1
|
Bo Y, Niu Y, Zhu M, Wang Y, Wang Y, Su Y, Liu Q, Wang G, Wang Y. Elucidating the co-metabolism mechanism of 4-chlorophenol and 4-chloroaniline degradation by Rhodococcus through genomics and transcriptomics. ENVIRONMENTAL RESEARCH 2025; 274:121362. [PMID: 40073925 DOI: 10.1016/j.envres.2025.121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 03/06/2025] [Accepted: 03/08/2025] [Indexed: 03/14/2025]
Abstract
Co-metabolism is an effective strategy for the removal of refractory pollutants during biodegradation. This study reports that Rhodococcus DCB-5 can utilize 4-chlorophenol as a growth substrate to initiate the co-metabolic degradation of 4-chloroaniline. Comprehensive analyses of the genome, transcriptome, enzymes, and intermediate products identified key genes and a putative co-metabolic degradation pathway involved in the degradation process by Rhodococcus. Under optimal co-metabolic degradation conditions of pH 7 and 35°C, strain DCB-5 completely degraded 4-chlorophenol at an initial concentration of 50 mg/L, and achieved a 65.82% degradation rate for 4-chloroaniline at an initial concentration of 100 mg/L. Genome analysis indicated that the strain has the potential to degrade chlorinated aromatic compounds. The genes gpx, ygjG, ugpE, afuB, tfdB, catB, catA, and glnA were identified as core genes involved in the co-metabolic degradation process. Analysis of degradation intermediates revealed that 4-chlorophenol promotes the expression of the aniline dioxygenase-related gene glnA, facilitating the metabolism of 4-chloroaniline. A potential co-metabolic degradation pathway for strain DCB-5 is proposed. These findings may have implications for sites co-contaminated with chlorophenols and chloramines.
Collapse
Affiliation(s)
- Yonglin Bo
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yixue Niu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Mingjun Zhu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yaru Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yu Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Yuhua Su
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China
| | - Qiyou Liu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China.
| | - Gang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| | - Yongqiang Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao, 266580, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao, Shandong, 266580, China
| |
Collapse
|
2
|
Stancu MM. Investigating the Potential of Native Soil Bacteria for Diesel Biodegradation. Microorganisms 2025; 13:564. [PMID: 40142457 PMCID: PMC11945675 DOI: 10.3390/microorganisms13030564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/14/2025] [Accepted: 02/19/2025] [Indexed: 03/28/2025] Open
Abstract
In countries with a long petroleum extraction and processing history, such as Romania, extensive soil areas are often polluted with petroleum and its derivatives, posing significant environmental and human health risks. This study explores the diesel biodegradation potential of two native bacterial consortia isolated from hydrocarbon-polluted soils, focusing on their phenotypic and molecular characteristics, growth kinetics, alkane hydroxylase activity, hydrolase production, and biosurfactant synthesis capabilities. The bacterial consortia, CoP1 and CoP2, were successfully obtained using the standard successive enrichment culture method from two soil samples collected from a region affected by petroleum pollution. The CoP1 and CoP2 consortia demonstrated efficient diesel-degrading capabilities, achieving 50.81-84.32% degradation when cultured in a minimal medium containing 1-10% (v/v) diesel as the sole carbon and energy source. This biodegradation potential was corroborated by their significant alkane hydroxylase activity and the detection of multiple catabolic genes in their genomes. The CoP1 consortium contains at least four catabolic genes (alkB, alkM, todM, ndoM) as well as rhamnosyltransferase 1 genes (rhlAB), while the CoP2 consortium contains only two catabolic genes (ndoM, C23DO). The RND transporter gene (HAE1) was present in both consortia. Secondary metabolites, such as glycolipid-type biosurfactants, as well as extracellular hydrolases (protease, amylase, cellulase, and lipase), were produced by both consortia. The CoP1 and CoP2 consortia demonstrate exceptional efficiency in diesel degradation and biosurfactant production, making them well suited for the bioremediation of soils contaminated with petroleum and its derivatives.
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology Bucharest of Romanian Academy, 296 Splaiul Independentei, P.O. Box 56-53, 060031 Bucharest, Romania
| |
Collapse
|
3
|
Kraxberger K, Antonielli L, Kostić T, Reichenauer T, Sessitsch A. Diverse bacteria colonizing leaves and the rhizosphere of lettuce degrade azoxystrobin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 891:164375. [PMID: 37245813 DOI: 10.1016/j.scitotenv.2023.164375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 05/03/2023] [Accepted: 05/19/2023] [Indexed: 05/30/2023]
Abstract
Concerns about the possible effects of pesticide residues on both the environment and human health have increased worldwide. Bioremediation by the use of microorganisms to degrade or remove these residues has emerged as a powerful technology. However, the knowledge about the potential of different microorganisms for pesticide degradation is limited. This study focused on the isolation and characterisation of bacterial strains with the potential to degrade the active fungicide ingredient azoxystrobin. Potential degrading bacteria were tested in vitro and in the greenhouse, and the genomes of the best degrading strains were sequenced and analysed. We identified and characterised 59 unique bacterial strains, which were further tested in vitro and in greenhouse trials for their degradation activity. The best degraders from a foliar application trial in the greenhouse were identified as Bacillus subtilis strain MK101, Pseudomonas kermanshahensis strain MK113 and Rhodococcus fascians strain MK144 and analysed by whole genome sequencing. Genome analysis revealed that these three bacterial strains encode several genes predicted to be involved in the degradation of pesticides e.g., benC, pcaG, pcaH, however we could not find any specific gene previously reported to be involved in azoxystrobin degradation e.g., strH. Genome analysis pinpointed to some potential activities involved in plant growth promotion.
Collapse
Affiliation(s)
| | - Livio Antonielli
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Tanja Kostić
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Thomas Reichenauer
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria
| | - Angela Sessitsch
- AIT Austrian Institute of Techonology, GmbH, Center for Health & Bioresources, Bioresources Unit, Konrad-Lorenz-Straße 24, 3430 Tulln, Austria.
| |
Collapse
|
4
|
Complete Genome Report of a Hydrocarbon-Degrading Sphingobium yanoikuyae S72. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12126201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Sphingobium yanoikuyae S72 was isolated from the rhizosphere of sorghum plant in Mexico and we evaluated its survival and role in the degradation of some selected monoaromatic hydrocarbons and polycyclic aromatic hydrocarbons (PAHs) using minimal medium (Bushnell Hass medium (BH)) in which each of the hydrocarbons (naphthalene, phenanthrene, xylene, toluene, and biphenyl) served as sole carbon source. Gas column chromatography–mass spectrometry analysis was used to evaluate the effect of S72’s growth in the medium with the hydrocarbons. The genome of the S72 was sequenced to determine the genetic basis for the degradation of the selected hydrocarbon in S72. The genome was assembled de novo with Spades assembler and Velvet assembler and the obtained contigs were reduced to 1 manually using Consed software. Genome annotation was carried out Prokka version 1.12, and gene calling and further annotation was carried out with NCBI PGAAP. Pangenome analysis and COG annotation were done with bacteria pangenome analysis tool (BPGA) and with PATRIC online server, respectively. S72 grew effectively in the culture medium with the hydrocarbon with concentration ranging from 20–100 mg/mL for each hydrocarbon tested. S72 degraded biphenyl by 85%, phenanthrene by 93%, naphthalene by 81%, xylene by 19%, and toluene by 30%. The sequenced S72 genome was reduced to 1 contig and genome analysis revealed the presence of genes essential for the degradation of hydrocarbons in S72. A total of 126 unique genes in S72 are associated with the degradation of hydrocarbons and xenobiotics. S72 grew effectively in the tested hydrocarbon and shows good degradation efficiency. S72 will therefore be a good candidate for bioremediation of hydrocarbon contaminated soil.
Collapse
|
5
|
Bacosa HP, Mabuhay-Omar JA, Balisco RAT, Omar DM, Inoue C. Biodegradation of binary mixtures of octane with benzene, toluene, ethylbenzene or xylene (BTEX): insights on the potential of Burkholderia, Pseudomonas and Cupriavidus isolates. World J Microbiol Biotechnol 2021; 37:122. [PMID: 34151386 DOI: 10.1007/s11274-021-03093-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 06/14/2021] [Indexed: 01/20/2023]
Abstract
The contamination of the environment by crude oil and its by-products, mainly composed of aliphatic and aromatic hydrocarbons, is a widespread problem. Biodegradation by bacteria is one of the processes responsible for the removal of these pollutants. This study was conducted to determine the abilities of Burkholderia sp. B5, Cupriavidus sp. B1, Pseudomonas sp. T1, and another Cupriavidus sp. X5 to degrade binary mixtures of octane (representing aliphatic hydrocarbons) with benzene, toluene, ethylbenzene, or xylene (BTEX as aromatic hydrocarbons) at a final concentration of 100 ppm under aerobic conditions. These strains were isolated from an enriched bacterial consortium (Yabase or Y consortium) that prefer to degrade aromatic hydrocarbon over aliphatic hydrocarbons. We found that B5 degraded all BTEX compounds more rapidly than octane. In contrast, B1, T1 and X5 utilized more of octane over BTX compounds. B5 also preferred to use benzene over octane with varying concentrations of up to 200 mg/l. B5 possesses alkane hydroxylase (alkB) and catechol 2,3-dioxygenase (C23D) genes, which are responsible for the degradation of alkanes and aromatic hydrocarbons, respectively. This study strongly supports our notion that Burkholderia played a key role in the preferential degradation of aromatic hydrocarbons over aliphatic hydrocarbons in the previously characterized Y consortium. The preferential degradation of more toxic aromatic hydrocarbons over aliphatics is crucial in risk-based bioremediation.
Collapse
Affiliation(s)
- Hernando P Bacosa
- Environmental Science Program, Department of Biological Sciences, College of Science and Mathematics, Mindanao State University-Iligan Institute of Technology, Tibanga, 9200, Iligan, Lanao del Norte, Philippines.,Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Jhonamie A Mabuhay-Omar
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa, Sta. Monica, 5300, Puerto Princesa, Palawan, Philippines.
| | - Rodulf Anthony T Balisco
- College of Fisheries and Aquatic Sciences, Western Philippines University-Puerto Princesa, Sta. Monica, 5300, Puerto Princesa, Palawan, Philippines
| | - Dawin M Omar
- College of Engineering, Architecture and Technology, Palawan State University, Tiniguiban, 5300, Puerto Princesa, Palawan, Philippines
| | - Chihiro Inoue
- Graduate School of Environmental Studies, Tohoku University, 6-6-20 Aoba, Aramaki, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| |
Collapse
|
6
|
Contribution of horizontal gene transfer to the functionality of microbial biofilm on a macroalgae. THE ISME JOURNAL 2021; 15:807-817. [PMID: 33558686 PMCID: PMC8027169 DOI: 10.1038/s41396-020-00815-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 10/12/2020] [Accepted: 10/15/2020] [Indexed: 01/30/2023]
Abstract
Horizontal gene transfer (HGT) is thought to be an important driving force for microbial evolution and niche adaptation and has been show in vitro to occur frequently in biofilm communities. However, the extent to which HGT takes place and what functions are being transferred in more complex and natural biofilm systems remains largely unknown. To address this issue, we investigated here HGT and enrichment of gene functions in the biofilm community of the common kelp (macroalgae) Ecklonia radiata in comparison to microbial communities in the surrounding seawater. We found that HGTs in the macroalgal biofilms were dominated by transfers between bacterial members of the same class or order and frequently involved genes for nutrient transport, sugar and phlorotannin degradation as well as stress responses, all functions that would be considered beneficial for bacteria living in this particular niche. HGT did not appear to be driven by mobile gene elements, indicating rather an involvement of unspecific DNA uptake (e.g. natural transformation). There was also a low overlap between the gene functions subject to HGT and those enriched in the biofilm community in comparison to planktonic community members. This indicates that much of the functionality required for bacteria to live in an E. radiata biofilm might be derived from vertical or environmental transmissions of symbionts. This study enhances our understanding of the relative role of evolutionary and ecological processes in driving community assembly and genomic diversity of biofilm communities.
Collapse
|
7
|
Singha LP, Pandey P. Rhizosphere assisted bioengineering approaches for the mitigation of petroleum hydrocarbons contamination in soil. Crit Rev Biotechnol 2021; 41:749-766. [PMID: 33626996 DOI: 10.1080/07388551.2021.1888066] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The high demand for petroleum oil has led to hydrocarbon contamination in soil, including agricultural lands, and many other ecosystems across the globe. Physical and chemical treatments are effective strategies for the removal of high contamination levels and are useful for small areas, although with concerns of cost-effectiveness. Alternatively, several bacteria belonging to the Phylum: Proteobacteria, Bacteroidetes, Actinobacteria, Nocardioides, or Firmicutes are used for biodegradation of different hydrocarbons - aliphatic, polyaromatic hydrocarbons (PAH), and asphaltenes in the oil-contaminated soil. The rhizoremediation strategy with plant-microbe interactions has prospects to achieve the desired result in the field conditions. However, adequate biostimulation, and bioaugmentation with the suitable plant-microbe combination, and efficiency under a toxic environment needs to be evaluated. Modifying the microbiomes to achieve better biodegradation of contaminants is an upcoming strategy popularly known as microbiome engineering. In this review, rhizoremediation for the successful removal of the hydrocarbons have been critically discussed, with challenges for making it a feasible technology.HIGHLIGHTSPetroleum hydrocarbon contamination has increased around the globe.Rhizoremediation has the potential for the mitigation of pollutants from the contaminated sites.An accurate and detailed analysis of the physio-chemical and climatic conditions of the contaminated sites must be focused on.The suitable plant and bacteria, with other major considerations, may be employed for in-situ remediation.The appropriate data should be obtained using the omics approach to help toward the success of the rhizoremediation strategy.
Collapse
Affiliation(s)
| | - Piyush Pandey
- Department of Microbiology, Assam University, Silchar, India
| |
Collapse
|
8
|
The genomic attributes of Cd-resistant, hydrocarbonoclastic Bacillus subtilis SR1 for rhizodegradation of benzo(a)pyrene under co-contaminated conditions. Genomics 2020; 113:613-623. [PMID: 33002627 DOI: 10.1016/j.ygeno.2020.09.057] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 11/20/2022]
Abstract
Bacillus subtilis SR1 is a metal resistant, polyaromatic hydrocarbon-degrading bacterium isolated from petroleum contaminated sites. This study reports the characteristics of the genome of the isolate containing one circular chromosome (4,093,698 bp) annotated into 4155 genes and 4095 proteins. The genome analysis confirmed the presence of multiple catabolic genes: aromatic ring-hydroxylating dioxygenase (COG2146), aromatic ring hydroxylase (COG2368), catechol 2, 3 dioxygenase (COG2514), 4-hydroxybenzoate decarboxylase (COG0043), carboxymuconolactone decarboxylase (COG0599) responsible for the catabolism of aromatic hydrocarbons along with the genes for biosurfactant production and functional genes (czcD and cadA) for resistance to cadmium, zinc, and cobalt. Gas Chromatography-Mass spectroscopy analysis revealed up to 35% in-vitro degradation of benzo(a)pyrene after 21 days of growth along with the production of different intermediate metabolites. The pot trial analysis in the greenhouse condition validated the rhizodegradation of BaP, which was significantly higher in the presence of plant-microbe association (85%) than degradation in bulk soil (68%).
Collapse
|
9
|
Diallo MM, Vural C, Cay H, Ozdemir G. Enhanced biodegradation of crude oil in soil by a developed bacterial consortium and indigenous plant growth promoting bacteria. J Appl Microbiol 2020; 130:1192-1207. [PMID: 32916758 DOI: 10.1111/jam.14848] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 08/08/2020] [Accepted: 09/01/2020] [Indexed: 10/23/2022]
Abstract
AIMS This study aimed to develop an efficient, cost-effective and eco-friendly bacterial consortium to degrade petroleum sludge. METHODS AND RESULTS Four bacterial strains belonging to genera Acinetobacter and Pseudomonas were selected to constitute three different consortia based on their initial concentration. The highest degradation rate (78%) of 1% (v/v) crude oil after 4 weeks of incubation was recorded when the concentration of biosurfactant (BS) producing isolate was high. Genes, such as alkB, almA, cyp153, pah-rhdGN, nah, phnAC and cat23 were detected using the polymerase chain reaction method and their induction levels were optimal at pH 7·0. A crude oil sludge was artificially constituted, and its bacterial composition was investigated using 16S rRNA gene amplicon sequencing. The results showed that the soil bacterial community was dominated by plant growth-promoting bacteria (PGPB) after crude oil treatment. CONCLUSIONS Our findings indicate the decontamination of the crude oil contaminated soil was more effective in the presence of both the constituted consortium and PGPB compared to the presence of PGPB alone. SIGNIFICANCE AND IMPACT OF THE STUDY This study showed that the PGPB (Taibaiella) present in petroleum uncontaminated soil can promote the soil decontamination. The addition of both efficient hydrocarbon-degrading and BS producing bacteria is also necessary to improve the decontamination.
Collapse
Affiliation(s)
- M M Diallo
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - C Vural
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey.,Department of Biology, Molecular Biology Section, Faculty of Science and Arts, Pamukkale University Kinikli Campus, Denizli, Turkey
| | - H Cay
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| | - G Ozdemir
- Department of Biology, Basic and Industrial Microbiology Section, Ege University, Izmir, Turkey
| |
Collapse
|
10
|
Elufisan TO, Rodríguez-Luna IC, Oyedara OO, Sánchez-Varela A, Hernández-Mendoza A, Dantán Gonzalez E, Paz-González AD, Muhammad K, Rivera G, Villalobos-Lopez MA, Guo X. The Polycyclic Aromatic Hydrocarbon (PAH) degradation activities and genome analysis of a novel strain Stenotrophomonas sp. Pemsol isolated from Mexico. PeerJ 2020; 8:e8102. [PMID: 31934497 PMCID: PMC6951288 DOI: 10.7717/peerj.8102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Accepted: 10/25/2019] [Indexed: 11/20/2022] Open
Abstract
Background Stenotrophomonas are ubiquitous gram-negative bacteria, which can survive in a wide range of environments. They can use many substances for their growth and are known to be intrinsically resistant to many antimicrobial agents. They have been tested for biotechnological applications, bioremediation, and production of antimicrobial agents. Method Stenotrophomonas sp. Pemsol was isolated from a crude oil contaminated soil. The capability of this isolate to tolerate and degrade polycyclic aromatic hydrocarbons (PAH) such as anthraquinone, biphenyl, naphthalene, phenanthrene, phenanthridine, and xylene was evaluated in Bushnell Hass medium containing PAHs as the sole carbon sources. The metabolites formed after 30-day degradation of naphthalene by Pemsol were analyzed using Fourier Transform Infra-red Spectroscopic (FTIR), Ultra-Performance Liquid Chromatography-Mass Spectrometry (UPLC-MS) and Gas Chromatography-Mass Spectrometry (GC-MS). The genome of Pemsol was also sequenced and analyzed. Results Anthraquinone, biphenyl, naphthalene, phenanthrene, and phenanthridine except xylene can be used as sole carbon sources for Pemsol’s growth in Bushnell Hass medium. The degradation of naphthalene at a concentration of 1 mg/mL within 30 days was tested. A newly formed catechol peak and the disappearance of naphthalene peak detected on the UPLC-MS, and GC-MS analyses spectra respectively confirmed the complete degradation of naphthalene. Pemsol does not produce biosurfactant and neither bio-emulsify PAHs. The whole genome was sequenced and assembled into one scaffold with a length of 4,373,402 bp. A total of 145 genes involved in the degradation of PAHs were found in its genome, some of which are Pemsol-specific as compared with other 11 Stenotrophomonas genomes. Most specific genes are located on the genomic islands. Stenotrophomonas sp. Pemsol’s possession of few genes that are associated with bio-emulsification gives the genetic basis for its inability to bio-emulsify PAH. A possible degradation pathway for naphthalene in Pemsol was proposed following the analysis of Pemsol’s genome. ANI and GGDH analysis indicated that Pemsol is likely a new species of Stenotrophomonas. It is the first report on a complete genome sequence analysis of a PAH-degrading Stenotrophomonas. Stenotrophomonas sp. Pemsol possesses features that make it a good bacterium for genetic engineering and will be an excellent tool for the remediation of crude oil or PAH-contaminated soil.
Collapse
Affiliation(s)
- Temidayo O Elufisan
- Laboratorio de Biotecnologia Genomica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Mexico, Reynosa, Tamaulipas, Mexico.,Science Policy and Innovation Studies (SPIS), National Center for Technology Management Obafemi Awolowo University campus Ile-Ife, Ile-Ife, Osun, Nigeria
| | - Isabel C Rodríguez-Luna
- Laboratorio de Biotecnologia Genomica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Mexico, Reynosa, Tamaulipas, Mexico
| | | | - Alejandro Sánchez-Varela
- Laboratorio de Biotecnologia Genomica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Mexico, Reynosa, Tamaulipas, Mexico
| | - Armando Hernández-Mendoza
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos (UAEM), Cuernavaca, Morelos, Mexico
| | - Edgar Dantán Gonzalez
- Laboratorio de Estudios Ecogenómicos (UAEM), Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Cuernavaca, Morelos, Mexico
| | - Alma D Paz-González
- Laboratorio de Biotecnologia Famaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Mexico, Reynosa, Tamaulipas, Mexico
| | - Kashif Muhammad
- Laboratorio de Biotecnologia Famaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Mexico, Reynosa, Tamaulipas, Mexico
| | - Gildardo Rivera
- Laboratorio de Biotecnologia Famaceutica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Mexico, Reynosa, Tamaulipas, Mexico
| | | | - Xianwu Guo
- Laboratorio de Biotecnologia Genomica, Centro de Biotecnologia Genomica, Instituto Politecnico Nacional, Mexico, Reynosa, Tamaulipas, Mexico
| |
Collapse
|
11
|
Anyasi RO, Atagana HI, Sutherland R. Identification and characterization of PAH-degrading endophytes isolated from plants growing around a sludge dam. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2019; 21:672-682. [PMID: 30942084 DOI: 10.1080/15226514.2018.1556585] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This study involved the isolation of bacteria endophytes with PAH-degrading ability from plants growing around a sludge dam. A total of 19 distinct isolates that were morphologically identified were isolated from 4 species of plant with a follow-up confirmatory identification using the molecular technique. Polymerase chain reaction (PCR) of the 16S rRNA gene with specific primers (16S-27F PCR and 16S-1491R PCR) was carried out. The sequence of the PCR products was carried out, compared with similar nucleotides available in GenBank. Results of the phylogenetic analysis of the isolates indicated their belonging to 4 different clades including Proteobacteria, Actinobacteria, Cyanobacteria, and Firmicutes. These were related to the genera Bacillus, Pseudomonas, Terribacillus, Virgibacillus, Stenotrophomonas, Paenibacillus, Brevibacterium, Geobacillus, Acinetobacter. From the result, Pseudomonas demonstrated a high incidence in the plants sampled. The in-vitro degradation study and the presence of dioxygenase genes indicated that these lists of endophytes are able to use the list of PAHs tested as their source of food and energy leading to their breakdown. This means that the bacterial endophytes contributed to the remediation of petroleum hydrocarbons in planta, a situation that may have been phytotoxic to plant alone. Therefore, these bacteria endophytes could be potential organisms for enhanced phytoremediation of PAHs.
Collapse
Affiliation(s)
- Raymond O Anyasi
- a Department of Environmental Sciences, Institute for Science and Technology Education , University of South Africa , Pretoria , South Africa
| | - Harrison I Atagana
- a Department of Environmental Sciences, Institute for Science and Technology Education , University of South Africa , Pretoria , South Africa
| | - Rene Sutherland
- b Plant Protection Unit , Agricultural Research Council , Pretoria , South Africa
| |
Collapse
|
12
|
A Comparison of the Microbial Community and Functional Genes Present in Free-Living and Soil Particle-Attached Bacteria from an Aerobic Bioslurry Reactor Treating High-Molecular-Weight PAHs. SUSTAINABILITY 2019. [DOI: 10.3390/su11041088] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
High-molecular-weight (HMW) polycyclic aromatic hydrocarbons (PAHs) contaminate a wide range of ecosystems, including soils, groundwater, rivers and harbor sediments. The effective removal of HMW PAHs is a difficult challenge if a rapid remediation time and low economic cost are required. Bioremediation provides a cheap and eco-friendly cleanup strategy for the removal of HMW PAHs. Previous studies have focused on removal efficiency during PAHs bioremediation. In such studies, only limited research has targeted the bacterial communities and functional genes present in such bioremediation systems, specifically those of free-living (aqueous) bacteria and soil particle-attached bacteria present. In this study, a high-level of HMW PAH (1992 mg/kg pyrene) was bioremediated in an aerobic bioslurry reactor (ABR) for 42 days. The results showed a pseudo first order constant rate for pyrene biodegradation of 0.0696 day−1. The microbial communities forming free-living bacteria and soil-attached bacteria in the ABR were found to be different. An analysis of the aqueous samples identified free-living Mycobacterium spp., Pseudomonas putida, Rhodanobacter spp. and Burkholderia spp.; these organisms would seem to be involved in pyrene biodegradation. Various biointermediates, including phenanthrene, catechol, dibenzothiophene, 4,4′-bipyrimidine and cyclopentaphenanthrene, were identified and measured in the aqueous samples. When a similar approach was taken with the soil particle samples, most of the attached bacterial species did not seem to be involved in pyrene biodegradation. Furthermore, community level physiological profiling resulted in significantly different results for the aqueous and soil particle samples. Nevertheless, these two bacterial populations both showed positive signals for the presence of various dioxygenases, including PAHs-RHDα dioxygenases, riesk iron-sulfur motif dioxygenases and catechol 2,3-dioxygenases. The present findings provide a foundation that should help environmental engineers when designing future HMW PAH bioremediation systems that use the ABR approach.
Collapse
|
13
|
El-Sayed WS, Elbahloul Y, Saad ME, Hanafy AM, Hegazi AH, ElShafei GMS, Elbadry M. Impact of nanoparticles on transcriptional regulation of catabolic genes of petroleum hydrocarbon-degrading bacteria in contaminated soil microcosms. J Basic Microbiol 2018; 59:166-180. [PMID: 30468270 DOI: 10.1002/jobm.201800186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 09/29/2018] [Accepted: 10/09/2018] [Indexed: 11/09/2022]
Abstract
This study was conducted to determine what effects nanoparticles (NPs) like TiO2 , ZnO, and Ag may pose on natural attenuation processes of petroleum hydrocarbons in contaminated soils. The solid NPs used were identified using x-ray diffraction technique and their average size was certified as 18.2, 16.9, and 18.3 nm for Ag-NPs, ZnO-NPs, and TiO2 -NPs, respectively. NPs in soil microcosms behave differently where it was dissolved as in case of Ag-NPs, partially dissolved as in ZnO-NPs or changed into other crystalline phase as in TiO2 -NPs. In this investigation, catabolic gene encoding catechol 2,3 dioxygenase (C23DO) was selected specifically as biomarker for monitoring hydrocarbon biodegradation potential by measuring its transcripts by RT-qPCR. TiO2 -NPs amended microcosms showed almost no change in C23DO expression profile or bacterial community which were dominated by Bacillus sp., Mycobacterium sp., Microbacterium sp., Clostridium sp., beside uncultured bacteria, including uncultured proteobacteria, Thauera sp. and Clostridia. XRD pattern suggested that TiO2 -NPs in microcosms were changed into other non-inhibitory crystalline phase, consequently, showing the maximum degradation profile for most low molecular weight oil fractions and partially for the high molecular weight ones. Increasing ZnO-NPs concentration in microcosms resulted in a reduction in the expression of C23DO with a concomitant slight deteriorative effect on bacterial populations ending up with elimination of Clostridium sp., Thauera sp., and uncultured proteobacteria. The oil-degradation efficiency was reduced compared to TiO2 -NPs amended microcosms. In microcosms, Ag-NPs were not detected in the crystalline form but were available in the ionic form that inhibited most bacterial populations and resulted in a limited degradation profile of oil, specifically the low molecular weight fractions. Ag-NPs amended microcosms showed a significant reduction (80%) in C23DO gene expression and a detrimental effect on bacterial populations including key players like Mycobacterium sp., Microbacterium sp., and Thauera sp. involved in the biodegradation of petroleum hydrocarbons.
Collapse
Affiliation(s)
- Wael S El-Sayed
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia.,Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Yasser Elbahloul
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia.,Botany and Microbiology Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Mohamed E Saad
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia.,Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Ahmed M Hanafy
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia.,Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Abdelrahman H Hegazi
- Chemistry Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia.,Chemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Gamal M S ElShafei
- Chemistry Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia.,Chemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Medhat Elbadry
- Biology Department, Faculty of Science, Taibah University, Almadinah Almunawarah, Saudi Arabia.,Agricultural Microbiology Department, Faculty of Agriculture, Fayoum University, Fayoum, Egypt
| |
Collapse
|
14
|
Lhotský O, Krákorová E, Linhartová L, Křesinová Z, Steinová J, Dvořák L, Rodsand T, Filipová A, Kroupová K, Wimmerová L, Kukačka J, Cajthaml T. Assessment of biodegradation potential at a site contaminated by a mixture of BTEX, chlorinated pollutants and pharmaceuticals using passive sampling methods - Case study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 607-608:1451-1465. [PMID: 28763941 DOI: 10.1016/j.scitotenv.2017.06.193] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/22/2017] [Accepted: 06/23/2017] [Indexed: 06/07/2023]
Abstract
The present study describes a pilot remediation test of a co-mingled plume containing BTEX, chlorinated pollutants and pharmaceuticals. Remediation was attempted using a combination of various approaches, including a pump and treat system applying an advanced oxidation process and targeted direct push injections of calcium peroxide. The remediation process was monitored intensively and extensively throughout the pilot test using various conventional and passive sampling methods, including next-generation amplicon sequencing. The results showed that the injection of oxygen-saturated treated water with residual hydrogen peroxide and elevated temperature enhanced the in situ removal of monoaromatics and chlorinated pollutants. In particular, in combination with the injection of calcium peroxide, the conditions facilitated the in situ bacterial biodegradation of the pollutants. The mean groundwater concentration of benzene decreased from 1349μg·L-1 prior to the test to 3μg·L-1 within 3months after the calcium peroxide injections; additionally, monochlorobenzene decreased from 1545μg·L-1 to 36μg·L-1, and toluene decreased from 143μg·L-1 to 2μg·L-1. Furthermore, significant degradation of the contaminants bound to the soil matrix in less permeable zones was observed. Based on a developed 3D model, 90% of toluene and 88% of chlorobenzene bound to the soil were removed during the pilot test, and benzene was removed almost completely. On the other hand, the psychopharmaceuticals were effectively removed by the employed advanced oxidation process only from the treated water, and their concentration in groundwater remained stagnant due to inflow from the surroundings and their absence of in situ degradation. The employment of passive sampling techniques, including passive diffusion bags (PDB) for volatile organic pollutants and their respective transformation products, polar organic compound integrative samplers (POCIS) for the pharmaceuticals and in situ soil microcosms for microbial community analysis, was proven to be suitable for monitoring remediation in saturated zones.
Collapse
Affiliation(s)
- Ondřej Lhotský
- DEKONTA a.s., Volutová 2523, CZ-158 00 Prague 5, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - Eva Krákorová
- DEKONTA a.s., Volutová 2523, CZ-158 00 Prague 5, Czech Republic; Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Lucie Linhartová
- Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Zdena Křesinová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic; Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Jana Steinová
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Lukáš Dvořák
- Technical University of Liberec, Studentská 2, CZ-461 17 Liberec, Czech Republic
| | - Torgeir Rodsand
- ALS Laboratory Group Norway AS, Drammensveien 173, N-0214 Oslo, Norway
| | - Alena Filipová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic; Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Kristýna Kroupová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic
| | - Lenka Wimmerová
- ALS Laboratory Group Norway AS, Drammensveien 173, N-0214 Oslo, Norway; Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00 Prague 6, Czech Republic
| | - Jan Kukačka
- DEKONTA a.s., Volutová 2523, CZ-158 00 Prague 5, Czech Republic
| | - Tomáš Cajthaml
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01 Prague 2, Czech Republic; Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic.
| |
Collapse
|
15
|
Pal S, Kundu A, Banerjee TD, Mohapatra B, Roy A, Manna R, Sar P, Kazy SK. Genome analysis of crude oil degrading Franconibacter pulveris strain DJ34 revealed its genetic basis for hydrocarbon degradation and survival in oil contaminated environment. Genomics 2017. [DOI: 10.1016/j.ygeno.2017.06.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
16
|
Lhotský O, Krákorová E, Mašín P, Žebrák R, Linhartová L, Křesinová Z, Kašlík J, Steinová J, Rødsand T, Filipová A, Petrů K, Kroupová K, Cajthaml T. Pharmaceuticals, benzene, toluene and chlorobenzene removal from contaminated groundwater by combined UV/H 2O 2 photo-oxidation and aeration. WATER RESEARCH 2017; 120:245-255. [PMID: 28500989 DOI: 10.1016/j.watres.2017.04.076] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/22/2017] [Accepted: 04/29/2017] [Indexed: 06/07/2023]
Abstract
This study was performed to test the feasibility of several decontamination methods for remediating heavily contaminated groundwater in a real contaminated locality in the Czech Republic, where a pharmaceuticals plant has been in operation for more than 80 years. The site is polluted mainly by recalcitrant psychopharmaceuticals and monoaromatic hydrocarbons, such as benzene, toluene and chlorobenzene. For this purpose, an advanced oxidation technique employing UV radiation with hydrogen peroxide dosing was employed, in combination with simple aeration pretreatment. The results showed that UV/H2O2 was an efficient and necessary step for degradation of the pharmaceuticals; however, the monoaromatics were already removed during the aeration step. Characterization of the removal mechanisms participating in the aeration revealed that volatilization, co-precipitation and biodegradation contributed to the process. These findings were supported by bacterial metabolite analyses, phospholipid fatty acid analysis, qPCR of representatives of the degradative genes and detailed characterization of the formed precipitate using Mössbauer spectroscopy and scanning electron microscopy. Further tests were carried out in a continuous arrangement directly connected to the wells already present in the locality. The results documented the feasibility of combination of the photo-reactor employing UV/H2O2 together with aeration pretreatment for 4 months, where the overall decontamination efficiency ranged from 72% to 99% of the pharmaceuticals. We recorded even better results for the monoaromatics decontamination except for one month, when we encountered some technical problems with the aeration pump. This demonstrated the necessity of using the aeration step.
Collapse
Affiliation(s)
- Ondřej Lhotský
- DEKONTA a.s., Volutová 2523, CZ-158 00, Prague 5, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Eva Krákorová
- DEKONTA a.s., Volutová 2523, CZ-158 00, Prague 5, Czech Republic; Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Pavel Mašín
- DEKONTA a.s., Volutová 2523, CZ-158 00, Prague 5, Czech Republic
| | - Radim Žebrák
- DEKONTA a.s., Volutová 2523, CZ-158 00, Prague 5, Czech Republic
| | - Lucie Linhartová
- Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Zdena Křesinová
- Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Josef Kašlík
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry and Experimental Physics, Faculty of Science, Palacký University, 17. Listopadu 1192/12, CZ-771 46, Olomouc, Czech Republic
| | - Jana Steinová
- Technical University of Liberec, Studentská 2, CZ-461 17, Liberec, Czech Republic
| | - Torgeir Rødsand
- ALS Laboratory Group Norway AS, Drammensveien 173, N-0214, Oslo, Norway
| | - Alena Filipová
- Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Klára Petrů
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Kristýna Kroupová
- Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic
| | - Tomáš Cajthaml
- Institute of Microbiology Academy of Sciences of the Czech Republic, v.v.i., Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic; Institute for Environmental Studies, Faculty of Science, Charles University, Benátská 2, CZ-128 01, Prague 2, Czech Republic.
| |
Collapse
|
17
|
Demeter MA, Lemire JA, Mercer SM, Turner RJ. Screening selectively harnessed environmental microbial communities for biodegradation of polycyclic aromatic hydrocarbons in moving bed biofilm reactors. BIORESOURCE TECHNOLOGY 2017; 228:116-124. [PMID: 28061393 DOI: 10.1016/j.biortech.2016.12.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 12/21/2016] [Accepted: 12/22/2016] [Indexed: 06/06/2023]
Abstract
Bacteria are often found tolerating polluted environments. Such bacteria may be exploited to bioremediate contaminants in controlled ex situ reactor systems. One potential strategic goal of such systems is to harness microbes directly from the environment such that they exhibit the capacity to markedly degrade organic pollutants of interest. Here, the use of biofilm cultivation techniques to inoculate and activate moving bed biofilm reactor (MBBR) systems for the degradation of polycyclic aromatic hydrocarbons (PAHs) was explored. Biofilms were cultivated from 4 different hydrocarbon contaminated sites using a minimal medium spiked with the 16 EPA identified PAHs. Overall, all 4 inoculant sources resulted in biofilm communities capable of tolerating the presence of PAHs, but only 2 of these exhibited enhanced PAH catabolic gene prevalence coupled with significant degradation of select PAH compounds. Comparisons between inoculant sources highlighted the dependence of this method on appropriate inoculant screening and biostimulation efforts.
Collapse
Affiliation(s)
- Marc A Demeter
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Joseph A Lemire
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Sean M Mercer
- Imperial - Sarnia Technology Applications & Research, Sarnia, ON, Canada
| | - Raymond J Turner
- Biofilm Research Group, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
18
|
Obi LU, Atagana HI, Adeleke RA. Isolation and characterisation of crude oil sludge degrading bacteria. SPRINGERPLUS 2016; 5:1946. [PMID: 27933233 PMCID: PMC5102992 DOI: 10.1186/s40064-016-3617-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 10/28/2016] [Indexed: 11/23/2022]
Abstract
Background The use of microorganisms in remediating environmental contaminants such as crude oil sludge has become a promising technique owing to its economy and the fact it is environmentally friendly. Polycyclic aromatic hydrocarbons (PAHs), as the major components of oil sludge, are hydrophobic and recalcitrant. An important way of enhancing the rate of PAH desorption is to compost crude oil sludge by incorporating commercial surfactants, thereby making them available for microbial degradation. In this study, crude oil sludge was composted for 16 weeks during which surfactants were added in the form of a solution. Results Molecular characterisation of the 16S rRNA genes indicated that the isolates obtained on a mineral salts medium belonged to different genera, including Stenotrophmonas, Pseudomonas, Bordetella, Brucella, Bacillus, Achromobacter, Ochrobactrum, Advenella, Mycobacterium, Mesorhizobium, Klebsiella, Pusillimonas and Raoultella. The percentage degradation rates of these isolates were estimated by measuring the absorbance of the 2,6-dichlorophenol indophenol medium. Pseudomonas emerged as the top degrader with an estimated percentage degradation rate of 73.7% after 7 days of incubation at 28 °C. In addition, the presence of the catabolic gene, catechol-2,3-dioxygenase was detected in the bacteria isolates as well as in evolutionary classifications based on phylogeny. Conclusions The bacteria isolated in this study are potential agents for the bioremediation of crude oil sludge.
Collapse
Affiliation(s)
- Linda U Obi
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa ; Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council - Institute for Soil, Climate and Water, Pretoria, South Africa
| | - Harrison I Atagana
- Institute for Science and Technology Education, University of South Africa, Pretoria, South Africa
| | - Rasheed A Adeleke
- Department of Environmental Sciences, University of South Africa, Johannesburg, South Africa ; Microbiology and Environmental Biotechnology Research Group, Agricultural Research Council - Institute for Soil, Climate and Water, Pretoria, South Africa ; Unit for Environment Science and Management, North-West University (Potchefstroom Campus), Potchefstroom, South Africa
| |
Collapse
|
19
|
Response Mechanisms in Serratia marcescens IBB Po15 During Organic Solvents Exposure. Curr Microbiol 2016; 73:755-765. [PMID: 27538581 DOI: 10.1007/s00284-016-1108-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/20/2016] [Indexed: 10/21/2022]
Abstract
Serratia marcescens strain IBBPo15 (KT315653) which possesses serratiopeptidase (ser) gene (KT894207) exhibited good solvent tolerance. During the exposure of S. marcescens IBBPo15 cells to 5 % organic solvents, n-decane was less toxic for this bacterium, compared with n-hexane, cyclohexane, ethylbenzene, toluene, and styrene. The exposure of the S. marcescens IBBPo15 cells to n-hexane, cyclohexane, ethylbenzene, toluene, and styrene induced the formation of large clusters, while in control and n-decane-exposed cells, only organization into small clusters was observed. The data obtained suggested that S. marcescens IBBPo15 cells produced some secondary metabolites (i.e., surfactant serrawettin, red pigment prodigiosin) which are well known as valuable molecules due to their large applications. The exposure of the bacterial cells to organic solvents induced secondary metabolites profile modifications. However, S. marcescens IBBPo15 possesses only alkB1, todM, rhlAB, pswP, mpr, and ser genes, the unspecific amplification of other fragments being acquired also when the primers for alkM1, xylM, ndoM, and C23DO genes were used. Modifications of DNA patterns were not depicted in S. marcescens IBBPo15 cells exposed to organic solvents.
Collapse
|
20
|
Guermouche M'rassi A, Bensalah F, Gury J, Duran R. Isolation and characterization of different bacterial strains for bioremediation of n-alkanes and polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:15332-15346. [PMID: 25813636 DOI: 10.1007/s11356-015-4343-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 03/09/2015] [Indexed: 06/04/2023]
Abstract
Crude oil is a common environmental pollutant composed of a large number of both aromatic and aliphatic hydrocarbons. Biodegradation is carried out by microbial communities that are important in determining the fate of pollutants in the environment. The intrinsic biodegradability of the hydrocarbons and the distribution in the environment of competent degrading microorganisms are crucial information for the implementation of bioremediation processes. In the present study, the biodegradation capacities of various bacteria toward aliphatic and aromatic hydrocarbons were determined. The purpose of the study was to isolate and characterize hydrocarbon-degrading bacteria from contaminated soil of a refinery in Arzew, Algeria. A collection of 150 bacterial strains was obtained; the bacterial isolates were identified by 16S rRNA gene sequencing and their ability to degrade hydrocarbon compounds characterized. The isolated strains were mainly affiliated to the Gamma-Proteobacteria class. Among them, Pseudomonas spp. had the ability to metabolize high molecular weight hydrocarbon compounds such as pristane (C19) at 35.11 % by strain LGM22 and benzo[a] pyrene (C20) at 33.93 % by strain LGM11. Some strains were able to grow on all the hydrocarbons tested including octadecane, squalene, phenanthrene, and pyrene. Some strains were specialized degrading only few substrates. In contrast, the strain LGM2 designated as Pseudomonas sp. was found able to degrade both linear and branched alkanes as well as low and high poly-aromatic hydrocarbons (PAHs). The alkB gene involved in alkane degradation was detected in LGM2 and other Pseudomonas-related isolates. The capabilities of the isolated bacterial strains to degrade alkanes and PAHs should be of great practical significance in bioremediation of oil-contaminated environments.
Collapse
Affiliation(s)
- A Guermouche M'rassi
- Laboratoire de Génétique Microbienne, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es-Senia, Oran, 31000, Algérie, Algeria.
| | - F Bensalah
- Laboratoire de Génétique Microbienne, Faculté des Sciences de la Nature et de la Vie, Université Oran 1 Ahmed Ben Bella, Es-Senia, Oran, 31000, Algérie, Algeria
| | - J Gury
- Equipe Environnement et Microbiologie, UMR IPREM5254, IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| | - R Duran
- Equipe Environnement et Microbiologie, UMR IPREM5254, IBEAS, Université de Pau et des Pays de l'Adour, Pau, France
| |
Collapse
|
21
|
Suenaga H. Targeted metagenomics unveils the molecular basis for adaptive evolution of enzymes to their environment. Front Microbiol 2015; 6:1018. [PMID: 26441940 PMCID: PMC4585196 DOI: 10.3389/fmicb.2015.01018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 09/08/2015] [Indexed: 11/13/2022] Open
Abstract
Microorganisms have a wonderful ability to adapt rapidly to new or altered environmental conditions. Enzymes are the basis of metabolism in all living organisms and, therefore, enzyme adaptation plays a crucial role in the adaptation of microorganisms. Comparisons of homology and parallel beneficial mutations in an enzyme family provide valuable hints of how an enzyme adapted to an ecological system; consequently, a series of enzyme collections is required to investigate enzyme evolution. Targeted metagenomics is a promising tool for the construction of enzyme pools and for studying the adaptive evolution of enzymes. This perspective article presents a summary of targeted metagenomic approaches useful for this purpose.
Collapse
Affiliation(s)
- Hikaru Suenaga
- Bioproduction Research Institute - National Institute of Advanced Industrial Science and Technology (AIST) Tsukuba, Japan
| |
Collapse
|
22
|
Koo H, Mojib N, Huang JP, Donahoe RJ, Bej AK. Bacterial community shift in the coastal Gulf of Mexico salt-marsh sediment microcosm in vitro following exposure to the Mississippi Canyon Block 252 oil (MC252). 3 Biotech 2015; 5:379-392. [PMID: 28324540 PMCID: PMC4522729 DOI: 10.1007/s13205-014-0233-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 06/04/2014] [Indexed: 12/23/2022] Open
Abstract
In this study, we examined the responses by the indigenous bacterial communities in salt-marsh sediment microcosms in vitro following treatment with Mississippi Canyon Block 252 oil (MC252). Microcosms were constructed of sediment and seawater collected from Bayou La Batre located in coastal Alabama on the Gulf of Mexico. We used an amplicon pyrosequencing approach on microcosm sediment metagenome targeting the V3–V5 region of the 16S rRNA gene. Overall, we identified a shift in the bacterial community in three distinct groups. The first group was the early responders (orders Pseudomonadales and Oceanospirillales within class Gammaproteobacteria), which increased their relative abundance within 2 weeks and were maintained 3 weeks after oil treatment. The second group was identified as early, but transient responders (order Rhodobacterales within class Alphaproteobacteria; class Epsilonproteobacteria), which increased their population by 2 weeks, but returned to the basal level 3 weeks after oil treatment. The third group was the late responders (order Clostridiales within phylum Firmicutes; order Methylococcales within class Gammaproteobacteria; and phylum Tenericutes), which only increased 3 weeks after oil treatment. Furthermore, we identified oil-sensitive bacterial taxa (order Chromatiales within class Gammaproteobacteria; order Syntrophobacterales within class Deltaproteobacteria), which decreased in their population after 2 weeks of oil treatment. Detection of alkane (alkB), catechol (C2,3DO) and biphenyl (bph) biodegradation genes by PCR, particularly in oil-treated sediment metacommunity DNA, delineates proliferation of the hydrocarbon degrading bacterial community. Overall, the indigenous bacterial communities in our salt-marsh sediment in vitro microcosm study responded rapidly and shifted towards members of the taxonomic groups that are capable of surviving in an MC252 oil-contaminated environment.
Collapse
Affiliation(s)
- Hyunmin Koo
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA
| | - Nazia Mojib
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA
- Red Sea Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jonathan P Huang
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA
| | - Rona J Donahoe
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL, 35487-0338, USA
| | - Asim K Bej
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., CH464, Birmingham, AL, 35294-1170, USA.
| |
Collapse
|
23
|
Olapade OA, Ronk AJ. Isolation, characterization and community diversity of indigenous putative toluene-degrading bacterial populations with catechol-2,3-dioxygenase genes in contaminated soils. MICROBIAL ECOLOGY 2015; 69:59-65. [PMID: 25052383 DOI: 10.1007/s00248-014-0466-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 07/09/2014] [Indexed: 06/03/2023]
Abstract
Indigenous bacterial assemblages with putative hydrocarbon-degrading capabilities were isolated, characterized and screened for the presence of the catechol-2,3-dioxygenase (C23O) gene after exposure to toluene in two different (i.e., pristine and conditioned) soil communities. The indigenous bacterial populations were exposed to the hydrocarbon substrate by the addition of toluene concentrations, ranging from 0.5 % to 10 % V/W in 10 g of each soil and incubated at 30 °C for upwards of 12 days. In total, 25 isolates (11 in pristine soil and 14 in conditioned soil) were phenotypically characterized according to standard microbiological methods and also screened for the 238-bp C23O gene fragment. Additionally, 16S rRNA analysis of the isolates identified some of them as belonging to the genera Bacillus, Exiguobacterium, Enterobacter, Pseudomonas and Stenotrophomonas. Furthermore, the two clone libraries that were constructed from these toluene-contaminated soils also revealed somewhat disparate phylotypes (i.e., 70 % Actinobacteria and Firmicutes to 30 % Proteobacteria in conditioned soil, whereas in pristine soil: 66 % Actinobacteria and Firmicutes; 21 % Proteobacteria and 13 % Bacteroidetes). The differences observed in bacterial phylotypes between these two soil communities may probably be associated with previous exposure to hydrocarbon sources by indigenous populations in the conditioned soil as compared to the pristine soil.
Collapse
Affiliation(s)
- Ola A Olapade
- Department of Biology and the Center for Sustainability and the Environment, Albion College, 611 East Porter Street, Albion, MI, 49224, USA,
| | | |
Collapse
|
24
|
Kim S, Krajmalnik-Brown R, Kim JO, Chung J. Remediation of petroleum hydrocarbon-contaminated sites by DNA diagnosis-based bioslurping technology. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 497-498:250-259. [PMID: 25129160 DOI: 10.1016/j.scitotenv.2014.08.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 06/03/2023]
Abstract
The application of effective remediation technologies can benefit from adequate preliminary testing, such as in lab-scale and Pilot-scale systems. Bioremediation technologies have demonstrated tremendous potential with regards to cost, but they cannot be used for all contaminated sites due to limitations in biological activity. The purpose of this study was to develop a DNA diagnostic method that reduces the time to select contaminated sites that are good candidates for bioremediation. We applied an oligonucleotide microarray method to detect and monitor genes that lead to aliphatic and aromatic degradation. Further, the bioremediation of a contaminated site, selected based on the results of the genetic diagnostic method, was achieved successfully by applying bioslurping in field tests. This gene-based diagnostic technique is a powerful tool to evaluate the potential for bioremediation in petroleum hydrocarbon contaminated soil.
Collapse
Affiliation(s)
- Seungjin Kim
- Environmental Engineering Department, Samsung Engineering Co., Ltd., 500 Samsung GEC, Sangil-Dong, Gangdong-Gu, Seoul 134-728, Republic of Korea
| | - Rosa Krajmalnik-Brown
- Center for Environmental Biotechnology, Biodesign Institute at Arizona State University, 1001 South McAllister Avenue, Tempe, AZ 85287-5701, USA
| | - Jong-Oh Kim
- Department of Civil and Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seongdong-Gu, Seoul 133-791, Republic of Korea
| | - Jinwook Chung
- R&D Center, Samsung Engineering Co., Ltd., 415-10 Woncheon-Dong, Youngtong-Gu, Suwon, Gyeonggi-Do 443-823, Republic of Korea.
| |
Collapse
|
25
|
Stancu MM. Physiological cellular responses and adaptations of Rhodococcus erythropolis IBBPo1 to toxic organic solvents. J Environ Sci (China) 2014; 26:2065-2075. [PMID: 25288551 DOI: 10.1016/j.jes.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 03/11/2014] [Accepted: 03/19/2014] [Indexed: 06/03/2023]
Abstract
A new Gram-positive bacterium, Rhodococcus erythropolis IBBPo1 (KF059972.1) was isolated from a crude oil-contaminated soil sample by enrichment culture method. R. erythropolis IBBPo1 was able to tolerate a wide range of toxic compounds, such as antibiotics (800-1000μg/mL), synthetic surfactants (50-200μg/mL), and organic solvents (40%-100%). R. erythropolis IBBPo1 showed good tolerance to both alkanes (cyclohexane, n-hexane, n-decane) and aromatics (toluene, styrene, ethylbenzene) with logPOW (logarithm of the partition coefficient of the solvent in octanol-water mixture) values between 2.64 and 5.98. However, alkanes were less toxic for R. erythropolis IBBPo1 cells, compared with aromatics. The high organic solvent tolerance of R. erythropolis IBBPo1 could be due to the presence in their large genome of some catabolic (alkB, alkB1, todC1, todM, xylM), transporter (HAE1) and trehalose-6-phosphate synthase (otsA1, KF059973.1) genes. Numerous and complex physiological cellular responses and adaptations involved in organic solvent tolerance were revealed in R. erythropolis IBBPo1 cells exposed 1 and 24hr to 1% organic solvents. R. erythropolis IBBPo1 cells adapt to 1% organic solvents by changing surface hydrophobicity, morphology and their metabolic fingerprinting. Considerable modifications in otsA1 gene sequence were also observed in cells exposed to organic solvents (except ethylbenzene).
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology Bucharest of Romanian Academy, Bucharest 060031, P.O. Box 56-53, Romania.
| |
Collapse
|
26
|
Osman OA, Gudasz C, Bertilsson S. Diversity and abundance of aromatic catabolic genes in lake sediments in response to temperature change. FEMS Microbiol Ecol 2014; 88:468-81. [PMID: 24597511 DOI: 10.1111/1574-6941.12312] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Revised: 02/15/2014] [Accepted: 02/24/2014] [Indexed: 11/29/2022] Open
Abstract
The abundance and composition of genes involved in the catabolism of aromatic compounds provide important information on the biodegradation potential of organic pollutants and naturally occurring compounds in the environment. We studied catechol 2, 3 dioxygenase (C23O) and benzylsuccinate synthase (bssA) genes coding for key enzymes of aerobic and anaerobic degradation of aromatic compounds in experimental incubations with sediments from two contrasting lakes; humic lake Svarttjärn and eutrophic Vallentunasjön, respectively. Sediment cores from both lakes were incubated continuously for 5 months at constant temperatures ranging from 1.0 to 21.0 °C. The difference in C23O gene composition of the sediment analyzed at the end of the experiment was larger between lakes, than among temperature treatments within each lake. The abundance of C23O gene copies and measured respiration was positively correlated with temperature in Vallentunasjön, whereas putative C23O genes were present in lower concentrations in Svarttjärn sediments. Putative bssA genes were only detected in Svarttjärn. For both lakes, the two catabolic genes were most abundant in the surface sediment. The results emphasize the important role of temperature and nutrient availability in controlling the functional potential of sediment microorganisms and reveal differences between systems with contrasting trophic status. A better understanding of catabolic pathways and enzymes will enable more accurate forecasting of the functional properties of ecosystems under various scenarios of environmental change.
Collapse
Affiliation(s)
- Omneya A Osman
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | | | | |
Collapse
|
27
|
Egorova DO, Korsakova ES, Demakov VA, Plotnikova EG. Degradation of aromatic hydrocarbons by the Rhodococcus wratislaviensis KT112-7 isolated from waste products of a salt-mining plant. APPL BIOCHEM MICRO+ 2013. [DOI: 10.1134/s0003683813030071] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Application of bioremediation technology in the environment contaminated with petroleum hydrocarbon. ANN MICROBIOL 2012. [DOI: 10.1007/s13213-012-0543-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
29
|
Táncsics A, Szoboszlay S, Szabó I, Farkas M, Kovács B, Kukolya J, Mayer Z, Kriszt B. Quantification of subfamily I.2.C catechol 2,3-dioxygenase mRNA transcripts in groundwater samples of an oxygen-limited BTEX-contaminated site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:232-40. [PMID: 22091737 DOI: 10.1021/es201842h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Low dissolved oxygen concentration of subsurface environments is a limiting factor for microbial aromatic hydrocarbon degradation, and to date, there are only a limited number of available reports on functional genes and microbes that take part in the degradation of aromatic hydrocarbons under hypoxic conditions. Recent discoveries shed light on the prevalence of subfamily I.2.C catechol 2,3-dioxygenases in petroleum hydrocarbon contaminated hypoxic groundwaters, and their considerable environmental importance was suggested. Here, we report on a Hungarian aromatic hydrocarbon (methyl-substituted benzene derivatives, mostly xylenes) contaminated site where we investigated this presumption. Groundwater samples were taken from the center and the edge of the contaminant plume and beyond the plume. mRNA transcripts of subfamily I.2.C catechol 2,3-dioxygenases were detected in considerable amounts in the contaminated samples by qPCR analysis, while activity of subfamily I.2.A, which includes the largest group of extradiol dioxygenases described by culture-dependent studies and thought to be widely distributed in BTEX-contaminated environments, was not observed. Bacterial community structure analyses showed the predominance of genus Rhodoferax related species in the contaminated samples.
Collapse
Affiliation(s)
- András Táncsics
- Regional University Center of Excellence in Environmental Industry, Faculty of Agricultural and Environmental Sciences, Szent István University, Gödöllő, Hungary.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhao HP, Liang SH, Yang X. Isolation and characterization of catechol 2,3-dioxygenase genes from phenanthrene degraders Sphingomonas, sp. ZP1 and Pseudomonas sp. ZP2. ENVIRONMENTAL TECHNOLOGY 2011; 33:1895-1901. [PMID: 22439578 DOI: 10.1080/09593330.2011.568007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two bacterial strains, Sphingomonas sp. ZP1 and Pseudomonas stutzeri sp ZP2, were identified as having phenanthrene-degrading ability and were characterized. The activity of catechol-2,3-dioxygenase (C230) of both strains was measured. With degradation of phenanthrene with an initial concentration of 250 ppm, the C230 activity of both strain ZP1 and ZP2 increased. The ZP1 strain consumed all phenanthrene at day 6, and strain ZP2 degraded 250 ppm of phenanthrene at around day 5; C230 activity in strain ZP1 reached its peak of 6.92 U at day 6, and C230 activity in strain ZP2 achieved 7.80 U as its peak at day 5. After all phenanthrene (250ppm) was consumed, C230 activity in both Sphingomonas sp. ZP1 and Pseudomonas stutzeri ZP2 decreased. Analysis of the C230 gene sequence indicated that gene PhnZP1 from strain ZP1 has close sequence similarity with the C230 gene from the nearest strain Sphingomonas. sp. KMG 425 (98% identity), 97% similarity with the C230 gene catA from S. paucimobilis sp. TZS-7, and 94% similar with catE gene from S. sp. HV3. The sequence of the C230 gene PhnZP2 of strain ZP2 has 98% similarity with the cmpE gene from strain S. sp., 92% similarity with the phnE gene from P. sp. DJ77 strain, and 90% similarity with all selected C230 genes from Pseudomonas genus strains.
Collapse
Affiliation(s)
- He-Ping Zhao
- Center for Environmental Biotechnology, Biodesign Institute, Arizona State University, Tempe, USA.
| | | | | |
Collapse
|
31
|
Dastgheib SMM, Amoozegar MA, Khajeh K, Shavandi M, Ventosa A. Biodegradation of polycyclic aromatic hydrocarbons by a halophilic microbial consortium. Appl Microbiol Biotechnol 2011; 95:789-98. [PMID: 22086071 DOI: 10.1007/s00253-011-3706-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 10/20/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022]
Abstract
In this study we investigated the phenanthrene degradation by a halophilic consortium obtained from a saline soil sample. This consortium, named Qphe, could efficiently utilize phenanthrene in a wide range of NaCl concentrations, from 1% to 17% (w/v). Since none of the purified isolates could degrade phenanthrene, serial dilutions were performed and resulted in a simple polycyclic aromatic hydrocarbon (PAH)-degrading culture named Qphe-SubIV which was shown to contain one culturable Halomonas strain and one unculturable strain belonging to the genus Marinobacter. Qphe-SubIV was shown to grow on phenanthrene at salinities as high as 15% NaCl (w/v) and similarly to Qphe, at the optimal NaCl concentration of 5% (w/v), could degrade more than 90% of the amended phenanthrene in 6 days. The comparison of the substrate range of the two consortiums showed that the simplified culture had lost the ability to degrade chrysene but still could grow on other polyaromatic substrates utilized by Qphe. Metabolite analysis by HPLC and GC-MS showed that 2-hydroxy 1-naphthoic acid and 2-naphthol were among the major metabolites accumulated in the Qphe-SubIV culture media, indicating that an initial dioxygenation step might proceed at C1 and C2 positions. By investigating the growth ability on various substrates along with the detection of catechol dioxygenase gene, it was postulated that the uncultured Marinobacter strain had the central role in phenanthrene degradation and the Halomonas strain played an auxiliary role in the culture by utilizing phenanthrene metabolites whose accumulation in the media could be toxic.
Collapse
|
32
|
Stancu MM, Grifoll M. Multidrug resistance in hydrocarbon-tolerant Gram-positive and Gram-negative bacteria. J GEN APPL MICROBIOL 2011; 57:1-18. [PMID: 21478643 DOI: 10.2323/jgam.57.1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.
Collapse
Affiliation(s)
- Mihaela Marilena Stancu
- Institute of Biology, Center of Microbiology, 296 Spl. Independentei St, Bucharest, Romania.
| | | |
Collapse
|
33
|
Peixoto RS, Vermelho AB, Rosado AS. Petroleum-degrading enzymes: bioremediation and new prospects. Enzyme Res 2011; 2011:475193. [PMID: 21811673 PMCID: PMC3147008 DOI: 10.4061/2011/475193] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 05/27/2011] [Indexed: 11/20/2022] Open
Abstract
Anthropogenic forces, such as petroleum spills and the incomplete combustion of fossil fuels, have caused an accumulation of petroleum hydrocarbons in the environment. The accumulation of petroleum and its derivatives now constitutes an important environmental problem. Biocatalysis introduces new ways to improve the development of bioremediation strategies. The recent application of molecular tools to biocatalysis may improve bioprospecting research, enzyme yield recovery, and enzyme specificity, thus increasing cost-benefit ratios. Enzymatic remediation is a valuable alternative as it can be easier to work with than whole organisms, especially in extreme environments. Furthermore, the use of free enzymes avoids the release of exotic or genetically modified organisms (GMO) in the environment.
Collapse
Affiliation(s)
- R S Peixoto
- Institute of Microbiology Paulo de Góes, Federal University of Rio de Janeiro, Rio de Janeiro 21 941902, Brazil
| | | | | |
Collapse
|
34
|
Xiang SR, Cook M, Saucier S, Gillespie P, Socha R, Scroggins R, Beaudette LA. Development of amplified fragment length polymorphism-derived functional strain-specific markers to assess the persistence of 10 bacterial strains in soil microcosms. Appl Environ Microbiol 2010; 76:7126-35. [PMID: 20817796 PMCID: PMC2976230 DOI: 10.1128/aem.00574-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Accepted: 08/27/2010] [Indexed: 01/21/2023] Open
Abstract
To augment the information on commercial microbial products, we investigated the persistence patterns of high-priority bacterial strains from the Canadian Domestic Substance List (DSL). Specific DNA markers for each of the 10 DSL bacterial strains were developed using the amplified fragment length polymorphism (AFLP) technique, and the fates of DSL strains introduced in soil were assessed by real-time quantitative PCR (qPCR). The results indicated that all DNA markers had high specificity at the functional strain level and that detection of the target microorganisms was sensitive at a detection limitation range from 1.3 × 10² to 3.25 × 10⁵ CFU/g of dry soil. The results indicated that all introduced strains showed a trend toward a declining persistence in soil and could be categorized into three pattern types. The first type was long-term persistence exemplified by Pseudomonas stutzeri (ATCC 17587) and Pseudomonas denitrificans (ATCC 13867) strains. In the second pattern, represented by Bacillus subtilis (ATCC 6051) and Escherichia hermannii (ATCC 700368), the inoculated strain populations dropped dramatically below the detection threshold after 10 to 21 days, while in the third pattern there was a gradual decrease, with the population falling below the detectable level within the 180-day incubation period. These patterns indicate a selection effect of a microbial community related to the ecological function of microbial strains introduced in soil. As a key finding, the DSL strains can be quantitatively tracked in soil with high sensitivity and specificity at the functional strain level. This provides the basic evidence for further risk assessment of the priority DSL strains.
Collapse
Affiliation(s)
- S.-R. Xiang
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - M. Cook
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - S. Saucier
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - P. Gillespie
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - R. Socha
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - R. Scroggins
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| | - L. A. Beaudette
- Biological Assessment and Standardization Section, Science and Technology Branch, Environment Canada, Ottawa, Ontario K1A 0H3, Canada
| |
Collapse
|
35
|
Baldwin BR, Biernacki A, Blair J, Purchase MP, Baker JM, Sublette K, Davis G, Ogles D. Monitoring gene expression to evaluate oxygen infusion at a gasoline-contaminated site. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:6829-6834. [PMID: 20681521 DOI: 10.1021/es101356t] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Increasingly, molecular biological tools, most notably quantitative polymerase chain reaction (qPCR), are being employed to provide a more comprehensive assessment of bioremediation of petroleum hydrocarbons and fuel oxygenates. While qPCR enumeration of key organisms or catabolic genes can aid in site management decisions, evaluation of site activities conducted to stimulate biodegradation would ideally include a direct measure of gene expression to infer activity. In the current study, reverse-transcriptase (RT) qPCR was used to monitor gene expression to evaluate the effectiveness of an oxygen infusion system to promote biodegradation of BTEX and MTBE. During system operation, dissolved oxygen (DO) levels at the infusion points were greater than 30 mg/L, contaminant concentrations decreased, and transcription of two aromatic oxygenase genes and Methylibium petroleiphilum PM1-like 16S rRNA copies increased by as many as 5 orders of magnitude. Moreover, aromatic oxygenase gene transcription and PM1 16s rRNA increased at downgradient locations despite low DO levels even during system operation. Conversely, target gene expression substantially decreased when the system was deactivated. RT-qPCR results also corresponded to increases in benzene and MTBE attenuation rates. Overall, monitoring gene expression complemented traditional groundwater analyses and conclusively demonstrated that the oxygen infusion system promoted BTEX and MTBE biodegradation.
Collapse
Affiliation(s)
- Brett R Baldwin
- Microbial Insights, Inc., Rockford, Tennessee 37853-3044, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Lillis L, Clipson N, Doyle E. Quantification of catechol dioxygenase gene expression in soil during degradation of 2,4-dichlorophenol. FEMS Microbiol Ecol 2010; 73:363-9. [PMID: 20533943 DOI: 10.1111/j.1574-6941.2010.00906.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The tfdC and C23O genes encode two catechol dioxygenases that catalyse ortho and meta cleavage of a key metabolite (chlorocatechol) of 2,4-dichlorophenol (2,4-DCP) metabolism, respectively. Primers were designed and a real-time PCR assay was developed to assess the abundance and expression of both tfdC and C23O genes in a soil amended with 2,4-DCP over a 21-day period. tfdC, the gene encoding the ortho cleaving dioxygenase, was significantly more abundant than the meta cleaving dioxygenase gene (C23O) throughout the experiment. The highest levels of tfdC were observed 2 days after amendment of soil with 2,4-DCP, at which stage the rate of 2,4-DCP degradation was at its maximum. In contrast, C230 copy numbers declined initially and peaked when degradation had slowed considerably. mRNA of the two chlorocatechol dioxygenase genes was not detected on day 0, but both genes were expressed after this time point. tfdC was expressed at a significantly higher level than C23O in 2,4-DCP-amended soil throughout the course of the microcosm, indicating the dominance of the ortho metabolic pathway. Phylogenetic analysis revealed a wide diversity of chlorocatechol dioxygenase genes in the 2,4-DCP-exposed soil examined.
Collapse
Affiliation(s)
- Lorraine Lillis
- School of Biology and Environmental Science, Ardmore House, University College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
37
|
Panicker G, Mojib N, Aislabie J, Bej AK. Detection, expression and quantitation of the biodegradative genes in Antarctic microorganisms using PCR. Antonie van Leeuwenhoek 2009; 97:275-87. [PMID: 20043207 DOI: 10.1007/s10482-009-9408-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 11/29/2022]
Abstract
In this study, 28 hydrocarbon-degrading bacterial isolates from oil-contaminated Antarctic soils were screened for the presence of biodegradative genes such as alkane hydroxylase (alks), the ISPalpha subunit of naphthalene dioxygenase (ndoB), catechol 2,3-dioxygenase (C23DO) and toluene/biphenyl dioxygenase (todC1/bphA1) by using polymerase chain reaction (PCR) methods. All naphthalene degrading bacterial isolates exhibited the presence of a 648 bp amplicon that shared 97% identity to a known ndoB sequence from Pseudomonas putida. Twenty-two out of the twenty-eight isolates screened were positive for one, two or all three different regions of the C23DO gene. For alkane hydroxylase, all 6 Rhodococcus isolates were PCR-positive for a 194 bp and a 552 bp segment of the alkB gene, but exhibited variable results with primers located at different segments of this gene. Three Pseudomonas spp. 4/101, 19/1, 30/3 amplified 552 bp segment of alkB. Only two Pseudomonas sp. 7/156 and 4/101 amplified a segment of alkB exhibiting 89-94% nucleotide sequence identity with the existing sequence of alkB in the GenBank sequence database. Transcripts of three genes, alkB2, C23DO and ndoB, that were amplified by DNA-PCR in three different bacterial isolates also exhibited positive amplification by reverse transcriptase PCR (RT-PCR) method confirming that these genes are functional. A competitive PCR (cPCR) method was developed for a quantitative estimation of ndoB from pure cultures of the naphthalene-degrading Pseudomonas sp. 30/2. A minimum of 1 x 10(7) copies of the ndoB gene was detected based on the comparison of the intensities of the competitor and target DNA bands. It is expected that the identification and characterization of the biodegradative genes will provide a better understanding of the catabolic pathways in Antarctic psychrotolerant bacteria, and thereby help support bioremediation strategies for oil-contaminated Antarctic soils.
Collapse
Affiliation(s)
- Gitika Panicker
- Department of Biology, University of Alabama at Birmingham, 1300 University Boulevard, Birmingham, AL 35294-1170, USA
| | | | | | | |
Collapse
|
38
|
Optimization of RNA extraction for PCR quantification of aromatic compound degradation genes. Appl Environ Microbiol 2009; 76:1282-4. [PMID: 20023086 DOI: 10.1128/aem.01939-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Seven different bacterial strains and primer sets and a mixed community were used to evaluate the use of reverse transcriptase quantitative PCR (Q-PCR) and Q-PCR of oxygenase genes to assess various approaches for monitoring the bioremediation of polluted sites. Differences in maximum activity were seen when different RNA extraction kits were compared.
Collapse
|
39
|
Clausen GB, Larsen L, Johnsen K, Radnoti de Lipthay J, Aamand J. Quantification of the atrazine-degrading Pseudomonas sp. strain ADP in aquifer sediment by quantitative competitive polymerase chain reaction. FEMS Microbiol Ecol 2009; 41:221-9. [PMID: 19709256 DOI: 10.1111/j.1574-6941.2002.tb00983.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The widely used herbicide atrazine and some of its degradation products are among the most commonly found xenobiotics in groundwater in Europe as well as in the USA. The bacterium Pseudomonas sp. strain ADP (P. ADP) possesses genes encoding atrazine mineralization on the self-transmissible plasmid pADP-1. In the present study, this ability of the strain to mineralize atrazine in aquifer sediment under both aerobic and denitrifying conditions at 10 degrees C was studied. P. ADP was able to mineralize more than 50% of 2.8 muM atrazine within 14 days under both growth conditions. Counts of degraders as colony forming units (CFU) on atrazine plates and counts of atzA gene copies as determined by quantitative competitive polymerase chain reaction (cPCR) were performed. The atzA gene encodes the enzyme which catalyzes the first step of atrazine mineralization by the strain. Quantification of the atzA gene gave rise to higher numbers than did counts of CFU. High nitrate concentrations inhibited atrazine mineralization and culturability on agar plates, but atzA copy numbers remained stable throughout the experiment. The results show a potential for bioaugmentation using P. ADP at both aerobic and denitrifying conditions and the use of cPCR as a tool for monitoring the bacteria independent of culturability.
Collapse
Affiliation(s)
- Gorm Bang Clausen
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350 Copenhagen K, Denmark
| | | | | | | | | |
Collapse
|
40
|
Singh J, Behal A, Singla N, Joshi A, Birbian N, Singh S, Bali V, Batra N. Metagenomics: Concept, methodology, ecological inference and recent advances. Biotechnol J 2009; 4:480-94. [PMID: 19288513 DOI: 10.1002/biot.200800201] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Microorganisms constitute two third of the Earth's biological diversity. As many as 99% of the microorganisms present in certain environments cannot be cultured by standard techniques. Culture-independent methods are required to understand the genetic diversity, population structure and ecological roles of the majority of organisms. Metagenomics is the genomic analysis of microorganisms by direct extraction and cloning of DNA from their natural environment. Protocols have been developed to capture unexplored microbial diversity to overcome the existing barriers in estimation of diversity. New screening methods have been designed to select specific functional genes within metagenomic libraries to detect novel biocatalysts as well as bioactive molecules applicable to mankind. To study the complete gene or operon clusters, various vectors including cosmid, fosmid or bacterial artificial chromosomes are being developed. Bioinformatics tools and databases have added much to the study of microbial diversity. This review describes the various methodologies and tools developed to understand the biology of uncultured microbes including bacteria, archaea and viruses through metagenomic analysis.
Collapse
Affiliation(s)
- Jagtar Singh
- Department of Biotechnology, Panjab University, Chandigarh, India
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Kapley A, Purohit HJ. Diagnosis of treatment efficiency in industrial wastewater treatment plants: a case study at a refinery ETP. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3789-3795. [PMID: 19544889 DOI: 10.1021/es803296r] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Many industries employ the activated sludge process for biological removal of pollutants present in wastewater. Yet, treatment plants do notfunction at optimum potential. The biological component of such systems remains a black box, and reasons responsible for poor performance have not been identified. We have used genomic and physiological tools to understand the process and propose that analysis of catabolic signatures and nutrient levels, are crucial parameters in assessing and monitoring the performance of an effluent treatment plant. In this study, we use activated sludge collected from a refinery running at a capacity of 8 million metric tonnes of wastewater as a model. The presence of hydroxylases, oxygenases, and dioxygenases in the biomass was demonstrated by polymerase chain reaction and sequence analysis of aromatic-ring hydroxylating dioxygenase clones extracted from the metagenome, suggests the presence of hitherto unreported enzymes. The actual degradative state of the biomass was demonstrated by respirometric analysis using 11 substrates expected in refinery wastewater. Nutrient-levels required for the microbial population were estimated by on-site analysis. Diagnosis of the degradative potential of activated sludge can be carried out by incorporating these tools in regular monitoring procedures and can setthe rules for improving the efficiency of treatment
Collapse
Affiliation(s)
- Atya Kapley
- Environmental Genomics Unit, National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India.
| | | |
Collapse
|
42
|
Higashioka Y, Kojima H, Sato S, Fukui M. Microbial community analysis at crude oil-contaminated soils targeting the 16S ribosomal RNA, xylM, C23O, and bcr genes. J Appl Microbiol 2009; 107:126-35. [PMID: 19298506 DOI: 10.1111/j.1365-2672.2009.04198.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIMS The analyses targeting multiple functional genes were performed on the samples of crude oil-contaminated soil, to investigate community structures of organisms involved in monoaromatic hydrocarbon degradation. METHODS AND RESULTS Environmental samples were obtained from two sites that were contaminated with different components of crude oil. The analysis on 16S rRNA gene revealed that bacterial community structures were clearly different between the two sites. The cloning analyses were performed by using primers specific for the catabolic genes involved in the aerobic or anaerobic degradation of monoaromatic hydrocarbons, i.e. xylene monooxygenase (xylM), catechol 2,3-dioxygenase (C23O), and benzoyl-CoA reductase (bcr) genes. From the result of xylM gene, it was suggested that there are lineages specific to the respective sites, reflecting the differences of sampling sites. In the analysis of the C23O gene, the results obtained with two primer sets were distinct from each other. A comparison of these suggested that catabolic types of major bacteria carrying this gene were different between the two sites. As for the bcr gene, no amplicon was obtained from one sample. Phylogenetic analysis revealed that the sequences obtained from the other sample were distinct from the known sequences. CONCLUSIONS The differences between the two sites were demonstrated in the analyses of all tested genes. As for aerobic cleavage of the aromatic ring, it was also suggested that analysis using two primer sets provide more detailed information about microbial communities in the contaminated site. SIGNIFICANCE AND IMPACT OF THE STUDY The present study demonstrated that analysis targeting multiple functional genes as molecular markers is practical to examine microbial community in crude oil-contaminated environments.
Collapse
Affiliation(s)
- Y Higashioka
- The Institute of Low Temperature Science, Hokkaido University, Sapporo, Hokkaido, Japan
| | | | | | | |
Collapse
|
43
|
Hao C, Wang H, Liu Q, Li X. Quantification of anaerobic ammonium-oxidizing bacteria in enrichment cultures by quantitative competitive PCR. J Environ Sci (China) 2009; 21:1557-1561. [PMID: 20108690 DOI: 10.1016/s1001-0742(08)62455-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The anaerobic ammonium-oxidizing (ANAMMOX) bacteria were enriched from a sequencing batch biofilm reactor (SBBR). A quantitative competitive polymerase chain reaction (QC-PCR) system was successfully developed to detect and quantify ANAMMOX bacteria in environmental samples. For QC-PCR system, PCR primer sets targeting 16S ribosomal RNA genes of ANAMMOX bacteria were designed and used. The quantification range of this system was 4 orders of magnitude, from 10(3) to 10(6) copies per PCR, corresponding to the detection limit of 300 target copies per mL. A 312-bp internal standard was constructed, which showed very similar amplification efficiency with the target amxC fragment (349 bp) over 4 orders of magnitude (10(3)-10(6)). The linear regressions were obtained with R2 of 0.9824 for 10(3) copies, 0.9882 for 10(4) copies, 0.9857 for 10(5) copies and 0.9899 for 10(6) copies, respectively. Using this method, ANAMMOX bacteria were quantified in a shortcut nitrification/denitrification-anammox system which was set for piggery wastewater treatment.
Collapse
Affiliation(s)
- Chun Hao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China.
| | | | | | | |
Collapse
|
44
|
Molecular Characterization of Microbial Population Dynamics during Sildenafil Citrate Degradation. Mol Biotechnol 2008; 41:123-32. [DOI: 10.1007/s12033-008-9112-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2008] [Accepted: 09/25/2008] [Indexed: 10/21/2022]
|
45
|
Metagenomics: Future of microbial gene mining. Indian J Microbiol 2008; 48:202-15. [PMID: 23100714 DOI: 10.1007/s12088-008-0033-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2007] [Accepted: 04/07/2008] [Indexed: 10/21/2022] Open
Abstract
Modern biotechnology has a steadily increasing demand for novel genes for application in various industrial processes and development of genetically modified organisms. Identification, isolation and cloning for novel genes at a reasonable pace is the main driving force behind the development of unprecedented experimental approaches. Metagenomics is one such novel approach for engendering novel genes. Metagenomics of complex microbial communities (both cultivable and uncultivable) is a rich source of novel genes for biotechnological purposes. The contributions made by metagenomics to the already existing repository of prokaryotic genes is quite impressive but nevertheless, this technique is still in its infancy. In the present review we have drawn comparison between routine cloning techniques and metagenomic approach for harvesting novel microbial genes and described various methods to reach down to the specific genes in the metagenome. Accomplishments made thus far, limitations and future prospects of this resourceful technique are discussed.
Collapse
|
46
|
Sipilä TP, Keskinen AK, Åkerman ML, Fortelius C, Haahtela K, Yrjälä K. High aromatic ring-cleavage diversity in birch rhizosphere: PAH treatment-specific changes of I.E.3 group extradiol dioxygenases and 16S rRNA bacterial communities in soil. ISME JOURNAL 2008; 2:968-81. [DOI: 10.1038/ismej.2008.50] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
47
|
Baldwin BR, Nakatsu CH, Nies L. Enumeration of aromatic oxygenase genes to evaluate monitored natural attenuation at gasoline-contaminated sites. WATER RESEARCH 2008; 42:723-31. [PMID: 17707876 DOI: 10.1016/j.watres.2007.07.052] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 07/25/2007] [Accepted: 07/31/2007] [Indexed: 05/16/2023]
Abstract
Monitoring groundwater benzene, toluene, ethylbenzene, and xylene (BTEX) concentrations is the typical method to assess monitored natural attenuation (MNA) and bioremediation as corrective actions at gasoline-contaminated sites. Conclusive demonstration of bioremediation, however, relies on converging lines of chemical and biological evidence to support a decision. In this study, real-time PCR quantification of aromatic oxygenase genes was used to evaluate the feasibility of MNA at two gasoline-impacted sites. Phenol hydroxylase (PHE), ring-hydroxylating toluene monooxygenase (RMO), naphthalene dioxygenase (NAH), toluene monooxygenase (TOL), toluene dioxygenase (TOD), and biphenyl dioxygenase (BPH4) genes were routinely detected in BTEX-impacted wells. Aromatic oxygenase genes were not detected in sentinel wells outside the plume indicating that elevated levels of oxygenase genes corresponded to petroleum hydrocarbon contamination. Total aromatic oxygenase gene copy numbers detected in impacted wells were on the order of 10(6)-10(9)copies L(-1). PHE, RMO, NAH, TOD, and BPH4 gene copies positively correlated to total BTEX concentration. Mann-Kendall analysis of benzene concentrations was used to evaluate the status of the dissolved BTEX plume. The combination of trend analysis of contaminant concentrations with quantification of aromatic oxygenase genes was used to assess the feasibility of MNA as corrective measures at both sites.
Collapse
Affiliation(s)
- Brett R Baldwin
- School of Civil Engineering, Purdue University, West Lafayette, IN 47907-1284, USA.
| | | | | |
Collapse
|
48
|
Suenaga H, Ohnuki T, Miyazaki K. Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 2007; 9:2289-97. [PMID: 17686025 DOI: 10.1111/j.1462-2920.2007.01342.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A metagenomic approach was taken to retrieve catabolic operons for aromatic compounds from activated sludge used to treat coke plant wastewater. Metagenomic DNA extracted from the sludge was cloned into fosmids and the resulting Escherichia coli library was screened for extradiol dioxygenases (EDOs) using catechol as a substrate, yielding 91 EDO-positive clones. Based on their substrate specificity for various catecholic compounds, 38 clones were subjected to sequence analysis. Each insert contained at least one EDO gene, and a total of 43 EDO genes were identified. More than half of these belonged to new EDO subfamilies: I.1.C (2 clones), I.2.G (20 clones), I.3.M (2 clones) and I.3.N (1 clone). The fact that novel I.2.G family genes were over-represented in these clones suggested that these genes play a specific role in environmental aromatic degradation. The I.2.G clones were further classified into six groups based on single-nucleotide polymorphisms (SNPs). Based on the combination of the SNPs, the evolutionary lineage of the genes was reconstructed; further, taking the activities of the clones into account, potential adaptive mutations were identified. The metagenomic approach was thus used to retrieve novel EDO genes as well as to gain insights into the gene evolution of EDOs.
Collapse
Affiliation(s)
- Hikaru Suenaga
- Institute for Biological Resources and Functions, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8566, Japan
| | | | | |
Collapse
|
49
|
Kasuga I, Nakajima F, Furumai H. Diversity of catechol 2,3-dioxygenase genes of bacteria responding to dissolved organic matter derived from different sources in a eutrophic lake. FEMS Microbiol Ecol 2007; 61:449-58. [PMID: 17645532 DOI: 10.1111/j.1574-6941.2007.00347.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Catechol 2,3-dioxygenase (C23O) is an extradiol dioxygenase that plays an important role in degrading aromatic compounds such as those found at polluted sites. However, little is known about the diversity of C23O genes in unpolluted environments. In such environments, various factors, including the quality and quantity of dissolved organic matter (DOM), could influence the composition and behaviour of bacterial community possessing C230 genes. We investigated C23O genes in bacteria responding to DOM from various sources in a eutrophic lake by PCR and cloning. Six microcosms filled with lake water containing indigenous bacteria and DOM from different sources were incubated for 10 days. After 1 or 2 days of incubation, C23O genes were detected in the microcosms enriched with DOM recovered from inflow river water and humus from reed grass. The sequences were very diverse but had features conserved in extradiol dioxygenases. The clone libraries generated on day 2 showed distinctive compositions among microcosms, indicating that bacteria possessing a variety of C23O genes responded differently to DOM from different sources. After 10 days of incubation, C23O genes in a previously unidentified gene cluster, 'Cluster X', became dominant in the libraries.
Collapse
Affiliation(s)
- Ikuro Kasuga
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Tokyo, Japan.
| | | | | |
Collapse
|
50
|
Andreoni V, Gianfreda L. Bioremediation and monitoring of aromatic-polluted habitats. Appl Microbiol Biotechnol 2007; 76:287-308. [PMID: 17541581 DOI: 10.1007/s00253-007-1018-5] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 04/25/2007] [Accepted: 04/25/2007] [Indexed: 10/23/2022]
Abstract
Bioremediation may restore contaminated soils through the broad biodegradative capabilities evolved by microorganisms towards undesirable organic compounds. Understanding bioremediation and its effectiveness is rapidly advancing, bringing available molecular approaches for examining the presence and expression of the key genes involved in microbial processes. These methods are continuously improving and require further development and validation of primer- and probe-based analyses and expansion of databases for alternative microbial markers. Phylogenetic marker approaches provide tools to determine which organisms are present or generally active in a community; functional gene markers provide only information concerning the distribution or transcript levels (deoxyribonucleic acid [DNA]- or messenger ribonucleic acid [mRNA]-based approaches) of specific gene populations across environmental gradients. Stable isotope probing methods offer great potential to identify microorganisms that metabolize and assimilate specific substrates in environmental samples, incorporating usually a rare isotope (i.e., (13)C) into their DNA and RNA. DNA and RNA in situ characterization allows the determination of the species actually involved in the processes being measured. DNA microarrays may analyze the expression of thousands of genes in a soil simultaneously. A global analysis of which genes are being expressed under various conditions in contaminated soils will reveal the metabolic status of microorganisms and indicate environmental modifications accelerating bioremediation.
Collapse
Affiliation(s)
- Vincenza Andreoni
- Dipartimento di Scienze e Tecnologie Alimentari e Microbiologiche, Università degli Studi di Milano, Via Celoria 2, 20133 Milan, Italy
| | | |
Collapse
|