoph Hellweg
- Lehrstuhl für Genetik, Fakultät für Biologie, Universität Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
20
|
Hristozkova M, Stancheva I, Geneva M. Growth and Nitrogen Fixation of Different Medicago Sativa-Sinorhizobium MelilotiAssociations Under Conditions of Mineral Elements Shortage. BIOTECHNOL BIOTEC EQ 2009. [DOI: 10.1080/13102818.2009.10818406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
21
|
Response of Sinorhizobium meliloti to elevated concentrations of cadmium and zinc. Appl Environ Microbiol 2008; 74:4218-21. [PMID: 18469129 DOI: 10.1128/aem.02244-07] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Whole-genome transcriptional profiling was used to identify genes in Sinorhizobium meliloti 1021 that are differentially expressed during exposure to elevated concentrations of cadmium and zinc. Mutant strains with insertions in metal-regulated genes and in genes encoding putative metal efflux pumps were analyzed for their metal sensitivities, revealing a crucial role for the SMc04128-encoded P-type ATPase in the defense of S. meliloti against cadmium and zinc stress.
Collapse
|
22
|
Cytryn EJ, Sangurdekar DP, Streeter JG, Franck WL, Chang WS, Stacey G, Emerich DW, Joshi T, Xu D, Sadowsky MJ. Transcriptional and physiological responses of Bradyrhizobium japonicum to desiccation-induced stress. J Bacteriol 2007; 189:6751-62. [PMID: 17660288 PMCID: PMC2045231 DOI: 10.1128/jb.00533-07] [Citation(s) in RCA: 119] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The growth and persistence of rhizobia and bradyrhizobia in soils are negatively impacted by drought conditions. In this study, we used genome-wide transcriptional analyses to obtain a comprehensive understanding of the response of Bradyrhizobium japonicum to drought. Desiccation of cells resulted in the differential expression of 15 to 20% of the 8,453 [corrected] B. japonicum open reading frames, with considerable differentiation between early (after 4 h) and late (after 24 and 72 h) expressed genes. While 225 genes were universally up-regulated at all three incubation times in response to desiccation, an additional 43 and 403 up-regulated genes were common to the 4/24- and 24/72-h incubation times, respectively. Desiccating conditions resulted in the significant induction (>2.0-fold) of the trehalose-6-phosphate synthetase (otsA), trehalose-6-phosphate phosphatase (otsB), and trehalose synthase (treS) genes, which encode two of the three trehalose synthesis pathways found in B. japonicum. Gene induction was correlated with an elevated intracellular concentration of trehalose and increased activity of trehalose-6-phosphate synthetase, collectively supporting the hypothesis that this disaccharide plays a prominent and important role in promoting desiccation tolerance in B. japonicum. Microarray data also indicated that sigma(54)- and sigma(24)-associated transcriptional regulators and genes encoding isocitrate lyase, oxidative stress responses, the synthesis and transport of exopolysaccharides, heat shock response proteins, enzymes for the modification and repair of nucleic acids, and the synthesis of pili and flagella are also involved in the response of B. japonicum to desiccation. Polyethylene glycol-generated osmotic stress induced significantly fewer genes than those transcriptionally activated by desiccation. However, 67 genes were commonly induced under both conditions. Taken together, these results suggest that B. japonicum directly responds to desiccation by adapting to changes imparted by reduced water activity, such as the synthesis of trehalose and polysaccharides and, secondarily, by the induction of a wide variety of proteins involved in protection of the cell membrane, repair of DNA damage, stability and integrity of proteins, and oxidative stress responses.
Collapse
Affiliation(s)
- Eddie J Cytryn
- Department of Soil, Water, and Climate, BioTechnology Institute, University of Minnesota, St. Paul, Minnesota, USA [corrected]
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sauviac L, Philippe H, Phok K, Bruand C. An extracytoplasmic function sigma factor acts as a general stress response regulator in Sinorhizobium meliloti. J Bacteriol 2007; 189:4204-16. [PMID: 17400745 PMCID: PMC1913381 DOI: 10.1128/jb.00175-07] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti genes transcriptionally up-regulated after heat stress, as well as upon entry into stationary phase, were identified by microarray analyses. Sixty stress response genes were thus found to be up-regulated under both conditions. One of them, rpoE2 (smc01506), encodes a putative extracytoplasmic function (ECF) sigma factor. We showed that this sigma factor controls its own transcription and is activated by various stress conditions, including heat and salt, as well as entry into stationary phase after either carbon or nitrogen starvation. We also present evidence that the product of the gene cotranscribed with rpoE2 negatively regulates RpoE2 activity, and we therefore propose that it plays the function of anti-sigma factor. By combining transcriptomic, bioinformatic, and quantitative reverse transcription-PCR analyses, we identified 44 RpoE2-controlled genes and predicted the number of RpoE2 targets to be higher. Strikingly, more than one-third of the 60 stress response genes identified in this study are RpoE2 targets. Interestingly, two genes encoding proteins with known functions in stress responses, namely, katC and rpoH2, as well as a second ECF-encoding gene, rpoE5, were found to be RpoE2 regulated. Altogether, these data suggest that RpoE2 is a major global regulator of the general stress response in S. meliloti. Despite these observations, and although this sigma factor is well conserved among alphaproteobacteria, no in vitro nor in planta phenotypic difference from the wild-type strain could be detected for rpoE2 mutants. This therefore suggests that other important actors in the general stress response have still to be identified in S. meliloti.
Collapse
Affiliation(s)
- Laurent Sauviac
- Laboratoire des Interactions Plantes-Microorganismes, UMR 2594-441 CNRS-INRA, BP52627, 31326 Castanet-Tolosan Cedex, France
| | | | | | | |
Collapse
|
24
|
Gibson KE, Barnett MJ, Toman CJ, Long SR, Walker GC. The symbiosis regulator CbrA modulates a complex regulatory network affecting the flagellar apparatus and cell envelope proteins. J Bacteriol 2007; 189:3591-602. [PMID: 17237174 PMCID: PMC1855900 DOI: 10.1128/jb.01834-06] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Sinorhizobium meliloti participates in a nitrogen-fixing symbiosis with legume plant host species of the genera Medicago, Melilotus, and Trigonella. We recently identified an S. meliloti two-component sensory histidine kinase, CbrA, which is absolutely required to establish a successful symbiosis with Medicago sativa (K. E. Gibson, G. R. Campbell, J. Lloret, and G. C. Walker, J. Bacteriol. 188:4508-4521, 2006). In addition to having a symbiotic defect, the cbrA::Tn5 mutant also has free-living phenotypes that suggest a cell envelope perturbation. Because the bases for these phenotypes are not well understood, we undertook an identification of CbrA-regulated genes. We performed a microarray analysis and compared the transcriptome of the cbrA::Tn5 mutant to that of the wild type. Our global analysis of gene expression identified 162 genes that are differentially expressed in the cbrA::Tn5 mutant, including those encoding proteins involved in motility and chemotaxis, metabolism, and cell envelope function. With regard to those genes with a known role in symbiosis, we observed increased expression of nine genes with overlapping functions in bacterial invasion of its host, which suggests that the mutant could be competent for invasion. Since these CbrA-repressed genes are vital to the invasion process, it appears that down-regulation of CbrA activity is important at this stage of nodule development. In contrast, our previous work showed that CbrA is required for bacteria to establish themselves within the host as nitrogen-fixing symbionts. Therefore, we propose a model in which CbrA functions as a developmental switch during symbiosis.
Collapse
Affiliation(s)
- Katherine E Gibson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | |
Collapse
|
25
|
Domínguez-Ferreras A, Pérez-Arnedo R, Becker A, Olivares J, Soto MJ, Sanjuán J. Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti. J Bacteriol 2006; 188:7617-25. [PMID: 16916894 PMCID: PMC1636257 DOI: 10.1128/jb.00719-06] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, DNA microarrays were used to investigate genome-wide transcriptional responses of Sinorhizobium meliloti to a sudden increase in external osmolarity elicited by addition of either NaCl or sucrose to exponentially growing cultures. A time course of the response within the first 4 h after the osmotic shock was established. We found that there was a general redundancy in the differentially expressed genes after NaCl or sucrose addition. Both kinds of stress resulted in induction of a large number of genes having unknown functions and in repression of many genes coding for proteins with known functions. There was a strong replicon bias in the pattern of the osmotic stress response; whereas 64% of the upregulated genes had a plasmid localization, 85% of the downregulated genes were chromosomal. Among the pSymB osmoresponsive genes, 83% were upregulated, suggesting the importance of this plasmid for S. meliloti osmoadaptation. Indeed, we identified a 200-kb region in pSymB needed for adaptation to saline shock which has a high density of osmoregulated genes.
Collapse
Affiliation(s)
- Ana Domínguez-Ferreras
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidin, CSIC, Prof. Albareda 1, E-18008 Granada, Spain
| | | | | | | | | | | |
Collapse
|
26
|
de Bruijn FJ, Rossbach S, Bruand C, Parrish JR. A highly conserved Sinorhizobium meliloti operon is induced microaerobically via the FixLJ system and by nitric oxide (NO) via NnrR. Environ Microbiol 2006; 8:1371-81. [PMID: 16872401 DOI: 10.1111/j.1462-2920.2006.01030.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A previously generated collection of 11 Tn5-luxAB insertion mutants of Sinorhizobium meliloti harbouring lux reporter gene fusions induced under microaerobic (1% O2) conditions was further characterized and mapped on the sequenced S. meliloti genome. One highly induced gene fusion from this collection (loe-7) was found to be located in the intergenic region between sma1292, encoding a putative protease/collagenase, and a gene of unknown function (sma1294). The loe-7 fusion had been shown previously to be partially controlled by the oxygen sensor/regulator FixLJ system, but significant ( approximately 40%) Lux activity remained in a fixLJ mutant background. Therefore, a secondary Tn1721 mutagenesis of the loe-7 strain was carried out. Nine Tn1721 ('dark') insertions completely abolishing the Lux activity of the loe-7 fusion under microaerobic conditions were isolated. Surprisingly, five dark insertions mapped in denitrification genes [napA, napC, nirK--two insertions--and sma1245 encoding a NnrR-like transcriptional regulator controlling denitrification in response to nitric oxide (NO)]; Tn1721 insertions in the respiration genes fixG and fixP resulted in a reduced expression of the loe-7-lux fusion, and insertions in the regulatory genes fixJ and fixK1 resulted in low, but still detectable Lux activity. On the contrary, insertions in the norD or norQ genes resulted in constitutive Lux activity. In these mutant strains, NO would be expected to accumulate under microaerobic conditions. NO was found to be able to strongly induce the loe-7-luxAB fusion under microaerobic and aerobic conditions, but only in the presence of the functional nnrR-like gene (sma1245). These results suggest that NO, via the NnrR regulator, can serve as a signal molecule to induce the loe-7-luxAB fusion in concert with the FixLJ system.
Collapse
Affiliation(s)
- Frans J de Bruijn
- Laboratoire des Interactions Plantes Micro-organismes (LIPM), UMR CNRS 2594/INRA 441, BP 52627, 31326 Castanet-Tolosan Cedex, France.
| | | | | | | |
Collapse
|
27
|
Bodogai M, Ferenczi S, Bashtovyy D, Miclea P, Papp P, Dusha I. The ntrPR operon of Sinorhizobium meliloti is organized and functions as a toxin-antitoxin module. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:811-22. [PMID: 16838793 DOI: 10.1094/mpmi-19-0811] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The chromosomal ntrPR operon of Sinorhizobium meliloti encodes a protein pair that forms a toxin-antitoxin (TA) module, the first characterized functional TA system in Rhizobiaceae. Similarly to other bacterial TA systems, the toxin gene ntrR is preceded by and partially overlaps with the antitoxin gene ntrP. Based on protein homologies, the ntrPR operon belongs to the vapBC family of TA systems. The operon is negatively autoregulated by the NtrPNtrR complex. Promoter binding by NtrP is weak; stable complex formation also requires the presence of NtrR. The N-terminal part of NtrP is responsible for the interaction with promoter DNA, whereas the C-terminal part is required for protein-protein interactions. In the promoter region, a direct repeat sequence was identified as the binding site of the NtrPNtrR complex. NtrR expression resulted in the inhibition of cell growth and colony formation; this effect was counteracted by the presence of the antitoxin NtrP. These results and our earlier observations demonstrating a less effective downregulation of a wide range of symbiotic and metabolic functions in the ntrR mutant under microoxic conditions and an increased symbiotic efficiency with the host plant alfalfa suggest that the ntrPR module contributes to adjusting metabolic levels under symbiosis and other stressful conditions.
Collapse
Affiliation(s)
- Monica Bodogai
- Institute of Genetics, Biological Research Center, Hungarian Academy of Sciences, Szeged
| | | | | | | | | | | |
Collapse
|
28
|
Capela D, Filipe C, Bobik C, Batut J, Bruand C. Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:363-72. [PMID: 16610739 DOI: 10.1094/mpmi-19-0363] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Sinorhizobium meliloti is a soil bacterium able to induce the formation of nodules on the root of specific legumes, including alfalfa (Medicago sativa). Bacteria colonize nodules through infection threads, invade the plant intracellularly, and ultimately differentiate into bacteroids capable of reducing atmospheric nitrogen to ammonia, which is directly assimilated by the plant. As a first step to describe global changes in gene expression of S. meliloti during the symbiotic process, we used whole genome microarrays to establish the transcriptome profile of bacteria from nodules induced by a bacterial mutant blocked at the infection stage and from wild-type nodules harvested at various timepoints after inoculation. Comparison of these profiles to those of cultured bacteria grown either to log or stationary phase as well as examination of a number of genes with known symbiotic transcription patterns allowed us to correlate global gene-expression patterns to three known steps of symbiotic bacteria bacteroid differentiation, i.e., invading bacteria inside infection threads, young differentiating bacteroids, and fully differentiated, nitrogen-fixing bacteroids. Finally, analysis of individual gene transcription profiles revealed a number of new potential symbiotic genes.
Collapse
Affiliation(s)
- Delphine Capela
- Laboratoire des Interactions Plantes-Microorganismes, UMR INRA-CNRS 441-2594, BP52627, 31326 Castanet-Tolosan, France
| | | | | | | | | |
Collapse
|
29
|
Anthony JR, Warczak KL, Donohue TJ. A transcriptional response to singlet oxygen, a toxic byproduct of photosynthesis. Proc Natl Acad Sci U S A 2005; 102:6502-7. [PMID: 15855269 PMCID: PMC1088386 DOI: 10.1073/pnas.0502225102] [Citation(s) in RCA: 128] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The ability of phototrophs to convert light into biological energy is critical for life on Earth. However, there can be deleterious consequences associated with this bioenergetic conversion, including the production of toxic byproducts. For example, singlet oxygen (1O2) can be formed during photosynthesis by energy transfer from excited triplet-state chlorophyll pigments to O2. By monitoring gene expression and growth in the presence of 1O2, we show that the phototrophic bacterium Rhodobacter sphaeroides mounts a transcriptional response to this reactive oxygen species (ROS) that requires the alternative sigma factor, sigma(E). An increase in sigma(E) activity is seen when cells are exposed to 1O2 generated either by photochemistry within the photosynthetic apparatus or the photosensitizer, methylene blue. Wavelengths of light responsible for the generating triplet-state chlorophyll pigments in the photosynthetic apparatus are sufficient for a sustained increase in sigma(E) activity. Continued exposure to 1O2 is required to maintain this transcriptional response, and other ROS do not cause a similar increase in sigma(E)-dependent gene expression. When a sigma(E) mutant produces low levels of carotenoids, 1O2 is bacteriocidal, suggesting that this response is essential for protecting cells from this ROS. In addition, global gene expression analysis identified approximately 180 genes (approximately 60 operons) whose RNA levels increase > or = 3-fold in cells with increased sigma(E) activity. Gene products encoded by four newly identified sigma(E)-dependent operons are predicted to be involved in stress response, protecting cells from 1O2 damage, or the conservation of energy.
Collapse
Affiliation(s)
- Jennifer R Anthony
- Department of Bacteriology, University of Wisconsin, 420 Henry Mall, Madison, WI 53706, USA
| | | | | |
Collapse
|
30
|
Puskás LG, Nagy ZB, Kelemen JZ, Rüberg S, Bodogai M, Becker A, Dusha I. Wide-range transcriptional modulating effect of ntrR under microaerobiosis in Sinorhizobium meliloti. Mol Genet Genomics 2004; 272:275-89. [PMID: 15365818 DOI: 10.1007/s00438-004-1051-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Accepted: 07/31/2004] [Indexed: 10/26/2022]
Abstract
A mutation in the second gene in the ntrPR operon results in increased expression of nodulation (nod) and nitrogen fixation (nif) genes in Sinorhizobium meliloti. Since this pleiotropic effect is particularly pronounced in the presence of external combined nitrogen, a nitrogen regulatory function has been suggested for NtrR. To identify the complete set of protein-coding genes influenced by loss of ntrR function, microarray hybridizations were carried out to compare transcript levels in the wild type and mutant strains grown under aerobic and microaerobic conditions. Of the 6207 genes examined, representing the entire genome of S. meliloti, 7% exhibited altered expression: 4.5% of the genes are affected under oxic, 2.5% under microoxic conditions. 0.4% of all the genes are affected under both oxygen concentrations. A microoxic environment is required for the induction of genes related to symbiotic functions but results in the down-regulation of other (e.g. metabolic) functions. When the alterations in transcription levels at low oxygen concentration in the mutant strain were compared to those of the wild type, a modulating effect of the ntrR mutation was observed. For example, symbiotic nif/fix genes were induced in both strains, but the level of induction was higher in the ntrR mutant. In contrast, genes related to transcription/translation functions were down-regulated in both strains, and the effect was greater in the wild-type strain than in the ntrR mutant. A relatively wide range of functions was affected by this modulating influence, suggesting that ntrR is not a nitrogen regulatory gene. Since genes encoding various unrelated functions were affected, we propose that NtrR may either interfere with general regulatory mechanisms, such as phosphorylation/dephosphorylation, or may influence RNA stability.
Collapse
Affiliation(s)
- L G Puskás
- Laboratory of Functional Genomics, Biological Research Center, Hungarian Academy of Sciences, P.O. Box 521, 6701 Szeged, Hungary
| | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
Bacterial signalling network includes an array of numerous interacting components that monitor environmental and intracellular parameters and effect cellular response to changes in these parameters. The complexity of bacterial signalling systems makes comparative genome analysis a particularly valuable tool for their studies. Comparative studies revealed certain general trends in the organization of diverse signalling systems. These include (i) modular structure of signalling proteins; (ii) common organization of signalling components with the flow of information from N-terminal sensory domains to the C-terminal transmitter or signal output domains (N-to-C flow); (iii) use of common conserved sensory domains by different membrane receptors; (iv) ability of some organisms to respond to one environmental signal by activating several regulatory circuits; (v) abundance of intracellular signalling proteins, typically consisting of a PAS or GAF sensor domains and various output domains; (vi) importance of secondary messengers, cAMP and cyclic diguanylate; and (vii) crosstalk between components of different signalling pathways. Experimental characterization of the novel domains and domain combinations would be needed for achieving a better understanding of the mechanisms of signalling response and the intracellular hierarchy of different signalling pathways.
Collapse
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA.
| |
Collapse
|
32
|
Stowe-Evans EL, Ford J, Kehoe DM. Genomic DNA microarray analysis: identification of new genes regulated by light color in the cyanobacterium Fremyella diplosiphon. J Bacteriol 2004; 186:4338-49. [PMID: 15205436 PMCID: PMC421618 DOI: 10.1128/jb.186.13.4338-4349.2004] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2003] [Accepted: 03/03/2004] [Indexed: 11/20/2022] Open
Abstract
Many cyanobacteria use complementary chromatic adaptation to efficiently utilize energy from both green and red regions of the light spectrum during photosynthesis. Although previous studies have shown that acclimation to changing light wavelengths involves many physiological responses, research to date has focused primarily on the expression and regulation of genes that encode proteins of the major photosynthetic light-harvesting antennae, the phycobilisomes. We have used two-dimensional gel electrophoresis and genomic DNA microarrays to expand our understanding of the physiology of acclimation to light color in the cyanobacterium Fremyella diplosiphon. We found that the levels of nearly 80 proteins are altered in cells growing in green versus red light and have cloned and positively identified 17 genes not previously known to be regulated by light color in any species. Among these are homologs of genes present in many bacteria that encode well-studied proteins lacking clearly defined functions, such as tspO, which encodes a tryptophan-rich sensory protein, and homologs of genes encoding proteins of clearly defined function in many species, such as nblA and chlL, encoding phycobilisome degradation and chlorophyll biosynthesis proteins, respectively. Our results suggest novel roles for several of these gene products and highly specialized, unique uses for others.
Collapse
|
33
|
Becker A, Bergès H, Krol E, Bruand C, Rüberg S, Capela D, Lauber E, Meilhoc E, Ampe F, de Bruijn FJ, Fourment J, Francez-Charlot A, Kahn D, Küster H, Liebe C, Pühler A, Weidner S, Batut J. Global changes in gene expression in Sinorhizobium meliloti 1021 under microoxic and symbiotic conditions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2004; 17:292-303. [PMID: 15000396 DOI: 10.1094/mpmi.2004.17.3.292] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sinorhizobium meliloti is an alpha-proteobacterium that alternates between a free-living phase in bulk soil or in the rhizosphere of plants and a symbiotic phase within the host plant cells, where the bacteria ultimately differentiate into nitrogen-fixing organelle-like cells, called bacteroids. As a step toward understanding the physiology of S. meliloti in its free-living and symbiotic forms and the transition between the two, gene expression profiles were determined under two sets of biological conditions: growth under oxic versus microoxic conditions, and in free-living versus symbiotic state. Data acquisition was based on both macro- and microarrays. Transcriptome profiles highlighted a profound modification of gene expression during bacteroid differentiation, with 16% of genes being altered. The data are consistent with an overall slow down of bacteroid metabolism during adaptation to symbiotic life and acquisition of nitrogen fixation capability. A large number of genes of unknown function, including potential regulators, that may play a role in symbiosis were identified. Transcriptome profiling in response to oxygen limitation indicated that up to 5% of the genes were oxygen regulated. However, the microoxic and bacteroid transcriptomes only partially overlap, implying that oxygen contributes to a limited extent to the control of symbiotic gene expression.
Collapse
Affiliation(s)
- Anke Becker
- Institut für Genomforschung, Centrum für Biotechnologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, Germany.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Djordjevic MA, Chen HC, Natera S, Van Noorden G, Menzel C, Taylor S, Renard C, Geiger O, Weiller GF. A global analysis of protein expression profiles in Sinorhizobium meliloti: discovery of new genes for nodule occupancy and stress adaptation. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2003; 16:508-24. [PMID: 12795377 DOI: 10.1094/mpmi.2003.16.6.508] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A proteomic examination of Sinorhizobium meliloti strain 1021 was undertaken using a combination of 2-D gel electrophoresis, peptide mass fingerprinting, and bioinformatics. Our goal was to identify (i) putative symbiosis- or nutrient-stress-specific proteins, (ii) the biochemical pathways active under different conditions, (iii) potential new genes, and (iv) the extent of posttranslational modifications of S. meliloti proteins. In total, we identified the protein products of 810 genes (13.1% of the genome's coding capacity). The 810 genes generated 1,180 gene products, with chromosomal genes accounting for 78% of the gene products identified (18.8% of the chromosome's coding capacity). The activity of 53 metabolic pathways was inferred from bioinformatic analysis of proteins with assigned Enzyme Commission numbers. Of the remaining proteins that did not encode enzymes, ABC-type transporters composed 12.7% and regulatory proteins 3.4% of the total. Proteins with up to seven transmembrane domains were identified in membrane preparations. A total of 27 putative nodule-specific proteins and 35 nutrient-stress-specific proteins were identified and used as a basis to define genes and describe processes occurring in S. meliloti cells in nodules and under stress. Several nodule proteins from the plant host were present in the nodule bacteria preparations. We also identified seven potentially novel proteins not predicted from the DNA sequence. Post-translational modifications such as N-terminal processing could be inferred from the data. The posttranslational addition of UMP to the key regulator of nitrogen metabolism, PII, was demonstrated. This work demonstrates the utility of combining mass spectrometry with protein arraying or separation techniques to identify candidate genes involved in important biological processes and niche occupations that may be intransigent to other methods of gene expression profiling.
Collapse
Affiliation(s)
- Michael A Djordjevic
- Genomic Interactions Group, Research School of Biological Sciences, Australian National University, GPO Box 475, Canberra, ACT 2601 Australia.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Bergès H, Lauber E, Liebe C, Batut J, Kahn D, de Bruijn FJ, Ampe F. Development of Sinorhizobium meliloti pilot macroarrays for transcriptome analysis. Appl Environ Microbiol 2003; 69:1214-9. [PMID: 12571049 PMCID: PMC143623 DOI: 10.1128/aem.69.2.1214-1219.2003] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In order to prepare for whole-genome expression analysis in Sinorhizobium meliloti, pilot DNA macroarrays were designed for 34 genes of known regulation. The experimental parameters assessed were the length of the PCR products, the influence of a tag at the 5' end of the primers, and the method of RNA labeling. Variance and principal-component analysis showed that the most important nonbiological parameter was the labeling method. The sizes of PCR products were also found to be important, whereas the influence of 5' tags was minimal. The variability between replicated spots on a membrane was found to be low. These experimental procedures were validated by analyzing the effects of microaerobic conditions on gene expression.
Collapse
Affiliation(s)
- Hélène Bergès
- Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR215 CNRS-INRA, 31326 Castanet-Tolosan Cedex, France
| | | | | | | | | | | | | |
Collapse
|
36
|
Ampe F, Kiss E, Sabourdy F, Batut J. Transcriptome analysis of Sinorhizobium meliloti during symbiosis. Genome Biol 2003; 4:R15. [PMID: 12620125 PMCID: PMC151305 DOI: 10.1186/gb-2003-4-2-r15] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2002] [Revised: 11/14/2002] [Accepted: 12/18/2002] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Rhizobia induce the formation on specific legumes of new organs, the root nodules, as a result of an elaborated developmental program involving the two partners. In order to contribute to a more global view of the genetics underlying this plant-microbe symbiosis, we have mined the recently determined Sinorhizobium meliloti genome sequence for genes potentially relevant to symbiosis. We describe here the construction and use of dedicated nylon macroarrays to study simultaneously the expression of 200 of these genes in a variety of environmental conditions, pertinent to symbiosis. RESULTS The expression of 214 S. meliloti genes was monitored under ten environmental conditions, including free-living aerobic and microaerobic conditions, addition of the plant symbiotic elicitor luteolin, and a variety of symbiotic conditions. Five new genes induced by luteolin have been identified as well as nine new genes induced in mature nitrogen-fixing bacteroids. A bacterial and a plant symbiotic mutant affected in nodule development have been found of particular interest to decipher gene expression at the intermediate stage of the symbiotic interaction. S. meliloti gene expression in the cultivated legume Medicago sativa (alfalfa) and the model plant M. truncatula were compared and a small number of differences was found. CONCLUSIONS In addition to exploring conditions for a genome-wide transcriptome analysis of the model rhizobium S. meliloti, the present work has highlighted the differential expression of several classes of genes during symbiosis. These genes are related to invasion, oxidative stress protection, iron mobilization, and signaling, thus emphasizing possible common mechanisms between symbiosis and pathogenesis.
Collapse
Affiliation(s)
- Frederic Ampe
- Address: Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR 215 Centre National de la Recherche Scientifique - Institut National de la Recherche Agronomique, BP27-31326 Castanet-Tolosan cedex, France
| | - Ernö Kiss
- Address: Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR 215 Centre National de la Recherche Scientifique - Institut National de la Recherche Agronomique, BP27-31326 Castanet-Tolosan cedex, France
| | - Frédérique Sabourdy
- Address: Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR 215 Centre National de la Recherche Scientifique - Institut National de la Recherche Agronomique, BP27-31326 Castanet-Tolosan cedex, France
| | - Jacques Batut
- Address: Laboratoire de Biologie Moléculaire des Relations Plantes-Microorganismes, UMR 215 Centre National de la Recherche Scientifique - Institut National de la Recherche Agronomique, BP27-31326 Castanet-Tolosan cedex, France
| |
Collapse
|
37
|
Zeng X, Kaplan S. TspO as a modulator of the repressor/antirepressor (PpsR/AppA) regulatory system in Rhodobacter sphaeroides 2.4.1. J Bacteriol 2001; 183:6355-64. [PMID: 11591680 PMCID: PMC100131 DOI: 10.1128/jb.183.21.6355-6364.2001] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The TspO outer membrane protein of Rhodobacter sphaeroides has been shown to be involved in controlling the transcription of a number of genes which encode enzymes involved in photopigment biosynthesis and the puc operon. The display of regulated genes appears identical to those genes encompassing the PpsR/AppA repressor/antirepressor regulon, although the effect of TspO is modest relative to that of PpsR/AppA. To directly address the hypothesis that TspO is effective through the PpsR/AppA system, we constructed mutant strains with mutations in both tspO and appA. In all cases, the phenotypes examined resembled those of the appA lesion by itself, leading us to conclude that TspO works through or modulates the PpsR/AppA system and acts upstream of the site of action of these regulatory proteins. In earlier publications, we had suggested that TspO is involved in the efflux of a certain intermediate(s) of the porphyrin biosynthesis pathway and that transcriptional regulation of target gene expression could be explained by the accumulation of a coactivator of AppA function. Although the data reported here do not precisely identify this coactivator, they lend support to this hypothesis. We discuss the importance of this form of gene control as the result of the recent extension of the TspO system to Sinorhizobium meliloti, as described by Davey and de Bruijn (M. E. Davey and F. J. de Bruijn, Appl. Environ. Microbiol. 66:5353-5359, 2000). It is therefore possible that this system constitutes a more widely, although not universally, demonstrated form of gene regulation.
Collapse
Affiliation(s)
- X Zeng
- Department of Microbiology and Molecular Genetics, University of Texas Medical School, Houston, Texas 77030, USA
| | | |
Collapse
|
38
|
Price CW, Fawcett P, Cérémonie H, Su N, Murphy CK, Youngman P. Genome-wide analysis of the general stress response in Bacillus subtilis. Mol Microbiol 2001; 41:757-74. [PMID: 11532142 DOI: 10.1046/j.1365-2958.2001.02534.x] [Citation(s) in RCA: 225] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Bacteria respond to diverse growth-limiting stresses by producing a large set of general stress proteins. In Bacillus subtilis and related Gram-positive pathogens, this response is governed by the sigma(B) transcription factor. To establish the range of cellular functions associated with the general stress response, we compared the transcriptional profiles of wild and mutant strains under conditions that induce sigma(B) activity. Macroarrays representing more than 3900 annotated reading frames of the B. subtilis genome were hybridized to (33)P-labelled cDNA populations derived from (i) wild-type and sigB mutant strains that had been subjected to ethanol stress; and (ii) a strain in which sigma(B) expression was controlled by an inducible promoter. On the basis of their significant sigma(B)-dependent expression in three independent experiments, we identified 127 genes as prime candidates for members of the sigma(B) regulon. Of these genes, 30 were known previously or inferred to be sigma(B) dependent by other means. To assist in the analysis of the 97 new genes, we constructed hidden Markov models (HMM) that identified possible sigma(B) recognition sequences preceding 21 of them. To test the HMM and to provide an independent validation of the hybridization experiments, we mapped the sigma(B)-dependent messages for seven representative genes. For all seven, the 5' end of the message lay near typical sigma(B) recognition sequences, and these had been predicted correctly by the HMM for five of the seven examples. Lastly, all 127 gene products were assigned to functional groups by considering their similarity to known proteins. Notably, products with a direct protective function were in the minority. Instead, the general stress response increased relative message levels for known or predicted regulatory proteins, for transporters controlling solute influx and efflux, including potential drug efflux pumps, and for products implicated in carbon metabolism, envelope function and macromolecular turnover.
Collapse
Affiliation(s)
- C W Price
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | |
Collapse
|
39
|
Trzebiatowski JR, Ragatz DM, de Bruijn FJ. Isolation and regulation of Sinorhizobium meliloti 1021 loci induced by oxygen limitation. Appl Environ Microbiol 2001; 67:3728-31. [PMID: 11472955 PMCID: PMC93079 DOI: 10.1128/aem.67.8.3728-3731.2001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Eleven Sinorhizobium meliloti 1021 loci whose expression was induced under low oxygen concentrations were identified in a collection of 5,000 strains carrying Tn5-1063 (luxAB) transcriptional reporter gene fusions. The 11 Tn5-1063-tagged loci were cloned and characterized. The dependence of the expression of the tagged loci on the FixL/FixJ oxygen-sensing two-component regulatory system was examined. Three of the loci were found to be dependent upon fixL and fixJ for their expression, while one locus showed a partial dependence. The remaining seven loci showed fixL- and fixJ-independent induction of expression in response to oxygen limitation. This suggests that in S. meliloti, additional regulatory system(s) exist that respond either directly or indirectly to oxygen limitation conditions.
Collapse
Affiliation(s)
- J R Trzebiatowski
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|
40
|
Milcamps A, Struffi P, de Bruijn FJ. The Sinorhizobium meliloti nutrient-deprivation-induced tyrosine degradation gene hmgA is controlled by a novel member of the arsR family of regulatory genes. Appl Environ Microbiol 2001; 67:2641-8. [PMID: 11375175 PMCID: PMC92919 DOI: 10.1128/aem.67.6.2641-2648.2001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2000] [Accepted: 03/24/2001] [Indexed: 11/20/2022] Open
Abstract
The regulation of the nutrient-deprivation-induced Sinorhizobium meliloti homogentisate dioxygenase (hmgA) gene, involved in tyrosine degradation, was examined. hmgA expression was found to be independent of the canonical nitrogen regulation (ntr) system. To identify regulators of hmgA, secondary mutagenesis of an S. meliloti strain harboring a hmgA-luxAB reporter gene fusion (N4) was carried out using transposon Tn1721. Two independent Tn1721 insertions were found to be located in a positive regulatory gene (nitR), encoding a protein sharing amino acid sequence similarity with proteins of the ArsR family of regulators. NitR was found to be a regulator of S. meliloti hmgA expression under nitrogen deprivation conditions, suggesting the presence of a ntr-independent nitrogen deprivation regulatory system. nitR insertion mutations were shown not to affect bacterial growth, nodulation of Medicago sativa (alfalfa) plants, or symbiotic nitrogen fixation under the physiological conditions examined. Further analysis of the nitR locus revealed the presence of open reading frames encoding proteins sharing amino acid sequence similarities with an ATP-binding phosphonate transport protein (PhnN), as well as transmembrane efflux proteins.
Collapse
Affiliation(s)
- A Milcamps
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824, USA.
| | | | | |
Collapse
|